Innovative usage and application-oriented simulation of veneer based hybrid materials in vehicle structures

Giovanni Piazza <u>David B. Heyner</u> Dr.-Ing. Elmar Beeh Prof. Dr.-Ing. Tjark Siefkes

AMC, Stockholm, 23rd-25th August 2021

Knowledge for Tomorrow

DLR – Overview

In brief:

- 33 sites
- 55 institutes and facilities
- Approx. 10,000 employees
- Offices in Brussels, Paris, Tokyo and Washington

Research Areas

- Aeronautics
- Space Research and Technology
- Transport
- Energy
- Defence and Security

In addition

- Space Administration
- Project Management Agency

Engineered woods Previous work done at DLR

Basic research of engineered woods for vehicle structures

Application potential of engineered woods for DLR's Next Generation Car (NGC) concepts e.g. studies of hybridized eng. wood in vehicle floor

- Introduction
- Concepts for the usage of wood in vehicle structures
- Modelling of veneer-based layered composites
- Simulation of NGC Generic Vehicle Floor
- Recycling
- Summary and outlook

Introduction

- Concepts for the usage of wood in vehicle structures
- Modelling of veneer-based layered composites
- Simulation of NGC Generic Vehicle Floor
- Recycling
- Summary and outlook

Introduction

Motivation to use beech-based materials in structural components

Requirements:

- Lightweighting due to emission guidelines
- Reduction of GWP during production phase

Advantages of beech:

- Very good specific material characteristics especially for bending load cases (Ashby [1])
- Ecological with low CO₂-emissions
- High availability and renewable
- Economical
- High flexibility regarding production technologies

Challenges:

- Scatter of material characteristics
- Protection from environmental influences needed

Ashby Ashby Performance Performance Youna's Ultimate Parameter Densitv Index Index Modulus strenath **Bendina Bendina** stiffness strenath F^{1/2} UTS^{2/3} Symbol F UTS ρ ρ ρ **MPa**^{1/2} MPa^{2/3} Unit [MPa] [MPa] $[q/cm^3]$ g/cm³ g/cm³ Aluminum 2,30-2,80 70.000 45-500 95 - 115 5 - 27 0,54-0,91 132 - 222 24 - 50 Beech 14.350(l) 100-140(l) CFRP ~1,50 ~140.000(l) ~1.700(l) ~250 ~95 GFRP ~2,00 ~44.500(l) ~1.100(l) ~105 ~53 Magnesium ~1,74 45.000 100-300 122 12 - 26 210.000 340-1.800 Steel ~7.85 58 6 - 19

Technical and economic comparison of materials [2] [3]

Introduction Project "For^(s)tschritt"

Project duration:

• March 2017 – August 2020 (3.5 years)

Project content:

- Development of veneer-based hybrid materials for vehicle structures
 - Road vehicles
 - Rail vehicles
- Conception, Construction, Simulation, Optimization, Testing and Validation
- Demonstrators (Front Door, Train Door, Train Side Panel)

Goal

• Qualification of wood for the usage in vehicle structures

Considered Components

Different components and requirements lead to different concepts and solutions

Final prototype components

Different solutions for each component but all based on "building blocks"

- Introduction
- Concepts for the usage of wood in vehicle structures
- Modelling of veneer-based layered composites
- Simulation of NGC Generic Vehicle Floor
- Recycling
- Summary and outlook

Concepts for the usage of wood in vehicle structures Example of "Building Blocks"

- Structured sandwich core
- Reinforcement of thin metal sheets

Concepts for the usage of wood in vehicle structures NGC – Generic Vehicle Floor

Metal-Wood & Wood-Wood Hybridization:

- Aluminum sheets each 0.6 mm to protect the wood from environment and for "class A" surface
- Beech plywood for reinforcement of thin aluminum sheets
- Birch multiplex plywood for stability with grooves for lightweighting and space for controlled crushing
- Solid silver fir wood for energy absorption through crushing

- Introduction
- Concepts for the usage of wood in vehicle structures
- Modelling of veneer-based layered composites
- Simulation of NGC Generic Vehicle Floor
- Recycling
- Summary and outlook

Modelling of veneer-based layered composites Properties of veneer-based components

Veneer:

- Produced by peeling of stem
- Orthotropic material properties
- Scatter in material characteristics

Longitudinal (*L*), Tangential (*T*) and Radial direction of veneer

Veneer-based layered composites (e.g. plywood):

- Multiple veneer layers glued together
- Free selection of orientation, thickness, type of wood for each layer
- Reduction of scatter:
 - Preselection of veneer with little to none imperfections
 - Statistically averaging due to usage of multiple veneers

Modelling of veneer-based layered composites Calibration of Material Model

- LS-Dyna as FEM-Solver
- *MAT_ENHANCED_COMPOSITE_DAMAGE (*MAT054) [4]
 - Orthotropic material model
 - Failure Modell after Chang/Chang used
- Comparison with data from testing shows:
 - UTS and failure strain in tension *L* met quite well
 - UTS in tension T met quite well
 - UCS and failure strain in compression *L* met quite well
 - UCS and failure strain in compression *T* met quite well
 - But: failure strain in tension *T* and compression *T* has to be the same in material card
 - \rightarrow Reduced stress after reaching UTS in tension T
 - \rightarrow Trade-off in compression to get energy correct

Modelling of veneer-based layered composites Layered Composites

- Each shell layer represents a sub-laminate
- Characteristics from true layers stored in numerical integration points (IP)

- Delamination in the middle due to exceeding of shear stress possible
- → Component has to be discretized with multiple shell layers

Modelling of veneer-based layered composites Layered Composites

- Each shell layer represents a sub-laminate
- Characteristics from true layers stored in numerical integration points (IP)

Modelling of Delamination:

- Usage of 2 different Tiebreak Contacts each based on a bilinear traction-separation law
 - one for wood-wood-delamination
 - · one for metal-wood-delamination

- Introduction
- Concepts for the usage of wood in vehicle structures
- Modelling of veneer-based layered composites
- Simulation of NGC Generic Vehicle Floor
- Recycling
- Summary and outlook

Simulation of NGC - Generic Vehicle Floor Model Set-up

- 5 layers of shell-elements:
 - 2 for aluminum sheets
 - 2 for beech plywood
 - 1 for birch multiplex woods and solid silver fir wood
 - \rightarrow metal-wood delamination possible
 - \rightarrow wood-wood delamination possible
- Quasi-static impact test with Pole (d = 254 mm; v = 10 mm/min)
- Birch veneer: Characteristics (Young's Modulus, Strengths, etc.) from literature
- Solid silver fir wood: Characteristics from literature but reduced to 80 % due to accumulation of imperfections in solid wood compared to specimen

Simulation of NGC - Generic Vehicle Floor Testing and Simulation

Testing

Simulation

• Qualitative evaluation: good matching of general behavior of all components

Simulation of NGC - Generic Vehicle Floor Comparison of results

Comparison of Force-Displacement-curves

- Qualitative:
- good matching of curves
- Quantitative: medium of force level to low

Comparison of Energy-Displacement-curves

- Qualitative:
- good matching of curves
- Quantitative: discrepancy in force-level leads to 10.8 % difference in absorbed energy

Simulation of NGC - Generic Vehicle Floor Comparison of results

Comparison of Force-Displacement-curves

Comparison of Energy-Displacement-curves

- \rightarrow Correlation between simulation and testing at around 90 % without fitting of parameters
- \rightarrow Refinement / Fitting of literature values needed for better results
- \rightarrow Methodology of simulating veneer-based engineered woods works quite well

- Introduction
- Concepts for the usage of wood in vehicle structures
- Modelling of veneer-based layered composites
- Simulation of NGC Generic Vehicle Floor
- Recycling
- Summary and outlook

Recycling Possible approach

- Complete separation of wood and metal in hammer mill:
 - Time needed is only around 15 sec
- Recycling of metal components:
 → Reduction of the CO₂-impact of metal components
- Possible usage of wood components:
 - Usage of strands
 - \rightarrow ask us about the new project
 - Usage of chips for particle boards
 - \rightarrow Restart of product life time for wood
- Thermal utilization of wood as worst case/last step:
 → stored quantity of CO₂ is released

- Introduction
- Concepts for the usage of wood in vehicle structures
- Modelling of veneer-based layered composites
- Simulation of NGC Generic Vehicle Floor
- Recycling
- Summary and outlook

Summary and outlook

Summary

Outlook

- Simulation of specific assemblies in a real high speed use case, like Euro-NCAP Side Pole Impact
- Comparison of those specific assemblies with a real reference data to determine potential of wood-based structures
- Deeper dive into recycling
- Deeper dive into LCA
- Look into production technologies for a quantity of greater 100,000 pieces a year

Thank you for your kind attention!

Your contact persons at the DLR Institute of Vehicle Concepts Research Area Material and Process Applications for Road and Rail Vehicles

Team Leader IMS David Heyner Tel.: +49 711 6862 - 511 E-Mail: <u>David.Heyner@dlr.de</u>

Simulation of engineered wood Giovanni Piazza Tel.: +49 711 6862 - 8154 E-Mail: <u>Giovanni.Piazza@dlr.de</u>

Literature

- [1] M.F. Ashby: *Materials Selection in Mechanical Design*, **2004**, 3rd edition, Elsevier.
- [2] R. Bergman, S. Alanya Rosenbaum: Cradle-to-gate life cycle assessment of laminated veneer lumber production in the United States, **November 2016**, Forest Products Journal, vol.67.
- [3] B. Klein: *Lightweight-Construction*, **2011**, Wiesbaden.
- [4] LS-DYNA, *Keyword user's manual, Volume II: material models*, **2013**, Livermore Software Technology Corporation (LSTC).
- [5] T. Große et. al.: Collaborative project: Structural assemblies based on sustainable wood-based material systems to reduce mass and environmental impact in road and rail vehicle construction final report for the research project For(s)tschritt, **2020**, Volkswagen AG,Wolfsburg.
- [6] D. Kaese, G. Piazza, E. Beeh, et al., Potential for Use of Veneer-Based Multi-Material Systems in Vehicle Structures, 2019, Key Eng. Mater., 809, 633-638.
- [7] D.H. Roubins, J.N. Reddy, *Modelling of Thick Composites using a Layerwise Laminate Theory*, **1993**, International Journal for Numerical Methods in Engineering, vol. 36, 655-677.
- [8] P. Niemz, W. Sonderegger, *Holzphysik Physik des Holzes und der Holzwerkstoffe*, **2017**, Leipzig, Carl-Hanser-Verlag, 57-68.

Summary and outlook

Summary

Outlook

- Simulation of specific assemblies in a real high speed use case, like Euro-NCAP Side Pole Impact
- Comparison of those specific assemblies with a real reference data to determine potential of wood-based structures
- Deeper dive into recycling
- Deeper dive into LCA
- Look into production technologies for a quantity of greater 100,000 pieces a year

