Simulating Granular Material using Nonsmooth Time Stepping and a Matrixfree Interior Point Method

Workshop on the Intersection of Set-Valued Analysis, Plasticity and Friction December 1-4, 2020

Jan Kleinert

Knowledge for Tomorrow

Background information

- The work presented here was conducted as part of my PhD thesis from <u>2012 2015</u>
 - Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern
 - Supervisors:
 - Bernd Simeon (TU Kaiserslautern/Felix Klein Zentrum für Mathematik)
 - Alessandro Tasora (Università di Parma)
 - The thesis won the best Dissertation award out of 17 Fraunhofer ICT institutes in 2016
- Since then, I have moved on to work on other topics.

Disclaimer:

⇒ These are old results, from a field that I am still very interested in, but haven't worked on for a while.

Thank you very Oleg Makarenkov for giving me the opportunity to talk at this workshop!

Motivation: Fatique Assessment of earth moving equipement

Mechanical loads depend on

- 1. vehicle
- 2. driver
- 3. soil-tool-interaction

Motivation: Numerical Model for soil-tool-interaction

Soil model:

Granular material, consisting of a large number of rigid bodies subject to unilateral contact and friction

Two paradigms

- Discrete Element Method (DEM)
 - penalty terms
- Nonsmooth Contact Dynamics (NSCD)
 - hard constraints

Discrete Element Method (DEM)

- For every particle: $m \ddot{x} = F$
- Particles are allowed to overlap
- Normal contact force proportional to overlap:

• With proper calibration, DEM is suitable to reproduce experimental data

Caveatstiffness k_N is typically very largeDEM is only stable for very small timesteps

Martin Obermayr 2013; Prediction of Load Data for Construction Equipment using the Discrete Element Method

A nonsmooth formulation might help

- In DEM small penetrations are used to emulate microscopic deformations of particles
- Simulations run at **uninterestingly small time scales**

Nonsmooth Formulation

From a larger time scale perspective...

- ...collisions of rigid bodies seem to be resolved instantaneously
- ...trajectories of rigid bodies seem nonsmooth

A nonsmooth timestepping formulation is stable for arbitrary time step sizes

Bouncing Ball: A closer look at the function spaces

• positions q are absolutely continuous

$$q(t) = q(0) + \int_0^t v(\tau) d\tau$$

• velocites v are functions of **bounded variation**

 $v(t) = v(0) + \int_0^t dv(t)$

• accelerations dv are signed Radon measures

 $\langle d
u, \phi
angle = - \langle
u, \dot{\phi}
angle$ for all test functions ϕ

Formulation as a constrained dynamical system: Conical inclusions

• Inequality constraints on position level:

$$g(q,t) \ge 0 \quad \Leftrightarrow \quad g(q,t) \in K = \mathbb{R}^+$$

• Equality constraints on position level:

$$g(q,t) = 0 \quad \Leftrightarrow \quad g(q,t) \in K = \{0\}$$

Definition: A subset $K \subset X$ of a vectorspace X is a <u>convex cone</u>, iff for all $x, y \in K$ and $\alpha, \beta \ge 0$ it holds

$$\alpha x + \beta y \in K$$

Both \mathbb{R}^+ , {0} are convex cones \Rightarrow Let's formulate all constraints as <u>conical inclusions</u>!

Why?

- 1. Continuous optimization provides **rich theory** on conical constraints, both in a function space settings and for the discretized case
- 2. We can use the "dirty friction trick"

"The dirty friction trick"

Coulomb Friction:

$$\left\|\tilde{\boldsymbol{\lambda}}_{t}\right\| \leq \mu \tilde{\boldsymbol{\lambda}}_{n} \quad \Leftrightarrow \tilde{\boldsymbol{\lambda}} = \begin{bmatrix} \tilde{\boldsymbol{\lambda}}_{n} \\ \tilde{\boldsymbol{\lambda}}_{t} \end{bmatrix} \in K_{\mu}$$

Unilateral contact with Coulomb Friction(DeSaxcé & Feng):

$$K_{\mu}^{*} \ni \boldsymbol{\nu} = \begin{bmatrix} \dot{\boldsymbol{\phi}_{n}} + \mu \| \dot{\boldsymbol{\phi}_{t}} \| \\ \dot{\boldsymbol{\phi}_{t}} \end{bmatrix} \perp \tilde{\boldsymbol{\lambda}} = \begin{bmatrix} \tilde{\lambda}_{n} \\ \tilde{\boldsymbol{\lambda}}_{t} \end{bmatrix} \in K_{\mu}$$

- This looks like a complementarity problem associated with a constraint
- Can we mimic Coulomb friction as a rheonomous conical constraint?

"The dirty friction trick"

• Can we use
$$v = \begin{bmatrix} \dot{\phi_n} + \mu \| \dot{\phi_t} \| \\ \dot{\phi_t} \end{bmatrix} \in K^*_{\mu}$$
 for our mimicking friction constraint?

No:

It translates directly to $\dot{\phi_n} \ge 0$, which is just the unilateral constraint on velocity level

But we can use:

$$g(q,t) = \begin{bmatrix} \phi_n + \mu \int_{t_c}^t \|\dot{\boldsymbol{\phi}}_t\| d\tau \\ \boldsymbol{\phi}_t \end{bmatrix} \in K_{\mu}^*$$

for small time scales $|t - t_c| < \epsilon$ and if $\phi(t_c) = 0$.

It can be shown that

- The introduced error is of order $O(|t t_c|^2)$, which is lower than order of commonly used numerical integrators
- The error dissappears if the constraint is linearized within one time step

What have we gained by this?

 We can derive the equations of motion using functional analysis and classical mechanics, without having to worry about the devilish intricacies of Coulomb friction

Putting it all together: A nonsmooth version of Hamilton's Principle

• Feasable set of trajectories: $M = \{ q \text{ abs. cont.} | g(q, t) \in K \}$

distance > 0

Notes:

- The normal cone $N_M(q)$ of M at q is a **subset of the dual space of** absolutely continuous functions
- The dual space of absolutely continuous functions can be identified with the **set of signed Radon measures**, and a linear functional from the dual space can be written as

$$\langle \lambda, \phi \rangle = \int_0^T \phi \, d\lambda$$

$$\underbrace{\delta \int_{0}^{T} L(q, v) dt \in N_{M}(q)}_{M = \{ q \text{ abs. cont. } | g(q, t) \in K \}}$$

Theorem: Existence of Lagrange Multipliers (modified from Kurcyusz 1976)

Let X, Y be Banach spaces and $\emptyset \neq K \subset Y$ be a closed convex cone. Let $g: X \to Y$ be continuously Fréchet-diff'ble with Fréchet-derivative δg_q at q. Let $q \in M = \{x \mid g(x) \in K\} \subset X$ and $im \delta g_q - \text{span}\{g(q)\} \in K$.

Then there exists a
$$\lambda \in K^*$$
 for every $f \in N_M(q)$ such that
 $gualification$

$$\begin{aligned} & \int L(q,v) \, dt = f(\delta q) = -\left(\lambda, \frac{\partial g}{\partial q} \delta q\right) \, \forall \delta q \text{ in } X \\ & (\lambda, g(q)) = 0
\end{aligned}$$

$$\delta \int_0^T L(q, v) dt \in N_M(q)$$

M = { q abs. cont. | $g(q, t) \in K$ }

Theorem: Existence of Lagrange Multipliers

Let X, Y be Banach spaces and $\emptyset \neq K \subset Y$ be a closed convex cone. Let $g: X \to Y$ be continuously Fréchet-diff'ble with Fréchet-derivative δg_q at q. Let $q \in M = \{x \mid g(x) \in K\} \subset X$ and $im \delta g_q - \text{span}\{g(q)\} \in K$.

Then there exists a $\lambda \in K^*$ for every $f \in N_M(q)$ such that

$$\int \mathcal{E}_{q} \left(\frac{\partial \mathcal{L}}{\partial q} \right) d\mathcal{L} - \left(\frac{\partial \mathcal{L}}{\partial v} \right) = \delta \int_{0}^{T} L(q, v) dt = -\int_{0}^{T} \frac{\partial g}{\partial q} \delta q d\lambda \quad \forall \delta q \text{ in } X$$
$$\int_{0}^{T} g(q) d\lambda = 0$$

$$\delta \int_0^T L(q, v) dt \in N_M(q)$$

M = { q abs. cont. | $g(q, t) \in K$ }

Theorem: Existence of Lagrange Multipliers

Let X, Y be Banach spaces and $\emptyset \neq K \subset Y$ be a closed convex cone. Let $g: X \to Y$ be continuously Fréchet-diff'ble with Fréchet-derivative δg_q at q. Let $q \in M = \{x \mid g(x) \in K\} \subset X$ and $im \delta g_q - \text{span}\{g(q)\} \in K$.

Then there exists a $\lambda \in K^*$ for every $f \in N_M(q)$ such that

$$\int_{0}^{T} \delta q d\left(\frac{\partial L}{\partial v}\right) = \int_{0}^{T} \delta q \frac{\partial L}{\partial q} dt + \int_{0}^{T} \frac{\partial g}{\partial q} \delta q d\lambda \quad \forall \delta q \text{ in } X$$
$$\int_{0}^{T} g(q) d\lambda = 0$$

$$\delta \int_0^T L(q, v) dt \in N_M(q)$$

M = { q abs. cont. | $g(q, t) \in K$ }

Theorem: Existence of Lagrange Multipliers

Let *X*, *Y* be Banach spaces and $\emptyset \neq K \subset Y$ be a closed convex cone. Let $g: X \to Y$ be continuously Fréchet-diff'ble with Fréchet-derivative δg_q at q. Let $q \in M = \{x \mid g(x) \in K\} \subset X$ and $im \delta g_q - \text{span}\{g(q)\} \in K$.

Then there exists a $\lambda \in K^*$ for every $f \in N_M(q)$ such that

$$d\left(\frac{\partial L}{\partial \nu}\right) = \frac{\partial L}{\partial q}dt + \frac{\partial g}{\partial q}d\lambda$$

$$\int_0^T g(q) \, d\lambda = 0$$

$$\delta \int_0^T L(q, v) dt \in N_M(q)$$

M = { q abs. cont. | $g(q, t) \in K$ }

Theorem: Existence of Lagrange Multipliers

Let X, Y be Banach spaces and $\emptyset \neq K \subset Y$ be a closed convex cone. Let $g: X \to Y$ be continuously Fréchet-diff'ble with Fréchet-derivative δg_q at q. Let $q \in M = \{x \mid g(x) \in K\} \subset X$ and $im \delta g_q - \text{span}\{g(q)\} \in K$.

Then there exists a
$$\lambda \in K^*$$
 for every $f \in N_M(q)$ such that

$$d\left(\frac{\partial L}{\partial \nu}\right) = \frac{\partial L}{\partial q}dt + \frac{\partial g}{\partial q}d\lambda$$

$$K \ni g(q) \perp d\lambda \in K^*$$

$$\delta \int_0^T L(q, v) dt \in N_M(q)$$

$$M = \{ q \text{ abs. cont.} \mid g(q, t) \in K \}$$

Theorem: Equations of motion

$$Mdv = fdt + \frac{\partial g}{\partial q}d\lambda$$

Measure differential equation (MDE)

 $K \ni g(q) \perp d\lambda \in K^*$

Cone Complementarity Problem (CCP)

Time-Discretization: A Petrov-Galerkin Approach

Idea: Satisfy

$$\int_0^T \phi M \, d\boldsymbol{\nu} = \int_0^T \phi f \, dt + \int_0^T \phi \frac{\partial g}{\partial q} \, d\boldsymbol{\lambda} \qquad \forall \, abs. \, cont. \, \phi$$

$$K \in g(q, t) \perp d\lambda \in K^*$$

in finite dimensional subspaces

- q, ϕ continuous and piecewise linear Basis: e.g. hat functions
- v, λ piecewise constant

Basis: e.g.
$$f_i(t) = \begin{cases} 1, & if \ t \in [t_i, t_{i+1}] \\ 0, & else \end{cases}$$

Equations of Motion in discretized time

The Nonsmooth SHAKE stepper

$$\boldsymbol{q}_{i+1} = \boldsymbol{q}_i + \boldsymbol{v}_{i+1} \Delta t$$
$$\boldsymbol{v}_{i+1} = \boldsymbol{v}_i + M^{-1} \left(\boldsymbol{f}_i \Delta t + \frac{\partial g(q_i)}{\partial q} \boldsymbol{\gamma}_{i+1} \right)$$
$$K \ni \boldsymbol{u}_{i+1} = N_i \boldsymbol{\gamma}_{i+1} + \boldsymbol{r}_i \quad \bot \quad \boldsymbol{\gamma}_{i+1} \in K^*$$

- Constraint has been linearized: Reappears as "stabilized velocity constraint"
- N_i is symmetric, positive <u>semi</u>-definite (in all interesting cases rank-deficient)
- $\gamma_{i+1} = \int_{t_i}^{t_{i+1}} d\lambda$ appears as new unknown. Can be associated with a net *impulse*
- We have to solve one Cone Complementarity Problem (CCP) per time step.
- But how?

Numerical Methods for CCPs

Cone Complementarity Problem CCP

$$K \ni \boldsymbol{u} = N\boldsymbol{\gamma} + \boldsymbol{r} \quad \perp \quad \boldsymbol{\gamma} \in K^*$$

- Several numerical methods to solve CCPs existed at the time
 - Lemke's pivoting strategy (for LCPs requires faceting of Friction Cone)
 - IPMs for LCPs
 - Quasi-Newton methods, smoothing Newton methods
 - Projected Gauß-Jacobi (PGJ), Gauß-Seidel (PGS), Successive Overrelaxation (PSOR), Augmented Lagrangian
 ...
- PGJ was dominant in the literature for granular simulations
 - Works for large systems
 - · Can be implemented in a matrixfree fashion
 - Can be parallelized
 - Very simple recursion:

Drawbacks of PGJ

PGJ converges slowly for

- large densely coupled systems
- large mass ratios

As a result, when stopping the iteration prematurely:

draft forces are far from the expected

Interior Point Method (Outline)

Frictional contacts
$$\Rightarrow$$
 Solve CCP

$$K_{\mu}^* \ni \boldsymbol{u}_i = (\overline{N}\boldsymbol{\gamma}_i + \overline{\boldsymbol{r}})_i, \qquad \boldsymbol{\gamma}_i \in K_{\mu}, \qquad \boldsymbol{u}_i^T \boldsymbol{\gamma}_i = 0$$

for every contact *i*

• Linear transform to symmetric cone $C = C^*$

C is the **cone of squares**

$$C \coloneqq \{ x \circ x \mid x \in \mathbb{R}^3 \}$$

with respect to the Jordan Product

$$\boldsymbol{x} \circ \boldsymbol{y} = \begin{bmatrix} \boldsymbol{x}^T \boldsymbol{y} \\ x_n \boldsymbol{y}_t + y_n \boldsymbol{x}_t \end{bmatrix} \in \mathbb{R} \times \mathbb{R}^2$$

 $x = \begin{bmatrix} x_n \\ x_t \end{bmatrix}$, $y = \begin{bmatrix} y_n \\ y_t \end{bmatrix} \in \mathbb{R} \times \mathbb{R}^2$

Interior Point Method (Outline)

• CCP ⇒ Constrained Optimization Problem:

$$\min \sum_{i} \mathbf{x}_{i}^{T} \mathbf{y}_{i} \quad \text{such that} \quad \mathbf{x}_{i}, \mathbf{y}_{i} \in C, \qquad \mathbf{y} = N\mathbf{x} + \mathbf{r}$$

• Introduce logarithmic potential $P(x_i, y_i)$, pushing x_i, y_i away from boundary of C

$$\min \sum_{i} \mathbf{x}_{i}^{T} \mathbf{y}_{i} + P(\mathbf{x}_{i}, \mathbf{y}_{i}) \quad \text{such that} \quad \mathbf{x}_{i}, \mathbf{y}_{i} \in C \setminus \partial C, \qquad \mathbf{y} = N\mathbf{x} + \mathbf{r}$$

• Central Path: Zero set of P is a smooth curve through the solution

$$S_{cen} = \{ (\mathbf{x}, \mathbf{y}) \in C \times C \mid \mathbf{x} \circ \mathbf{y} = \alpha \mathbf{e}, \ \alpha \ge 0 \}$$

with solution at $x \circ y = 0$

IPM = Sequence of Newton steps towards

$$\begin{aligned} x^{(k)} \circ y^{(k)} - \alpha^{(k)} e, \qquad y^{(k)} = N x^{(k)} + r \\ \text{with } \alpha^{(k)} \to 0 \end{aligned}$$

 $C \times C$

Interior Point Method: The algorithm

Let $(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$ be an interior point (i.e. $\mathbf{x}_i^{(k)}, \mathbf{y}_i^{(k)} \in C \setminus \partial C$).

Until converged do:

• Choose α

- Calculate **block-diagonal** W_k from $x^{(k)}$ and $y^{(k)}$.
- Calculate **right-hand side** $b_k(\alpha)$ from $x^{(k)}$ and $y^{(k)}$ and α .
- Perform Newton step to obtain $(dx^{(k)}, dy^{(k)})$

$$(W_{k} + N)dx^{(k)} = b_{k}(\alpha) \leftarrow dy^{(k)} = Ndx^{(k)}$$

use matrixfree Conjugate Gradient (CG) here

• Calculate step length θ

•
$$(x^{(k+1)}, y^{(k+1)}) = (x^{(k)}, y^{(k)}) + \theta(dx^{(k)}, dy^{(k)})$$

• $k \leftarrow k+1$

PGJ vs IPM

Test Problem 1: 2048 particles

Calculation time for a given tolerance

 $tol = 1 \cdot 10^{-2}$

• For $tol = 5 \cdot 10^{-4}$ IPM is **200 times faster** than PGJ

IPM applied to an industrial size problem

- 105,144 particles
- Ø 1,261,972 unknowns/step
- $\Delta t = 10^{-2} s$

At high accuracy requirements (determination of draft forces):

- DEM is still about 12,2% faster
- IPM is more than 10 time faster than PGJ

Summary and Conclusion

Discrete Element Method

- Well suited for the prediction of draft forces, validated against experiment
- Only stable for small time steps \Rightarrow Computationally expensive

Nonsmooth Contact Dynamics

- Stable for arbitrary time step sizes
- Forces and accelerations are measures
- Need to solve a complementarity problem per time step

- With the new IPM solver, both DEM and NSCD can be used to estimate draft forces
- IPM has lots of room for improvement, on algorithmic level and by parallelization
- Simultaneously and after my PhD, other researchers contributed promising solvers that should be analysed

References

Kleinert, Simeon, Dreßler 2017

Thank you very much for your attention!

Any Questions?

