

on the basis of a decision by the German Bundestag

Speeding up energy system optimization models – lessons learned from heuristic approaches, parallel solvers and large scale models

IFORS 2021, Seoul / online, August 27th 2021

Manuel Wetzel, Karl-Kien Cao, Kai von Krbek, Hans Christian Gils, Frieder Borggrefe, Yvonne Scholz, Benjamin Fuchs

German Aerospace Center (DLR)
Institute of Networked Energy Systems
Energy Systems Analysis

Knowledge for Tomorrow

The case for large scale energy system models

- Renewable energy is an intermitted sources of energy
- High temporal resolution is required to capture sufficient variation
- Sector coupling will further increase the share of renewable energy
- Overall system will rely on spatial and temporal flexibly options
- Low spatial scale models overestimate spatial concurrency
- Detailed grid representation necessary

High spatial and temporal resolution required

Complexity of models increases exponentially with size

Hörsch et al., PyPSA-Eur: An Open Optimisation Model of the **European Transmission System**

Sector integration and gas infrastructure

- Future models need to address gas pipelines for methane and hydrogen in addition to power grids
- Gas infrastructure such as LNG terminals and storage needs to be included in energy system models
- More degrees of freedom for the optimization

Trend towards large scale energy system models continues

Model speed-up methods are urgently needed

Own depiction based on ENTSO-E GridKit and SciGrid_gas

Classification of speed-up methods

- Speed-up measured in comparison to solving the original optimization problem with commercial solvers
- Both reduction techniques and decomposition methods can target either the spatial or temporal dimension
- Model based methods heavily rely on understanding the mathematical formulation
- Solver based methods require less domain specific knowledge

Rolling horizon

- Hourly optimisation time horizon split up into several intervals
- Previous time steps are fixed to match the continuity of the variables
- Long term storage levels and annual constraints differ from perfect foresight

[%]		2	4	6	8	10	20	30	40	50	60
Overlap-size [9	0	0.13	0.98	1.02	1.03	1.48	1.69	2.30	2.76	2.90	3.19
	20	0.09	0.06	0.24	0.28	0.32	0.59	1.02	1.17	1.46	1.54
	40	0.10	0.05	0.07	0.10	0.12	0.28	0.47	0.64	0.78	0.81
	60	0.03	0.04	0.06	0.08	0.10	0.21	0.34	0.52	0.54	0.58
	80	0.02	0.04	0.05	0.07	0.09	0.19	0.30	0.38	0.56	0.61
	100	0.02	0.03	0.05	0.06	0.07	0.18	0.28	0.30	0.48	0.54

Number of intervals

Temporal zooming

- Hourly optimisation time horizon split up into several intervals
- Run with low temporal resolution allocates the storage utilization and CO2 emission
- High resolution runs with take into account the intermittency of renewable energy sources

 Approach can be easily adjusted to trade off relative error against solution speed up

Aggregated time steps

Parallel solving with PIPS-IPM++

- Enhanced version of the parallel solver PIPS-IPM¹
- PIPS-IPM++ will be published as open source by Zuse Institute Berlin (ZIB) later this year
- Optimization model is decomposed into time slices which are solved fully parallel on HPCs via MPI

Understanding the block structure

Solving a German power system model with PIPS-IPM++

Large scale German power system model

- Economic dispatch and capacity expansion formulation
- Investment in renewable energy, storage and power lines
- Scalable between 1 and 488 model regions

regio	ns	rows	cols	nnzs
	60	8.9	9.0	34.5
	90	12.1	12.2	46.6
	120	15.4	15.5	58.9
	240	26.4	26.9	100.2
	360	34.3	34.2	128.9
	488	45.1	45.5	169.6

Cao et al., 2018, Incorporating Power Transmission Bottlenecks into Aggregated Energy System Models

Performance of parallel and commercial solvers

Key performance indicators

- Trade-off between faster time to solve and increased resource consumption
- Mitigation of both time and memory limits possible via compute node configuration on HPC systems

Solving the PyPSA-eur dataset with PIPS-IPM++

An open large scale open European power system model

- Economic dispatch and capacity expansion formulation
- Investments into renewable energy, storage and power lines
- Prebuilt instances with 37 to 3475 model regions

Root node out of memory

Hörsch et al., PyPSA-Eur: An Open Optimisation Model of the European Transmission System

Conclusions

- Heuristic approach trades off achievable speed up against relative error
 - up to 10 times faster for the German power system instances within reasonable error
- Parallel solver provides exact solutions but trades off speed up against compute resources
 - up to 18 times faster for the German power system instances
 - up to 5 times faster for the PyPSA-eur instances
- Both approaches allow addressing future large scale energy system models, however a large number of expansion options can still lead to memory limitations with the current approaches

Using neural networks for broad-scale scenario analysis

- Real world decisions require robust and discrete solutions
- Solving MIP problems takes significantly longer than solving their LP formulation
- Previously calculated similar solutions can help warm-start the MIP solver
- Integer solutions are proposed by a neural network based on reinforcement learning

on the basis of a decision by the German Bundestag

