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Background information

• The work presented here was conducted as part of my PhD thesis from 2012 – 2015

• Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern

• Supervisors: 

• Bernd Simeon (TU Kaiserslautern/Felix Klein Zentrum für Mathematik)

• Alessandro Tasora (Università di Parma)

• The thesis won the best Dissertation award out of 17 Fraunhofer ICT institutes in 2016

• Since then, I have moved on to work on other topics.
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Disclaimer:
⇒ These are old results, from a field that I am still very interested in, but haven’t worked on for a while.

Thank you very Oleg Makarenkov for giving me the opportunity to talk at this workshop!



Motivation: Fatique Assessment of earth moving equipement

Mechanical loads depend on

1. vehicle

2. driver

3. soil-tool-interaction
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Motivation: Numerical Model for soil-tool-interaction

Two paradigms

• Discrete Element Method (DEM)

• penalty terms

• Nonsmooth Contact Dynamics (NSCD)

• hard constraints
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Soil model:

Granular material, consisting of a large number of rigid bodies subject to unilateral contact and friction



Discrete Element Method (DEM)

• For every particle: 𝑚 ሷ𝑥 = 𝐹

• Particles are allowed to overlap

• Normal contact force proportional to overlap:

• With proper calibration, DEM is suitable to

reproduce experimental data
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Martin Obermayr 2013; Prediction of Load Data for Construction Equipment using the Discrete Element Method

Caveat
• stiffness 𝑘𝑁 is typically very large

• DEM is only stable for very small timesteps

𝐹𝑁 = 𝑘𝑁𝛿 + 𝑑𝑁 ሶ𝛿



A nonsmooth formulation might help

• In DEM small penetrations are used to emulate microscopic 

deformations of particles

• Simulations run at uninterestingly small time scales

Nonsmooth Formulation

From a larger time scale perspective…

• …collisions of rigid bodies seem to be resolved instantaneously

• …trajectories of rigid bodies seem nonsmooth
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A nonsmooth timestepping formulation

is stable for arbitrary time step sizes



Bouncing Ball: A closer look at the function spaces

• positions 𝑞 are absolutely continuous

𝑞 𝑡 = 𝑞 0 + 0
𝑡
𝑣 𝜏 𝑑𝜏

• velocites 𝑣 are functions of bounded variation

𝑣 𝑡 = 𝑣 0 + 0
𝑡
𝑑𝑣 𝑡

• accelerations 𝑑𝑣 are signed Radon measures

𝑑𝑣, 𝜙 = − 𝑣, ሶ𝜙 for all test functions 𝜙
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Formulation as a constrained dynamical system: Conical inclusions

• Inequality constraints on position level:

𝑔 𝑞, 𝑡 ≥ 0 ⇔ 𝑔 𝑞, 𝑡 ∈ 𝐾 = ℝ+

• Equality constraints on position level:

𝑔 𝑞, 𝑡 = 0 ⇔ 𝑔 𝑞, 𝑡 ∈ 𝐾 = {0}

Both ℝ+, {0} are convex cones ⇒ Let’s formulate all constraints as conical inclusions!
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Why?
1. Continuous optimization provides rich theory on conical constraints, 

both in a function space settings and for the discretized case
2. We can use the “dirty friction trick”

Definition: A subset 𝐾 ⊂ 𝑋 of a vectorspace 𝑋 is a convex cone, iff

for all 𝑥, 𝑦 ∈ 𝐾 and 𝛼, 𝛽 ≥ 0 it holds

𝛼𝑥 + 𝛽𝑦 ∈ 𝐾



“The dirty friction trick”
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Coulomb Friction:

෨𝝀𝑡 ≤ 𝜇 ሚ𝜆𝑛 ⇔ ෨𝝀 =
ሚ𝜆𝑛
෨𝝀𝑡

∈ 𝐾𝜇

Unilateral contact with Coulomb 

Friction(DeSaxcé & Feng):

𝐾𝜇
∗ ∋ 𝝂 =

ሶ𝜙𝑛 + 𝜇 ሶ𝝓𝑡

ሶ𝝓𝑡

⊥ ෨𝝀 =
ሚ𝜆𝑛
෨𝝀𝑡

∈ 𝐾𝜇

• This looks like a complementarity problem 

associated with a constraint

• Can we mimic Coulomb friction as a 

rheonomous conical constraint?

ሚ𝜆𝑛 ∈ ℝ Normal contact force 𝜇 ∈ ℝ Friction coefficient

෨𝛌𝑡 ∈ ℝ2 Tangential contact force
𝐾𝜇 = ෨𝝀 =

ሚ𝜆𝑛
෨𝝀𝑡

∈ ℝ3 ෨𝛌𝑡 ≤ 𝜇 ሚ𝜆𝑛 Coulomb friction cone

𝜙𝑛 ∈ ℝ Normal contact displacement

𝛟𝑡 ∈ ℝ2 Tangential contact 
displacement

𝐾∗ = { 𝑦 ∈ 𝑋′| 𝑦, 𝑥 ≥ 0 ∀𝑥 ∈ 𝐾 } dual cone of 𝐾 ⊂ 𝑋



“The dirty friction trick”

• Can we use     𝜈 =
ሶ𝜙𝑛 + 𝜇 ሶ𝝓𝑡

ሶ𝝓𝑡

∈ 𝐾𝜇
∗ for our mimicking friction constraint?

No:

It translates directly to ሶ𝜙𝑛 ≥ 0, which is just the unilateral constraint on velocity level

But we can use:

for small time scales 𝑡 − 𝑡𝑐 < 𝜖 and 

if 𝝓 𝑡𝑐 = 0. 
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𝑔 𝑞, 𝑡 =
𝜙𝑛 + 𝜇න

𝑡𝑐

𝑡
ሶ𝝓𝑡 𝑑𝜏

𝝓𝑡

∈ 𝐾𝜇
∗

It can be shown that

• The introduced error is of order O( 𝑡 − 𝑡𝑐
2), which is lower than order of

commonly used numerical integrators

• The error dissappears if the constraint is linearized within one time step

What have we gained by this?

• We can derive the equations of motion using functional analysis and classical mechanics, 

without having to worry about the devilish intricacies of Coulomb friction



Normal cone of 𝑀 at 𝑞

Putting it all together: A nonsmooth version of Hamilton’s Principle

• Feasable set of trajectories: 𝑀 = 𝑞 abs. cont. 𝑔 𝑞, 𝑡 ∈ 𝐾

• Hamilton’s principle as a variational inequality (Leine, Aeberhard, Glocker 2009):

𝛿 න
0

𝑇

𝐿 𝑞, 𝑣 𝑑𝑡 ∈ 𝑁𝑀 𝑞
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Notes:
• The normal cone 𝑁𝑀 𝑞 of 𝑀 at 𝑞 is a subset of the dual space of 

absolutely continuous functions
• The dual space of absolutely continuous functions can be identified with 

the set of signed Radon measures, and a linear functional from the dual 
space can be written as

𝜆, 𝜙 = න
0

𝑇

𝜙 𝑑𝜆



Characterization using Lagrange multipliers

𝛿 න
0

𝑇

𝐿 𝑞, 𝑣 𝑑𝑡 ∈ 𝑁𝑀 𝑞

𝑀 = 𝑞 abs. cont. 𝑔 𝑞, 𝑡 ∈ 𝐾
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Theorem: Existence of Lagrange Multipliers (modified from Kurcyusz 1976)

Let 𝑋, 𝑌 be Banach spaces and ∅ ≠ 𝐾 ⊂ 𝑌 be a closed convex cone. Let 𝑔: 𝑋 → 𝑌 be continuously
Fréchet-diff’ble with Fréchet-derivative 𝛿𝑔𝑞 at 𝑞. Let 𝑞 ∈ 𝑀 = 𝑥 𝑔 𝑥 ∈ 𝐾 ⊂ 𝑋 and 

𝑖𝑚 𝛿𝑔𝑞 − span 𝑔 𝑞 ∈ 𝐾.

Then there exists a 𝜆 ∈ 𝐾∗ for every 𝑓 ∈ 𝑁𝑀 𝑞 such that

𝑓 𝛿𝑞 = − 𝜆,
𝜕𝑔

𝜕𝑞
𝛿𝑞 ∀𝛿𝑞 𝑖𝑛 𝑋

𝜆, 𝑔(𝑞) = 0



Characterization using Lagrange multipliers

𝛿 න
0

𝑇

𝐿 𝑞, 𝑣 𝑑𝑡 ∈ 𝑁𝑀 𝑞

𝑀 = 𝑞 abs. cont. 𝑔 𝑞, 𝑡 ∈ 𝐾
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Theorem: Existence of Lagrange Multipliers

Let 𝑋, 𝑌 be Banach spaces and ∅ ≠ 𝐾 ⊂ 𝑌 be a closed convex cone. Let 𝑔: 𝑋 → 𝑌 be continuously
Fréchet-diff’ble with Fréchet-derivative 𝛿𝑔𝑞 at 𝑞. Let 𝑞 ∈ 𝑀 = 𝑥 𝑔 𝑥 ∈ 𝐾 ⊂ 𝑋 and 

𝑖𝑚 𝛿𝑔𝑞 − span 𝑔 𝑞 ∈ 𝐾.

Then there exists a 𝜆 ∈ 𝐾∗ for every 𝑓 ∈ 𝑁𝑀 𝑞 such that

𝛿 න
0

𝑇

𝐿 𝑞, 𝑣 𝑑𝑡 = −න
0

𝑇 𝜕𝑔

𝜕𝑞
𝛿𝑞𝑑𝜆 ∀𝛿𝑞 𝑖𝑛 𝑋

න
0

𝑇

𝑔(𝑞) 𝑑𝜆 = 0



Characterization using Lagrange multipliers

𝛿 න
0

𝑇

𝐿 𝑞, 𝑣 𝑑𝑡 ∈ 𝑁𝑀 𝑞

𝑀 = 𝑞 abs. cont. 𝑔 𝑞, 𝑡 ∈ 𝐾
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Theorem: Existence of Lagrange Multipliers

Let 𝑋, 𝑌 be Banach spaces and ∅ ≠ 𝐾 ⊂ 𝑌 be a closed convex cone. Let 𝑔: 𝑋 → 𝑌 be continuously
Fréchet-diff’ble with Fréchet-derivative 𝛿𝑔𝑞 at 𝑞. Let 𝑞 ∈ 𝑀 = 𝑥 𝑔 𝑥 ∈ 𝐾 ⊂ 𝑋 and 

𝑖𝑚 𝛿𝑔𝑞 − span 𝑔 𝑞 ∈ 𝐾.

Then there exists a 𝜆 ∈ 𝐾∗ for every 𝑓 ∈ 𝑁𝑀 𝑞 such that

න
0

𝑇

𝛿𝑞𝑑
𝜕𝐿

𝜕𝑣
= න

0

𝑇

𝛿𝑞
𝜕𝐿

𝜕𝑞
𝑑𝑡 + න

0

𝑇 𝜕𝑔

𝜕𝑞
𝛿𝑞𝑑𝜆 ∀𝛿𝑞 𝑖𝑛 𝑋

න
0

𝑇

𝑔(𝑞) 𝑑𝜆 = 0



Characterization using Lagrange multipliers

𝛿 න
0

𝑇

𝐿 𝑞, 𝑣 𝑑𝑡 ∈ 𝑁𝑀 𝑞

𝑀 = 𝑞 abs. cont. 𝑔 𝑞, 𝑡 ∈ 𝐾
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Theorem: Existence of Lagrange Multipliers

Let 𝑋, 𝑌 be Banach spaces and ∅ ≠ 𝐾 ⊂ 𝑌 be a closed convex cone. Let 𝑔: 𝑋 → 𝑌 be continuously
Fréchet-diff’ble with Fréchet-derivative 𝛿𝑔𝑞 at 𝑞. Let 𝑞 ∈ 𝑀 = 𝑥 𝑔 𝑥 ∈ 𝐾 ⊂ 𝑋 and 

𝑖𝑚 𝛿𝑔𝑞 − span 𝑔 𝑞 ∈ 𝐾.

Then there exists a 𝜆 ∈ 𝐾∗ for every 𝑓 ∈ 𝑁𝑀 𝑞 such that

𝑑
𝜕𝐿

𝜕𝑣
=
𝜕𝐿

𝜕𝑞
𝑑𝑡 +

𝜕𝑔

𝜕𝑞
𝑑𝜆

න
0

𝑇

𝑔(𝑞) 𝑑𝜆 = 0



Characterization using Lagrange multipliers

𝛿 න
0

𝑇

𝐿 𝑞, 𝑣 𝑑𝑡 ∈ 𝑁𝑀 𝑞

𝑀 = 𝑞 abs. cont. 𝑔 𝑞, 𝑡 ∈ 𝐾
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Theorem: Existence of Lagrange Multipliers

Let 𝑋, 𝑌 be Banach spaces and ∅ ≠ 𝐾 ⊂ 𝑌 be a closed convex cone. Let 𝑔: 𝑋 → 𝑌 be continuously
Fréchet-diff’ble with Fréchet-derivative 𝛿𝑔𝑞 at 𝑞. Let 𝑞 ∈ 𝑀 = 𝑥 𝑔 𝑥 ∈ 𝐾 ⊂ 𝑋 and 

𝑖𝑚 𝛿𝑔𝑞 − span 𝑔 𝑞 ∈ 𝐾.

Then there exists a 𝜆 ∈ 𝐾∗ for every 𝑓 ∈ 𝑁𝑀 𝑞 such that

𝑑
𝜕𝐿

𝜕𝑣
=
𝜕𝐿

𝜕𝑞
𝑑𝑡 +

𝜕𝑔

𝜕𝑞
𝑑𝜆

𝐾 ∋ 𝑔 𝑞 ⊥ 𝑑𝜆 ∈ 𝐾∗



Characterization using Lagrange multipliers

𝛿 න
0

𝑇

𝐿 𝑞, 𝑣 𝑑𝑡 ∈ 𝑁𝑀 𝑞

𝑀 = 𝑞 abs. cont. 𝑔 𝑞, 𝑡 ∈ 𝐾
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Theorem: Equations of motion

𝑀𝑑𝑣 = 𝑓𝑑𝑡 +
𝜕𝑔

𝜕𝑞
𝑑𝜆

𝐾 ∋ 𝑔 𝑞 ⊥ 𝑑𝜆 ∈ 𝐾∗

Measure differential equation (MDE)

Cone Complementarity Problem (CCP)



Time-Discretization: A Petrov-Galerkin Approach

Idea: Satisfy

න
0

𝑇

𝜙𝑀𝑑𝑣 = න
0

𝑇

𝜙𝑓 𝑑𝑡 + න
0

𝑇

𝜙
𝜕𝑔

𝜕𝑞
𝑑𝜆 ∀ 𝑎𝑏𝑠. 𝑐𝑜𝑛𝑡. 𝜙

𝐾 ∈ 𝑔 𝑞, 𝑡 ⊥ 𝑑𝜆 ∈ 𝐾∗

in finite dimensional subspaces
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• 𝑞, 𝜙 continuous and piecewise linear
Basis: e.g. hat functions

• 𝑣, 𝜆 piecewise constant

Basis: e.g. 𝑓𝑖(𝑡) = ቊ
1, 𝑖𝑓 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1)
0, 𝑒𝑙𝑠𝑒



Equations of Motion in discretized time

• Constraint has been linearized: Reappears as “stabilized velocity constraint”

• 𝑁𝑖 is symmetric, positive semi-definite (in all interesting cases rank-deficient)

• 𝛾𝑖+1 = 𝑡𝑖
𝑡𝑖+1 𝑑𝝀 appears as new unknown. Can be associated with a net impulse

• We have to solve one Cone Complementarity Problem (CCP) per time step. 

• But how?
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The Nonsmooth SHAKE stepper

𝒒𝑖+1 = 𝒒𝑖 + 𝒗𝑖+1Δ𝑡

𝒗𝑖+1 = 𝒗𝑖 +𝑀−1 𝒇𝑖Δ𝑡 +
𝜕𝑔 𝑞𝑖
𝜕𝑞

𝜸𝑖+1

𝐾 ∋ 𝒖𝑖+1 = 𝑁𝑖𝜸𝑖+1 + 𝒓𝑖 ⊥ 𝜸𝑖+1 ∈ 𝐾∗



Numerical Methods for CCPs

• Several numerical methods to solve CCPs existed at the time
• Lemke’s pivoting strategy (for LCPs – requires faceting of Friction Cone)

• IPMs for LCPs

• Quasi-Newton methods, smoothing Newton methods

• Projected Gauß-Jacobi (PGJ), Gauß-Seidel (PGS), Successive Overrelaxation (PSOR), Augmented Lagrangian

• …

• PGJ was dominant in the literature for granular simulations

• Works for large systems

• Can be implemented in a matrixfree fashion

• Can be parallelized

• Very simple recursion:
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Projected Gauß-Jacobi (PGJ)

𝜸(𝑟+1) = Π𝐾∗(𝜸 𝑟 − 𝜔𝐷−1 (𝑁𝜸(𝑟) + 𝒓))

Projection onto 𝐾∗

relaxation factor

Inverse of diagonal part of 𝑁

Cone Complementarity Problem CCP

𝐾 ∋ 𝒖 = 𝑁𝜸 + 𝒓 ⊥ 𝜸 ∈ 𝐾∗



Drawbacks of PGJ

PGJ converges slowly for

• large densely coupled systems

• large mass ratios

As a result, when stopping the iteration 

prematurely:

• draft forces are far from the expected result.
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Interior Point Method (Outline)

Frictional contacts ⇒ Solve CCP

𝐾𝜇
∗ ∋ 𝒖𝑖 = ഥ𝑁𝜸𝑖 + ത𝒓 𝑖 , 𝜸𝑖 ∈ 𝐾𝜇, 𝒖𝑖

𝑇𝜸𝑖 = 0

for every contact 𝑖

• Linear transform to symmetric cone 𝐶 = 𝐶∗
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C is the cone of squares

𝐶 ≔ 𝒙 ∘ 𝒙 𝒙 ∈ ℝ3

with respect to the Jordan Product

𝒙 ∘ 𝒚 =
𝒙𝑇𝒚

𝑥𝑛𝒚𝑡 + 𝑦𝑛𝒙𝑡
∈ ℝ × ℝ2

𝑥 =
𝑥𝑛
𝒙𝑡

, 𝑦 =
𝑦𝑛
𝒚𝑡

∈ ℝ × ℝ2

𝐶 ∋ 𝒚𝑖 = 𝑁𝒙𝑖 + 𝒓 𝑖 , 𝒙𝑖 ∈ 𝐶, 𝒚𝑖
𝑇𝒙𝑖 = 0



Interior Point Method (Outline)

• CCP ⇒ Constrained Optimization Problem:

min

𝑖

𝒙𝑖
𝑇𝒚𝑖 such that 𝒙𝑖 , 𝒚𝑖 ∈ 𝐶, 𝒚 = 𝑁𝒙 + 𝒓

• Introduce logarithmic potential 𝑃 𝒙𝑖 , 𝒚𝑖 , pushing 𝒙𝑖 , 𝒚𝑖 away from boundary of 𝐶

min

𝑖

𝒙𝑖
𝑇𝒚𝑖 + 𝑃 𝒙𝑖 , 𝒚𝑖 such that 𝒙𝑖 , 𝒚𝑖 ∈ 𝐶\𝜕𝐶, 𝒚 = 𝑁𝒙 + 𝒓

• Central Path: Zero set of P is a smooth curve through the solution

𝑆𝑐𝑒𝑛 = 𝒙, 𝒚 ∈ 𝐶 × 𝐶 𝒙 ∘ 𝒚 = 𝛼𝒆, 𝛼 ≥ 0

with solution at 𝒙 ∘ 𝒚 = 𝟎
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IPM = Sequence of Newton steps towards

𝒙(𝑘) ∘ 𝒚 𝑘 − 𝛼 𝑘 𝒆, 𝒚 𝒌 = 𝑵𝒙 𝒌 + 𝒓

with 𝛼 𝑘 → 0



Interior Point Method: The algorithm

Let (𝒙 𝑘 , 𝒚(𝑘)) be an interior point (i.e. 𝒙𝑖
(𝒌)
, 𝒚𝑖

(𝑘)
∈ 𝐶\𝜕𝐶).

Until converged do:

• Choose 𝛼

• Calculate block-diagonal 𝑊𝑘 from 𝒙(𝑘)and 𝒚(𝑘).

• Calculate right-hand side 𝒃𝑘(𝛼) from 𝒙(𝑘)and 𝒚(𝑘) and 𝛼.

• Perform Newton step to obtain 𝑑𝒙 𝒌 , 𝑑𝒚 𝑘

𝑊𝑘 + 𝑁 𝑑𝒙(𝒌) = 𝒃𝑘 𝛼

𝑑𝒚(𝒌) = 𝑁𝑑𝒙(𝒌)

• Calculate step length 𝜃

• 𝒙 𝑘+1 , 𝒚(𝑘+1) = 𝒙 𝑘 , 𝒚(𝑘) + 𝜃(𝑑𝒙 𝒌 , 𝑑𝒚(𝒌))

• 𝑘 ← 𝑘 + 1
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use matrixfree

Conjugate Gradient 

(CG) here



PGJ vs IPM
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Test Problem 1: 2048 particles Test Problem 2: 5040 particles Test Problem 3: 10192 particles



Calculation time for a given tolerance
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Test Problem 1: 2048 particles Test Problem 2: 5040 particles Test Problem 3: 10192 particles

𝑡𝑜𝑙 = 5 ⋅ 10−2𝑡𝑜𝑙 = 1 ⋅ 10−2

• For 𝑡𝑜𝑙 = 5 ⋅ 10−4 IPM is 200 times faster 

than PGJ



IPM applied to an industrial size problem

• 105,144 particles

• ∅ 1,261,972 unknowns/step

• Δ𝑡 = 10−2 𝑠
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At high accuracy requirements (determination of draft forces):
• DEM is still about 12,2% faster
• IPM is more than 10 time faster than PGJ



Summary and Conclusion

Discrete Element Method

• Well suited for the prediction of draft forces, validated against experiment

• Only stable for small time steps ⇒ Computationally expensive

Nonsmooth Contact Dynamics

• Stable for arbitrary time step sizes

• Forces and accelerations are measures

• Need to solve a complementarity problem per time step

• With the new IPM solver, both DEM and NSCD can be used to estimate draft forces

• IPM has lots of room for improvement, on algorithmic level and by parallelization

• Simultaneously and after my PhD, other researchers contributed promising solvers that should be analysed
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Thank you very much for your attention!

Any Questions?

jan.kleinert@dlr.de


