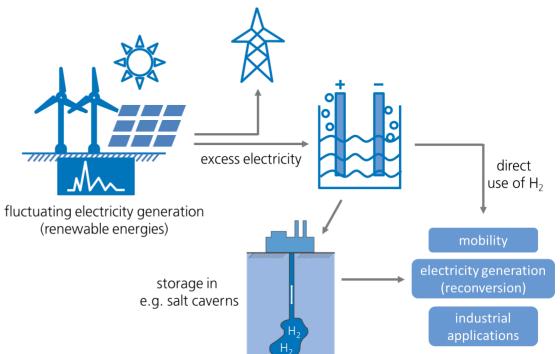
Analysis of the Purity of Hydrogen at Public Hydrogen Refuelling Stations in Germany

Holger Janßen, Michael Kröner, Alexander Dyck, Michael Wark, Carsten Agert 18th August 2021


World Fuel Cell Conference 2021

Knowledge for Tomorrow

Motivation and Objective

- High purity requirements of hydrogen for fuel cell applications demand precise analytics, reasonable sampling devices and probing procedure
- H₂ as potential storage medium to compensate for volatility (seasonal)
- \rightarrow Gas analysis according to ISO/DIN standards
- \rightarrow Investigation of factors influencing the purity of hydrogen
 - Synthesis process (steam reforming, electrolysis, ...)
 - Storage of hydrogen in salt caverns
 - Influence of used materials (high-pressure pipelines, sealings, ...)

Analysis of Contaminants in Hydrogen with Mass Spectrometry According to DIN 17124 and ISO 14687

High-performance gas analyser

V&F, type AirSense

- Measurement principle: High-resolution Ion Molecule Reaction Mass Spectrometry
- Necessary amount: 10-15 L gas volume for values ± 2 % (fast analysis with 5 L possible)
- Detectable gases from DIN 17124: H₂O, total hydrocarbons, O₂, CO₂, CO, total sulphur compounds, HCHO, HCOOH, NH₃, HCI, N₂
 - Measuring range: 0 100 ppm
 - Daily calibration with 8 test gases and H₂ 6.0

	DIN 17124 ^[1] [ppm]	AirSense [ppm]
H ₂ O	5	0.58
Total Hydrocarbons	2	(limited)
CH_4	100	0.02
O ₂	5	0.14
CO ₂	2	0.02
CO	0.2	0.45
Total Sulphur	0.004	0.003
НСНО	0.2	0.007
НСООН	0.2	0.005
NH ₃	0.1	0.002
Halides	0.05	HCI: 0.02
N_2	300	1.65
He, Ar	300	-

Sampling Device for Hydrogen to Investigate the Purity at Hydrogen Refuelling Stations

- Composite type IV high-pressure hydrogen tank (37 L)
- Design comparable to tanks in fuel cell vehicles
- Sensors for inner temperature, pressure and flow rate
- Receptacle to use standardised dispenser at HRS for non-communicative refuelling up to 875 bar, electronic controlled outlet valve with safety equipment
- Specific sampling procedure developed for analysis of contaminants in H₂

Specific Sampling Procedure Developed for Reliable Analysis of Contaminants in Hydrogen

- Minimum pressure: 1.8 Mpa
- Evacuation of sampling device not possible (possible damage of PTFE inliner)

Sampling procedure according to ASTM D7606

- Emptying of sampling device to 1.8 MPa
- Flowing 1 kg through sampling device
- Emptying of sampling device to 1.8 Mpa
- Filling of sampling device to amount necessary for analysis in the laboratory

• Short line lengths, passivated stainless steels

First Successful Sampling and Analysis of H₂ from a (Non-Public) Research HRS in Groningen

Contaminant	Concentration [ppm]	DIN 17124 ^[1] [ppm]
H ₂ O	19.3	5
CH ₄	Below LOD	100
O ₂	2.5	5
CO ₂	2.9	2
СО	((1.5))	0.2
Total Sulphur	Below LOD	0.004
НСНО	Below LOD	0.2
НСООН	0.01	0.2
NH ₃	0.014	0.1
Halides	HCI: 0	0.05
N ₂	Approx. 700	300

Sampling and Analysis of Hydrogen from the HRS in Huntorf

Contaminant	Concentration [ppm]	DIN 17124 ^[1] [ppm]
H ₂ O	4.6	5
CH ₄	Below LOD	100
O ₂	2.5	5
CO ₂	0.3	2
СО	0.3	0.2
Total Sulphur	0.004	0.004
НСНО	Below LOD	0.2
НСООН	0	0.2
NH ₃	0	0.1
Halides	HCI: 0	0.05
N ₂	155	300

Second Sampling and Analysis of Hydrogen from the HRS in Huntorf

Contaminant	Concentration [ppm]	DIN 17124 ^[1] [ppm]
H ₂ O	0.9	5
CH ₄	Below LOD	100
O ₂	1.1	5
CO ₂	0.1	2
СО	0.2	0.2
Total Sulphur	0	0.004
НСНО	Below LOD	0.2
НСООН	0	0.2
NH ₃	0	0.1
Halides	HCI: 0	0.05
N ₂	8.4	300

Are Synthesis and Processing of Hydrogen at HRS Directly Influencing the Quality of Hydrogen?

- Hydrogen obtained via electrolysis has the potentially **highest purity**, minor contamination: N₂, O₂, H₂O [1, 2]
- HRS sampling in Groningen, NL (on-site PEM electrolysis, atm. pressure): contamination in form of N₂ (≈ 700 ppm), H₂O (≈ 19 ppm) and CO₂ (≈ 3 ppm)
- First HRS sampling in Huntorf (on-site alkaline electrolysis, high pressure): contamination in form of H₂O (≈ 5 ppm) and sulphur components (≈ 4 ppb)
 - Compression via piston compressor and long-term storage at 500 bar
- Second HRS sampling in **Huntorf** showed very high purity, only minor contamination
 - No compression and storage, H_2 directly sampled from electrolyser (outlet pressure \approx 100 bar)
- Compression (piston compressor) and processing (storage) at HRS influence the purity of hydrogen

[1] T. Bacquart et al. J. Power Sources 2019, 444, 227170. [2] T. Bacquart et al., Int. J. Hydrogen Energ. 2018, 43, 11872-11883.

More Sampling of Hydrogen is Necessary for Further Insights of Influencing Factors

- Sampling at different HRS with varied synthesis routes (e.g. SMR) necessary for final conclusions
- Which additional factors beyond the HRS influence the quality of hydrogen?
- Investigation of the influence of the storage of hydrogen in salt caverns
 - High-pressure experiments with test reactors to **simulate cavern conditions** in the laboratory
- Which impact do the materials used for conducting and processing hydrogen have on the purity?
 - Investigation of sealings, cements and steels under elevated temperature and pressure
- Which **purification steps** and **sensors** are essentially needed to guarantee high quality at every refuelling of a fuel cell vehicle

Thank you for your kind attention! Questions and discussion are welcome

Contact:

Holger Janßen, Sector Integration Mobility

Mail: Holger.Janssen@dlr.de

Phone: +49 441 99906-341

Web: www.DLR.de/VE

Knowledge for Tomorrow