
Stephan Druskat
Sorrel Harriet

Good practices
for research
software
documentation

1



This talk is based partially on a blog post from the
Software Sustainability Institute's Collaborations
Workshop 2019. We would like to thank our co-
authors for the blog post: Tyler Whitehouse,
Alessandro Felder, and Benjamin Lee.

CONTEXT

2

https://software.ac.uk/blog/2019-06-21-what-are-best-practices-research-software-documentation
https://software.ac.uk/
https://software.ac.uk/cw19


WHAT
YOU'LL
LEARN

Understand the importance of software
documentation.

Learn about different aspects of software
documentation.

Make informed choices about how to approach
software documentation.

Reflect on the role of software documentation within
the software process.

3



Ease of (re-) use
Continued development
Sustainability

Documentation is important
for software.

Utilization of knowledge
Expansion of knowledge
Expansion of impact

Documentation is important
for research.

THE IMPORTANCE OF
RESEARCH SOFTWARE
DOCUMENTATION

4



SOFTWARE DOCUMENTATION ...

crucial for understanding

a productivity tool

helps build a user base

good for your career

not that tedious

good scientific practice

5



TAKE AWAY
ADVICE

Think about the documentation of your
software before you start coding.

Think about your motivation for documenting
the software.

6



When?
Who for?
What?
How?
Where?

7



Now!

WHEN TO
DOCUMENT?

Documentation is part of the code.

A development process can determine this.
(Sorrel will talk about that later.)

8



Always document for yourself.
In addition, document for your target audience.

WHO TO
DOCUMENT 

FOR?

Consider levels of experience.

Keep in mind that the target audience may change
over time.

Yourself Users Collaborators Evaluators Funders

9



Depends on target audience and motivation.

WHAT TO
DOCUMENT?

User
docs

Project
docs

Yourself

Users

Collaborators

Evaluators

Funders

Code Maintenance Developer
docs

Metadata

10



DOCUMENTATION TYPES
Semantic identifiers, comments, API, engineering, dependencies, requirements

CODE DOCUMENTATION

How to get, run, use the software; parameters, data model, etc.; license
USER DOCUMENTATION

How to build, release, review code, publish
MAINTENANCE DOCUMENTATION

How to contribute, contribution templates (issues, pull/merge requests)
DEVELOPER DOCUMENTATION

Software metadata (CodeMeta), Citation File (CFF), "references" (dependencies)
METADATA

Rationale, teams, governance, community (contact, code of conduct)
PROJECT DOCUMENTATION

11



HOW TO
DOCUMENT? Reference documentation

API documentation, build/release engineering
documents, code comments
Tests
Metadata

Conceptual documentation

Requirements, design specifications, architecture
Project documentation

Higher-level views of the software:

Hands-on documentation
How-tos, getting started documents, user guides
Templates for issues, pull/merge requests
Contribution guidelines, codes of conduct

12



HOW TO
DOCUMENT IN

PRACTICE?

Machine-readable where useful or necessary
Metadata
Tests
Doc strings

Baseline
README + "self-documenting code"
Code comments where useful

Always human-readable

13

Use available technology/tooling, e.g.
Simple markup languages (Markdown, RST)
Static site / API doc generators
Static analysis tools (style, completeness)



WHERE TO
DOCUMENT?

Documentation lives where the source code lives!
(This is never in an email, chat, or similar!)

All documentation should be accessible to anyone
who can access the software.

Ideally, all documentation can be referenced from all
documentation.

14



Who do you document for?
What is your motivation for
documentation?

what to document
how to document it.

Answer before coding:

This determines

Always document for yourself!

Start documenting when you
start coding. Add, change,
remove documentation when
you add, change, remove code. Who is it for?

What do they want and
need?
How else could I
communicate with them?
(When do they need it?)

For each documentation type
or format you use, answer
these questions:

PRELIMINARY CONCLUSION:

HOW TO GET STARTED

The documentation lives where
the code lives.

15



How do you feel about
adopting new processes?

16



Acknowledge your motivations for
following/not following Stephan's advice!

Why do it?

17



Process and
documentation
are connected

If you have not defined your process, you
may make poor decisions about your
documentation

18



As an SSI Fellow, I have been exploring how people
manage and collaborate on research software projects.

I'm interested in
people and
processes

Read my latest blog post for SSI

19

https://www.software.ac.uk/
https://www.software.ac.uk/blog/2020-12-02-could-coaching-contribute-more-sustainable-software


Securing funding requires a lot
of upfront planning

Success is typically defined at
the project level, not at the
developmental level

Quality control mechanisms
often weak or lacking

RESEARCH SOFTWARE
PROJECTS ARE
SUCCESSFUL BY DEFAULT

20



Capacity of the software to
support future work

'Soft' critical success factors

What is missing
from our definition
of success?

21



What might we
learn by changing
the definition of
success?

management and process deserve our attention

including the documentation!

22



What is your development process?
What does your project timeline look like?
How have you broken the project down?
How are resources allocated?
Who is working on this project?
Who might work on the project in the future?
How are you working together on the project?

Try asking yourself...

Knowing what to document means asking these kinds
of questions.

Why?

23



4 examples...

24



THE INFRASTRUCTURE PROJECT1.

You are working on a critical infrastructure project that is likely to secure further funding.
You are part of a large and distributed team of researchers and RSEs, most of whom are on

fixed-term contracts.

25



2. THE OPEN-SOURCE PROJECT

You are working on an open-source toolkit. You have funding for the next year, but you
know that securing further funding will be hard and you will be reliant on the open-source

community to keep the project alive.

26



3. THE USER-FACING APPLICATION

You are a working in a small team on a user-facing application whose main users are other
researchers. The project is funded for 3 years but may struggle to receive further funding.
All members of the team are on fixed-term contracts/PhD students and likely to move on.

27



4. THE PHD STUDENT

You are a PhD student writing scripts to perform simulations. You are mainly working in
isolation. Your PhD project may form the basis of future work.

 

28



In each of the examples, your documentation
decisions will have been different.

Each project had different aims and priorities, as well
as different people and processes.

One size does
not fit all

29



Have a documentation plan (however lightweight)
Try to be realistic in your time and budget estimations
Eliminate waste (keep it 'lean' where appropriate)
In some cases, it may help to refer to ISO standards

How to plan for
documentation

ISO/IEC 15910-2002
ISO/IEC/IEEE 26512:2018
Mikhail Ostrogorskij (2018) Approach to Term Time Estimation in Technical
Documentation Development

30



Whatever your project, here are 3 golden rules
that can serve as a starting point.

Start with the
basics

31



Semantic identifiers
Documentation comments /
docstrings
Clear comments on any code
that is not self-documenting
If working on a large codebase
in a dynamically typed
language, consider using a
static type checker

Make code self-
documenting

1.

32



Apply tools and best practices
mindfully

Is this necessary? 
What are the benefits?
What are the risks?
How else could I
communicate this?

2. Document
mindfully

33



Who else needs to be on board
with this?
Make decisions with the
support of your team
Use code review to ensure
consistency

3. Document
consistently

34



Thank you

linkedin.com/in/sorrelharriet
sorrelharriet.medium.com

sdruskat.net
stephan.druskat@dlr.de

Google Documentation
Style Guide

Tutorial-Driven
Development

Project documentation
example

35

Agile Documentation:
Andreas Rüping

Agile/lean Documentation:
Scott Ambler

ISO/IEC/IEEE 26511

https://www.linkedin.com/in/sorrelharriet/
https://sdruskat.net/
http://dlr.de/
https://developers.google.com/style/accessibility
https://chryswoods.github.io/blog/return_of_the_king/#tutorial-driven-development
https://hexatomic.github.io/documentation/
https://developers.google.com/style/
https://developers.google.com/style/
https://chryswoods.github.io/blog/return_of_the_king/#tutorial-driven-development
https://chryswoods.github.io/blog/return_of_the_king/#tutorial-driven-development
https://hexatomic.github.io/documentation/
https://hexatomic.github.io/documentation/
https://www.amazon.co.uk/Agile-Documentation-Producing-Lightweigth-Lightweight/dp/0470856173
http://agilemodeling.com/essays/agileDocumentation.htm
https://www.iso.org/standard/70879.html

