
This paper has been accepted for publication at the
IEEE Transactions on Intelligent Transportation Systems, 2023. ©IEEE

1

Monitoring and Adapting the Physical State of a
Camera for Autonomous Vehicles

Maik Wischow1,2, Guillermo Gallego2, Ines Ernst1, Anko Börner1

Abstract—Autonomous vehicles and robots require increas-
ingly more robustness and reliability to meet the demands of
modern tasks. These requirements specially apply to cameras
onboard such vehicles because they are the predominant sensors
to acquire information about the environment and support
actions. Cameras must maintain proper functionality and take
automatic countermeasures if necessary. Existing solutions are
typically tailored to specific problems or detached from the
downstream computer vision tasks of the machines, which,
however, determine the requirements on the quality of the
produced camera images. We propose a generic and task-oriented
self-health-maintenance framework for cameras based on data-
and physically-grounded models. To this end, we determine two
reliable, real-time capable estimators for typical image effects of
a camera in poor condition (blur, noise phenomena and most
common combinations) by evaluating traditional and customized
machine learning-based approaches in extensive experiments.
Furthermore, we implement the framework on a real-world
ground vehicle and demonstrate how a camera can adjust its
parameters to counter an identified poor condition to achieve
optimal application capability based on experimental (non-linear
and non-monotonic) input-output performance curves. Object
detection is chosen as target application, and the image effects
motion blur and sensor noise as conditioning examples. Our
framework not only provides a practical ready-to-use solution to
monitor and maintain the health of cameras, but can also serve
as a basis for extensions to tackle more sophisticated problems
that combine additional data sources (e.g., sensor or environment
parameters) empirically in order to attain fully reliable and
robust machines.

Index Terms—Autonomous robots, robot control, smart cam-
eras, image quality, deep learning, object detection.

I. INTRODUCTION

MACHINES from different fields (e.g., vehicles, robots)
are indispensable to facilitate and automate tedious,

time-consuming or hazardous tasks. As a result, there is
a strong incentive to continually advance them away from
manual control towards greater levels of autonomy. This in-
creasing autonomy enables several new application areas, such
as mapping unknown environments in exploration missions
[1], navigation in search and rescue operations [2], parking
surveillance [3], or delivering tasks in manufacturing and
warehousing [4]. However, in all these use cases, machines
are susceptible to a variety of dynamic environmental factors
(object motion [5], lighting [6], temperature [7], weather [8],

1M.W., I.E. and A.B. are with the German Aerospace Center (DLR), Berlin,
Germany. E-Mail: [firstname].[lastname]@dlr.de.

2G.G. is with the Dept. of EECS of TU Berlin (Faculty IV), the Einstein
Center Digital Future, and the Science of Intelligence Excellence Cluster,
Berlin, Germany. E-Mail: guillermo.gallego@tu-berlin.de.

Preprint of IEEE T-ITS paper. DOI: 10.1109/TITS.2023.3328811

etc.). These factors have a direct impact on how their sensors
perceive the environment, which, in turn, affects their subse-
quent actions [9]–[11]. Hence, to ensure the safety of both
individuals and the machines themselves, special attention
must be paid to reliable and robust sensors. Cameras are nowa-
days the predominant sensors to perceive the environment,
and are therefore the subject of this study. To guarantee a
camera’s intended functionality, autonomy demands for self-
health-maintenance, i.e., the task of continuously monitoring
the behavior of the system and executing automatic counter-
measures in case of a detected misbehavior.

Previous studies (e.g., [12]–[16]) have approached this task
by monitoring and optimizing image features linked to general
image quality (like sharpness, noise or dynamic range). To this
end, various automatic image quality maintenance techniques
have been developed and are now part of a standard camera’s
imaging pipeline (auto-focus, auto-exposure, auto-calibration,
etc.). However, these techniques are typically decoupled from
the downstream vision application (e.g., environment mapping,
object detection, or navigation) and hence may not reach
optimal application performance. This is particularly true if the
system can trade off image quality for other vision application
benefits. Moreover, each application has its own requirements
for what is considered an optimal image quality.

This work closes the gap by proposing a general self-health-
maintenance framework that strives for optimal application
performance. The framework combines three key components:
a continuous image quality monitoring, knowledge about the
requirements of a downstream vision application, and a camera
control for precise image quality adjustments. We demonstrate
the working principle of our framework on the exemplary ap-
plication of object detection (as a representative modern vision
application of great importance in various fields), and focus on
motion blur and noise as typical undesired image properties
(see Fig. 1). Our modular design favors interpretability, ex-
plainability, and testability of individual components compared
to end-to-end approaches. Without loss of generality, our
study analyzes: time-varying effects influencing blur and noise
quality parameters (since any time-invariant effects are usually
subtracted by camera calibration), and region-wise effects, thus
allowing us to consider spatially-varying problems.

We make the following contributions:
• We propose a general framework to approach camera self-

health-maintenance by maximizing the performance of
arbitrary downstream vision applications through contin-
uous monitoring and adjustment of image quality.

• We demonstrate our framework running in real-time on
a real-world ground vehicle for the application of object

ar
X

iv
:2

11
2.

05
45

6v
3

 [
cs

.C
V

]
 1

1
N

ov
 2

02
3

2

Condition

Monitoring

Parameter

Readjustment

Input Data Stream Take CountermeasuresCamera Self-Health-Maintenance

Fig. 1: The ground vehicle fails to detect the motion blurred cars (red) given its current camera configuration. We tackle the
source of this problem using (i) an online estimation of image quality properties, (ii) knowledge about camera physics and
(iii) empirical object detection performance curves AP (expressed as functions of the image quality). In this way, unfavorable
camera conditions can be detected and actively tackled to reach optimal application performance (green). In the example, image
blur is estimated and mitigated online by changing the camera configuration: decreasing the exposure time texp and increasing
the ISO gain. Blur is reduced at the expense of slightly increasing noise to produce better object detection rates.

detection (e.g., “car”, “pedestrian”) affected by motion
blur and noise.

• We evaluate two customized machine-learning (ML)
based image blur and noise estimators in an experimental
study: we compare them to four traditional state-of-the-
art estimators on three datasets, account for five isolated
and two combined blur and noise root causes grounded
in knowledge of camera physics, and propose a post-
processing step to re-enable blur estimation in presence
of high noise.

• Our experiments yield practical recommendations for the
robustness of camera monitoring applications.

• We provide the source code of our experiments and of
all estimators: https://github.com/MaikWischow/Camera-
Condition-Monitoring.

II. RELATED WORK

Our study is closely related to active vision [17] and
adaptive camera regulation [18] in that there are two con-
nected tasks: online estimation of the current vision state and
execution of an action to improve some target criterion. In the
estimation task, we estimate major properties of the camera
system state by assessing the quality of the image data it
produces in terms of blur and noise. Subsequently, we define
actions that can be carried out to control the camera, therefore
influence image properties (we demonstrate this for motion
blur and noise) and hence optimize the system’s performance
for a target application (object detection in this work).

Motion blur can be directly approached at a hardware
level by involving, e.g., an accelerometer [19] or a self-
designed sensor [20], but it is typically managed by automatic
exposure control through image processing. Most image-based
algorithms represent optimal exposure selection as a control
problem on image quality indicators like the intensity entropy
[12], [14], gradients [13], [14] and histograms [21], [22], or
approach it learning-based [23]. Our work is most similar to
[14] and [23], thus we use both as comparison baselines.

The study of Shin et al. [14] is likewise motivated by
challenging image effects such as motion blur or noise, which

“can be dramatically alleviated by carefully adjusting camera
exposure parameters”. To this end, the authors propose an
exposure time and gain control that maximizes image entropy,
gradient strength, and gradient uniformity while minimizing
noise. However, this procedure does not account for the
downstream vision applications that determine the required
image quality (as most traditional approaches, such as [12],
[13], [22], [24]). Furthermore, they assume simplified additive
Gaussian noise. In contrast, we consider an extensive image
formation pipeline that models the most important noise
sources close to the camera physics (which is experimentally
supported as being more realistic [25], [26]). We also include
object detection performance as a feedback signal and hence
aim for optimal downstream application performance.

Onzon et al. [23] propose a neural network for auto-
exposure control that is trained jointly, end-to-end with an
object detector. Unlike [14], the authors consider an extensive
noise formation pipeline. On top of this, we assume a more
comprehensive and realistic image formation by additionally
including motion and defocus blur as well as all image
corruptions occurring simultaneously and influencing each
other (cf. [27]). Moreover, we do not rely on a tailored end-to-
end learning approach, but instead propose a more modular,
extensible and interpretable concept: given the image data,
we empirically determine a performance profile (adapted to
the application) in terms of data quality metrics. To this end,
we employ dedicated blur and noise estimators with real-time
capabilities by adapting [13], [14] and [23] to focus on regions
of interest. The details are presented in the upcoming section.

Recent work also investigates environmental impacts (e.g.,
thermo-mechanical stress or mechanical vibrations) on defo-
cus blur, resolving power, or camera calibration [7], [24].
While these are based on fundamental studies, we focus on
approaches directly applicable in practice.

III. PROPOSED SYSTEM

We introduce the proposed system in a top-down approach.
First, an overview is provided (Sec. III-A). Next, we explain its
underlying working principle, which connects camera physics,

https://github.com/MaikWischow/Camera-Condition-Monitoring
https://github.com/MaikWischow/Camera-Condition-Monitoring

3

blur, noise, and object detection performance (Sec. III-B).
We then detail the framework’s components. We start with
the creation of an application performance profile using the
example of object detection (Sec. III-C). Finally, we present
employed traditional and learning-based (ML) blur and noise
estimation methods to quantify image quality objectively, and
address the necessary changes we made (Secs. III-D and III-E).

A. Overview

Our proposed camera self-health-maintenance system con-
sists of online testing (Fig. 2) and offline training parts (Fig. 3).

Let us briefly introduce the offline training procedure first,
as training happens before the testing/inference phase. We start
with image datasets from a target application domain as input
(e.g., object detection) and corrupt them according to an image
formation pipeline (Fig. 4). The pipeline contains the most
common (physics-based) sources of blur and noise affecting
the camera condition, with realistic severity levels (Sec. IV-A).
We quantify these levels using objective noise and blur met-
rics: noise level σ and modulation transfer function (MTF)
values, respectively. Afterwards, we let our system’s target
application (object detection) evaluate these corrupted images.
We likewise quantify this performance in terms of the well
known average precision score (AP, Sec. III-C). Knowing each
applied image corruption and the corresponding calculated
application performance, the respective tuples are aggregated
into input/output performance curves (IOPC), which is the
final product of this training procedure.

The testing part (Fig. 2) has access to these IOPCs and
analyzes each captured (yet unprocessed) camera image online
using ML-based, real-time capable noise level and MTF es-
timators (Secs. III-D and III-E). We evaluate their estimation
and runtime performances compared to established state-of-
the-art estimators (Sec. IV) for isolated and combined corrup-
tion cases, and propose a simple approach to improve blur
estimation in case of interfering high noise levels (Sec. IV-D).
If the estimated image quality does not meet the requirements
for optimal application performance recorded in an IOPC, a
control policy decides how to adjust camera parameters as
countermeasure. We propose two exemplary control policies
using exposure time and ISO gain to trade off blur and noise.
They exploit the fact that object detectors are typically more
sensitive to blur than to noise (Sec. V).

B. Optimize Object Detection by Trading off Blur and Noise

We now demonstrate how one can use the online blur/
noise estimators and the offline empirical IOPCs to control im-
age quality and hence optimize object detection performance
(Fig. 2). Here we focus on actions tackling linear motion
blur (Lin. MB) because object detectors are substantially
more sensitive to Lin. MB than to noise (Fig. 15), and there
is abundant motion blur in standard datasets like Udacity
(Fig. 10).

We make the following considerations knowing the camera’s
physical processes. The main controllable influencing factor of

Img

Decision &

Control Policy

C
a
m

e
ra

 P
a
ra

m
e
te

rs
C

o
n
tr

o
l
C

o
m

m
a
n
d
s

(t
e

x
p

,
IS

O
)

Score
(e.g., AP)

Application
(e.g., Object Detection)

Camera Self-Health-Maintenance System

S
c
e
n
e

Camera

Noise Estimation

Blur Estimation

I/O

Curves

Fig. 2: System overview. The camera is constantly monitored
by analyzing image corruptions (e.g., blur and noise). Ac-
cording to the estimated severity of such corruptions, camera
control parameters (e.g., exposure time texp and ISO gain) are
recalculated to maximize application performance using the
(offline determined) input/output (I/O) performance curves.

Corrupt Img
(Physics)

Feature Variation:
Noise (σ), Blur (MTF)

Img*
Application

(e.g., Object Detection)

Img

Score

(e.g., AP)

I O

Data

Sets

I/O

Curves

Fig. 3: Training the system (system identification). An offline
sensitivity analysis determines the impact of physical image
corruptions (e.g., blur and noise) on the performance of a target
application (e.g., object detection), and stores the results in
input/output (I/O) performance curves. As input, image data
close to the application domain are used.

motion blur is the camera’s exposure time texp. We exploit the
relations

texp ∝ I and texp ∝ MB ∼ MTF−1 ∼ AP,

ISO ∝ I and ISO ∝ σ ∼ AP−1,
(1)

where AP is the average precision of the object detector.
Changing texp by a factor α .

= told
exp/t

new
exp equally changes the

aggregated amount of light intensity I and also the motion blur
y the same factor (for simplicity and without loss of generality,
we assume linearity of the sensor digitization process [28]).
To compensate for the changed light, we may alter the camera
ISO gain by factor α, which likewise changes the noise level σ.
This relationship depends on the camera sensor architecture
and whether the analog or digital signal is amplified [29]. We
assume digital amplification as the worst case and thus a linear
relation. Hence, we can model the problem as an optimization
one, i.e., determining α from the IOPCs to maximize the object
detector’s score:

α⋆ = argmax
α

AP(α σ̂, αMB(M̂TF)), (2)

4

SensorLens

Motion

Blur

Defocus

Blur

Photon

Shot Noise

I(x,y) I‘(x,y)

Poisson Gaussian

Dark Current

Shot Noise
Readout

Noise

Poisson

Fig. 4: Image formation process of the considered camera system, including blur and noise models. A clean image I(x, y)
undergoes several physical processes that produce noise and blur, yielding the corrupted image I ′(x, y) (clean image patch
vs. distinct corruptions in stated order). Noise is either signal-dependent or signal-independent, while blur is modelled as a
convolution with a point spread function (PSF). Details are provided in the supplementary material.

Aggregation

Sensitivity Analysis

Obj. Detection

 (,)

...

...

...

...

Median

Calculation

,

(,)

(),

Fig. 5: Sensitivity analysis of object detector performance
for blur and noise. The detectors are evaluated on corrupted
images resulting in average precision (AP) scores. For the true
detection areas, corresponding patch-wise noise (σ̂) and blur
(M̂TF) estimations are aggregated to medians (σ̃ and M̃TF)
and, together with the APs, added to performance curves.

where M̂TF and σ̂ denote the online blur and noise estima-
tions, respectively. Note that texp ∝ σ2

DCSN during optimization
[30, p. 3]. We drop this influence here for simplicity, since the
small DCSN has no significant effect on σ̂ in our setting.

C. Empirical Input-Output Performance Curves

Due to the non-linear and non-monotonic nature of vision
applications, such as ML-based object detectors, we aim to
determine system output sensitivities empirically for differ-
ent noise and blur levels (Fig. 5). In this work, we use
YOLOv4 [31] (YOLOv7 [32] in the supplementary material)
and Faster R-CNN [33] as state-of-the-art real-time object
detectors (with pre-trained models and default settings, applied
on grayscale images). The analysis is performed offline, but
an online approach is also feasible.

Let us explain the offline procedure on the example of
images with a fixed blur level MTF and noise level σ. As
input we assume NI images I

.
= {Ii(x, y)}NI

i=1, where an
image I has NGT corresponding ground truth object de-
tections BGT

I
.
= {bGT

I,i(x, y)}
NGT
i=1 , patch-wise blur estimations

M̂TFI(x, y), and noise estimations σ̂I(x, y); x and y index
respective pixel values. A pixel of a bGT

I (x, y) containing an
object is defined as 1 and 0 otherwise.

First, both object detectors are applied to all images I ∈ I
yielding the estimated object detections BD

I per detector and
image. Second, these BD

I are evaluated against the BGT
I using

the well-known average precision (AP) metric, which we
calculate following [34]. In a subsequent aggregation step,
we determine median blur and noise estimations of all image
patches overlapping with the ground truth object detections,
where

σ̃
.
= med({σ̂I(x, y)|bGT

I (x, y) = 1,∀I ∈ I,∀x, y ∈ N}) (3)

and M̃TF is defined analogously. To bound the complexity,
we quantize the estimation parameter spaces into bins with
σ̃ ∈ {0, 5, . . . , 25}DN and M̃TF ∈ {0.1, 0.2, . . . , 1.0}. Fi-
nally, the resulting input-output tuples (σ̃,AP), (M̃TF,AP) or
(σ̃, M̃TF,AP) are collected as performance curves (IOPCs).

D. Blur Estimation (via the MTF)

The goal of our image blur estimators is to predict the MTF
given a possibly blurred input image patch I∗, where I∗ is
assumed to be monochrome (i.e., grayscale) and of size 192×
192 pixels (following the ML approach). Figure 6 summarizes
the steps of the two main approaches.

1) Traditional methods (non-learning–based): We use two
baseline methods: “graph-based” [35] (Graph-Based Blind
Image Deblurring, or simply GBB) and “simple local minimal
intensity prior” [36] (Patch-wise Minimal Pixels – PMP) as
traditional blur kernel estimators (top branch in Fig. 6). Both
estimators follow a maximum-a-posteriori framework

min
I,h

L(I ⊛ h, I∗) + αG(I) + βR(h) (4)

to iteratively refine a clean latent image I and the blur
kernel h (see supplementary material for details on the image
formation process). The objective function (4) is the negative
logarithm of the posterior distribution (thus maximization turns

5

H

V
H

V

Pre

ML

Blur Kernel

Estimation

Traditional

Fig. 6: Blur estimation of traditional (top branch) and learning-
based (bottom branch, ML) approaches. All methods input one
or more image patches and output estimated MTF samples
for pre-defined image frequencies (f) in the horizontal (H)
and vertical (V) directions. Traditional methods first estimate a
blur kernel, transform it into the Fourier space F , and sample
MTF values. The learning-based method consists of a pre-
processing stage (Pre) followed by a multi-layer CNN.

into minimization). It consists of a data fidelity term L that
penalizes the deviations with respect to the observed image I∗,
and two regularizers G and R (prior knowledge) on the
unknowns (with positive weights α, β). The GBB approach
represents images as graphs and employs a skeleton image
with only strong gradients as a proxy for I . It uses a re-
weighted graph total variation prior G(I) to favor bi-modal
image histograms. The PMP method builds on top of the
dark-channel prior, proposing a simplified patch-wise minimal
pixel prior G(I) that aims for sparse minimal pixel intensities
with low computation complexity. The resulting h from each
method is Fourier-transformed into the MTF and sampled at
the same spatial frequencies as the learning-based approach
(Fig. 6), for better comparison. We use the source code from
[37], [38], setting the kernel size parameters to 31×31 pixels.

2) Learning-based Method: We upgrade a learning-based
approach [39] to directly estimate MTF values from natural
images (without estimating the kernel h first). It consists of a
pre-processing stage followed by a CNN.

The pre-processing stage includes four steps: (i) Intensities
are first scaled to [0, 1] and mean-normalized. (ii) A rotation is
applied to estimate the MTF in radial and tangential directions.
(iii) The Sobel-filtered image patch is passed as an additional
channel to aid the MTF estimation procedure. (iv) Channels
are spatially down-sampled to enlarge the receptive field of
early CNN layers. We alter step (ii) to distinguish between
estimations in horizontal and vertical directions to allow a
comparison with the GBB and PMP baseline methods.

The CNN consists of a convolutional layer, seven resid-
ual blocks with strided convolutions, an intermediate feature
representation layer, and three fully connected layers that
regress the MTF outputs (bottom branch of Fig. 6). The
resulting output consists of eight MTF values in the range
[0, 1] lines px−1 at pre-defined spatial image frequencies.

The training is supervised. In [39], pairs of sharp image
patches and PSFs (I, h), synthetic or real, are collected. Their
convolution leads to the training samples I∗; the respective
MTF samples of the PSFs at the pre-defined frequencies serve
as training labels. In contrast to [39], we blurred the sharp
images by simulated random defocus and motion blur kernels

ML

Noise Level

Estimation

Traditional

Fig. 7: Noise estimation of traditional or learning-based (ML,
e.g., multi-layer CNN-based) approaches. Both approaches
estimate a noise level σ̂ for each input image patch.

(see Sec. IV), and retrained the CNN. The original CNN
weights are not publicly available and therefore cannot be used
for comparison.

At inference time, we pass a batch of four input image
patches, i.e., we stack temporally consecutive patches from
the same sensor position, pre-process them independently, and
input them into the CNN at once. We expect better results this
way according to [39], although one patch works as well. The
obtained CNN output is then an (averaged) MTF estimation.

Since the original source code is not available, we re-
implemented it with guidance from the authors.

E. Noise Estimation

The goal of the image noise estimators is to predict the
noise level σ of a noise process given a noisy input image
patch Ĩ , which is monochrome and of size of 128×128 pixels
(following the ML approach). Figure 7 depicts the steps of the
two main approaches.

1) Traditional methods (non-learning–based): As baseline
estimators we use the works of [40] (self-implemented) and
[41] (with its code basis [42]). Both are representatives of the
two major noise estimation approaches in the literature:

The adaptive Gaussian filtering method [40] (B+F) uses the
standard deviation of the most homogeneous image patches
as a basis to calculate a Gaussian kernel that is used to filter
such patches. The standard deviation of the difference between
filtered and unfiltered patches leads to the estimated σ̂. We
increased the internal image patch size from 3× 16 to 8× 16
pixels as we observed better results on the selected datasets.

The method [41] decomposes image patches via principal
component analysis (PCA, also abbreviation of the method)
into their eigenvalues and assigns the noise ratio to the smallest
ones. In contrast to previous work, the authors tackle the prob-
lem of overestimating or underestimating noise theoretically
and propose an efficient non-parametric algorithm for noise
level estimation.

2) Learning-based Method: We use the work of [43] as
learning-based (ML) approach with its code basis [44]. It was
designed for pixel-wise noise level estimation from signal-
dependent noisy images. The noise model was assumed Gaus-
sian with parameters accounting for photon and readout noise.

The CNN consists of 16 convolutional layers (including
three residual blocks) and lacks pooling and interpolation
layers, due to a known performance decrease for image noise
tasks. The resulting output σ̂ is estimated for each pixel,

6

Fig. 8: Datasets. Exemplary images from datasets Sim (896×
768 px), Udacity (1920×1200 px) and KITTI (1242×375 px).

however, for a better comparison with baseline methods, we
use the median over the patch as the noise level estimator.

The training in [43] is supervised and carried out by
artificially adding noise with σ ∈ [0, 30]DN to images from
the Waterloo dataset [45]. We retrained the CNN in the same
way using our noise model of Fig. 4 (details in Sec. IV).
Applying the original CNN weights to the noise model of
[30] and to real images failed; we could only reconstruct the
authors’ results for their simplified Gaussian noise process.

IV. EXPERIMENTS

We first describe the datasets used and the image corruptions
applied (Sec. IV-A). Subsequently, we evaluate the accuracy
and runtime performances for the proposed blur and noise
estimators separately (Secs. IV-B and IV-C) and on combined
image corruptions (Sec. IV-D). All experiments are executed
on an Intel Xeon W-2145 CPU and an NVIDIA Quadro RTX
6000 GPU, with the CNN methods running on the GPU.

A. Datasets

We employ one simulated and two real-world datasets:
Sim, KITTI [46] and Udacity [47] (Fig. 8). We create Sim
with the simulator [48] to provide accurate ground truth for
blur and noise estimation. Sim comprises 1000 images of a
village environment acquired from different viewpoints and
includes vehicles, such as cars and bikes. From KITTI we
use the annotated object detection sub-dataset (with preced-
ing frames), and from Udacity we use sub-dataset #2. We
subsample KITTI and Udacity for two reasons: to reduce
processing time and to remove (in all conscience) clearly
visible blur/noise corrupted images that would bias estimation
results (however, a residual risk of corruption in the natural
images remains). To this end, we pick 1000 images per dataset
for noise estimation and 150 images for blur estimation, and
match these numbers on Sim. For blur, we only use image
patches containing detected objects of interest. Note that each
dataset yields several image patches, depending on the image
size and the blur/noise estimator used (e.g., 1000 Udacity
images result in 135k patches for noise estimation).

We chose KITTI and Udacity as the most frequently used
ones in the literature for real-world transportation scenarios

that fit our requirements, providing a solid comparison base-
line, and Sim to fully control the proposed blur and noise
sources. These datasets can be substituted with others that
ideally contain minimal blur and noise, consecutive frames
(for more stable median estimations, cf. Secs. IV-C and IV-C),
and annotated objects of interest. Modern large-scale datasets
(e.g., ROAD [49], Mapillary [50], and Bdd100k [51]) provide
a greater variety of scenes and object classes, but typically
consist of image sequences from different cameras having
diverse geometric and radiometric statistics (e.g., their MTFs
can differ significantly). For an overview of more datasets
(including KITTI and Udacity), we refer to [52].

All datasets are synthetically corrupted with controlled
amounts of noise and blur using the models of Fig. 4.

Noise: Following the “real noise” studies in [26], we
generate noise with levels σ ∈ {5, 10, 15, 20, 25}DN (dig-
ital numbers on a [0, 255] scale). We apply default CMOS
camera parameters from [30] and study noise in isolation
or in combination. (i) For isolated dark current shot noise
(DCSN) and readout noise studies, we set the temperature to
T = 330K and the exposure time to texp = 0.1 s. (ii) For
the combined noise case we include all noise sources, with
random T ∈ (300, 330)K and texp ∈ (0.002, 1) s to emphasize
different noise components in each image. In order to reach
the desired σ, we amplify the (raw) noise in both settings.

Blur: We synthesize blur kernels of size d ∈
{3, 7, 11, 15, 21} px. d is the diameter for defocus kernels or
the approximate path length for motion blur kernels. Defocus
blur kernels are calculated analytically (see supplementary
material). Motion blur kernels are generated using [53], dis-
tinguishing between linear motion kernels (motion intensity
parameter set to 0) and non-linear ones (parameter set to 1.0),
and manually selecting the kernels that satisfy the target d. We
mitigate the influence of motion blur direction by evaluating
four rotated versions of each kernel separately (rotating them
0, 45, 90, and 135 deg counterclockwise) and using their
average estimation error as final result.

We further propose two use cases for combined blur and
noise occurrences: (i) Defocus blur and DCSN (Defocus +
DCSN) that might arise at high temperatures (as caused by
direct Sun illumination) and with defocus induced by material
stress in the optics setup [7], [24], and (ii) photon noise and
motion blur (Photon + Motion) due to high exposure times
and signal amplification, typical of low light conditions.

B. Blur Estimation

We assess blur estimation accuracy in terms of the average
mean absolute error (AMAE) between a robust MTF estima-
tion (M̂TF, with ≈ 5% outliers rejected) and ground truth
(GT) samples at eight frequencies (fi) each in horizontal (H)
and vertical (V) image directions (w):

AMAE .
=

1

2

∑
w={H,V}

MAE(w),

MAE (w)
.
=

1

8

8∑
i=1

∣∣∣MTFGT
w (fi)− M̂TFw(fi)

∣∣∣ . (5)

7

0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

1.0

Frequency [lines/px]

M
T

F
Sim

GT
CNN
PMP
GBB

0 0.1 0.2 0.3 0.4 0.5 0.6

KITTI

0 0.1 0.2 0.3 0.4 0.5 0.6

Udacity

Mean Runtime [s]

CNNMTF 0.24
PMP 12.69
GBB 13.07

CNNσ 0.002
PCA 0.002
B+F 0.005

Fig. 9: Blur estimation of uncorrupted datasets (i.e., “ground truth”). Left: Median, minimum and maximum blur estimations
of the uncorrupted datasets (depicted by sampled points with interpolation in between and the shaded areas, respectively;
horizontal direction only). Right: Mean runtime estimations per image patch (for CNNMTF per input batch of four images).

TABLE I: Blur estimation of synthetically corrupted datasets. Left: Ground truth blur kernels and average mean absolute errors
(AMAE) of horizontal and vertical median blur estimations [%]. The best results per kernel and dataset are highlighted in
bold. Right: Typical GBB/PMP kernel estimations with undesired artifacts (compare to respective ground truth kernels).

Defocus Blur Linear Motion Blur Non-linear Motion Blur

Size [px] 3 7 11 15 21 3 7 11 15 21 3 7 11 15 21

Kernel

Sim CNN 0.7 1.8 2.1 0.5 1.1 6.3 10.3 9.4 9.4 7.7 2.9 12.2 11.4 19.5 25.0
PMP 13.9 5.2 3.0 5.3 6.7 37.2 17.8 13.3 7.3 16.6 21.8 14.0 13.8 9.8 11.5
GBB 2.7 3.8 6.3 8.4 17.6 31.6 11.4 7.7 7.3 14.5 17.7 8.3 8.2 9.7 15.0

KITTI CNN 0.3 5.3 2.7 2.3 0.7 3.4 10.9 9.9 9.1 6.6 4.0 14.1 11.2 14.1 9.2
PMP 5.8 2.3 1.5 2.9 4.8 37.2 12.2 8.7 4.1 9.5 22.5 7.9 7.3 5.2 4.2
GBB 3.2 2.9 2.6 2.3 9.3 13.4 5.8 5.3 4.7 7.1 8.5 4.0 5.2 3.5 3.7

Udacity CNN 2.7 0.9 0.6 0.3 1.4 16.2 10.8 9.8 11.4 7.9 9.6 10.3 11.9 16.0 19.2
PMP 15.1 5.6 4.0 3.9 3.9 34.3 14.2 11.5 8.1 12.4 23.5 12.0 11.0 8.1 7.6
GBB 2.8 8.8 8.6 8.9 23.2 21.7 12.2 8.5 12.2 21.1 10.6 10.1 11.6 13.5 16.6

G
B

B
P

M
P

Defocus
Lin.

Motion

Non-Lin.

Motion

S
m

a
ll

(3
 p

x
)

L
a

rg
e

(2
1

 p
x
)

M
e

d
iu

m

(1
1

 p
x
)

S
m

a
ll

(3
 p

x
)

L
a

rg
e

(2
1

 p
x
)

M
e

d
iu

m

(1
1

 p
x
)

Fig. 10: Challenging conditions in the Udacity dataset. From
top left: Slight motion blur (3 px) in moving direction, light
reflections and two examples of severe motion blur.

We first calculated (robust) median, minimum and maxi-
mum estimations for the uncorrupted datasets in Fig. 9. In the
Sim case, we could determine MTFGT by evaluating a Siemens
Star (generated in the simulator) with the tool [54]. For the
real-world datasets however, there are no known GT values,
but we expect similar sharp images and hence we plot the
estimations for comparison.

Analyzing Fig. 9 we make five major observations: (i) The
CNN estimates a nearly ideal MTF with hardly any variance
in the Sim case and provides similarly confident estimations

for KITTI. (ii) Contrary to expectations, the CNN estimates a
more uncertain and lower MTF for Udacity. Concerning this,
we found challenging effects that influenced the estimation,
like frequent windshield reflections and regular slight mo-
tion blur in the moving direction, despite our pre-selection
of images. The traditional estimators (GBB/PMP) are also
affected, producing lower median estimations than for KITTI.
(iii) The variances of GBB/PMP shrink from Sim, via KITTI
towards Udacity. (iv) GBB performs noticeably worse in Sim.
We ascribe its low median and large variance to the lack of
image gradient diversity of the Sim dataset (GBB relies on
gradients, but strong horizontal edges are scarce in Sim). (v)
PMP produces generally low estimations and its maxima are
far from the GT (Sim) or expected GT (real-world) values.

Next, we corrupted the datasets with the generated blur
kernels and used the sampled MTFs of the kernels as ground
truth. The blur AMAE scores are summarized in Table I. We
make the general observation that PMP and GBB —unlike
the CNN— usually perform worst for small (3 px) and large
(21 px) kernel sizes, respectively. This often manifests in un-
desired artifacts like smear or cuttings in these estimations (see
kernels in Tab. I right). The decreased performance for small
blur cases is in agreement with the results from Fig. 9, where
GBB and particularly PMP produce lower median estimations
and higher variance for Sim/KITTI, and lower variance for the
already corrupted Udacity. Since GBB/PMP follow a coarse-

8

0 5 10 15 20 25

5

10

15

20

25

True Noise Level σ [DN]

E
st

.N
oi

se
L

ev
el

σ̂
[D

N
]

Photon Shot Noise (Sim)

CNN
PCA
B+F

0 5 10 15 20 25

Photon Shot Noise (KITTI)

0 5 10 15 20 25

DCSN (Sim)

0 5 10 15 20 25

Readout Noise (KITTI)

0 5 10 15 20 25

Combined Noise (Udacity)

Fig. 11: Noise estimation of corrupted datasets. Median, minimum and maximum statistics (depicted by sampled points with
interpolation in between and the shaded areas, respectively) of the three proposed noise estimators (CNN, PCA, B+F) as the
noise level σ increases (from 0 to 25 grayscale levels, DN), for several types of noise (Photon Shot, DCSN, etc.) and datasets
(Sim, KITTI, Udacity). The last plot shows the effect of combining all noise types (on the Udacity dataset).

to-fine approach, more internal iterations would enhance the
level of detail of the kernel and thus produce smaller errors
(at the expense of computational cost). On the other hand,
larger kernel estimations improve as larger image patches are
used. The authors of GBB [35] suggest kernels be much
smaller than the image to have a well-defined blur estimation
problem. We further regularly observe larger estimation errors
for Udacity. This confirms that Udacity is already corrupted
by blur and/or the estimations are influenced by challenging
conditions (Fig. 10).

Apart from the already mentioned small/large kernels, all
methods estimate defocus well (Tab. I). Nevertheless, the CNN
delivers the most accurate results. GBB considers the common
simplification of Gaussian blur for defocus, whereas PMP does
not and tends to perform slightly better than GBB.

The CNN also estimates linear motion blur comparably well
but (except for small/large kernels) GBB tends to produce the
smallest errors.

Non-linear motion estimation results (also in Tab. I) differ
for the CNN method, which tends to produce larger errors
towards the larger (and more complex) kernels compared to
the traditional estimators and the linear case. We interpret this
as a larger uncertainty and conclude that the CNN might not
be appropriate for estimation of complex non-linear motion
kernels. In contrast, the scores of GBB/PMP are more accurate
among the different kernels and datasets (with GBB a bit
better). This slightly better motion blur estimation performance
of GBB compared to PMP is consistent with the experiments
in [35], where PMP is compared to the work of Pan et al. [55]
that first proposes a dark channel prior.

Computational performance: In terms of runtime, we see
from the table in Fig. 9 that the CNN executes more than
×50 faster than GBB/PMP and moves in the realm of real-
time capability. We also found that CNN requires 98% of its
runtime for serial data pre-processing, which can be improved
by vectorization. Although the CNN itself executes on a GPU,
the running times of current GBB/PMP implementations (run-
ning on the CPU) are too long to be practical for a condition
monitoring application (especially for multiple image patches).

In summary, the GBB and PMP methods are in general
not accurate for blur-free or small/large blur kernel estimation
on the image patch sizes used, and available implementations
are not real-time capable. Nevertheless, they provide the best

estimates for medium-sized linear and non-linear motion blur
kernels. The CNN method, on the other hand, might not be
suited for complex non-linear motion kernels, but performs
well in terms of defocus, linear motion and real-time require-
ments. If non-linear motion blur can be circumvented (e.g.,
with short exposure times or slow motions), the CNN method
can be employed for monitoring a camera’s condition.

C. Noise Estimation

We evaluate the proposed noise estimators by comparing
their robust median, minimum and maximum statistics (re-
jecting ≈ 5% outliers) against the controlled ground truth
noise levels. Results are reported in Fig. 11. Since we obtained
comparable results for DCSN and readout noise per dataset,
we dropped similar plots.

We first observed that B+F and PCA methods are prone to
structural misestimation: both over-estimate low noise levels,
and B+F under-estimates high noise levels. These phenom-
ena have been already reported and are characteristic of the
corresponding model family [40], [41]. Moreover, all methods
tend to strongly under-estimate noise in natural images, which
even reduces the median performance of the B+F method.
We observe this behavior in over-exposed areas where most
pixels are in saturation, which is expected from vehicle camera
images containing large sky areas. The CNN method is less
vulnerable since it learned employing fewer meaningful pixels;
[14] omits such image regions under the assumption that
under-/over-saturated patches “cannot contain noise” (which
only holds for completely saturated regions).

Another observation is the striking difference between the
signal-dependent and signal-independent noise cases. signal-
dependent photon shot noise increases the variance of all
estimators, especially on real-world data. We observed that
large variations in bright and dark intensity areas within one
image patch led to over- and under-estimation, respectively.
The CNN noise level is limited here since it was trained with
σ ≤ 30DN. If all noise types occur simultaneously (last plot
in Fig. 11) the estimations become more accurate and more
robust than in the case of all noise being attributed to photon
shot noise. According to the observations of [25], [26], realistic
noise follows a combined Poisson-Gaussian distribution, and
the Poisson part is troublesome for the noise estimators (in
particular for those with Gaussian assumptions). Hence, we

9

0 5 10 15 20 25

5

10

15

20

25

0

3

7

11

15

21

Noise Level σ [DN]

E
st

.N
oi

se
L

ev
el

σ̂
[D

N
]

Defocus + DCSN

CNN (Kernel Size
0 ... 21 px)

0 5 10 15 20 25

0 3
7 11 15 21

Photon + Lin. MB

Defocus + DCSN Photon + Lin. MB

Size [px] 3 7 11 15 21 3 7 11 15 21

Kernel

Noise Level 0 2.7 0.9 0.6 0.3 1.4 16.2 10.8 9.8 11.4 7.9
5 6.0 20.3 10.3 34.5 5.5 3.2 10.5 13.6 14.8 6.3
10 20.5 49.6 60.4 69.1 70.9 3.1 13.7 16.8 20.6 5.7
15 23.7 50.2 62.4 69.9 76.5 3.1 15.5 22.4 24.7 14.0
20 24.0 50.7 62.7 70.6 76.7 3.1 21.3 27.8 25.9 12.1
25 24.1 50.8 62.5 70.1 76.9 3.1 23.8 31.2 28.1 19.3

Fig. 12: Combined estimations of blur and noise for two image corruption configurations: Defocus + DCSN and Photon +
Linear Motion Blur, both on the Udacity dataset. Plots of the median noise estimation (Left) and table with median blur
estimation (AMAE (5) in %) (Right) for different noise levels and kernel sizes. Noise estimated for different blur kernel sizes
is color coded from blue to purple. However, differences are almost indistinguishable at this scale.

consider isolated photon shot noise as the worst case scenario.
The CNN and PCA methods perform similarly if signal-
dependent photon shot noise is included, and the CNN is more
reliable (smaller variance) otherwise. In terms of denoising,
similar results have been shown by comparing traditional and
learning-based methods on real data [25].

Computational performance: Regarding runtime (Fig. 9,
right table), CNN and PCA executed fastest, with an average
of 2ms per patch, but in the same order of magnitude as the
B+F (5ms). All noise estimators are real-time capable and
considerably faster than blur estimators.

Summarizing, the CNN and PCA methods are accurate in
median but their reliability decreases the stronger the photon
shot noise is. In case of signal-independent noise only, the
CNN performs by far most reliably. Since PCA is prone to
structural misestimation (e.g., over-exposed areas, small noise
levels), we suggest using the CNN for condition monitoring
applications. Finally, the reliability of PCA and CNN could
be improved by using the median estimation from consecutive
frames.

D. Combined Estimation of Blur and Noise
Because previous sections showed that CNN blur and

noise estimators performed among the best ones on isolated
blur/noise cases, we now use these estimators on combined
blur and noise corruption experiments. Fig. 12 shows the
results for combined defocus blur and DCSN (“Defocus +
DCSN”), and Photon Shot Noise with simultaneous linear
motion blur (“Photon + Lin. Motion”), both on Udacity.

1) Defocus + DCSN: According to the physics behind the
image formation process in Fig. 4, an image is corrupted by
defocus first and DCSN afterwards. Hence, high-frequency
image content is filtered and fully represented by the DCSN.
In theory, the larger the blur the easier the noise estimation.
This is what we observe in the first plot of Fig. 12. Although
there is a small estimation error for zero defocus, σ̂ becomes
most accurate for d ≥ 3 px and remains unchanged. Hence,
defocus is favorable for DCSN estimation. We expect the
same effect for other combinations of defocus/motion blur and
DCSN/readout noise.

On the other hand, DCSN negatively affects defocus esti-
mation because advantageous information for detecting blur

(the absence of high frequencies) gets corrupted by noise. We
notice two effects from the results on the table of Fig. 12:
All defocus estimations worsen with increasing noise lev-
els, and this impact becomes more severe for larger kernel
sizes. While estimations for the smallest and largest kernels
(d ∈ {3, 21}px) can be considered as still good for σ =
10DN, the same noise level otherwise leads to poor blur
estimations. This outcome was investigated in the context of
motion deblurring [27], where it was found that, as σ grows,
blur estimations approach the Dirac delta function in a large
variety of approaches. We observe the same behavior for the
CNN estimations, hence the increasing relative error towards
larger kernels. Generally, defocus estimations are not robust
in presence of subsequent noise. Since sensor noise can be
detected accurately in case of defocus, a small σ̂ should be
assured before trusting blur estimations.

2) Photon + Lin. Motion: In this case noise is added before
the blur (due to the physics behind the image formation model
in Fig. 4). Therefore, we expect the opposite behavior, i.e., a
poor noise estimation (the blur kernel acts as a classical noise
filter) and a good blur estimation. However, only the noise
estimation meets the expectations (see the second plot and
table in Fig. 12). A motion blur of size d = 3px already ma-
jorly disturbs noise estimation (note that noise is not removed
from the image but spread among neighboring pixels). On
the other hand, the motion blur leads to structured directional
noise (i.e., false image details), which in turn reduces the
estimated blur level by increasing M̂TF (Fig. 13). This effect
intensifies with increasing noise level. Depending on whether
blur is overestimated (e.g., for d = 3px) or underestimated
(e.g., for d = 11px) when σ = 0, the AMAE score decreases
or increases for higher noise levels, respectively.

We do not observe the same behavior when we replace
motion blur with defocus blur (“Photon + Defocus”, Fig. 14),
as defocus blur distributes the noise evenly to the neighboring
pixels. The noise still influences the blur estimation of the de-
focus kernel d = 3px, however, the effect becomes negligible
for larger defocus kernels (d ≥ 7 px).

We build upon this finding and propose a simple approach
to suppress high noise in order to re-enable the detection of
preceding blur. Specifically, we apply an additional defocus
filter to estimate preceding small or medium blur for high

10

0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

1.0

0

5

10

15
20

25

Frequency [lines/px]

M
T

F
Photon + Lin. MB

Ground Truth
CNN (Noise Level

0 ... 25 px)

Fig. 13: Linear motion blur estimation in presence of pre-
ceding photon shot noise. Left: Increasing noise levels σ
increase the MTF estimation and thus decrease the estimated
blur level d. Right: Corresponding exemplary image with
(d, σ) = (11 px, 25DN) showing structured noise induced by
subsequent motion blur.

Photon + Defocus

Size [px] 3 7 11 15 21
Kernel

Noise Level 0 2.7 0.9 0.6 0.3 1.4
5 0.6 1.1 0.8 0.4 1.3
10 0.5 1.1 0.5 0.4 1.3
15 1.2 2.5 0.6 0.4 1.3
20 5.4 1.7 0.5 0.3 1.4
25 5.6 1.8 0.5 0.3 1.4

Fig. 14: Defocus blur estimation in presence of preceding
photon shot noise. Left: The minor effect of noise on defocus
blur estimation becomes negligible for kernel sizes d ≥ 7 px.
Right: Example with (d, σ) = (11 px, 25DN).

sensor noise levels σ ≥ 10DN (details in the supplementary
material). We implemented this improved blur estimation for
experiments in Sec. V.

In summary, we conclude that even a small amount of blur
boosts the detection of subsequent noise while suppressing
preceding noise sources. So, in the presence of blur, photon
noise is difficult to estimate and therefore should be avoided.
Regarding blur estimation, preceding photon noise can corrupt
the result in case of motion blur. Subsequent DCSN with σ ≥
10DN already prevents blur estimation, however, it can be re-
enabled by applying an additional defocus filter. Hence, if one
can eliminate photon noise, we suggest estimating noise before
judging a blur estimation result. As in the noise evaluation of
Sec. IV-C, sensor noise (DCSN and readout noise) is more
favorable than photon shot noise for condition monitoring.

V. MAXIMIZING OBJECT DETECTION BY TRADING OFF
BLUR AND NOISE

In this section we demonstrate the application of the pro-
posed framework in a simulated and a real-world scenario
(Secs. V-A and V-B, respectively).

Let us first calculate exemplary IOPCs according to
Sec. III-C with focus on: (i) object classes car and pedestrian,
(ii) sensor noise only (DCSN + read noise), so that filtered
photon noise does not lower the noise level estimation, and
(iii) settings from Sec. IV-A for linear motion blur and sensor

noise generation. Figure 15 shows the resulting IOPCs for
isolated (left) and combined (right) blur and noise occurrences.
It can be seen that the relation from the blur or noise
corruptions to the detection performances might be non-trivial
and non-linear (e.g., YOLOv4 car detection in presence of
Lin. MB) since it is difficult to tell what ML methods learn.

While the proposed IOPC approach is data-driven, it is pos-
sible to obtain a model of the object detection AP performance
in terms of exposure time (texp) and ISO gain (AISO) camera
parameters. To this end, we fitted a multivariate function to
the IOPCs in Fig. 15, with appropriate basis functions to avoid
overfitting while accounting for the IOPSs’ non-linearity and
non-monotonicity:

ÂP = c1xy + c2x+ c3y + c4
√
y + c5 +

c6
xy

+
c7
x

+
c8
y
, (6)

with the fitted detection score ÂP, x ∝ AISO, y ∝ texp, and
regression coefficients c1, . . . , c8. The details of this fitting
process are provided in the supplementary material.

A. Example 1

We first demonstrate this framework using the Sim envi-
ronment on a concrete example of YOLOv4 car detection
with corrupted data by means of Lin. MB and sensor noise
(Fig. 16). The left image in Fig. 16 depicts the scene in
uncorrupted conditions (without noise or blur), for reference.
Here the first car is detected fairly (p = 0.53) and the second
one much better (p = 0.97). While the CNN noise estimator
detects a small noise level of σ̂ = 1DN by mistake, the MTF
estimation is nearly ideal (M̂TF = 0.99). Next, we included
a realistic trajectory for the simulated camera to create a
linear motion with a speed of v ≈ 760 px/s. This causes blur
(an exposure time of texp = 4ms induces a motion blur of
dold ≈ 3 px), and we also apply sensor noise of σ = 20DN.
In this situation (second image in Fig. 16) blur and noise are
estimated within the expected error ranges (d̂old ≈ 3 px), but
the cars are detected worse (p ≈ 0.25).

In the next step, we determine α⋆: knowing the relation
between motion blur sizes and estimated MTFs (first plot in
Fig. 15) and the estimated noise level, we target an M̂TF ∈
[0.7, 0.8], which corresponds to approximately d̂ ∈ [11, 12] px
(cf. first heat plot in Fig. 15). We chose dtarget ≈ 12 px, hence,
α⋆ = d̂old/dtarget ≈ 3/12 = 0.25. We then reduce the ISO
gain by the factor α⋆ and show an intermediate image without
increasing texp. One car is now detected more confidently
while blur and noise are still estimated within the expected
error ranges. As we did not investigate the influence of image
intensity on object detection performance, next we increase
texp by the factor α⋆ to restore the original intensity level,
producing the last image of Fig. 16. In this last step the total
detection score slightly increases despite the likewise motion
blur amplification (d ≈ d̂ = 12px). The steps taken are
marked with red arrows on the heat plot in Fig. 15.

B. Example 2

For a real-world example, we deployed our framework on a
real camera system using an Allied Vision Prosilica GC1380H

11

0.50.60.70.80.91.0
0

10

20

30

40

50
d=3 d=7 d=11 d=13 d=15

d=21

Estimated MTF

A
ve

ra
ge

Pr
ec

is
io

n
(A

P)
[%

]

Linear Motion Blur

YOLOv4 Car
Faster R-CNN Pedestrian

1 5 10 15 20 25
Est. Noise Level σ̂ [DN]

Combined Noise

1 5 10 15 20 25

1.0

0.9

0.8

0.7

0.6

0.5

0.4
18.4 19.4 18.1 16.6 14.9 13.9

22.7 22.6 20.5 18.6 16.7 15.9

23.8 24.1 21.3 19.1 17.4 16.0

23.3 24.3 22.2 20.0 18.7 17.4

24.2 24.7 22.9 20.7 19.3 17.7

22.1 22.4 21.6 20.0 18.6 17.2

26.9 18.8 17.6 16.0 14.1 13.9

Est. Noise Level σ̂ [DN]

E
st

im
at

ed
M

T
F

Lin. MB + Sensor Noise:
YOLOv4 Car

1 5 10 15 20 25

9.3 8.7 7.4 6.4 5.7 5.2

15.8 14.9 13.3 11.9 10.8 9.7

16.0 15.0 13.1 12.0 10.7 9.6

19.0 17.8 15.7 14.2 13.3 12.0

22.2 21.2 19.1 17.1 15.9 14.5

25.9 25.5 23.7 21.7 20.4 19.2

33.9 26.3 24.0 22.6 20.4 19.7

Lin. MB + Sensor Noise:
Faster R-CNN Pedestrian

Fig. 15: Influence of blur and noise on object detection performance. Exemplary object detection performances depending on
isolated (Left) and combined (Right) occurring and blur and noise. All input-output profiles depend on the actual estimated
corruption levels. Performances are measured in terms of average precision (AP). Noise levels and MTFs are estimated by the
respective CNN methods and the MTFs depict means for horizontal and vertical measurements at frequency f = 0.1. The red
and orange arrows demonstrate two examples of exposure time texp / ISO-gain trade-off paths (see text in Sec. V).

car p = 0.53 car p = 0.97 car p = 0.17 car p = 0.76

Original Scene Corrupted Scene Reduced ISO gain

car p = 0.53 car p = 0.45

Increased texp

car p = 0.20 car p = 0.32

texp = 4ms

ISO = 400

texp = 4ms

ISO = 100

texp = 16ms

ISO = 100

σ̂ = 1.0DN M̂TF = 0.99 σ̂ = 20.0DN M̂TF = 0.96 σ̂ = 5.0DN M̂TF = 0.95 σ̂ = 5.0DN M̂TF = 0.71

Fig. 16: Maximizing object detection by trading off blur and noise. Application of the proposed framework to detect cars using
YOLOv4 on Sim data suffering from linear motion blur and sensor noise. The scene (Left) is first imaged with an ISO gain
of 400 (leading to sensor noise of σ ≈ 20DN) and an exposure time of 4ms. As a result, the car recognition performance
of YOLOv4 decreases drastically (Center-Left). Applying the optimal α⋆ ≈ 0.25 (according to the performance profile from
Fig. 15) improves car detection (Center-Right). Finally, we divide the exposure time by α⋆ to compensate for the missing light,
which improves overall detection slightly (Right). Hence, noise is reduced from σ ≈ 20DN to 5DN and blur is increased
from d ≈ 3 px to 12 px while detection rate increases from p ≈ 0.25 to p ≈ 0.5.

Mobile Computer

(CPU: Intel i7-9850H,

 GPU: NVIDIA MX150)

Camera System

(Prosilica GC1380H)

Jaguar-4x4-Wheel

Robotic Platform

(Max Speed: 11 km/h)

Fig. 17: Deploying our framework on a real camera system
that is attached on an autonomous mobile robotic platform.

camera [56] attached on a Jaguar-4x4-wheel mobile robotic
platform [57] and a mobile computer doing the real-time
calculations (Fig. 17). With this setup, we demonstrate another
example of the non-monotonic YOLOv4–car-detection heat
map of Fig. 15, marked with an orange arrow. We therefore
navigated the camera system through a low-illuminated park-
ing lot with fixed initial camera parameters texp = 8ms, ISO =
100, and default values for the rest. To make the YOLOv4–
car-detection profile applicable, we target (i) a constant linear

motion blur induced by a constant speed of the platform
and (ii) a low noise level with the low ISO gain to neglect
the undesired impact of photon shot noise. Subsequently, the
experiment was repeated with the camera’s built-in texp / ISO
gain controller [56] and compared to ours with respect to
response time and object detection performance (Fig. 18). Both
camera parameter controllers were automatically triggered on
the first image frame at t = 0ms. Finally, we sampled the
video sequences for each configuration to contain 200 ± 5
cars, which we manually annotated for YOLOv4.

The built-in camera controller tracks a mean image intensity
level of 50% and prioritizes changing texp over ISO gain as
long as texp ≤ 500ms. Hence, the built-in controller constantly
changed texp only, did not account for the motion blur, and
resulted in an AP car detection score of 26.08%.

Our proposed framework took about 3000ms to estimate
(σ̂, M̂TF) = (0.1, 0.57) (longer than in Sec. IV due to the
weaker mobile hardware, but still interactive / real-time). With
initially fixed camera parameters (i.e., while t < 3000ms),
YOLOv4 reached an AP score of 47.54%. The system then
decided to decrease the motion blur at the expense of slightly

12

0 1,000 2,000 3,000 4,000 5,000
0

5

10

15

20

25

Time t [ms]

E
xp

os
ur

e
Ti

m
e

t e
xp

[m
s]

Camera Parameter Adjustment Response Time

Camera Default Proposed

100

200

300 ISO
G

ain

Proposed (Before Adj., t = 3000 ms) Proposed (After Adj., t = 4600 ms)

Camera Default (t = 2800 ms) Camera Default (t = 4200 ms)

car p = 0.06 car p = 0.06

car

p = 0.51

car

p = 0.51

car

p = 0.73

car p = 0.25

car

p = 0.73

car p = 0.25

car

p = 0.74

car p = 0.60 car p = 0.16

car p = 0.06

car

p = 0.74

car p = 0.60 car p = 0.16

car p = 0.06

σ̂ = 0.3DN M̂TF = 0.71 σ̂ = 0.3DN M̂TF = 0.61

σ̂ = 0.2DN M̂TF = 0.57 σ̂ = 0.4DN M̂TF = 0.90

Fig. 18: Comparison of built-in camera texp / gain control
vs. our framework. Diagram: The built-in controller constantly
optimized image intensity by adjusting texp only. In contrast,
our framework targets optimal object detection performance
and adjusted texp / gain once. Images: Examples from the
experiments (adapted brightness and contrast for better visual-
ization). Blue boxes indicate ground truth objects, and orange
boxes actual detections. The overall AP scores were: 26.08%
for the built-in camera control, 47.54% for the manually
chosen fixed parameters (before automatic adjustment), and
60.56% for our framework (after automatic adjustment).

increasing the noise to move to higher AP detection values
(brighter part of the heat map). Inspecting the AP curves (1st
plot in Fig. 15), MTF = 0.57 corresponds to d = 15px, and
the system targeted M̂TF ∈ [0.8, 0.9] (high values of the heat
map), which corresponds to a smaller motion blur of d̂ ≈ 7 px.
Two steps were taken: first, the system decreased the exposure
time by a factor α = 15/7 ≈ 2.14 to achieve the desired MTF
improvement. Intel Then, it increased the ISO (and increased
noise) by the same factor α ≈ 2.14 to restore the intensity level
for the detector. The final operating point was (σ̂, M̂TF) ≈
(0.4, 0.9), which has a higher AP value (60.56%) than the
initial point.

VI. CONCLUSION

We have proposed a framework for real-time camera con-
ditioning, bringing together the tasks of inferring the state
of the system and acting on the camera’s operating point
to achieve optimal application performance. Our framework
has a modular design, hence it is flexible and interpretable,

allowing for multiple choices of its submodules, such as the
image quality estimators. To this end, we have carried out
a comprehensive experimental study close to the physics of
the sensor and have incorporated six state-of-the-art image
quality estimators, two advanced object detectors and two
standard datasets plus one self-created. We have considered
a more extensive and realistic image formation pipeline than
preceding works by including motion and defocus blur as
well as simultaneous occurring corruptions that influence each
other. All these elements have been put together in a coherent
manner to justify our design choices and provide insights and
practical recommendations with regard to camera monitoring
applications (summarized at the end of each experimental
subsection).

Regarding the framework, the main idea is that aiming at
improving image quality blindly, without taking into account
the subsequent high-level application, may not always be the
best. If the end goal is better high-level application perfor-
mance (say, car detection), then it is sensible to trade off image
quality for whole system performance by adjusting the camera
parameters. We have demonstrated this on how image blur and
noise (image quality) affect an object detection application
and have implemented it on a real-world ground robot; the
specific control strategy of the camera parameters (exposure
time and ISO gain) depends on the experimental input-output
performance curves of the object detector (which is in general
non-linear and non-monotonic). However, our framework is
generic: it is not limited to the proposed control strategy (one
could control a motor to adjust focus), it can be applied to
other optical sensor systems (as infrared or event cameras),
other scenarios, and it can consider other “features”, conceiv-
ably application-specific, besides blur and noise. These have
been selected because they are among the most generic and
influential effects in image processing. The framework can also
be easily extended to optimize multiple vision applications
running simultaneously (e.g., by maximizing their weighted
average performances).

Lastly, we have focused on a subset of corruptions orig-
inating in the camera itself. A possible extension would be
to model additional camera conditions and retrain the esti-
mators accordingly (e.g., more sophisticated corruptions such
as defocus due to heat-induced material stress or conditions
originating outside the camera, like low/high scene illumina-
tion), and compensate for them by triggering actuators (e.g.,
cooling or headlights). This could also require the acquisition
and exploitation of additional data, such as the camera’s
and environment’s configuration (focal length, aperture size,
exposure time, temperature, positioning, illumination), leading
to the research and development of more advanced Sensor AI
approaches [58].

13

SUPPLEMENTARY MATERIAL

The following supplementary material complements the
main paper. We first detail the assumed image formation
process (Sec. VII) and subsequently propose a simple approach
to improve blur estimations in the presence of high noise
(Sec. VIII). Finally, we provide two additional experiments
for the sake of completeness: a performance curve analysis of
the latest YOLOv7 object detector (Sec. IX) and a data-driven
model derivation for YOLOv4 object detection performance as
a function of exposure time and ISO gain camera parameters
(Sec. X).

VII. IMAGE FORMATION PROCESS

The image formation process that we consider in a standard
camera is depicted in Fig. 4. Let us specify the image blur and
noise components of this model, and metrics to quantify them.

A. Blur

Image blur is the result of processes that reduce image
sharpness. The most prominent of such processes are (i) light
refracted by a defocused lens, (ii) motion between the sensor
and the scene, (iii) atmospheric turbulence, and (iv) diffraction
[59, p. 325]. We focus on the former two sources, whose
induced blur types are known as defocus and motion blur,
respectively. Many factors contribute to these processes and
make their mathematical description complex. For the sake of
simplicity they are often modelled as a convolution on the
image plane:

I∗(x, y) = I(x, y)⊛ h(x, y), (7)

where I(x, y) is the input intensity at pixel (x, y) (before the
blur process), h(x, y) is the blur kernel and I∗(x, y) is the
blurred image intensity. The kernel h(x, y) is also called point
spread function (PSF) [59, p. 328].

The PSF can be used to objectively quantify image blur.
Its Fourier transform is the optical transfer function (OTF)
and it describes how spatial frequencies f (i.e., image details,
contrast) are affected by blur:

PSF(x, y) F7→ OTF(f) ∝ MTF(f) ei PhTF(f). (8)

Usually only the magnitude of the OTF, known as the mod-
ulation transfer function (MTF), is relevant to quantify blur,
and so the phase transfer function (PhTF) is omitted. Let us
now describe defocus and motion blur kernels h(x, y).

1) Defocus Blur: We assume a defocus blur kernel h(x, y)
that distributes a pixel’s intensity evenly over an approximate
circular area of neighboring pixels (with radius r and center
(cx, cy)) [59, p. 325]:

h(x, y) =

{
s, (x− cx)

2 + (y − cy)
2 ≤ r2

0, otherwise,
(9)

with the value s determined by the normalization constraint∫∫
h(x, y) dx dy = 1. This circle refers to the term circle of

confusion, whose diameter d = 2r + 1 can be calculated as

d = A
f

S1 − f

|S2 − S1|
S2

, (10)

expressed in terms of the focused object distance (S1), the out-
of-focus object distance (S2), the focal length (f), the image
distance (f1) and the aperture diameter (A) [60, p. 216]. This
defocus blur kernel model has shown to be on par with more
complex models in image reconstruction [61]. We assume the
camera comprises a single, perfect, convex, thin lens satisfying
1/f = 1/f1 + 1/S1.

2) Motion Blur: Depending on the type of motion, image
blur can manifest as translation, rotation, scale changes or a
combination of all of them. Hence, a closed-form expression
for h(x, y) may be complex to obtain. Its main influencing
factors are the exposure time and the relative angular speed
between the imaged objects and the sensor during the exposure
(see [59, p. 326] for an exemplary approximation of h in
a simple scenario). We model h(x, y) to contain a coherent
path of pixels with non-zero and potentially inhomogeneous
intensities. We assume the path in h(x, y) may be non-linear,
since factors like an uneven driving ground and unpredictable
moving scene objects might lead to complex non-linear move-
ments during the exposure interval. For simplicity we neglect
additional influences like the camera’s readout procedure,
the influence of the shutter or rapidly changing lightning
conditions.

B. Noise

Image noise denotes “any undesired information that con-
taminates an image” and often occurs during image acquisition
or transmission [59, p. 348]. Having the online condition
monitoring approach in mind, we tackle the problem of online
characterization and mitigation of image acquisition noise.
We consider time-varying sources because time-invariant noise
sources (such as photo response non-uniformity) are often
addressed during calibration (before acquisition) and their
residuals are assumed to have a minor influence on image
quality. Generally, noise can be modelled by:

Ĩ(x, y) = I(x, y) + I(x, y)γ u(x, y), (11)

where I(x, y) is the clean intensity (the signal’s intensity),
u(x, y) is a random, stationary and uncorrelated noise process,
and Ĩ(x, y) is the corrupted intensity. A parameter γ controls
different noise types. The amount of noise (or noise level) may
be quantified using the standard deviation σ of the underlying
statistical distribution of u(x, y).

Let us now detail the most prominent time-varying noise
processes, namely photon shot noise, dark shot noise and
readout noise (Fig. 4). As a theoretical guide, we follow [30].

1) Photon Shot Noise: As photons arrive at the sensor,
the counting process within the exposure interval undergoes
random fluctuations. This is known as shot noise and follows
a Poisson distribution. If the number of arriving photons k
is large enough (i.e., in non-low illumination conditions),
the Poisson distribution may be approximated by a Gaussian
distribution using the Central Limit Theorem [62, p. 225]:

Pλ(k) =
λk

k!
e−λ k→∞

≈ 1√
2πλ

e−(k−λ)2/2λ, (12)

with λ = σ2 as the expected value and variance of the arrival
events. The higher the number of arriving photons, the higher

14

the number of random fluctuations; hence photon shot noise
behaves signal-dependent and can be described by (11) when
setting γ = 1 and u(x, y) ∼ Pλ(k).

2) Dark Current Shot Noise (DCSN): Similar to photon
shot noise, dark current (DC) shot noise originates from the
random arrival of DC electrons and follows the same distri-
bution (12). DC emerges from thermally generated electrons
at different sensor material regions. The amount of generated
electrons depends, among others, mainly on the pixel area,
temperature and exposure time [63, ch. 7.1.1]. DCSN is signal-
independent, hence γ = 0 in (11).

3) Readout Noise: Readout noise refers to the imper-
fections due to the sensor’s electronic circuitry converting
charge into digital values and it is attributed to the on-chip
amplification and conversion processing units [64, p. 197].
Although readout noise can be reduced to a negligible level in
scientific cameras, its impact is still significant for industry-
grade sensors that lack of noise reduction [63, ch. 7.2.9].
We incorporate sense node reset noise (alias kTC noise) and
source-follower noise as the main time-varying components.

Both noise sources can be modelled as a zero-mean Gaus-
sian process, where σ mainly depends on the temperature.
The overall readout noise contribution is a signal-independent
addition of both noise processes, hence γ = 0 in (11). We
keep it at this level of abstraction and refer to [30] for details.

In summary, we consider the blur and noise sources in Fig. 4
and have described their physical models mathematically.

VIII. IMPROVED BLUR ESTIMATION IN PRESENCE OF
HIGH NOISE

The Sec. IV-D has pointed out that blur is not accurately
estimated in the case of high subsequent noise (e.g., DCSN,
with σ ≥ 10DN). Here we demonstrate a simple approach to
improve the accuracy of such MTF estimates (Fig. 19). The
approach exploits that preceding photon noise is not expected
to significantly influence the MTF estimation of subsequent
defocus blur (see Sec. IV-D). Hence, the approach consists
of considering the above-mentioned “high subsequent noise”
as the preceding noise of a new blur stage, estimating the
overall MTF and reassigning the credit between the two blur
stages. Specifically, following up on the Defocus + DCSN case
in Sec. IV-D, the considered pipeline has now three stages:
Lin. MB + DCSN + defocus filtering. Letting the first blur
kernel be b1, we filter noise by an additional kernel b2, estimate
the overall blur M̂TF(b1, b2) = M̂TF(b1) M̂TF(b2) and lastly
divide the MTF by the known MTFGT(b2) according to the
Fourier convolution theorem [65, p. 242]. To this end, we
assume MTFGT(b2) ≈ M̂TF(b2) and determine the estimation
error of M̂TF(b1) with respect to MTFGT(b1).

Due to the combinatorial complexity of the experimental
configuration, we focus on the following one grounded in the
results from Sec. IV-D: We employ only the CNN method
for MTF estimation on Udacity data, and in preparation for
Sec. V, we consider the case of Lin. MB + DCSN (repre-
sentative for sensor noise, to keep it clear and concise). The
operating points for this experiment rely on three reasons: (i)
The choice of b2’s size (d2) is a trade-off between filtering

Default Blur Estimation Improved Blur Estimation

σ̂ = 9.7DN M̂TF = 0.54 σ̂ = 0.0DN M̂TF = 0.70

Fig. 19: Proposed improved blur estimation in presence of
high noise, in an exemplary scenario of Lin. MB + DCSN
with d1 = 11px and σ = 10DN. We target estimating the
lin. MB with a ground truth of MTFGT = 0.75 (combined
image directions at f = 0.1). Left: Noise distracts the blur
estimation (M̂TF = 0.54). Right: Defocus filtering the noise
with d2 = 7px assists the blur estimation (M̂TF = 0.70, the
influence of defocus was cancelled out during the estimation).

TABLE II: Estimation of linear motion blur b1 (Lin. MB)
on combined pipeline (Lin. MB + DCSN + Defocus), using
Udacity data. The table reports mean absolute errors (MAE)
of horizontal (H) and vertical (V) estimations, their average
(AMAE), and their expected values (AMAEExp. (13)).

Corruption Levels Error Metrics

d1 [px] σ [DN] MAE (H) MAE (V) AMAE AMAEExp.

d
2
=

7
p
x

3 10 2.9 2.0 2.5 16.2
3 25 3.5 2.1 2.8 16.2
7 10 12.3 7.7 10.0 10.8
7 25 11.6 8.8 10.2 10.8

11 10 11.1 8.4 9.7 9.8
11 25 14.1 10.1 12.1 9.8

d
2
=

1
1
p
x

3 10 1.5 0.3 0.9 16.2
3 25 1.7 0.3 1.0 16.2
7 10 14.7 12.7 13.7 10.8
7 25 14.8 12.8 13.8 10.8

11 10 18.6 14.1 16.4 9.8
11 25 20.2 15.1 17.6 9.8

the noise to reduce its influence on blur estimation without
loosing image details necessary to determine b1. Hence, we
pick the smallest defocus filters d2 ∈ {7, 11}px that lead
to stable blur estimation (cf. Fig. 14). (ii) We consider
small/medium motion blur d1 ∈ {3, 7, 11} px so that the
overall blur is still detectable by the CNN. (iii) We focus
on severe high/higher noise levels σ ∈ {10, 25}DN. We next
evaluate M̂TF(b1) ≈ M̂TF(b1, b2) / MTFGT(b2) with Table II.

We need to ensure three preconditions to divide MTFGT(b2)

from M̂TF(b1, b2) for a meaningful result: (i) M̂TF(b1, b2) ≤
MTFGT(b2), (ii) MTFGT(b2) > 0+ ϵ and (iii) M̂TF(b1, b2) >
0 + ϵ, for all sampled frequencies. We chose the control
parameter ϵ = 0.05 to avoid large quotients for small values,
and omit frequencies that do not satisfy the conditions.

Table II presents results in terms of MAE and AMAE scores
(5), and their expected values

AMAEExp. .
=

√
AMAE(M̂TF(b1))2 + AMAE(M̂TF(b2))2 (13)

from the error propagation of M̂TF(b1) and M̂TF(b2).

15

We observe generally worse MAE scores in horizontal
than in vertical image direction, which are in agreement
with the already-mentioned slight motion blur in the moving
direction on Udacity data (the moving direction is closest
to the horizontal image axis; see Sec. IV-B). It can be also
seen that the higher the considered noise and blur levels,
the worse the estimations of b1. The impact of higher noise,
which relativizes with increasing d1, is in agreement with
the results of Fig. 14. Higher blur levels d1 or d2 increase
the loss of information (where the MTF drops below zero)
and thus worsen estimations of b1. This is also why the
smaller defocus d2 = 7px performs better (with results
closer to their expected values) and smaller motion blurs d1
are estimated more accurately (despite their higher expected
values). Moreover, the information loss causes the CNN to
generally overestimate d1, which in turn limits the estimation
error for d1 = 3px as its MTF values for the considered
frequencies are already close to one. All in all, a defocus filter
with d2 = 7px has been shown to be the best working solution
to restore a blur estimation of d1 in presence of high noise.

Summarizing, additional defocus filtering suppresses noise
so that estimation of preceding small or medium blur can
be re-enabled for high sensor noise levels σ ≥ 10DN.
This procedure is also suitable for a condition monitoring
application as it can be applied in the background without
changing the camera configuration.

IX. BLUR DIRECTION DEPENDENCE OF YOLOV7

The YOLOv4 car performance curves show non-linearities
and non-monotonicity in terms of blur and noise (Fig. 15). We
examined the latest YOLOv7 object detector [32] for the same
effect and found unexpected behavior when blur direction is
incorporated as a third dimension.

From Tab. III, it can be observed that car detection perfor-
mance tends to increase for blur in horizontal image direction
(compare values within a column for a fixed noise level). The
larger the kernel size, the more the performances vary across
the different blur directions. This influence of blur direction
can even increase the detection performance as the blur size
increases (see red values per row in Tab. III).

We attribute this observation to the MS Coco dataset [66]
used to train YOLOv7 [32]. Since natural motion blur occurs
primarily for objects moving in horizontal image direction
(where the angle between the camera and a scene object is
most favourable for motion blur, cf. [59, p. 326]), a dataset of
natural images is likely to contain more examples of horizontal
motion blur. Thus, the training dataset may be biased, which
would also affect YOLOv7. Future studies could balance
datasets for the directions in which motion blur occurs.

X. INFLUENCE OF CAMERA PARAMETERS ON OBJECT
DETECTION PERFORMANCE

Object detection AP performances can be expressed as a
function of exposure time (texp) and ISO gain (AISO) camera
parameters, if static camera and environmental conditions can
be assumed (i.e., constant blur and noise statistics). To this end,
we apply a polynomial least-squares regression to the IOPCs

TABLE III: YOLOv7 car detection performance as a function
of blur direction, blur size, and noise level (σ). Rotation angles
ϕ ∈ {0, 45, 90, 135} deg are applied counter-clockwise. Red
colours indicate row-wise outliers that violate monotonicity.

Linear Motion Blur

Size [px] 3 7 11 15 21

Kernel

σ
=

0
D

N

0 50.31 49.68 43.52 44.38 27.17
45 50.83 49.97 48.19 48.03 38.81
90 50.80 50.56 49.02 41.57 43.57
135 50.89 50.70 50.71 41.60 37.49

σ
=

5
D

N

0 50.60 50.05 43.12 45.91 25.80
45 49.93 46.58 46.59 45.65 38.33
90 50.16 49.39 47.58 39.38 41.76
135 49.60 48.48 48.42 39.00 37.76

σ
=

1
0
D

N 0 49.64 48.75 41.76 44.63 24.10
45 48.31 44.16 44.80 43.35 36.30
90 47.59 47.37 45.80 37.64 40.29
135 48.13 46.45 45.95 37.84 36.26

σ
=

1
5
D

N 0 48.46 47.07 40.38 43.29 23.31
45 45.71 42.36 42.55 41.13 33.77
90 46.07 45.97 43.72 35.39 38.26
135 45.37 45.14 42.94 35.52 32.65

σ
=

2
0
D

N 0 47.19 46.57 39.90 42.57 21.55
45 44.85 40.97 39.58 39.10 31.37
90 44.09 42.79 42.29 33.18 36.09
135 44.13 43.18 41.29 33.56 30.53

σ
=

2
5
D

N 0 45.14 44.23 38.98 41.66 21.89
45 42.47 37.68 37.34 36.78 27.47
90 42.64 40.37 39.90 30.98 34.80
135 42.43 41.35 38.58 30.59 28.49

1 5 10 15 20 25

1

3

7

11

13

15

21
19.5 19.9 18.2 16.4 14.5 12.6

22.0 22.4 20.9 19.2 17.5 15.7

22.7 23.1 21.6 19.9 18.3 16.6

23.2 23.5 22.1 20.5 18.9 17.3

23.9 23.9 22.5 21.0 19.5 18.0

24.0 22.6 21.1 19.7 18.2 16.8

26.3 19.7 17.6 16.0 14.5 13.1

ISO Gain AISO [×102]

E
xp

.T
im

e
t e

xp
[m

s]

Lin. MB + Sensor Noise:
YOLOv4 Car

1 5 10 15 20 25

9.7 9.1 8.0 6.9 5.7 4.6

14.7 13.8 12.6 11.3 10.1 8.8

16.4 15.4 14.2 12.9 11.6 10.3

18.2 17.1 15.8 14.5 13.1 11.8

22.2 20.8 19.3 17.9 16.4 15.0

27.5 24.8 23.1 21.5 20.0 18.5

33.4 26.6 24.3 22.5 20.9 19.3

ISO Gain AISO [×102]

Lin. MB + Sensor Noise:
Faster R-CNN Pedestrian

Fig. 20: Influence of exposure time (texp) and ISO gain (AISO)
on object detection performance (AP). Regressed from the
curves in Fig. 15 using (6) with coefficients from Tab. IV.

from Fig. 15 with the constraint to keep the degree of the
polynomial low (to avoid overfitting) while accounting for the
IOPSs’ non-linearity and non-monotonicity. We identify the
different components of the polynomial manually by mapping
the slopes of the IOPCs into respective terms. This yields (6):

ÂP = c1xy + c2x+ c3y + c4
√
y + c5 +

c6
xy

+
c7
x

+
c8
y

(14)

with x = λ1AISO, y = λ2texp, and regression coefficients
c1, . . . , c8 (values in Tab. IV). Note that λ1 and λ2 must
be calibrated beforehand to match occurring blur and noise
statistics to the camera parameters. We calibrated both so

16

TABLE IV: Coefficients to fit (6) to the curves in Fig. 15. χ2

(↓) denotes the goodness-of-fit and R2 (↑) the coefficient of
determination score.

YOLOv4 Car Faster R-CNN Pedestrian

Param. Value Std. Dev. Value Std. Dev.

c1 −5.5862× 10−5 2.4493× 10−5 4.0763× 10−5 2.4130× 10−5

c2 −2.6957× 10−3 3.1564× 10−4 −3.1039× 10−3 3.1096× 10−4

c3 −1.1775 1.915× 10−1 −4.9352× 10−1 1.8868× 10−1

c4 6.6093 1.3270 −2.7007 1.3074
c5 1.6871× 101 2.4239 3.3140× 101 2.3879
c6 9.8229× 102 1.2080× 102 7.7306× 102 1.1901× 102

c7 −2.9259× 102 5.6069× 101 −6.4604× 101 5.5238× 101

c8 −2.6307 1.3947 −3.2796 1.3740

χ2 17.4500 - 16.9363 -
R2 0.9602 - 0.9898 -

that texp = 1ms and AISO = 100 leads to M̂TF = 1.0 and
σ̂ = 1DN.

The corresponding IOPCs as a function of the camera
parameters are provided in Fig. 20. We can see that these
IOPCs match well with those in Fig. 15. This is also reflected
by the goodness-of-fit (χ2) [62, pp. 595–596] and coefficient
of determination (R2) [62, pp. 484–485] statistics in Tab. IV.
The omission of any polynomial term leads to significant
degradations of these scores. Still, the non-monotonic part of
the YOLOv4 curve could be improved, but at the expense of
higher degree factors in (14).

REFERENCES

[1] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, “Voronoi-based
multi-robot autonomous exploration in unknown environments via deep
reinforcement learning,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp.
14 413–14 423, 2020.

[2] V. A. Jorge, R. Granada, R. G. Maidana, D. A. Jurak, G. Heck, A. P.
Negreiros, D. H. Dos Santos, L. M. Gonçalves, and A. M. Amory,
“A survey on unmanned surface vehicles for disaster robotics: Main
challenges and directions,” Sensors, vol. 19, no. 3, p. 702, 2019.

[3] S. Sarkar, M. W. Totaro, and K. Elgazzar, “Intelligent drone-based
surveillance: application to parking lot monitoring and detection,” in
Unmanned Syst. Technol. XXI, vol. 11021. SPIE, 2019, pp. 13–19.

[4] G. Fragapane, R. De Koster, F. Sgarbossa, and J. O. Strandhagen,
“Planning and control of autonomous mobile robots for intralogistics:
Literature review and research agenda,” Eur. J. Operational Research,
vol. 294, no. 2, pp. 405–426, 2021.

[5] Q. Lu, W. Zhou, L. Fang, and H. Li, “Robust blur kernel estimation
for license plate images from fast moving vehicles,” IEEE Trans. Image
Process., vol. 25, no. 5, pp. 2311–2323, 2016.

[6] I. Keller and K. S. Lohan, “On the illumination influence for object
learning on robot companions,” Frontiers in Robotics and AI, vol. 6, p.
154, 2020.

[7] S. Kühn, A. Pandey, A. Zippelius, K. Schneider, H. Erdogan, and
G. Elger, “Analysis of package design of optic modules for automotive
cameras to realize reliable image sharpness,” in IEEE Electr. System-
Integration Technol. Conf., 2020.

[8] Y. Zhang, A. Carballo, H. Yang, and K. Takeda, “Perception and sensing
for autonomous vehicles under adverse weather conditions: A survey,”
ISPRS J. Photogramm. Remote Sens., vol. 196, pp. 146–177, 2023.

[9] M. Veres and M. Moussa, “Deep learning for intelligent transportation
systems: A survey of emerging trends,” IEEE Trans. Intell. Transp. Syst.,
vol. 21, no. 8, pp. 3152–3168, 2019.

[10] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A survey of
deep learning applications to autonomous vehicle control,” IEEE Trans.
Intell. Transp. Syst., vol. 22, no. 2, pp. 712–733, 2020.

[11] M. A. Rahman, M. A. Rahim, M. M. Rahman, N. Moustafa, I. Razzak,
T. Ahmad, and M. N. Patwary, “A secure and intelligent framework for
vehicle health monitoring exploiting big-data analytics,” IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 10, pp. 19 727–19 742, 2022.

[12] H. Lu, H. Zhang, S. Yang, and Z. Zheng, “Camera parameters auto-
adjusting technique for robust robot vision,” in IEEE Int. Conf. Robot.
Autom. (ICRA), 2010, pp. 1518–1523.

[13] I. Shim, T.-H. Oh, J.-Y. Lee, J. Choi, D.-G. Choi, and I. S. Kweon,
“Gradient-based camera exposure control for outdoor mobile platforms,”
IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 6, 2018.

[14] U. Shin, J. Park, G. Shim, F. Rameau, and I. S. Kweon, “Camera
exposure control for robust robot vision with noise-aware image quality
assessment,” in IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 2019.

[15] Y.-Q. Liu, X. Du, H.-L. Shen, and S.-J. Chen, “Estimating generalized
gaussian blur kernels for out-of-focus image deblurring,” IEEE Trans.
Circuits Syst. Video Technol., vol. 31, no. 3, 2020.

[16] A. Mehra, M. Mandal, P. Narang, and V. Chamola, “ReViewNet: A fast
and resource optimized network for enabling safe autonomous driving
in hazy weather conditions,” IEEE Trans. Intell. Transp. Syst., vol. 22,
no. 7, pp. 4256–4266, 2020.

[17] J. Aloimonos, I. Weiss, and A. Bandyopadhyay, “Active vision,” Int. J.
Comput. Vis., vol. 1, no. 4, pp. 333–356, 1988.

[18] V. Murino, G. L. Foresti, and C. S. Regazzoni, “Adaptive camera
regulation for investigation of real scenes,” IEEE Trans. Ind. Electron.,
vol. 43, no. 5, pp. 588–600, 1996.

[19] K. V. Chandrasekhar, M. H. Imtiaz, and E. Sazonov, “Motion-adaptive
image capture in a body-worn wearable sensor,” in IEEE Sensors, 2018.

[20] T. Hamamoto and K. Aizawa, “A computational image sensor with
adaptive pixel-based integration time,” IEEE J. Solid-State Circuits,
vol. 36, no. 4, pp. 580–585, 2001.

[21] T. Li, Y. Song, and T. Mei, “An auto exposure control algorithm based
on lane recognition for on-board camera,” in IEEE Intell. Vehicles Symp.,
2015, pp. 851–856.

[22] J. Torres and J. M. Menéndez, “Optimal camera exposure for video
surveillance systems by predictive control of shutter speed, aperture,
and gain,” in Real-Time Image and Video Processing, vol. 9400, 2015.

[23] E. Onzon, F. Mannan, and F. Heide, “Neural auto-exposure for high-
dynamic range object detection,” in IEEE Conf. Comput. Vis. Pattern
Recog. (CVPR), 2021, pp. 7710–7720.

[24] M. Kettelgerdes, L. Böhm, and G. Elger, “Correlating intrinsic param-
eters and sharpness for condition monitoring of automotive imaging
sensors,” in IEEE Int. Conf. Syst. Reliability and Safety, 2021.

[25] J. Xu, H. Li, Z. Liang, D. Zhang, and L. Zhang, “Real-world noisy
image denoising: A new benchmark,” arXiv:1804.02603, 2018.

[26] J. Anaya and A. Barbu, “Renoir-a benchmark dataset for real noise
reduction evaluation,” J. Visual Comm. Image Repres., 2018.

[27] Y.-W. Tai and S. Lin, “Motion-aware noise filtering for deblurring of
noisy and blurry images,” in IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2012, pp. 17–24.

[28] F. Wang, L. Han, and A. J. Theuwissen, “Development and evaluation
of a highly linear cmos image sensor with a digitally assisted linearity
calibration,” IEEE J. Solid-State Circuits, vol. 53, no. 10, pp. 2970–2981,
2018.

[29] J. Igual, “Photographic noise performance measures based on raw files
analysis of consumer cameras,” Electronics, vol. 8, no. 11, 2019.

[30] M. Konnik and J. Welsh, “High-level numerical simulations of noise in
CCD and CMOS photosensors: review and tutorial,” arXiv, 2014.

[31] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal
speed and accuracy of object detection,” arXiv:2004.10934, 2020.

[32] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 7464–7475.

[33] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” Advances in
Neural Information Processing Systems, vol. 28, pp. 91–99, 2015.

[34] J. Cartucho, R. Ventura, and M. Veloso, “Robust object recognition
through symbiotic deep learning in mobile robots,” in IEEE/RSJ Int.
Conf. Intell. Robot. Syst. (IROS), 2018, pp. 2336–2341.

[35] Y. Bai, G. Cheung, X. Liu, and W. Gao, “Graph-based blind image
deblurring from a single photograph,” IEEE Trans. Image Process.,
vol. 28, no. 3, pp. 1404–1418, 2018.

[36] F. Wen, R. Ying, Y. Liu, P. Liu, and T.-K. Truong, “A simple local
minimal intensity prior and an improved algorithm for blind image
deblurring,” IEEE Trans. Circuits Syst. Video Technol., 2020.

[37] BYchao100, “Graph-based-blind-image-deblurring,” https://github.com/
BYchao100/Graph-Based-Blind-Image-Deblurring, 2018.

[38] FWen, “deblur-pmp,” https://github.com/FWen/deblur-pmp, 2019.
[39] M. Bauer, V. Volchkov, M. Hirsch, and B. Schcölkopf, “Automatic

estimation of modulation transfer functions,” in IEEE Int. Conf. Comput.
Photography (ICCP), 2018.

[40] D.-H. Shin, R.-H. Park, S. Yang, and J.-H. Jung, “Block-based noise
estimation using Adaptive Gaussian Filtering,” IEEE Trans. Consumer
Electronics, vol. 51, no. 1, pp. 218–226, 2005.

https://github.com/BYchao100/Graph-Based-Blind-Image-Deblurring
https://github.com/BYchao100/Graph-Based-Blind-Image-Deblurring
https://github.com/FWen/deblur-pmp

17

[41] G. Chen, F. Zhu, and P. Ann Heng, “An efficient statistical method for
image noise level estimation,” in Int. Conf. Comput. Vis. (ICCV), 2015.

[42] Z. Yue, “Noise level estimation for signal image,” https://github.com/
zsyOAOA/noise est ICCV2015, 2019.

[43] H. Tan, H. Xiao, S. Lai, Y. Liu, and M. Zhang, “Pixelwise estimation
of signal-dependent image noise using deep residual learning,” Compu-
tational intelligence and neuroscience, vol. 2019, 2019.

[44] H. Tan, “Pixel-wise-estimation-of-signal-dependent-image-noise,”
https://github.com/TomHeaven/Pixel-wise-Estimation-of-Signal-
Dependent-Image-Noise-using-Deep-Residual-Learning, 2018.

[45] K. Ma, Z. Duanmu, Q. Wu, Z. Wang, H. Yong, H. Li, and L. Zhang,
“Waterloo exploration database: New challenges for image quality
assessment models,” IEEE Trans. Image Process., vol. 26, no. 2, pp.
1004–1016, 2016.

[46] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in IEEE Conf. Comput.
Vis. Pattern Recog. (CVPR), 2012.

[47] Udacity, https://github.com/udacity/self-driving-car, 2016.
[48] P. Irmisch, D. Baumbach, I. Ernst, and A. Börner, “Simulation frame-

work for a visual-inertial navigation system,” in IEEE Int. Conf. Image
Process. (ICIP), 2019, pp. 1995–1999.

[49] G. Singh, S. Akrigg, M. Di Maio, V. Fontana, R. J. Alitappeh, S. Khan,
S. Saha, K. Jeddisaravi, F. Yousefi, J. Culley et al., “Road: The road
event awareness dataset for autonomous driving,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 45, no. 1, pp. 1036–1054, 2022.

[50] G. Neuhold, T. Ollmann, S. Rota Bulo, and P. Kontschieder, “The
mapillary vistas dataset for semantic understanding of street scenes,”
in Int. Conf. Comput. Vis. (ICCV), 2017, pp. 4990–4999.

[51] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous
multitask learning,” in IEEE Conf. Comput. Vis. Pattern Recog. (CVPR),
2020, pp. 2636–2645.

[52] H. Yin and C. Berger, “When to use what data set for your self-driving
car algorithm: An overview of publicly available driving datasets,” in
IEEE Int. Conf. Intell. Transp. Syst. (ITSC), 2017, pp. 1–8.

[53] L. Borodenko, https://github.com/LeviBorodenko/motionblur, 2020.
[54] H. Meißner, “Determination and improvement of spatial resolution ob-

tained by optical remote sensing systems,” Ph.D. dissertation, Humboldt-
Universität zu Berlin, 2021.

[55] J. Pan, D. Sun, H. Pfister, and M.-H. Yang, “Blind image deblurring
using dark channel prior,” in IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2016, pp. 1628–1636.

[56] A. V. T. GmbH, “Prosilica gc1380h camera and driver attributes,”
https://cdn.alliedvision.com/fileadmin/content/documents/products/
cameras/various/features/Camera and Driver Attributes.pdf, 2021.

[57] I. Dr Robot, “Jaguar 4x4 wheel specification,” http://jaguar.drrobot.com/
specification 4x4w.asp, 2001 – 2021.

[58] Börner et al., “Sensor artificial intelligence and its application to space
systems–a white paper,” arXiv:2006.08368, 2020.

[59] S. Jayaraman, S. Esakkirajan, and T. Veerakumar, Digital Image Pro-
cessing. Tata McGraw Hill Education, 2009.

[60] S. Ray, Applied Photographic Optics. Focal Press, 2002.
[61] A. E. Savakis and H. J. Trussell, “On the accuracy of psf representation

in image restoration,” IEEE Trans. Image Process., vol. 2, no. 2, pp.
252–259, 1993.

[62] J. L. Devore, Probability and Statistics for Engineering and the Sciences,
8th ed. Brooks/Cole, 2011.

[63] J. Janesick, Scientific charge-coupled devices. SPIE press, 2001, vol. 83.
[64] D. Dussault and P. Hoess, “Noise performance comparison of ICCD with

CCD and EMCCD cameras,” in Infrared Systems and Photoelectronic
Tech., vol. 5563. Int. Society for Optics and Photonics, 2004.

[65] B. Jähne and H. Haußecker, Eds., Computer Vision and Applications.
Academic Press, 2000.

[66] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Eur. Conf. Comput. Vis. (ECCV), 2014, pp. 740–755.

Maik Wischow is a PhD student at the German
Aerospace Center (DLR) and the Technische Univer-
sität Berlin, where he also received the M.Sc. degree
in Computer Science in 2019. His research interests
include computer vision, deep neural networks, op-
tical sensor systems, optics, stereo image processing
and sensor fusion.

Guillermo Gallego (SM’19) is Associate Professor
at the Technische Universität Berlin, in the Dept. of
Electrical Engineering and Computer Science, and
at the Einstein Center Digital Future, both in Berlin,
Germany. He received the PhD degree in Electrical
and Computer Engineering from the Georgia Insti-
tute of Technology, USA, in 2011, supported by a
Fulbright Scholarship. From 2011 to 2014 he was a
Marie Curie researcher with Universidad Politecnica
de Madrid, Spain, and from 2014 to 2019 he was a
postdoctoral researcher at the Robotics and Percep-

tion Group, University of Zurich, Switzerland. His research interests include
robotics, computer vision, signal processing, optimization and geometry.

Ines Ernst received the diploma degree in math-
ematics from the Technische Universität Dresden.
Until 2001 she worked at the Institute for Com-
puter Architecture and Software Technology of the
German National Research Center for Information
Technology (GMD FIRST). She joined the German
Aerospace Center (DLR) in 2002 and is currently a
research associate at the Institute of Optical Sensor
Systems. Her research interests include computer vi-
sion, stereo image processing and 3D reconstruction,
deep neural networks, hardware acceleration.

Anko Börner received the degree in electrical en-
gineering from the University of Ilmenau, and the
PhD degree from the German Aerospace Center
(DLR). He was a Postdoctoral Researcher with the
University of Zurich. He is currently the Head of
the Real-Time Data Processing Department, DLR.
He is author of various SCI, EI, and Scopus in-
dexed journals and international conferences. His
research interests include stereo image processing,
deep neural networks, simultaneous localization and
modeling (SLAM), and 3D reconstruction.

https://github.com/zsyOAOA/noise_est_ICCV2015
https://github.com/zsyOAOA/noise_est_ICCV2015
https://github.com/TomHeaven/Pixel-wise-Estimation-of-Signal-Dependent-Image-Noise-using-Deep-Residual-Learning
https://github.com/TomHeaven/Pixel-wise-Estimation-of-Signal-Dependent-Image-Noise-using-Deep-Residual-Learning
https://github.com/udacity/self-driving-car
https://github.com/LeviBorodenko/motionblur
https://cdn.alliedvision.com/fileadmin/content/documents/products/cameras/various/features/Camera_and_Driver_Attributes.pdf
https://cdn.alliedvision.com/fileadmin/content/documents/products/cameras/various/features/Camera_and_Driver_Attributes.pdf
http://jaguar.drrobot.com/specification_4x4w.asp
http://jaguar.drrobot.com/specification_4x4w.asp

	I Introduction
	II Related Work
	III Proposed System
	III-A Overview
	III-B Optimize Object Detection by Trading off Blur and Noise
	III-C Empirical Input-Output Performance Curves
	III-D Blur Estimation (via the MTF)
	III-D1 Traditional methods (non-learning–based)
	III-D2 Learning-based Method

	III-E Noise Estimation
	III-E1 Traditional methods (non-learning–based)
	III-E2 Learning-based Method

	IV Experiments
	IV-A Datasets
	IV-B Blur Estimation
	IV-C Noise Estimation
	IV-D Combined Estimation of Blur and Noise
	IV-D1 Defocus + DCSN
	IV-D2 Photon + Lin. Motion

	V Maximizing Object Detection by Trading Off Blur and Noise
	V-A Example 1
	V-B Example 2

	VI Conclusion
	VII Image Formation Process
	VII-A Blur
	VII-A1 Defocus Blur
	VII-A2 Motion Blur

	VII-B Noise
	VII-B1 Photon Shot Noise
	VII-B2 Dark Current Shot Noise (DCSN)
	VII-B3 Readout Noise

	VIII Improved Blur Estimation in Presence of High Noise
	IX Blur direction dependence of YOLOv7
	X Influence of Camera Parameters on Object Detection Performance
	References
	Biographies
	Maik Wischow
	Guillermo Gallego
	Ines Ernst
	Anko Börner

