Maik Wischow

German Aerospace Center (DLR)

Institute of Optical Sensor Systems

- [1] dlr.de, "Das Stadtauto von morgen neu gedacht (UMV People Mover 2+2)", https://www.dlr.de/content/de/bilder/2019/4/umv-people-mover.html, 2019.
- dlr.de, "DLR tests the City-ATM system at the Köhlbrand Bridge in Hamburg", https://www.dlr.de/content/en/articles/news/2019/02/20190515_dlr-tests-the-city-atm-system-at-the-koehlbrand-bridge-in-hamburg.html, 2019.
- dlr.de, "Rollin' Justin", https://www.dlr.de/rm/desktopdefault.aspx/tabid-11427/#gallery/35411, 2008.

- [1] dlr.de, "Das Stadtauto von morgen neu gedacht (UMV People Mover 2+2)", https://www.dlr.de/content/de/bilder/2019/4/umv-people-mover.html, 2019.
- [2] dlr.de, "DLR tests the City-ATM system at the Köhlbrand Bridge in Hamburg", https://www.dlr.de/content/en/articles/news/2019/02/20190515_dlr-tests-the-city-atm-system-at-the-koehlbrand-bridge-in-hamburg.html, 2019.
- [3] dlr.de, "Rollin' Justin", https://www.dlr.de/rm/desktopdefault.aspx/tabid-11427/#gallery/35411, 2008.
 - POWERNATION, "Top 5 Fast Fails...Autonomous Cars!", https://www.youtube.com/watch?v=VsFvU5hMbQY, 2016.

- [1] dlr.de, "Das Stadtauto von morgen neu gedacht (UMV People Mover 2+2)", https://www.dlr.de/content/de/bilder/2019/4/umv-people-mover.html, 2019.
- [2] dlr.de, "DLR tests the City-ATM system at the Köhlbrand Bridge in Hamburg", https://www.dlr.de/content/en/articles/news/2019/02/20190515_dlr-tests-the-city-atm-system-at-the-koehlbrand-bridge-in-hamburg.html, 2019.
- [3] dlr.de, "Rollin' Justin", https://www.dlr.de/rm/desktopdefault.aspx/tabid-11427/#gallery/35411, 2008.
- POWERNATION, "Top 5 Fast Fails...Autonomous Cars!", https://www.youtube.com/watch?v=VsFvU5hMbQY, 2016.

- [1] dlr.de, "Das Stadtauto von morgen neu gedacht (UMV People Mover 2+2)", https://www.dlr.de/content/de/bilder/2019/4/umv-people-mover.html, 2019.
- dlr.de, "DLR tests the City-ATM system at the Köhlbrand Bridge in Hamburg", https://www.dlr.de/content/en/articles/news/2019/02/20190515_dlr-tests-the-city-atm-system-at-the-koehlbrand-bridge-in-hamburg.html, 2019.
- [3] dlr.de, "Rollin' Justin", https://www.dlr.de/rm/desktopdefault.aspx/tabid-11427/#gallery/35411, 2008.
 - POWERNATION, "Top 5 Fast Fails...Autonomous Cars!", https://www.youtube.com/watch?v=VsFvU5hMbQY, 2016.

Source: Wischow, M., Gallego, G., Börner, A. (2021). Camera Condition Monitoring and Readjustment by means of Noise and Blur. Unpublished manuscript.

Blur undesired

Blur undesired

Blur might be good

Source: Sreedhar Achari, "Practical Implementation of Object Detection On Video with OpenCV and Yolo v3 pre-trained weights on coco data", https://medium.com/@vsreedharachari/practical-implementation-of-object-detection-on-video-with-opencv-and-yolo-v3-pre-trained-weights-a2d2995aac41, 2020.

Blur undesired

Blur might be good

Blur desired

Blur undesired

Blur might be good

Blur desired

Camera Conditions: Motion Blur and Sensor Noise

Source: Wischow, M., Gallego, G., Börner, A, "Camera Condition Monitoring and Readjustment by means of Noise and Blur", Unpublished manuscript, 2021.

Camera Conditions: Motion Blur and Sensor Noise

(AI) Object-Detector #2					
18.2	15.9	14.4	12.3	10.6	10.2
13.8	16.4	17.1	16.5	16.1	15.1
24.8	23.5	21.7	19.8	18.4	17.7
23.6	23.5	22.2	21.7	20.3	18.3
18.6	19.6	18.7	18.4	17.6	15.7
26.9	18.8	17.6	16.0	14.1	13.9

Performance Profile
(Al) Object-Detector #2

Source: Wischow, M., Gallego, G., Börner, A, "Camera Condition Monitoring and Readjustment by means of Noise and Blur", Unpublished manuscript, 2021.

Camera Conditions: Motion Blur and Sensor Noise

Source: Wischow, M., Gallego, G., Börner, A, "Camera Condition Monitoring and Readjustment by means of Noise and Blur", Unpublished manuscript, 2021.

- Applicable to different types of sensors.
- Decide requirements beforehand (e.g. for crack detection).

- Applicable to different types of sensors.
- Decide requirements beforehand (e.g. for crack detection).
- Assess expected experiment success beforehand.

- Applicable to different types of sensors.
- Decide requirements beforehand (e.g. for crack detection).
- Assess expected experiment success beforehand.
- Increase safeness.

- Applicable to different types of sensors.
- Decide requirements beforehand (e.g. for crack detection).
- Assess expected experiment success beforehand.
- Increase safeness.

Summary

- Development of Al-based methods for monitoring the health state of cameras.
- Physical knowledge about cameras (system models, configuration, ...) not only optional, but **essential**!
- Desired camera conditions in close connection with the target application.
- Sensitivity-Analyses ...
 - ... tackle black-box approaches.
 - ... safeguard data acquisition and prevent applications that are doomed to fail.
 - ... increase safety.
 - ... require accurate, reliable, real-time "Sensor Al" condition estimators.

Summary

- Development of Al-based methods for monitoring the health state of cameras.
- Physical knowledge about cameras (system models, configuration, ...) not only optional, but **essential**!
- Desired camera conditions in close connection with the target application.
- Sensitivity-Analyses ...
 - ... tackle black-box approaches.
 - ... safeguard data acquisition and prevent applications that are doomed to fail.
 - ... increase safety.
 - ... require accurate, reliable, real-time "Sensor Al" condition estimators.

Many Thanks!

