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Background information 7 Fraunhofer
» The work presented here was conducted as part of my PhD thesis from 2012 — 2015

+ Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern

" Supervisors: THE T S

» Bernd Simeon (TU Kaiserslautern/Felix Klein Zentrum fiir Mathematik)
» Alessandro Tasora (Universita di Parma)

* The thesis won the best Dissertation award out of 17 Fraunhofer ICT institutes in 2016

 Since then, | have moved on to work on other topics.

ZENTRUM FUR
MATHEMATIK

Disclaimer:
= These are old results, from a field that | am still very interested in, but haven’t worked on for a while.
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Motivation: Fatique Assessment of earth moving equipement

Mechanical loads depend on

1. vehicle
2. driver
3. soil-tool-interaction
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Motivation: Numerical Model for soil-tool-interaction

Soil model:

Granular material, consisting of a large number of rigid bodies subject to unilateral contact and friction

Two paradigms

* Discrete Element Method (DEM)

* penalty terms

« Nonsmooth Contact Dynamics (NSCD)

* hard constraints

Z Fraunhofer
ITWM
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Discrete Element Method (DEM)

* For every particle: mx = F
* Particles are allowed to overlap
« Normal contact force proportional to overlap:

particle 1

L)

FN = kN5 + dN6

« With proper calibration, DEM is suitable to
reproduce experimental data

Caveat

stiffness ky is typically very large
DEM is only stable for very small timesteps

2 Martin Obermayr 2013; Prediction of Load Data for Construction Equipment using the Discrete Element Method
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A nonsmooth formulation might help

* In DEM small penetrations are used to emulate microscopic
deformations of particles

‘ ‘ « Simulations run at uninterestingly small time scales

Nonsmooth Formulation

From a larger time scale perspective...
» ...collisions of rigid bodies seem to be resolved instantaneously
« ...trajectories of rigid bodies seem nonsmooth

A nonsmooth timestepping formulation
IS stable for arbitrary time step sizes
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Bouncing Ball: A closer look at the function spaces

—position
—velocity
—acceleration

* positions g are absolutely continuous

q(t) = q(0) + [, v(v)dr

» velocites v are functions of bounded variation

v(t) = v(0) + [ dv(t)

 accelerations dv are sighed Radon measures

(dv, ) = —(v, ) for all test functions ¢
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Formulation as a constrained dynamical system: Conical inclusions

* Inequality constraints on position level:

g(qt) =20 & g(gt)eK=R" distance > 0

» Equality constraints on position level:

g(qg,t) =0 o g(g,t) e K= {0}

Definition: A subset K c X of a vectorspace X is a convex cone, iff
for all x,y € Kand «, f = 0 it holds

ax +pfy €K 4

Both R*, {0} are convex cones = Let’s formulate all constraints as conical inclusions!

Why? g(a, t)
1. Continuous optimization provides rich theory on conical constraints,
both in a function space settings and for the discretized case

2. We can use the “dirty friction trick”

-
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“The dirty friction trick”

Coulomb Friction:

|4 < udy = 2= [;n] € Ky
¢

Unilateral contact with Coulomb
Friction(DeSaxcé & Feng):

. . - b At qbt.
¢n + u||P = |4
n t
K:ov= ” ” 1LA=|."€eK
u u
O t
1, € R Normal contact force u € R Friction coefficient
. i [ ' A 2 T tial contact f - A - N
This Iqoks I|k_e a complem_entarlty problem A, € R?  Tangential contact force K, = {,1 _ I%nl e L) < Mn} Coulomb friction cone
associated with a constraint R
« Can we mimic Coulomb friction as a
rheonomous conical constraint? ¢, € R?  Tangential contact
displacement

i DLR
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“The dirty friction trick” g(a, t)
« Canweuse v= [¢" (;:”d)t”] € K, for our mimicking friction constraint?
t
No:
It translates directly to ¢,, > 0, which is just the unilateral constraint on velocity level
But we can use: /It can be shown that \
t
: « The introduced error is of order O(|t — t.|?), which is lower than order of

g(q, t) — $n + 'ujt ”‘pt”dr = K; commonly used numerical integrators

b « The error dissappears if the constraint is linearized within one time step
for small time scales |t — t,.| < € and \ J
if p(t.) = 0.

What have we gained by this?
* We can derive the equations of motion using functional analysis and classical mechanics,
out the devilish intricacies of Coulomb friction

without having to worry ab
#7 T By )
l DLR ,-/ P 3
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Putting it all together: A nonsmooth version of Hamilton’s Principle

» Feasable set of trajectories: M = { g abs.cont. | g(q,t) €K}

distance > 0

Z

» Hamilton’s principle as a variational inequality (Leine, Aeberhard, Glocker 2009):

T Normal cone of M at
5j L(q,v)dt € NM(q)/ 1
0

Notes:

* The normal cone Ny (q) of M at q is a subset of the dual space of
absolutely continuous functions

* The dual space of absolutely continuous functions can be identified with
the set of signed Radon measures, and a linear functional from the dual
space can be written as

T

a.9)= [ ¢z

0

-
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Characterization using Lagrange multipliers

T
EL L(q,v)dt € Ny(q)

I

M = { qabs.cont. | g(q,t) €K}

Theorem: Existence of Lagrange Multipliers (modified from Kurcyusz 1976)

Let X,Y be Banach spaces and @ + K C Y be a closed convex cone. Let g: X — Y be continuously
Fréchet-diff’ble with Fréchet-derivative §g, at q. Letq € M = {x | g(x) € K} © X and

im &g, —span{g(q)} € K.

7 . :
Then there exists a 1 € K™ for every f € Ny,(q) such that -
, Z A \C)>> — jftD &f\

zsoxg(ﬁbgéch
%}uﬂp/\w\@ 2 T - H
%B L.(%N> dt=f(8q) = —ﬁ

o

(4, 9(q)) =0
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Characterization using Lagrange multipliers

T
5| La v € Nu(a)
0
M = { qabs.cont. | g(q,t) €K}

Theorem: Existence of Lagrange Multipliers

Let X,Y be Banach spaces and @ + K C Y be a closed convex cone. Let g: X — Y be continuously
Fréchet-diff’ble with Fréchet-derivative §g, at q. Letq € M = {x | g(x) € K} © X and

im &g, —span{g(q)} € K.
Then there existsa 1 € K™ for every f € Ny,(q) such that

jg?(%%]) dt _jS% ( ) 5f L(g,v)dt = — f ——=§8qdA V8qinX
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Characterization using Lagrange multipliers

T
5| La v € Nu(a)
0
M = { qabs.cont. | g(q,t) €K}

Theorem: Existence of Lagrange Multipliers

Let X,Y be Banach spaces and @ + K C Y be a closed convex cone. Let g: X — Y be continuously
Fréchet-diff’ble with Fréchet-derivative §g, at q. Letq € M = {x | g(x) € K} © X and

im &g, —span{g(q)} € K.
Then there existsa 1 € K™ for every f € Ny,(q) such that

[[ou3)- f e+ | Gt voainx
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Characterization using Lagrange multipliers

T
5| La v € Nu(a)
0
M = { qabs.cont. | g(q,t) €K}

Theorem: Existence of Lagrange Multipliers

Let X,Y be Banach spaces and @ + K C Y be a closed convex cone. Let g: X — Y be continuously
Fréchet-diff’ble with Fréchet-derivative §g, at q. Letq € M = {x | g(x) € K} © X and
im 8g, — span{g(q)} € K. -

Then there existsa A € K™ for every f € Ny,(q) such that

a2\ 2oL 4 199 45
dv] dq dq

| 9@ di=0
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Characterization using Lagrange multipliers

T
5| La v € Nu(a)
0
M = { qabs.cont. | g(q,t) €K}

Theorem: Existence of Lagrange Multipliers

Let X,Y be Banach spaces and @ + K C Y be a closed convex cone. Let g: X — Y be continuously
Fréchet-diff’ble with Fréchet-derivative §g, at q. Letq € M = {x | g(x) € K} © X and
im &g, —span{g(q)} € K.

Then there existsa 1 € K™ for every f € Ny,(q) such that
/Fbxﬁ_@

=
a2\ 2oL 4 199 45
dv] dq dq

WQ\J\"Q\A\\) AT

K>g(q) L dA€K”
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Characterization using Lagrange multipliers

T
5| La v € Nu(a)
0
M = { qabs.cont. | g(q,t) €K}

Theorem: Equations of motion

Mdv = fdt + 29 az
v=f 3q

Measure differential equation (MDE)

K>g(g) L dA€K”

Cone Complementarity Problem (CCP)
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Time-Discretization: A Petrov-Galerkin Approach

Idea: Satisfy

T T T dg
j oM dv =j ¢fdt+j ¢—dA  V abs.cont.p
0 0 o 0q

Keg(qgt) L dieK”
in finite dimensional subspaces

* , ¢ continuous and piecewise linear

Basis: e.g. hat functions

* v,/ piecewise constant

; 1, ifteE[t,t;
Basis: e.g. f;(t) = {0 f el[sle i+1)
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Equations of Motion in discretized time

The Nonsmooth SHAKE stepper

qi+1 = q; T v;,1At

_ 09(q;)
Vigg =0+ M1 <fiAt + a—ql)’i+1

Kou =Ny +1r; L Vi1 €K

» Constraint has been linearized: Reappears as “stabilized velocity constraint”
* N; is symmetric, positive semi-definite (in all interesting cases rank-deficient)

* Vig1 = ftti“ dA appears as new unknown. Can be associated with a net impulse

i

* We have to solve one Cone Complementarity Problem (CCP) per time step.
* But how?
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Numerical Methods for CCPs

K3u=Ny+r L yeK"®

» Several numerical methods to solve CCPs existed at the time
» Lemke’s pivoting strategy (for LCPs — requires faceting of Friction Cone)
IPMs for LCPs
Quasi-Newton methods, smoothing Newton methods
Projected GauR3-Jacobi (PGJ), Gaul3-Seidel (PGS), Successive Overrelaxation (PSOR), Augmented Lagrangian

* PGJ was dominant in the literature for granular simulations
« Works for large systems
« Can be implemented in a matrixfree fashion
» Can be parallelized

 Very simple recursion:
Projection onto K*

relaxation factor

Projected Gaul3-Jacok1 (PGJ) Inverse of diagonal part of N
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Drawbacks of PGJ
PGJ converges slowly for

« large densely coupled systems
 large mass ratios

As a result, when stopping the iteration

prematurely: We need _ | _ | _ _
+ draft forces are far from the expected something N TN SR N S B
: : : b AN E A

fasterl

— DEM simulation
-e-h= 1-10""s, 2000 iterations
=h= 5-10"%s, 2000 iterations
-&-h = 10-107%s, 2000 iterations

| 2 3 4 5 6 7 8
time [s]
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Interior Point Method (Outline)

Frictional contacts = Solve CCP
K;3u; =(Ny; +7),;, Yi €K, ujy; =0
for every contact i

* Linear transform to symmetric cone € = C*

ﬂ: is the cone of squares \

C={xox|x€eR3}

with respect to the Jordan Product

T
xoy=[ xy ]E]RX]RZ

\ XnYt T YnXt j
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Interior Point Method (Outline)

» CCP = Constrained Optimization Problem:

minz x'y, suchthat «x;,y; €C, y=Nx+r

l

* Introduce logarithmic potential P(x;,y;), pushing x;, y; away from boundary of C

minz xTy; + P(x;,y;) suchthat x;,y; € C\AC, y=Nx+r C x C

l
» Central Path: Zero set of P is a smooth curve through the solution

Seen ={ (x,y) €ECXC | xoy=ae, a=0}

with solutionat x cy = 0
IPM = Sequence of Newton steps towards

| i DLR

with ) = 0
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Interior Point Method: The algorithm

| i DLR

Let (x®, y()) be an interior point (i.e. x,y" € c\ac).

i

Until converged do:

e Choose «

Calculate block-diagonal W, from x(®and y®.
Calculate right-hand side b, («) from x®and y® and «.

Perform Newton step to obtain (dx®, dy®))

(Wk + N)dx(k) bk(a)
dy® = Ndx®

Calculate step length 6
° (x(k+1),y(k+1)) — (x(k),y(k)) + H(dx(k), dy(k))
ck—k+1

C x C

use matrixfree
Conjugate Gradient
(CG) here
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PGJ vs IPM

| | 1
) o '_0___.__-8-___-_0___-@:
——————— e e 8 i e
-v_ —‘3‘-'—‘?“'—°$'--— ? - '@"'—'iv—--—w—-—v_ —_—
- PM-MF: Test Problem 1

—4—[PM~-MF: Test Problem 2
—eo—[PM—MF: Test Problem 3
-¥-PGJ: Test Problem 1 | .
-#-PGJ: Test Problem 2
-.- PGJ Test Problem 3

\ . : : i ; ; ] :
0 10 20 30 40 50 60 70 80 90 100 110 120
calculation time [s]

L™

%o

Test Problem 1: 2048 particles Test Problem 2: 5040 particles
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Calculation time for a given tolerance

70

~&-TPM-MT _ -2
¥ PG z tol=1-10
6OF e ?.E..-
e
: s
— 50_ ....................................................... . ............................................................ ‘f' ...................... .
— : R
2 Rd : :
E O e ,f ........................................ ] e Fortol=5-10"%IPM is 200 times faster
S e than PGJ
;‘3 30F ‘,*- :
: R
= -
o 20- ,‘/ -
,..—‘#
10r s -
o“"‘-.’ —A
0_L= _*__ l
2048 5040 10192
number of rigid bodies

. y
.3 = ¢ © @ °
Test Problem 1: 2048 particles Test Problem 2: 5040 particles Test Problem 3: 10192 particles
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IPM applied to an industrial size problem

1250F SRS A | AP S P
ik 1000
st ' Z. 750
& ] .
= wesreference
500 “=tol = 1073 | ]
; ; 5 T D +to]:10‘4%
250 P iy R ___ ‘,_:,--'...._r'- : X _.".‘ "J-. _ ol e —to] — 10_5 i
(i ~ |=tol = 107"
00 1 2 3 4 5 6 7 8
time [s]
« 105,144 particles At high accuracy requirements (determination of draft forces):
. ¢ 1,261,972 unknowns/step * DEM is still about 12,2% faster

e |PM is more than 10 time faster than PGJ

e At =10"%s
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Summary and Conclusion

Discrete Element Method
» Well suited for the prediction of draft forces, validated against experiment
» Only stable for small time steps = Computationally expensive

Nonsmooth Contact Dynamics

» Stable for arbitrary time step sizes

Forces and accelerations are measures

Need to solve a complementarity problem per time step

With the new IPM solver, both DEM and NSCD can be used to estimate draft forces
IPM has lots of room for improvement, on algorithmic level and by parallelization
Simultaneously and after my PhD, other researchers contributed promising solvers that should be analysed
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i DLR
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Thank you very much for your attention!

Any Questions?




