Good practices
for research

software
documentation

Stephan Druskat
Sorrel Harriet

r——\ Software —
JN Sustainability

Institute

What are best practices for research software
CONTEXT documentationt

Posted by s.aragon on 21 June 2019 - 9:37am

AT

WL

o

By Stephan Druskat, Tyler Whitehouse, Alessandro Felder, Sorrel Harriet, Benjamin Lee

This post is part of the CW19 speed blog posts series.
This talk is based Pa rtial Iy on a b|Og_pOSt from the Good documentation is a fundamental aspect of research software. It influences how

0 o e - | 0 easy-to-use, extendable, and by extension how sustainable, a piece of software is. In this
SOftwa re sustaina bl l Ity [nstitute's CO' | d bO rations blog post, we are interested in addressing issues surrounding good documentation of
Wor kSh op 2019. We wou |d | | ke to th =18 k our co- research software and how they can be approached in a general sense, that may be
. applicable to a wide research software engineering audience.
d Ut h Ors fO r t h e b | Og pOSt' Tyl er W h Ite h ou Se’ Documentation is a broad topic and how best to approach it can depend on many factors.
A| essan d ro Fe | d er. an d Be nj =188 | N |Lee These can include the field the research software is used in, the needs and experience level
. .

of the user, the duration and complexity of the project, etc.

Take away advice

There are two pieces of concrete advice that you may take into account in terms of

https://software.ac.uk/blog/2019-06-21-what-are-best-practices-research-software-documentation
https://software.ac.uk/
https://software.ac.uk/cw19

Understand the importance of software
documentation.

Learn about different aspects of software
documentation.

W H‘ \T Make informed choices about how to approach
YO U I L L software documentation.

Reflect on the role of software documentation within
the software process.

THE IMPORTANCE OF
RESEARCH SOFTWARE
DOCUMENTATION

I I
Documentation is important Documentation is important
for software. for research.

e Ease of (re-) use e Utilization of knowledge

e Continued development ""ﬁ e Expansion of knowledge
e Sustainability e EXxpansion of impact

a productivity tool

crucial for understanding helps build a user base

SOFTWARE DOCUMENTATION ...
not that tedious @

e

_ J
good scientific practice

good for your career

TA K E AWAY Think about the documentation of your

software before you start coding.

ADVICE

Think about your motivation for documenting
the software.

When?
Who for?
What??
How??
Where??

Now!

Documentation is part of the code.

WHEN TO —

A development process can determine this.

D O C U M E N T? (Sorrel will talk about that later.)

WHO TO
DOCUMENT
FOR?

Always document for yourself.
In addition, document for your target audience.

db 4 4 N -
Yourself Users Collaborators Evaluators Funders

Consider levels of experience.

Keep In mind that the target audience may change
over time.

Depends on target audience and motivation.

I
I
I
I
I
I

Code Maintenance User Developer Metadata Project
docs docs docs

WHAT TO
DOCUMENT?

Collaborators

Evaluators

Funders

DOCUMENTATION TYPES

e CODE DOCUMENTATION
Semantic identifiers, comments, API, engineering, dependencies, requirements

=mes MAINTENANCE DOCUMENTATION
How to build, release, review code, publish

e USER DOCUMENTATION
How to get, run, use the software; parameters, data model, etc.; license

DEVELOPER DOCUMENTATION
How to contribute, contribution templates (issues, pull/merge requests)

s METADATA
Software metadata (CodeMeta), Citation File (CFF), "references" (dependencies)

s PROJECT DOCUMENTATION
Rationale, teams, governance, community (contact, code of conduct)

Conceptual documentation

Higher-level views of the software:
e Requirements, design specifications, architecture
e Project documentation

/

Hands-on documentation

e How-tos, getting started documents, user guides
e Templates for issues, pull/merge requests
e Contribution guidelines, codes of conduct

D O C U M E N T? Reference documentation
o o APl documentation, build/release engineering

documents, code comments
e [ests
e Metadata

Baseline

e README + "self-documenting code"
e Code comments where useful

Always human-readable

Machine-readable where useful or necessary
e Metadata

HOW TO :-Iir)ec>5§2trings
DOCUMENT IN o

Use available technology/tooling, e.g.

? e Simple markup languages (Markdown, RST)
P RACTI C E p e Static site / APl doc generators

e Static analysis tools (style, completeness)

Documentation lives where the source code lives!
(This is never in an email, chat, or similar!)

I
All documentation should be accessible to anyone
x who can access the software.

WHERETO
DOC U M E N T? Ideally, all documentation can be referenced from all

documentation.

PRELIMINARY CONCLUSION:

HOW TO GET STARTED

]
Answer before coding:

e Who do you document for?
e What is your motivation for
documentation?

This determines
e What to document
e how to document it.

Always document for yourself!

Start documenting when you
start coding. Add, change,
remove documentation when
you add, change, remove code.

The documentation lives where
the code lives.

For each documentation type

or format you use, answer
these questions:

Who is it for?

What do they want and
need?

How else could |
communicate with them??
(When do they need it?)

How do you feel about
adopting new processes?

Why do it?

Acknowledge your motivations for
following/not following Stephan's advice!

17

Process and
documentation
are connected

If you have not defined your process, you
may Mmake poor decisions about your
documentation

I'm interested in
people and
processes

As an SSI Fellow, | have been exploring how people
manage and collaborate on research software projects.

Read my latest blog_post for SSI

https://www.software.ac.uk/
https://www.software.ac.uk/blog/2020-12-02-could-coaching-contribute-more-sustainable-software

RESEARCH SOFTWARE
PROJECTS ARE

SUCCESSFUL BY DEFAULT

Securing funding requires a lot Success is typically defined at Quality control mechanisms

What is missing
from our definition
of success?

Capacity of the software to 'Soft' critical success factors
support future work

What might we
learn by changing
the definition of

success?

Management and process deserve our attention

including the documentation!

Why?

Try asking yourself...

e What is your development process?

e What does your project timeline look like?

e How have you broken the project down?

e How are resources allocated?

e Who is working on this project?

e Who might work on the project in the future?
e How are you working together on the project?

Knowing what to document means asking these kinds
of questions.

4 examples...

24

1. THE INFRASTRUCTURE PROJECT

You are working on a critical infrastructure project that is likely to secure further funding.
You are part of a large and distributed team of researchers and RSEs, most of whom are on
fixed-term contracts.

ol e s
= 000

L

C

] =
0 BUCOOCNE LIRS

|

L

UL

S Uy

£

ERnNEN SENEE]

2. THE OPEN-SOURCE PROJECT

You are working on an open-source toolkit. You have funding for the next year, but you
know that securing further funding will be hard and you will be reliant on the open-source
community to keep the project alive.

3. THE USER-FACING APPLICATION

You are a working in a small team on a user-facing application whose main users are other
researchers. The project is funded for 3 years but may struggle to receive further funding.
All members of the team are on fixed-term contracts/PhD students and likely to move on.

4. THE PHD STUDENT

You are a PhD student writing scripts to perform simulations. You are mainly working in
Isolation. Your PhD project may form the basis of future work.

w2

One size does
not fit all

In each of the examples, your documentation
decisions will have been different.

Each project had different aims and priorities, as well
as different people and processes.

How to plan for
documentation

’\L

1™

e Have a documentation plan (however lightweight)

e Try to be realistic in your time and budget estimations
e Eliminate waste (keep it 'lean' where appropriate)

e |nsome cases, it may help to refer to ISO standards

N

ISO/IEC 15910-2002

ISO/IEC/IEEE 26512:2018
Mikhail Ostrogorskij (2018) Approach to Term Time Estimation in Technical
Documentation Development

Start with the —

Whatever your project, here are 3 golden rules

ba S i CS that can serve as a starting point.

1.Make code self-
documenting

e Semantic identifiers

e Documentation comments/
docstrings

e Clear comments on any code
that is not self-documenting

e |[fworking on a large codebase
IN @ dynamically typed
language, consider using a
static type checker

2. Document
mindfully

o Apply tools and best practices
mindfully

O

@)

O

O

Is this necessary?
What are the benefits?
What are the risks?
How else could |
communicate this?

3. Document
consistently

e \Who else needs to be on board
with this?

e Make decisions with the
support of your team

e Use code review to ensure
consistency

Thank you

sdruskat.net
stephan.druskat@dir.de

liInkedin.com/in/sorrelharriet
sorrelharriet. medium.com

Agile

Documentation

Andreas Riping

Agile Documentation:
Andreas Ruping

= <> Google developer documentation style guide Q Engiish ~ Signin

Home > Products > Style Rateandreview (9 G

Writing accessible documentation Send feadback

Table of contents V'
General dos and donits
Reading ease
Headings and titles
Links

Images

Q Key Point: Write i to people with di:

We write our developer documentation with accessibility in mind. This page is not an exhaustive reference,
but describes some general guidelines and examples that illustrate best practices to follow. The World
Health Organization [estimates that 15% of the world's population (more than 1 billion people) have an
accessibility need. When documentation is written with accessibility in mind, it improves the overall
experience for all readers.

General dos and don'ts
« Don't use ableist language. Avoid bias and harm when discussing disability and accessibility. For more
information, read Writing inclusive documentation.

+ Ensure that readers can reach all parts of the document (including tabs, form-submission buttons, and
il i using only a key l, without @ mouse or trackpad.

+ Use a screen reader to test your documentation. This test can help you find accessibility issues in your
content and is a good way to self-edit your content. To try out a screen reader, see List of screen
readers.

« In HTML, use semantic tagging. For example, use the element only to indicate emphasis, not to
indicate italics

* In HTML, prefer native elements (3 over custom styles.

Google Documentation
Style Guide

Documentation through the SDLC

_ _ Detailed Design

e = Specification

Detailed Requirements
fo— — Specification

Detailed Project
4 — Plan

and architecture

High-level plan, requirem:

Agile/lean Documentation:
Scott Ambler

Return of the King

MetaWards project. In part one I talked about trust in software and data, and
why my first step was to port the original code from C to Python.

and speed, and how I overcame these by walking back to C.

In this part three I will cover a lot of topics, as the last six weeks have been
very eventful. This is a very long post, so, in advance, thank you if you reach
the end.

I will cover both RSE-type topics, such as adding flexibility to code, “tutorial-
driven development”, and “plugin-based design”, before exploring more
general topics such as the role of the RSE, my opinions on the Covid-Sim
events, my opinion on the behaviour of some connected to government, and
finally, why I believe a second wave is inevitable and what we as a culture can
do to protect ourselves.

Part 1: RSE-type topics

Climbing Minas Anor

There is a big difference between normal software and research software.

This is why research software looks different to normal software, and why

what can be “good software” in academia can look like “bad software” to a
“professional software engineer”.

Research software is different to normal software for three reasons;

Tutorial-Driven
Development

ISO/IEC/IEEE 26511

Systems and software enginee
for users of systems, software,

BSTRACT

This document supports the needs of users for consistent, complete, accurate, g
requirements for strategy, planning, managing, staffing, translation, production
assessment for managers of information for users. It specifies processes and pr|
users throughout the product- or systems-development life cycle. It also includdg
produced for managing information for users, including strategic and project pla

This document provides an overview of the information-management processes
information for users. It addresses the following activities:

— developing a comprehensive strategy for information development;

— assessing user information needs;

ISO/IEC/IEEE 265]

About this project documentation

1. Documentation Documentation

1.1. Sustainability
This section describes how we approach and

1.2. Tooling
implement documentation.

1.2.1. Evaluation and

implementation Documentation is a core aspect of our project.
2. Code Review We argue that in order to sustain a research
software project, it must be documented on
different levels, including for users, developers,
People and maintainers. Additionally, we document
decisions we make during the project runtime,
in order to enable traceability of decisions, and
potentially the extraction of best practices for

) the sustainable development and provision of
& Download Hexatomic research software
& Mailing list Documentation within the context of the project
takes four different forms, or rather, addresses

© 2018ff. Hexatomic project team four different target groups:

3. Periodic unreviewed code triage

Project proposal

© github.com/hexatomic e Users of the Hexatomic software
® Developers of/contributors to the
Hexatomic software
license [CC-BY-SA-4.0 & Maintainers of the Hexatomic software,
and of the infrastructure that is developed
.
and implemented to develop and provide
it
® The research software community as the
large set of people, projects, funders and
other stakeholders, etc., which is
interested in research software
engineering, research software
development, the sustainability of
research software, research software
infrastructure, etc.

& Hexatomic software documentation

Project documentation

example
35

https://www.linkedin.com/in/sorrelharriet/
https://sdruskat.net/
http://dlr.de/
https://developers.google.com/style/accessibility
https://chryswoods.github.io/blog/return_of_the_king/#tutorial-driven-development
https://hexatomic.github.io/documentation/
https://developers.google.com/style/
https://developers.google.com/style/
https://chryswoods.github.io/blog/return_of_the_king/#tutorial-driven-development
https://chryswoods.github.io/blog/return_of_the_king/#tutorial-driven-development
https://hexatomic.github.io/documentation/
https://hexatomic.github.io/documentation/
https://www.amazon.co.uk/Agile-Documentation-Producing-Lightweigth-Lightweight/dp/0470856173
http://agilemodeling.com/essays/agileDocumentation.htm
https://www.iso.org/standard/70879.html

