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Abstract. Compliant robot tasks such as grinding require a robot to use
a specific control strategy and to consider a number of process parame-
ters. It is demanding to program such behaviors from scratch. Therefore,
so called contact skills can be employed that are pre-programmed control
strategies, which are optimized for the intended task. With that level of
abstraction, which is defining skills that are specific to the task, only
the skill’s parameters need to be identified and not the whole strategy
to be implemented. In order to allow non-experts to transfer such com-
plex behaviors to a robot, we present two different contact skills and
how they are automatically parameterized by a human demonstration.
This process learns the robot behavior in one shot while considering task
goals, such as desired forces and motions. We evaluated our framework in
the PyBullet physics simulator and showed that the parameterized skills
follow the task goals while generalizing to changes in the environment.

1 Introduction

In today’s industrial applications, robots are employed in processes with large
lot sizes and are manually programmed by experts. When it comes to small
lot sizes and highly customized products, the demand for intuitive program-
ming techniques raises in order to implement new processes quickly. Hereby, the
Learning from Demonstration (LfD) [1] technique enables defining a task by
nonexperts. However, it has been shown that the robot could suffer from a bad
teacher’s demonstration performance [2]. We encounter this by incorporating
expert knowledge in the form of so called robot skills.

In the LfD context, a skill is a predefined robot behaviour parameterized
by the demonstrations [3] [4]. Since force-based tasks are relatively hard to im-
plement when compared to only kinematic tasks, we can make use of expert
knowledge embedded in the skills in the form of a specific controller. An exam-
ple scenario is a surface processing task with a grinding tool. Hereby, a constant
normal force against the surface is desired for a stable grinding process and a
motion needs to be tracked along the surface. The demonstration of a human
might not be optimal and contain undesired variations. Therefore, a designated
skill is able to perform force control along the surface normal and motion control
on the surface plane, which is known as hybrid position force control.

We identified a number of so called contact skills in a previous work [5], which
are intended to solve motion and force-based tasks. Additionally, we were able
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to automatically recognize the skill within the demonstration with a data-driven
classification approach (used for Skill Selection in Fig. 1a). In this work, we
focus on two of these skills, namely slide and contour. Slide is intended to apply
force onto the normal direction of a surface, for example as used in grinding
applications. Contour is a skill to apply a force profile onto the normal direction
of a nonlinear shape, for example, used in deburring of sharp edges. The main
motivation of this work is to present an automatic parameterization technique in
combination with a control strategy, such that the robot can parameterize each
contact skill automatically from the demonstration. Finally, we want the robot
to reproduce the skill by adapting to uncertainties in the environment using our
presented hybrid controller.

Our LfD pipeline is shown in Fig. 1a and starts with the observation of
a human demonstration, uses Skill Selection as presented in [5], and employs
Parameter Extraction and Execution as presented in this paper. In detail, we
propose a strategy of how two different contact skills can be parameterized au-
tomatically from a human demonstration without manual parameter setting.
This enables non experts to bootstrap new tasks that involve motion and force
control without manual programming. To enable such control objectives, we ex-
tract compliant frames (CF) automatically from the demonstration, which aligns
motion and force control axes towards the environmental constraints.

The main contributions of this work are given as follows:

1. A skill learning strategy with automatic extraction of skill parameters from
demonstration data.

2. A skill execution strategy that facilitates a hybrid impedance-force controller
that enables the rigid transformation to the CF.

2 Related Work

2.1 Contact Skill Learning

Contact skills require a control strategy to handle contact forces besides the
motion execution. Pais et al. [6] proposed a framework for learning robot skills



through motion segmentation and constraints extraction. The approach com-
pares the variance in a time window to the variance among multiple demon-
strations, which are required to learn the task. In contrast, our approach learns
from a single shot as a reasonable simplification for real world applications. In
addition, we enable a tailored solution for different task constraints by proposing
so called contact skills.

Kober et al. [7] presented a way of learning movement primitives (MP) that
depend not only on motion characteristics but also on force interactions. Similar
to the method employed in [6], they enabled learning by a preceding segmenta-
tion based on Zero Velocity Crossings (ZVC), later computed scores to choose
a reference frame and control variables. Each segment of the trajectory is con-
sidered as MP, encoded as Dynamic Movement Primitive (DMP). This method
also requires multiple demonstrations to evaluate the scores and therefore is de-
manding for the human teacher. Reference frames were predefined for the task,
which we extract directly from the data. A method for simultaneous teaching
of position and force for contact-based tasks was presented in [8]. DMPs were
used to learn the motion as well as force profile. A hybrid controller was em-
ployed for reproduction. A task specific reference frame was not considered as
the task was performed in a fixed frame and with a predefined control strategy
for each dimension. Learning of sequential skills considering force interactions
was presented in [9]. A dynamical system with a linear attractor was chosen as
MP and a hybrid position force controller similar to [7] employed. The trajectory
is segmented to form movement primitives, based on multiple demonstrations.
The underlying task frames were manually defined.

The aforementioned methods did not extract any reference frames from
demonstration data but used one or multiple predefined frames. On the con-
trary, Conkey et.al [10] extracted a dynamic frame, which is called a constraint
frame by considering the motion and observed force profile. They also defined a
selection matrix to specify a control strategy in this constraint frame.

Gao et al. [11] presented the learning of force relevant skills from demonstra-
tions, where a skill is represented as a function of position, velocity, interaction
forces, and task constraints. In contrast to our approach, here multiple demon-
strations are required that are encoded in Gaussian Mixture Models (GMM).
Task execution was performed on a hybrid controller based on admittance con-
trol, whereas, in our work, an impedance based hybrid controller is used. Also,
the learning is carried out in a generic way, which is in contrast to our approach,
where we perform skill specific learning.

2.2 Hybrid Position-Force Control

Pure impedance control is not sufficient to reproduce all facets of a compliant
contact task, for example, to fulfill the requirement of closed loop force control.

A hybrid position-force controller that offers a separation of position and
force control in orthogonal subspaces, initially proposed in [12] is a suitable
methodology. A similar control strategy was employed in [7] and [9] based on
a task level inverse dynamics approach, which was initially proposed in [13] as
a hybrid control strategy. In [8], a similar control strategy is adopted to teach



and reproduce in-contact tasks with an impedance controller for motion control
and a PI controller for force control. However, force control was fixed to to the
z axis.

Hybrid control strategies aforementioned under LfD and contact-based tasks
are suitable when tracking interaction forces in a fixed Cartesian frame. However,
these strategies are not sufficient when a task frame undergoes a transformation
during execution. Conkey et al. [10] addressed a similar issue based on [14],
wherein a dynamically changing constraint frame was embedded in the control
equation. This method transforms a selection matrix that is intuitively defined
in the constraint frame into the end effector frame of the robot. Marin et al. [15]
presented a unified hybrid position force controller based on the Kinesthetic
filtering method proposed in [16] and [17]. They clarify that when a compliant
frame undergoes a rigid transformation, the motion and force commands issued
in the compliant frame need to be transformed, in other words, kinesthetically
filtered to have the controlled subspaces separated in the new frame.

We employ a generic hybrid controller for both of our skills. To do so, we
define control parameters like stiffness and selection matrix in the compliant
frame that is task specific. Then, we consider the rigid transformations between
the end effector and compliant frame in the control loop, similar to [10] and [15].
In contrast to [10], we use an impedance controller for position control and
a PI controller for force control. In comparison to [15], we also consider the
transformation of the stiffness matrix to be expressed in the compliant frame,
which allows us to interpret and sensibly define the stiffness values for each skill.

3 Skill Architecture

We define our skills to have static attributes, which are part of the skill imple-
mentation, and adaptable parameters, which are task specific. Our skill-based
learning framework is based on a motion segmentation and skill encoding process.
We assume that a skill can be represented as a sequence of MPs and perform
trajectory segmentation on the skill level to encode the resulting segments as
MPs (see Fig. 1b). Then, compliant frames are extracted from the demonstra-
tion in order to define the directions of motion and force control. Finally, we
extract previously identified parameters specific to each skill to make it ready
for execution.

3.1 Skill Attributes

Skill attributes are skill specific and static parts of the skill implementation as
programmed by an expert. They determine values and techniques of how the
skill is learned and executed.

Segmentation Method Segmentation is one of the most common steps ob-
served in many research works prior to MP learning. Considering only a single
MP for a complex trajectory could lead to information loss and bad generaliza-
tion performance [18]. By segmenting the trajectory into multiple MPs and by
sequencing them, complex tasks can be learned with more accuracy.



We use an unsupervised learning method to segment a trajectory by group-
ing similar points [19], consisting of robot pose and force. The issue of handling
spatial and temporal clustering is addressed in [20–22] for segmenting trajectory
data in the robotics domain. A similar methodology is adopted here to seg-
ment demo data using Agglomerative Clustering in the spatial domain but for
temporal constraint, in contrast with aforementioned references, we considered
K-Nearest Neighbors (KNN) Graph as a prior, to define temporal constraints as
shown in Fig.2.

KNN GraphDemo Data
(Pos & Force)

Temporal Constraint Spatial Clustering Segments

Fig. 2: Segmentation by Agglomerative Clustering with temporal constraints.

Selection Matrix We define a selection matrix with respect to an automatically
extracted compliant frame (CF) in order to select either force or motion control
in each Cartesian dimension. This information is used as a control parameter
of our proposed hybrid motion force controller. We state that every skill has its
unique way to deal with force application. Therefore, the selection matrix is a
skill specific attribute. Having the Cartesian dimensions of [x, y, z, rx, ry, rz], a
selection matrix example expressed in CF is given as CFS = diag([0, 0, 1, 0, 0, 0]),
which specifies force control in the z axis and motion control in the x, y plane
as well as in the orientation dimensions [rx, ry, rz].

Compliant Frame Constraint A CF denoted as transformation EFTCF be-
tween end effector frame (EF) and compliant frame (CF) is extracted from the
demonstration data with respect to an underlying constraint as shown in Fig. 3b
and 4b. The constraint type is statically predefined for each skill.

3.2 Skill Parameters

Skill parameters are task specific and are extracted from the individual demon-
stration of a skill. The following parameters are commonly used for both skills,
but extracted with respect to different constraints as described later.

Compliant Frame A compliant frame is a task frame coordinate system, which
axes allow a meaningful separation into motion and force subspaces. It is ex-
tracted based on the predefined compliant frame constraint. Fig. 3b shows an
example of a CF extracted for the slide skill from demonstrated data. The com-
pliant frame is oriented such that the z axis resembles the surface normal and
the x axis is aligned with the motion direction. The compliant frame can vary
with respect to the end effector frame. This formulation allows to define specific
controllers for different axes of the compliant frame, for instance, force control
along the z axis and motion control in the x, y plane.



Motion Path and Force Profiles We use DMPs to encode each of the pre-
viously extracted segments containing position and orientation path as well as
force profile. Hereby, we use a standard formulation [23] for both positions and
forces and an extended formulation [24] for orientations.

4 Skill Implementation

The previously described attributes need to be set for each skill and the intro-
duced parameters need to be extracted. In the following, we define two contact
skills with their attributes and parameters. We further describe, how the param-
eters are extracted from the demonstration.

4.1 Slide

The slide skill is intended to move along a planar surface while applying force, for
instance, required in grinding, sanding, polishing or wiping a surface. As shown
in Fig. 1b, learning a skill involves segmentation, later parameter extraction
specific to the skill and then performs DMP learning on the selected variables.
Hereby, after segmenting the trajectory into MPs, a constant force should be
applied normal to the plane, which is extracted during learning and applied
throughout the motion during reproduction. In order to reproduce this skill, the
robot should learn the trajectories of motion and contact normal force and apply
it to the environment as shown in Fig. 3b. The attributes and parameters can
be found in Table 1.

Compliant Frame Extraction: Considering the slide skill, a constant normal
force needs to be applied on a plane of a trajectory. Hence, a compliant frame
can be defined on the plane, and such forces can be applied only on the z axis
of the compliant frame. In order to define such a compliant frame, a plane needs
to be fit on the segment.

Table 1: Skill: Slide

Attribute

Segmentation Method Agglomerative Clustering

Selection Matrix CFS diag([1, 1, 0, 1, 1, 1])
CF Constraint plane on motion data (Fig. 3b)

Parameter

Compliant Frame EFTCF Constant CF for each segment
Position Path DMP in x, y dimensions of CF.
Orientation Path Quaternion DMP.
Force Profile Constant force value obtained from the average of values in low variance

region of the Z axis force profile in CF.

4.2 Contour

For a contour skill, the force varies at each point throughout the profile. Along
with demonstrated motion path, force application on to the environment also
needs to be considered for learning and reproducing. Instead of applying forces



in all directions in the world frame, a varying normalized force learned from
the demonstration is applied at each time step in the CF. In this way, we can
control the motion and force application simultaneously. The overview of the
skill learning procedure is shown in Fig. 1a. In order to learn and reproduce
this skill, a force profile and a varying CF will be extracted at each time step
throughout the trajectory as shown in Fig. 4b

Instead of learning varying force profiles, one could extract a constant force
value by averaging forces from the demonstration data, considering that human
demonstrations are not precise throughout the trajectory. However, the require-
ment of constant force or varying force is based upon user requirements. In our
experiments, we considered a varying force profile, which is learned from the
data. The attributes and parameters can be found in Table 2.

Compliant Frame Extraction: For the contour skill, the CF is a local coor-
dinate system that varies dynamically during execution. First, we extract the z
axis of the CF as proposed by Conkey et.al [10]. Hereby, the z axis is aligned
with the normalized force vector of unit length obtained from the demonstra-
tion data. For the alignment of the two remaining orthogonal axis, there exist
infinite solutions. In order to obtain a unique solution, the two remaining or-
thogonal axes are constructed by the strategy that was presented in [25]. It finds
the rotation with minimum cost between two frames and therefore is guaranteed
to find a unique rotation matrix for each point in space. This unique rotation
matrix defines the orientation of the CF.

Table 2: Skill: Contour

Attribute

Segmentation Method Agglomerative Clustering

Selection Matrix CFS diag([1, 1, 0, 1, 1, 1])
CF Constraint adapted to environmental shape (Fig. 4b)

Parameter

Compliant Frame EFTCF Series of variable frames with z axis aligned to normalized contact force
vector.

Position Path DMP in x, y dimensions of CF.
Orientation Path Quaternion DMP.
Force Profile Trajectory of force obtained by computing magnitude of normalized force

vector at each point of path.

5 Skill Execution

To reproduce contact based skills, we need to track motions and forces simul-
taneously. Therefore, we employ a hybrid impedance force controller that acts
with one of the control modes in each task space dimension. We derive a hybrid
control scheme τ = τic + τfc based on [12], written as

τ = JT (q)(EFKc(
EFS)(EFep) +DxJ(q)θ̇ + g(q))

+JT (q)(Kp(EF S̃)(EFef ) +Ki(
EF S̃)

∫ EF

efdt).
(1)



where τic denotes a joint torque command, J(q) is the Jacobian of the robot,
Kc the stiffness, ep the position error, Dx denotes damping and g(q) the gravity
compensation term of the nonlinear dynamic system. τfc denotes a joint torque
command, ef denotes the force error. Kp and Ki are proportional and integral

constants of the PI controller respectively. S and S̃ denote the diagonal selec-
tion matrix and its complement. The selection matrix enables the selection of
position control or force control in each dimension. However, the classical hybrid
controller mentioned above does not consider a compliant frame (CF), which
undergoes a task specific transformation extracted as a skill parameter. In con-
sequence, stiffness parameter Kc and selection matrix S are diagonal matrices
based on interaction forces, which are also with respect to the CF. Now, stiffness

Kc, selection matrix S and its compliment S̃ = (I6 − S) are expressed in EF.
The transformation of 6× 6 stiffness matrices between frames is provided in [26]
and [27] and can be achieved with adjoint matrices derived from a homogeneous
transformation matrix. Similarly, adjoint matrices are used to transform twists
and wrench quantities represented in 6 × 1 vectors respectively.

Consider that the CF is represented as homogeneous transformation matrix
EFTCF with rotation R and translation p: According to [28], The adjoint ma-
trices from the above homogeneous transformation can be written as

EFAdCF =

[
R [p̂]R
0 R

]
, EFAdgCF =

[
R 0

[p̂]R R

]
, (2)

Using above adjoint matrices, stiffness Kc, selection S and its complement S̃
matrices can be represented in CF from EF as

Ω = EFKc
EFS

Ω = EFAdgCF
CFKc

CFS EFAdCF
−1

Ω̃ = EF S̃ = EFAdgCF
CF S̃ EFAdgCF

−1

(3)

By substituting equation (3) in (1), we obtain the final control law

τ = JTq
(
Ω EFep +DxJqθ̇ + g(q)

)
+

(
KpΩ̃

EFef +Ki

∫
Ω̃ EFefdt

)
.

(4)

6 Experiments

6.1 Experimental Setup

We evaluate the execution performance of both skills in a PyBullet simulation
environment [29]. Beforehand, we collected demonstrations via kinesthetic teach-
ing on a real DLR LWR-IV robot [30].

The extracted DMP parameters were used to generate the position, orienta-
tion, and force trajectories. Along with this, the selection matrix and the CF are
passed to the hybrid impedance force controller. The controller outputs torque
commands to the DLR LWR-IV robot model in the simulation environment.
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Fig. 3: Experimental results of slide skill.

6.2 Results

Slide Figure 3 shows the reproduction results of the slide skill with a varying
environment in each trial. Hereby, we shifted the surface height to prove that
the desired force is always applied with the help of the skill. The reproduction
results are compared with the demonstration trajectory.

From the Fig. 3 it can be interpreted that, the slide skill adapted to the
changes in the environment and reproduced the skill with the desired interaction
behaviour in all the trials. Figure 3d shows that the slide skill is able to apply
a constant normal force in z direction of the CF for the entire trajectory with
comparable performance in all trials. Forces in x and y directions result from
the friction along the plane and occur as expected.
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Fig. 4: Experimental results of contour skill.

Contour Figure 4 shows the reproduction results of the contour skill with a
varying environment like lower table height and a displaced contouring object
in each trial.

Figure 4 shows that the skill adapted to the environmental changes and
reproduced the task with a similar interaction behaviour in all trials. In trial 1,
environment is shifted 0.08m longitudinally in z direction of WF and for trials
2 and 3, environment is further shifted 0.02m laterally in y and x directions
respectively. Fig 4b, 3D trajectories of demonstration and reproductions are
shown along with the dynamically varying compliant frame that was extracted
at each point. The Figure 4d shows that the contour skill is able to interact with
the environment by applying a force profile in the varying CF at each points.
Forces in x and y axis are naturally caused due to frictional forces in the direction
of motion control.



7 Conclusions and Future Work

We proposed a learning framework for contact based skills that is capable of re-
producing the desired behavior based on a single demonstration. Our automatic
skill parameterization technique extracts parameter values that are used in a hy-
brid impedance force controller. This enables rigid transformations of compliant
frames to account for motion and force constraints in specific axes. The pro-
posed methodology for skill parameterization was implemented for two different
contact skills and was evaluated in the PyBullet simulation environment.

As a future work, our framework could be extended to further interaction
strategies with predefined constraints, where we proposed a number of examples
in [5]. We plan to integrate also skill specific algorithms with multiple execution
phases for more complex tasks, such as peg-in-hole.
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18. J. F. S. Lin, M. Karg, and D. Kulić, “Movement Primitive Segmentation for Human
Motion Modeling: A Framework for Analysis,” IEEE Transactions on Human-
Machine Systems, vol. 46, no. 3, pp. 325–339, 2016.
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