
Combining Repository & Process Mining for
Better Scientific Software

Thorsten Sommer*

November 19, 2021

1. Challenge
The typical development of scientific software begins as
a prototype for own needs, or those of the own organi-
zational unit. For such prototypical development, devel-
opers often forgo recognized techniques from professional
software development, such as requirements analysis, user
stories, documentation of use cases, development of an
appropriate architecture, and consultation with poten-
tial users. This leaves issues such as IT security, quality,
usability, maintainability and scalability out of consider-
ation. Complicating matters further, scientific software
is often developed by scientists from all disciplines with-
out the necessary training and support (cf. Haupt et al.,
2018). At the same time, scientists working as software
developers cannot be expected to become computer sci-
entists in parallel. After all, the challenges in computer
science are so complex that computer scientists spend
a lifetime working and researching on them every day.
In consequence of these conditions, so-called “technical
debt” arises, see also Besker et al., 2019; the following
four symptoms (S1 to S4) might result from the described
situation.

S1: IT Security
During early development, IT security is deliberately ig-
nored. The initial aim is to demonstrate feasibility or to
solve a problem under high time pressure. Years later,
the program continues to be used without the security
aspects ever having been checked and implemented (cf.
Siavvas et al., 2020). Ultimately, this leads to the over-
all IT security of the research organization being weak-
ened.

S2: Oracle Problem
In early development, quality was laid out for the one
immediate use case that needed to be solved. Under the
conditions of this first use case, the software has always
worked and produced correct results. After years of use,
the software finds more users and gradually becomes a
product. The original developer is no longer part of the
organization, therefore the knowledge of how the soft-
ware works has been lost; the software is now a black

*thorsten.sommer@dlr.de; ORCID 0000-0002-3264-9934; German
Aerospace Center (DLR), Institute for Software Technology, In-
telligent and Distributed Systems Group

box for most users. The quality and correctness for the
new conditions is and was not checked, so possibly unno-
ticed wrong results are produced (cf. Vogel et al., 2019).
This issue is called the “oracle problem” and “large vari-
ability”, see Vogel et al., 2019.

S3: Productivity
Where quality was not given sustained attention in sce-
nario S2, the focus here is on usability. The software was
developed for the initial task. Exactly for this purpose
the software is usable ideally. Over time, more scientists,
also from other disciplines, work with it. This gradually
changes the use case. This can lead to lower productivity
compared to the original use case (cf. Macaulay et al.,
2009).

S4: Blackbox
For most scientists, universities are transit stations on
their careers. In countries such as Germany, the maxi-
mum duration of stay is even regulated by law, for ex-
ample by the “Wissenschaftszeitvertragsgesetz” of 1999.
Under these conditions, the prototypical development de-
scribed at the beginning is a problem that becomes ap-
parent in the medium and long term. During the ini-
tial development, no or inadequate documentation is pro-
duced. In the best case there are publications about the
software. Years later, after the original developers are no
longer part of the organization, the knowledge about the
implementation is lost. The scientific HPC community
has already recognized this issue for themselves and is
trying to counteract it (Anzt and Flegar, 2019). How-
ever, this issue also occurs in a similar form when scien-
tists spend a lifetime developing software and then retire.
Further development becomes expensive or even impos-
sible in both cases.

2. Opportunity
Nowadays, a common method to make these challenges
manageable is the introduction of software development
guidelines (cf. Haupt et al., 2018). Three of the four
symptoms described here are thereby mitigated, but not
eliminated. In particular S2 cannot be mitigated in this
way, since the initial developer could not know which
future use cases would occur. This is similarly true for

1

mailto:thorsten.sommer@dlr.de
https://orcid.org/0000-0002-3264-9934


the other three symptoms. For example, no developer
can know what IT security attacks unknown today will
occur in the future.

In support of the software development guidelines, I
therefore propose the development of a generic framework
that uses repository and process mining to interactively
support developers. Repository mining uses data science
methods to, for example, derive information about the
software development process (cf. Kurnatowski et al.,
2020). Hence, similarity to other projects (El Baff et al.,
2021) and IT security vulnerabilities (Schreiber et al.,
2021) can be determined automatically.

Process mining can be used to derive information about
processes and thus also about their use. In the software
domain, there is the approach of working with telemetry
data. The software under investigation sends user events
to a server. By evaluating these user events, insight can
be gained into the use of software and the emerging issues,
for example in the area of usability.

Combining these approaches results in a solution that
scales to any number of scientific software and can be
applied to both new and legacy software. Symptom S1
can thus be completely eliminated. In the case of S2,
telemetry can at least detect when new use cases make
inputs that potentially lead to incorrect results so that
scientists can be warned. Likewise, the loss of productiv-
ity in the case of S3 can be detected so that new require-
ments can be assessed and the software can be adjusted
in terms of its usability. In the sense of the black box in
S4, repository mining can be used to recognize retrospec-
tively how the software was created step by step in order
to gain knowledge about its implementation. Addition-
ally, an unknown software architecture can be visualized
in such a way that the viewer can explore the architecture
to improve its understanding (cf. Schreiber and Misiak,
2018).

In order to achieve this goal, the framework to be devel-
oped would have to be able to handle the most common
programming languages, such as C, C++, C#, Python
and Java. The repository mining part of the frame-
work must be able to analyze these languages in order
to identify e.g. IT security vulnerabilities and program-
ming flaws. For the process mining aspect, the frame-
work needs an embedded web server. For maximum in-
teroperability, language-neutral interfaces would then be
provided using the OpenAPI standard, allowing integra-
tion into new and existing scientific software with little
effort. If such a generic framework would be maintained
as an open source solution by the scientific community, it
could establish itself as a standard for scientific software
development in the future.

3. Timeliness
Approaches such as repository and process mining are
relatively recent. In the meantime, enough experience

exists so that the framework considered here can be im-
plemented. In addition, thanks to open source, the world-
wide software engineering ecosystem has now reached a
state in which not only the own code but almost all of
its external dependencies can be analyzed by means of
repository mining, so that a holistic overall picture can
obtained with the approach presented here.

4. References
Anzt, H., Flegar, G., 2019. Are we Doing the Right Thing? — A
Critical Analysis of the Academic HPC Community, in: 2019 IEEE
Intl. Parallel and Distributed Processing Symposium Workshops
(IPDPSW). Presented at the IEEE Intl. Parallel and Distributed
Processing Symposium Workshops, IEEE, Rio de Janeiro, Brazil,
pp. 739–745. DOI: 10.1109/IPDPSW.2019.00122

Besker, T., Martini, A., Bosch, J., 2019. Software developer pro-
ductivity loss due to technical debt—A replication and extension
study examining developers’ development work. Journal of Systems
and Software 156, 41–61. DOI: 10.1016/j.jss.2019.06.004

El Baff, R., Santhanam, S., Hecking, T., 2021. Quantifying Syn-
ergy between Software Projects using README Files Only, in:
Proceedings of the 33rd Intl. Conference on Software Engineering
and Knowledge Engineering. Knowledge Systems Institute Gradu-
ate School, Pittsburgh, USA. DOI: 10.18293/SEKE2021-162

Haupt, C., Schlauch, T., Meinel, M., 2018. The Software Engi-
neering Initiative of DLR - Overcome the obstacles and develop
sustainable software. Presented at the ACM/IEEE Intl. Workshop
on Software Engineering for Science, ACM, Gothenburg, Sweden,
pp. 16–19.

Kurnatowski, L. von, Stoffers, M., Weigel, M., Meinel, M., Wasser,
Y., Rack, K., Fiedler, H., 2020. Scientific Software Engineering:
Mining Repositories to gain insights into BACARDI, in: 2020
IEEE Aerospace Conference, AERO 2020. Presented at the IEEE
Aerospace Conference, IEEE, Big Sky, MT, USA, pp. 1–10.

Macaulay, C., Sloan, D., Jiang, X., Forbes, P., Loynton, S., Swed-
low, J.R., Gregor, P., 2009. Usability and User-Centered Design in
Scientific Software Development. IEEE Software 26, 96–102. DOI:
10.1109/MS.2009.27

Schreiber, A., Misiak, M., 2018. Visualizing Software Architectures
in Virtual Reality with an Island Metaphor, in: Chen, J.Y.C.,
Fragomeni, G. (Eds.), Lecture Notes in Computer Science. Pre-
sented at the VAMR 2018: Virtual, Augmented and Mixed Reality:
Interaction, Navigation, Visualization, Embodiment, and Simula-
tion, Springer Intl. Publishing, Las Vegas, USA, pp. 168–182.

Schreiber, A., Sonnekalb, T., Heinze, T., Kurnatowski, L.,
Gonzalez-Barahona, J.M., Packer, H., 2021. Provenance-Based Se-
curity Audits and Its Application to COVID-19 Contact Tracing
Apps. Lecture Notes in Computer Science 12839, 88–105.

Siavvas, M., Tsoukalas, D., Jankovic, M., Kehagias, D., Tzo-
varas, D., 2020. Technical debt as an indicator of software se-
curity risk: a machine learning approach for software develop-
ment enterprises. Enterprise Information Systems 1–43. DOI:
10.1080/17517575.2020.1824017

Vogel, T., Druskat, S., Scheidgen, M., Draxl, C., Grunske, L., 2019.
Challenges for Verifying and Validating Scientific Software in Com-
putational Materials Science. 14th Intl. Workshop on Software En-
gineering for Science, IEEE, Montreal, Canada, pp. 25–32. DOI:
10.1109/SE4Science.2019.00010

2


	Challenge
	Opportunity
	Timeliness
	References

