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Abstract

The efficiency of solar tower power plants depends strongly on the ability to reflect the sun light onto a defined point
on the receiver. Due to the high demands on the heliostats to achieve high accuracy at low costs, a regular calibration
is necessary to reduce the tracking error. In this paper a new method for improving existing calibration methods using
deep learning is presented. The results are validated by using calibration data recorded at the Solar Tower Jülich with
the example of one heliostat. Through a combination of Self-Normalizing Neural Networks and transfer learning it is
possible to benefit from the advantages of neural networks already with a training dataset of only 300 measuring points
and with that to achieve a test accuracy which was approximately three times more accurate than the best result of the
compared regression algorithm used in Jülich. Furthermore we give recommendations on the structure of the dataset
and the neural network (NN) pretraining necessary for these results.

Keywords: Concentrating solar power, Solar tower power plant, Heliostat aiming, Artificial intelligence, Neural
Networks

1. Introduction1

The heliostat field of a solar tower power plant can cause2

up to 50% of the capital expenses (CapEx) and thus con-3

tributes significantly to the levelized cost of energy. The4

ability of these heliostats to redirect the sun to the cor-5

rect designated position on the receiver directly affects the6

amount of electricity generated and is responsible for pro-7

tecting the receiver from local overheating to ensure a long8

term operation. To reduce the levelised cost of electricity9

to 0.6 USD/kWh or below, the costs per Heliostat must10

not be more than 75 USD/m2 (Pfahl et al., 2017) while11

maintaining the sun tracking accuracy.12

The accuracy is influenced by various factors, these in-13

clude misalignment by torsion, mechanical deformation,14

gear backlash or local wind speeds. For more cost-effective15

heliostats these sources play a greater role because less ma-16

terial or cheaper motors are used. New heliostat designs17

or cheaper production methods may counteract this, but18

the key element of this development will be an intelligent19

calibration system with low hardware costs which is part20

of current research. This paper will frist give a brief in-21

troduction to neural networks and the current calibration22

system in Jülich. Afterwards the workflow, how the data23

was gathered and how the (pre)training was done is de-24

scribed. Then the results from the state-of-the-art algo-25

rithm and the neural network are compared followed up26

by a discussion.27
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1.1. Deep neural networks28

A neural network is an algorithm that tries to map the29

functioning of our brain by mathematical simplifications.30

The brain’s neurons are represented by activation func-31

tions with weights and biases. These artificial neurons are32

arranged in layers and are linked together layer-wise (com-33

pare fig. 1). There are 3 different types of layers, the input,34

the hidden and the output layers. The first (input) and35

the last (output) layer symbolize accessible values, while36

all layers in between are called hidden layers and usually37

have no real physical meaning. If there is more than one38

hidden layer, we speak about deep learning. With such a39

network structure it is possible to map any input vector40

to every output vector. It is mathematically proven that a41

neural network with more than one hidden layer can act as42

a universal function approximator (Lu et al., 2017). The43

mapping function must be learned and is generated during44

the training process.45

To train a NN, first the weights have to be initialized -46

usually this happens randomly with some conditions to the47

random distribution. During the training process, data is48

fed into the network via the input layer, which then propa-49

gates through the network layer per layer until they reach50

the output layer. There, the initially random outputs, are51

compared with the target values. The weights and biases52

of the neurons are then adjusted depending on the devi-53

ation between the output and the target value using the54

so-called backpropagation, a stochastic gradient method.55

This way the information about the relationship between56

input and output is stored within the network. Modern57
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Figure 1: Schematic drawing of the full dense neural network (FNN)
used in this paper. For sake of simplicity only one output is used
for regression. The target position east and up are measured while
calibration, but can later, after training, be used to control the focal
point position

NNs received remarkable results in many different areas,58

from classification (Xie et al., 2020), over regression (Feng59

et al., 2019), to imaging tasks (Pidhorskyi et al., 2020).60

By using modern deep network structures and the avail-61

ability of a sufficiently large dataset, even the most com-62

plicated tasks can be performed. Thanks to the ability of63

neural networks to adapt from similar tasks to the cur-64

rent problem (transfer learning), nowadays it is not even65

necessary to have a large dataset of the actual problem,66

if an appropriate pretraining has taken place (Feng et al.,67

2019),(Noguchi and Harada, 2019).68

On the other hand deep full dense networks (FNNs) are69

still very rarely used, because they are hard to train due70

to vanishing gradients and converging to poor local min-71

imums in the training process (LeCun, 2015). Neverthe-72

less, these networks have also made astonishing progress73

in recent years. With the use of SNNs (Klambauer et al.,74

2017) they have become deeper than ever before and with a75

stacked autoencoder (SAE) unsupervised pretraining (Ben-76

gio et al., 2007) they have achieved remarkable results with77

only a few data points (Feng et al., 2019).78

1.2. State-of-the-Art79

The Camera-Target Method (Stone (1986)-method) is one80

of the oldest and up for today the most widely used calibra-81

tion method in commercial solar tower power plants. For82

the calibration process, the focal spot of each heliostat is83

moved individually from the receiver to a Lambertian tar-84

get, which is located below the receiver. A camera then85

takes a picture of the focal spot and compares its centroid86

of area with a reference position, after which all infor-87

mation is stored (compare fig. 2). Using an underlying88

function template, in most cases an error-based geometry89

model can be determined by regression using e.g. a New-90

ton’s Method.91

The function template underlying the regression algorithm92

can include multiple error sources, from torsion, displace-93

ment or gear ratio to more complex errors like the influence94

of local wind speed or mechanical deformation on different95

angles. The more degrees of freedom the function tem-96

plate has, the more accurately it can represent reality, but97

also carries the risk, if the database is small, of converging98

Figure 2: Schematic drawing of the Stone Method. The variables in
blue are measured in every calibration (including the sun position).
The red ones are measured once for every heliostat and the green is
calculated. The shown method is described in 2.1 and variables are
explained in more detail in chapter Appendix A of the appendix

towards a local minimum and missing the global optimum.99

There are plenty of other calibration methods (Sattler et al.,100

2020) but for every new one the Stone-Method is the base-101

line model, when it comes to accuracy.102

In this paper it is shown, with an example of the Stone103

method that it is possible to improve regression based cal-104

ibration algorithms with the support of neural networks105

without the need to replace existing hardware.106

2. Research Setting and Methods107

2.1. Calibration at the Solar Tower Jülich108

The data used in this paper was gathered at the solar tower109

in Jülich where the Stone method is used to calibrate the110

heliostats. Using the focal spot position, the sun vector,111

the heliostat position and a few specific heliostat parame-112

ters which are measured once (axis offset, basic orientation113

etc.), the current alignment is calculated using a geometry114

model.115

This model includes, besides the controllable alignment116

parameters (θM , τM ), error parameters which have to be117

determined by regression. In Jülich eight of these errors118

(α, β, γ, δ, θk, τk,GR1,GR2) are allocated to every helio-119

stat. For a detailed overview of all regression parameters120

see Appendix A. The Levenberg-Marquardt (LM) algo-121

rithm is used to minimize the function:122

F = min
α,β,γ,δ,θk,τk,GR1,GR2

N∑
i=1

arccos(~nis,i · ~nmodel,i). (1)
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The function template sums over all angular deviations for
every measurement point i. ~nmodel is the heliostat surface
normal, which points towards the receiver. Thereby both
rotation axes are positioned in the suspension point ~O1 =
~OM of the heliostat. It is described by:

~nmodel = R01(α, β) ·Rθ(
θM
GR1

+ θk)

·R12(γ) ·Rτ (
τM
GR2

+ τk) ·R2M (δ)

·~nba.

(2)

With ~nba the basis alignment.123

~nis is the actual alignment including a suspension point124

shift and is calculated with:125

~nis =
(
~CA− ~OM

)
/Norm. (3)

~CA is the centroid of area of the focal point and ~OM , which
is defined as:

~OM = ~O1

+R01(α, β) ·Rθ(θM/GR1 + θk)

·
(
~V12 +R12 (γ) ·Rτ (τM/GR2 + τk) · ~V2M

)
.

(4)

~V12 and ~V2M are suspension point displacements relative126

to the first and second movement axis (compare Fig. 2).127

Both are measured once and are constants individual for128

every heliostat.129

All R functions are rotation matrices, where α, β, γ, δ are130

the angles of the rotation and tilting errors, GR1 and GR2131

are gear ratios and τk and θk define axis offsets. All these132

parameters are calculated by the LM Algorithm. θM and133

τM are the current motor positions of the heliostat. They134

are measured in real time and because the heliostats in135

Jülich use stepping motors they are measured as discrete136

steps which can be converted from motor positions to an-137

gles and vice versa.138

After calculation, the error parameters are stored, if the139

prediction (test-)accuracy is better than any result before.140

With the defined geometry model, the required orienta-141

tion of the heliostat to hit the receiver can be calculated142

iteratively by computing the bisector between nis and the143

sun vector.144

2.2. Potential of applying neural networks for heliostat145

field calibration146

Even if the heliostat calibration is an analytically compre-147

hensible task, taking all internal and external influencing148

factors into account it’s a complex system for which the use149

of neural networks is suitable. NNs for alignment detec-150

tion of heliostats in solar tower systems have already been151

introduced by Carballo et al. (2018) and have shown the152

upcoming possibilities. But up for today the applications153

for calibration tasks are still limited, usually require new154

hardware and (labeled) datasets which has to be created155

specifically for the NNs. The potential of applying neural156

networks is there, but the main challange of the method-157

ology is clearly the size and the imposed conditions on the158

required dataset.159

Besides, since every heliostat contains its own individual160

errors and e.g. using the Stone method there is more a161

lack of data rather than a surplus.162

163

With transfer learning it is possible to overcome this dis-164

advantage. Before the training on the real problem a pre-165

training, for example with simulated data is done. In the166

real training process, instead of assigning random values167

to each node at the beginning of the training, the network168

is initialized with the node values calculated in the pre-169

training, which are already close to the global optimum.170

For the heliostat calibration task, the function template,171

calculated by the LM algorithm can generate data, which172

is close to real measured data, but with a lack of com-173

plexity, which are optimal conditions for an appropriate174

pretraining.175

2.3. Method176

For the calibration task a network structure was chosen177

to simplify the task as much as possible (only one output)178

but at the same time to collect as much data as possible179

without any constraints and to allow free heliostat control180

(two additional inputs). Therefore a network with 6 layers

Figure 3: An example learning curve in the pretrain process using
4000 data points simulated by the LM-template. The loss shown is
the mean squared error (MAE). The MAE at the end of the pretrain-
ing varies between 2 × 10−5 and 9 × 10−5 depending on the start
conditions. Every loss in this range is acceptable for the following
train step.

181

5-(6-5-4-3)-1 is used (compare fig. 1). For the activation182

function SELUs (Klambauer et al., 2017) are chosen, ex-183

cept for the output layer, which is linear.184

To regularize the prediction error the L1-Huber loss (Hu-185

ber, 1992) is used. To enhance the learning process an186
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adaptive learning rate, a factor which controls the amount187

of change inside the nodes, is selected. The used learning188

rate becomes smaller every time the test loss did not re-189

duce over a certain amount of epochs. An epoch refers to190

one cycle during which the network has seen all training191

data once. This is enhanced by using AdaMax (Kingma192

and Ba, 2014) as an optimizer.193

The training process is divided into pretraining and ac-194

tual training. The pretraining is done using data gener-195

ated by the LM algorithm and initialization recommended196

by Klambauer et al. (2017). A learning curve of the pre-197

training is shown in fig. 3. On the X-axis the training198

epochs are shown. In the upper graph the y-axis refers to199

the mean absolute error (MAE) loss function. Even if the200

Huber loss is used for training, the MAE gives a better201

indication of the deviation between real and predicted val-202

ues. The dataset is splited into a train and a test set (this203

is described in more detail in chapter 2.4). Only the loss204

of the training set influences how the nodes of the network205

are updated. It is easy to see, why the train-test split is206

necessary. Although the training loss never stops falling207

and easily reaches accuracies up to 99.9%, the test accu-208

racy stagnate at some point.209

In the lower graph the adaptive learning rate is plotted.210

It starts with a value of lr = 0.1 and is reduced over time.211

The learning rate while training is considerably smaller (lr212

= 1 × 10−5) in order to preserve the pretraining progress.213

Alternatively, the first layers could be completely excluded214

from the training process, this is called freezing, but better215

results could be achieved with the above mentioned pro-216

cedure.217

As the inputs, the sun position, which is relevant for the218

task, and the measured focal point position on the target219

was chosen. The latter includes two big benefits. On the220

one hand we can use all collected data, because we don’t221

have to care about the focal points position, which other-222

wise would first have to be moved to a specific reference223

point. On the other hand, after training these nodes can224

be used as a control option to freely move the focal point225

to different positions on the receiver/target.226

The output is either the measured azimuth or the eleva-227

tion alignment of the heliostat given in motorpositions.228

Without loss of generality only the horizontally mounted229

motor for the azimuth movement will be considered in the230

following.231

2.4. Workflow232

The whole workflow is shown in Fig. 4. In the first step a233

training set size is chosen for all data gathered at the solar234

tower. Then an equally large test-set is declared (choosing235

a train-test split of 50:50). Training and test-set are sep-236

arated in time, because this gives a better overview how237

good the network will predict future data. For the col-238

lected dataset including 500 measuring points (explained239

more deeply in chapter 3.1), this means that depending240

on the selected training set size, a third set, the validation241

set, may remain in addition to the test-set.This third part242

Figure 4: Sketch of the workflow. For an application at the solar
tower no training size would be declared in the second step, but all
usable data would be split into training-, test-set. The fine tuning,
e.g. choosing different network structures are not shown inside the
sketch

is added to the test-set independently after the training.243

If the training set becomes so large, that a 50:50 ratio is244

not possible anymore, the test-set percentage is reduced,245

but the validation set remains at a constant value of 5%246

of the complete dataset.247

Then the LM regression algorithm is trained with the train-248

ing set. After finishing, the newly calculated geometry249

model from the function template is tested on the test250

and validation set and its accuracy is evaluated.251

If the prediction accuracy is better then any accuracy be-252

fore, the new parameters get stored. The geometry model253

with the highest test accuracy is now used to generate254

pretraining data for the neural network. For this 4000255

randomly distributed but real sun positions between Au-256

gust 1st and October 1st are generated. This dataset is257

then split into a 90:10 training-test-set which the network258

is then pretrained with. As soon as the test loss stops259

falling, the actual training process begins. The network is260

now trained/tested with the same training test data split261

as the Levenberg-Marquardt algorithm before. Instead of262

a random initialization, the previously calculated weights263

and biases of the pretraining are used.264

The whole training process takes less than 30 minutes on265

an Intel i7 processor without a graphic card. The process266

can be accelerated either by using a faster pc (including a267

GPU), or e.g. using a less conservative loss function, like268
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a) All measured azimuth motor positions of the example heliostat in
the middle of the solar field, 57.2m east, 243.5m north of the base of
the solar tower.

b) All input and output parameters of the network. the vertical target
reference position (TargetOffsetU) is at an altitude of 123.075m above
sea level

Figure 5: Different visualizations of the collected data at the solar tower Jülich.

the cyclical learning rate(Smith, 2015). At the end the269

test accuracies are compared to each other.270

3. Case Study271

3.1. Dataset assembling272

To test the different calibration algorithms, a dataset of273

approximately 500 measurement points was used, which274

were recorded within 8 days, whereby a large part of the275

data falls on the first measurement day. The data was276

recorded at different times between 9:00 and 15:30. The277

amount of data varies between 1 and nearly 200 measure-278

ment points per day. The heliostat alignment is given in279

motor positions. There were no special requirements when280

creating the dataset. The histogram (Fig. 5b) shows the281

values required for calibration. The values TargetOffsetU p282

and TargetOffsetE are showing the errors of the respective283

heliostat. The focal point of this particular heliostat is of-284

ten located in the center of the target but tends to drift285

eastwards and downwards. It is rarely above or west of286

the target center. We will come back to this later in the287

discussion.288

Because the amount of data is more relevant for the up-289

coming discussion, the x-axis of the upcoming Graphs will290

show the dataset size used for training instead of the dates291

they were recorded. Nevertheless the shown data will be292

the same and in the same order as in Fig. 5a.293

3.2. Levenberg-Marquardt Results294

At the Jülich solar tower, the Levenberg-Marquardt algo-295

rithm is used to determine the geometry model from the296

function template described in 2.1. However, in general297

any Newton- or Trust Region-method can be used here.298

The limiting factor of all these methods is the function299

template that has to be minimized. For high accuracy the300

template requires a high number of free parameters (in301

Jülich, the maximum is 8). More degrees of freedom can302

lead to a better overall result, but with few measurement303

points there is a risk of finding only a local optimum, which304

can significantly reduce test accuracy. Figure 6 shows the

Figure 6: Different predictions of the LM algorithm depending on
the amount of data used for training. The different training-sets are
located on the left of the dotted lines.

305

predictions of the LM-algorithm for different training data306

sizes. For the smallest training set the training accuracy307

is high, but the algorithm has clearly converged to a local308

optimum, which leads to a bad prediction accuracy. How-309

ever, the accuracy improves continuously with increasing310

the amount of data up to about 200 data points.311

Furthermore, the error remains at a roughly constant level.312

The peaks appearing in the red and green line and the313

plateau in the rear part of the graph either indicate that314
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Figure 7: Different predictions of the NN algorithm depending on the amount of data used. Except for the far right figure, no pretraining has
taken place. The pretraining graph was trained with the same data as the graph left to it (red line) but has a significantly higher accuracy.

the global optimum is not found yet or the function tem-315

plate cannot completely map the real heliostat due to miss-316

ing modeling parameters, like orientation dependent defor-317

mation.318

3.3. Neural Network Results319

In Fig. 7 the absolute and relative prediction results of320

the trained neural networks, with and without pretrain-321

ing, are shown. The difference between Training and Test322

dataset is clearly visible. As already seen in Fig. 3, the323

training accuracy reaches a far smaller loss, but this does324

not necessarily indicate a high test accuracy.325

In the graph on the very left (blue line), the network was326

trained with only 100 training data without pretraining.327

These correspond exclusively to measurements of the first328

half of a day. This leads to the fact that on later days, fore-329

casts for later day times are correspondingly worse. This330

can be recognized by the missing peaks of the prediction.331

The lack of extreme values in the dataset is therefore a332

significant factor in training.333

For training sets containing 200 and 300 measuring points,334

the network has already seen two full measurement days335

during training. Here, it manages to predict a similar336

curve as measured in reality, at least in the absolute view.337

In the relative view, however, it is clear that a competitive338

accuracy has not yet been reached.339

The best prediction accuracy using the same amount of340

data as the graph to its left (red line)but including pre-341

training is shown on the very right (violet line). The342

dataset for the pretraining was created by the geometry343

model calculated from the LM by using 200 data points344

(Fig. 6, green line), which was the geometry model with345

the highest prediction accuracy. Including pretraining the346

mean prediction accuracy is close to 5 times better than347

the LM results with 300 data points and 3 times better348

than the best LM result archived with the function tem-349

plate used in Jülich.350

3.4. Comparison351

After all algorithms have been trained, the errors of the352

different algorithms can be compared. Since our dataset353

only contains 500 data points, no more than 300 for train-354

ing were ever used, as the test dataset would otherwise355

have become too small to make reliable statements. Fig. 8356

shows the prediction accuracy of the conventional method357

and the neural networks, with and without pretraining,358

depending on the amount of data.359

The behavior of Levenberg-Marquardt described in 3.2 can360

be seen more clearly here. The accuracy is increasing up361

to about 200 data points, but then it stagnates at about362

the same or slightly worse level.363

The prediction deviation of the neural network without364

pretraining decreases rapidly over the whole test area, but365

never reach a competitive accuracy within the available366

data set.367

The highest accuracy is achieved starting from 300 data368

points by the neural network with pretraining. As men-369

tioned before, the function template calculated by the LM370

Algorithm at 200 data points was used to pretrain the371

networks also for higher amount of data.372

4. Discussion373

By extrapolation of the orange curve in Fig. 8 it is possible374

to get an idea of the possibilities of using neural networks.375

Although this is only an experiment of thoughts, because376

the output of a NN is not predictable, the orange line can377

be extrapolated and will become competitive with more378

data. NNs already have shown impressive results in other,379

more complex tasks when there was a sufficient database380

available. So, this should be the case here too. It becomes381

particularly likely if the results of the network with pre-382

training are considered.383

The pretraining enhances the method in many ways. On384

the one hand it reduces the required dataset considerably,385
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resulting in an improvement of the prediction accuracy386

already at 300 data points. On the other hand it can com-387

pensate missing extreme values inside the real dataset.388

Compared to the state-of-the-art algorithm it has to be389

mentioned that on the one hand the information about390

the physical error parameters represented in the geometry391

model is lost through the use of NNs, because the param-392

eters are not calculated anymore. On the other hand the393

calibration can benefit from the missing limitation of a394

prescribed function template through the increased com-395

plexity. Especially considering that the error parameters396

are not known to be used in power plant operation any-397

way.398

In addition, if the decision is made to include complex399

properties such as local wind speed into the calibration, no400

complicated differential equations or even simulations are401

necessary, but the simple addition of further input nodes402

and a new training are sufficient.403

However, unlike the classical approach, there is no clearly404

traceable control function after completion of the training405

with a neural network. Although the networks are capable406

of abstraction to a certain extent, they work best for val-407

ues between known extrema included in the (pre-)dataset.408

Aiming to a designated position that goes beyond the min-409

max values contained in the training set, or a position that410

was rarely used could lead to higher errors. The heliostat411

examined here, for example, tends to drift to the lower east412

of the target center as described in chapter 3.1. Targeting413

a top west position could cause a larger error. Therefore, it414

is recommended to include extreme values (e.g. the edges415

of the target) already in the dataset.416

A similar situation applies to the other input parameters.417

The sun positions can become more extreme depending418

on the season. For measurements taken in this work this419

is not noticeable, because the days became shorter during420

this time. A different picture may appear from spring to421

summer.422

Although the dataset can be improved by specific early423

morning and late evening measurements, not every helio-424

stat can be measured on the (ideal) longest day of the year,425

here only a suitable pretraining can help.426

One also has to keep in mind that the network was trained427

on data pointing at the target. When the receiver is to be428

targeted, in best case the network should already have429

adapted the real tracking function and there is no addi-430

tional error or only a vertical offset should be needed to431

correct this issue. In the worst case another mapping func-432

tion is needed. This still has to be tested.433

In general, all points in Fig. 8 are located within a con-434

vergence band which allows better and worse results for435

both the Levenberg Marquardt algorithm and the neural436

network. This band depends on the starting conditions,437

the structure of the network, the function template, the438

dataset, the loss, the activation function and many other439

factors and is therefore too complex to give an estimate of440

the statistic bandwidth.441

All these internal parameters are most likely not fully op-442

Figure 8: Summary over all tested algorithms. The values can vary
considerably for all algorithms used, as they are located on a complex
convergence band. However, it was tried to optimize all algorithms
equally for the given data set

timized yet. Nevertheless this is similar to the situation443

at the solar tower, where these parameters also can’t be444

optimized for each individual heliostat in the field. More445

likely, only a few of these parameters will be optimized446

(e.g. with bayesian parameter search) for a given heliostat447

or a group of heliostats and then are adopted to the rest of448

the field. Therefore, these results give a good orientation449

how the algorithm will behave in use at a big heliostat450

field.451

5. Conclusion452

Based on the results shown in this paper, neural networks453

are most likely the best choice for heliostat calibration, if454

a large dataset is available. Though this is not the case for455

calibration techniques, where the measurement takes many456

seconds to minutes or each heliostat has to be moved indi-457

vidually, neural networks can still be a reasonable choice458

if a suitable pretraining has taken place. With an exam-459

ple of the Stone-Method it was found, that the function460

template underlying the used regression algorithm can be461

used to create a database large enough to pretrain neural462

networks. By the help of this pretraining it was possi-463

ble to increase the prediction accuracy of one heliostat464

at the solar tower Jülich by a factor of 3 compared to the465

best geometry model results calculated by the classical ap-466

proach, already starting with a training dataset containing467

less than 300 measurement points.468

Furthermore, first estimations could be made regarding469

an optimization of the training dataset with respect to the470

long-term use of neural networks at the solar tower.471
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6. Outlook472

With the classical calibration approach each heliostat has473

to be calibrated very regularly. the aim is to extend the474

time between two calibrations as much as possible, while475

keeping the tracking accuracy high. To ensure this for476

the NN approach, the next step is to run a long term477

test at the solar tower in Jülich to validate its prediction478

accuracy throughout the year. If it is not maintained the479

training/pretraining has to be adapted to ensure that this480

is the case.481

In connection with this the pretraining should be studied482

more, in context of included extreme values or choosing483

another algorithm to create the artificial dataset e.g. using484

a grid instead of a random distribution. At least, for an485

unsupervised application at a complete solar tower field a486

mathematical network optimization, like Google’s Morph487

Net (Gordon et al., 2018) or a Bayesian optimization, have488

to be implemented.489
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Appendix A. LM-parameters535

In table A.1 all used LM parameters are listed. The func-536

tion template used at the solar tower in Jülich assumes a537

model heliostat with 2 axes. Thereby each axis can move538

the suspension point ( ~O1) by a constant vector (~v12,~v2M ).539

Without rotations the suspension point (the mirror cen-540

ter) would be: ~OM = ~O1 + ~v12 + ~v2M . Each rotation R541

is described by a rotation matrix depending on the an-542

gles α, β, δ, γ, τM , θM and is acting on either the first or543

on both translation vectors. Where α, β, δ, γ are constant544

angles of misalignment (which have to be determined by545

the regression algorithm) and τM , θM are the actual con-546

trollable alignments of the heliostat, measured in motor547

positions. Beside these rotational misalignments, for each548

axis the gear ratio (GR1, GR2) and an offset (τk, θk) are549

considered for the control parameters τM and θM550
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Symbol Explanation Degrees of Freedom Dependencies Explanation

R01 Alignmet 1. axis (incl. tilting) 2 (rotation) α Rotational displacement
β Rotational displacement

Rθ Rotation 1. axis 1 (rotation) +1 (gear ratio) θM Tracking angle azimuth
θk Axis offset

GR1 Gear ratio

~v12 Distance between axes 1 (translation) - -

R12 Axis tilt 1 (rotation) γ Rotational displacement

Rτ Rotation 2. axis 1 (rotation) +1 (gear ratio) τM Tracking angle elevation
τk Axis offset

GR2 Gear ratio

~v2M
Displacement between 2. axis and
mirror center

1 (translation) - -

R2M Mirror tilt 1 (rotation) δ Rotational displacement

~O1
Heliostat suspension point (without
translation)

3 (translation) - -

~OM
Heliostat suspension point (mirror
center)

3 (translation) All above -

Table A.1: Matrices and vectors used for the function template underlying the Levenenberg-Marquardt regression algorithm.

9


	Introduction
	Deep neural networks
	State-of-the-Art

	Research Setting and Methods
	Calibration at the Solar Tower Jülich
	Potential of applying neural networks for heliostat field calibration
	Method
	Workflow

	Case Study
	Dataset assembling
	Levenberg-Marquardt Results
	Neural Network Results
	Comparison

	Discussion
	Conclusion
	Outlook
	LM-parameters

