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Abstract— One way to achieve dexterous manipulation au-
tonomously with natural input is through learning by demon-
stration. Unfortunately, grasping an object with a complex
dexterous hand is a complicated task. To facilitate the demo
acquisition process, we propose a low-cost framework to map
the human hand motion from a single RGB-D camera using
inverse kinematics. This framework has been implemented
in a CoppeliaSim simulation environment. We evaluate two
multi-task handling methods and a low-pass filter using two
obtained trajectories. Empirically, the proposed framework
can successfully perform grasping task imitations. An ex-
emplary video of the object manipulation is presented on
the project website: https://sites.google.com/view/
retargeting-for-dexterous-hand

I. INTRODUCTION

Correct imitation of the human hand motion with robotic
hand model is a challenging task. The model of human hand
has a high number of degrees of freedom, which makes
tracking and retargeting difficult. There are discrepancies
between the human and robotic hand and errors occur
during tracking and estimation of the human hand pose. The
additional challenge is that the pose estimation may cause an
anatomically infeasible position, and this effect is reinforced
by the noise from the tracking data. This had to be considered
when calculating desired joint positions during motion.

The current state-of-the-art Hand Pose Estimation (HPE)
methods have significantly improved tracking capabilities
from single images, and complicated motion tracking sys-
tems can be replaced with a single depth camera. That is
because of the emergence of new discriminative methods
based on deep neural networks, which can deal with the
self occlusions of the human hand and correctly segment
the hand from the environment [1], [2]. The state-of-the-art
approaches still suffer from the occlusions when interacting
with the objects, but this problem can be mitigated after
a wider variety of hand-object interactions dataset becomes
available. This allows us to take the step further and use these
pose estimation for training the robot motion in complex
dexterous manipulation tasks.

This research aims to create the bridge between hand
motion tracking and imitation learning. Imitation learning
is the approach that helps to the tedious work when each
move of the robot during task execution had to be precisely
engineered. Here, the agent attempts to emulate human
behavior based on the provided demonstrations. The common

1Jedrzej Orbik, Shile Li and Dongheui Lee are with the Department
of Electrical and Computer Engineering, Technical University of Munich,
80333 Munich, Germany, Germany

2Dongheui Lee is also with Institute of Robotics and Mechatronics,
German Aerospace Center (DLR), 82234 Wessling, Germany

approaches incorporate Hidden Markov Models [3], [4],
dynamic movement primitives [5], deep neural networks [6],
[7] or reinforcement learning methods [8], [9].

We created the retargeting algorithm of the human hand
motion to the anthropomorphic robotic hand. We execute the
imitation learning method in the simulated environment and
provide the interface for future applications with hardware.
The applied HPE algorithm [10] provides the position of
each of 21 joints of the human hand as depicted in Fig. 1.
We focused on the retargeting to the five-fingered robotic
hand, since mapping to robotic hand models of different
morphology would require a consideration of the function of
each finger and readjustment of the kinematics accordingly.

The presented work makes following contributions:
1) Provides a low-cost framework for human hand trajec-

tory acquisition for learning by demonstration.
2) Motion retargeting for hand structure taking into ac-

count the complex kinematics in the global frame.
3) Mitigation of the lack of smoothness in the input

pose estimation using low-pass filter and point pattern
matching.

Fig. 1. General view on the hand motion retargeting architecture. The
bounded pre-scaled depth images are being fed to the neural network
architecture [10] to infer the current hand pose. The positions of the hand
joints are used as the input to our retargeting method to replicate the
trajectory with the dexterous robotic hand.

II. RELATED WORK

The hand pose estimation is currently the subject of in-
tensive research. This is a very challenging problem because
of the inherent high dimensionality of the hand model action
space (more than 20 DOFs), self-occlusions of the hand parts,
or occlusions by the other objects during hand object interac-
tion, which make the problem especially difficult. Since the
advent of depth-sensing devices at a consumer level, a lot of
depth image-based hand pose estimation methods appeared.
Current state-of-the-art methods [11], [12] use Convolutional
Neural Networks (CNN) to regress the hand pose directly
from a single image.
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To tackle the above mentioned difficulties, traditionally,
researchers have used tracking based methods [13], [14],
which rely on sequence of data and a good initialization pose
for this problem, then each frame’s estimation is optimized
from the previous frame’s estimates. In recent years, deep
learning proves to be successful in different research fields.
Hand pose estimation is no exception, as state-of-the-art
results are all coming from deep learning based methods
[10], [11], [12]. Relying on large annotated datasets, deep
learning methods are suitable to find out a highly non-
linear mapping function between a single input image and
the hand pose output. In our framework, we will use the
HPE method from [10] to obtain hand pose from a depth
camera. The task of motion retargeting has been solved in
the previous works for the whole human body using the
inverse kinematics, which is a difficult task due to different
morphology of the human and robot body and redundancy
of the controller. Early work by Nakamura et al. has coped
with redundancy by the introduction of multi-task prioritized
controllers. Ayusawa and Yoshida [15] have approached the
problem of adjusting the morphology between the subject
human and robot using a morphing function.

The motion retargeting of dexterous hands has been ad-
dressed in a number of different works. Kumar et al. [16]
have created a professional human hand motion capture
system using an expensive CyberGlove. In the method by
Rossel et al. [17] the complexity of the retargeting of
dexterous robotic hand has been minimized by the use
of principal component analysis. Handa et al. [18] have
developed a system for human hand motion retargeting, but
it required multiple cameras to ensure a smooth trajectory
of the robot motion. A recent work by Garcia-Hernando
et al. uses residual reinforcement learning trained on the
interactions with the environment which limits its application
in practice. In the work by Li et al. [19] the camera input
has been coupled with the inertial measurement unit reading
to allow image-to-image translation producing the expected
robot movement.

Our method does not require any additional sensors apart
from a ubiquitous RGB-D camera, such as a Kinect camera.
It is lightweight and comparing to other methods, does not
require task-specific training prior to the task execution. It
can be deployed on a variety of real-world and simulated
environments based on the camera tracker only.

III. METHOD

Fig. 2 shows the overview of the proposed retargeting
framework and the detailed processing of the HPE diagram
is presented in Fig. 3.

In the proposed approach, the HPE method by Li and Lee
[10] is being used. Hand pose tracking provides 21 Cartesian
positions of the joints inferred from the depth image stream
from the RGB-D camera. The estimated pose is given with
an altering frequency, which influences the smoothness of
the trajectory and imposes the use of low-pass pose filtering.

The position of the end effector defined by the task
descriptor x ∈ Rm is conveniently calculated from the

joint vector q ∈ Rn according to equation of the forward
kinematics [20]:

x = f(q), (1)

where kx(q) is non-linear mapping function, m is the
dimension of the task descriptor x (commonly equals 6 for
the given pose p ∈ R3 and angles θ ∈ R3) and n is the
dimension of the task-space (amount of the DOFs in the
manipulator configuration).

A. Low-pass filtering

Each new inference of the HPE algorithm underlies fil-
tering with the low-pass filter. The smoothing of the motion
is necessary because each result of pose estimation is inde-
pendent of the preceding ones. This may result in sudden
changes, which are kinematically implausible.

The low-pass filter is implementing according to the
formula:

xd,new = xHPEα+ xd,old(1− α), (2)

where each x denotes the Cartesian positions of the joints,
and xd describes the desired position.

The smoothing parameter α, which takes values in range
(0, 1) has been selected to a low value 0.2, which increased
the response time but still contributes to the steadiness of the
mapping.

B. Global hand pose estimation

In order to execute the inverse kinematics of the hand, it
is convenient to transform the inferred HPE to the hand’s
homogeneous position and execute the control in the hand
frame only. We propose to use the least-squares estimation
described by Umeyama [21] to estimate the global 6D hand
pose by the calculation of transformation parameters between
two point patterns with known correspondences.

It defines a closed-form solution to the absolute orientation
problem [22]:

e2(R, t, c) =
1

n

n∑
i=1

‖yi − (cRxi + t)‖2, (3)

where R is the rotation matrix, t is the translation vector, c
is the scaling factor, xi is the position of the joint with index i
in the homogenous global frame, and yi is the corresponding
target position of the joint inferred by HPE. Scaling c is
adjusted in the subsequent step to accommodate the finger
lengths for successful tracking.

The solution to least squares estimation is found by
solving:

R, t, c = arg min
R,t,c

e2. (4)

The R matrix is found using lemma proven in the paper
by Umeyama [21] using the singular value decomposition:

UDVT = SVD(XYT ), (5)

with X being a set of points in the world frame and Y a
set of corresponding points in the homogeneous frame. The



Fig. 2. Overview of the retargeting framework. 1) Single RGB-D camera stream 2) HPE algorithm [10], 3) HPE output processing presented closer in
Fig. 3, 4) Base control from extracted hand base pose in world frame 5) Inverse kinematics control loop for the fingers in hand frame 6) This results in
the dexterous hand control in the world frame.

Fig. 3. Diagram of HPE output processing. Scaling is performed after after the global pose of hand frame has been estimated. This facilitates the hand
scaling process.

result of SVD (singular value decomposition) provides the
rotation matrix:

R = USVT , (6)

if the patterns consist of at least 3 noncollinear point pairs.
The matrix S is provided by:

S =

{
I if det(U) det(V) = 1

diag(1, 1, ..., 1,−1) if det(U) det(V) = −1.

The calculation of optimal t and c is not described here
for brevity please refer to the paper by Umeyama.

To find the position of the hand in the world camera
coordinate system, we need to calculate the inverse trans-
formation:

T−1 =

[
cR t
0 1

]−1
=

[
1
cR

T − 1
cR

T t
0 1

]
, (7)

using the property of the rotation matrices R−1 = RT .

The target hand base pose is updated with each HPE
reading using the same low-pass filter as introduced in (2).
The inverse kinematics for the used UR-10 robotic arm
is calculated using built-in functions of the CoppeliaSim
simulation environment.

C. Scaling

Before the computation of the inverse kinematics, the last
step of scaling from the human hand to robotic hand finger
lengths is necessary. We are considering each of the fingers
beginning with the finger’s MP joint (x1) at the palm and
match their position to the robotic hand’s MP joints in the
hand frame (refer to Fig. 4. Then we follow to the finger’s
tip xN+1 according to the equation:

xi = xi−1 +
vi

‖vi‖
di, (8)

with index i taking values from 1 to N , N as the number
of joints in the finger. di corresponds to the length of the
link from the Cartesian positions of the joint xi, and:

vi = xi − xi−1. (9)

The scaling allows the correct inverse kinematics calcula-
tion as long as reaching the desired task descriptor positions
would not exceed the joint limits putting the manipulator in
singularity.

D. Closed Loop Inverse Kinematics algorithm

In this work, inverse kinematics were performed based
on the Closed Loop Inverse Kinematics algorithm (CLIK)
which is widely used in robotics for the computation of the
joint configuration from the desired position and orientation
of the task descriptor. It properly deals with the singular
configurations, which emerge when the target lies beyond
the robot’s reach (case when there are no solutions to the



problem) or when the robot is redundant with a higher
number of DOF than the dimension of the task descriptor
(case of infinitely many possible solutions).

For the simplification of the problem, the trajectory track-
ing of a single finger will be investigated.

The task descriptor denotes the position in the 3-
dimensional Cartesian coordinates system corresponding
with the x, y, z coordinates (orientation of the joints is not
provided by the HPE and therefore is ignored):

x ∈ R3, x = [px, py, pz]T . (10)

Configuration vector in joint space of single finger consists
of 4 elements, one for each of the angles DIP and PIP joint,
and 2 for MP joint angles (see Fig. 4).

q ∈ R4, q = [q1, q2, q3, q4]T . (11)

This implies m = 3, n = 4. Taking into consideration
required dimensionality we can utilize the CLIK algorithm,
which utilizes pseudo-inverse Jacobian regularization:

J∗ = W−1
1 JT (JW−1

1 JT + W2)−1. (12)

Here, W1 is a positive definite weight matrix m × m,
W2 is the damping matrix n × n, which is necessary if J
is ill-conditioned, imposing rank-deficiency of the Jacobian
matrix, when lying in a singular configuration. Setting W2 =
0 and W1 = Im×m arrives at the usual formula of the
original generalized pseudo-inverse:

J† = JT (JJT )−1. (13)

The calculation of the required angular velocities q̇ is sub-
ject to a numerical optimization based on the given desired
task velocity and suffers from numerical drift. To prevent
this, a feedback correction is introduced by computation of
the current position error e. The inverse kinematics is then
described as:

q̇ = J∗(ẋd + Ke), (14)

where K is positive definite gain matrix, and e is a vector
that expresses the position error [ex, ey, ez]T . The position
error is then specified as:

Fig. 4. The human hand skeleton with depicted positions of the joints
align with the estimated 21 joint poses from HPE algorithm. [23]

e = xd − x. (15)

In the algorithm, the weight matrix W1 is adjusted depend-
ing on the motion direction in the vicinity of the joint limits.
That encourages the mechanism movements which escape
from the constrained configurations. Specifically, the entries
of the diagonal weight matrix are updated according to the
following rule:

θi =

1 +
∣∣∣∂H∂qi ∣∣∣ if ∆

∣∣∣∂H∂qi ∣∣∣ ≥ 0

1 if ∆
∣∣∣∂H∂qi ∣∣∣ < 0,

(16)

where H(q) is the performance criterion to prevent the
motion beyond the joint limits and allow the uninterrupted
movement away from them. ∂H(q)

∂qi
is its gradient specified

as:

∂H(q)

∂qi
=

(qi,max − qi,min)2(2qi − qi,max − qi,min)

4(qi,max − qi)2(qi − q2i,min)
.

(17)
The gradient ∂H(q)

∂qi
is equal 0 in the middle of the joint

movement range and equals infinity at its limit.

E. Handling multiple tasks

As the task descriptor of a single finger is of a dimension
of 3 and we are controlling the finger, which has 4 DOFs,
one of the dimensions is not going to be constrained. In order
to avoid this, we create 2 subtasks for each finger: one for
the finger tip and one for the DIP joint of each respective
finger. Two methods for handling multiple tasks were taken
into consideration:

1) Task augmentation
2) Task prioritization

After the evaluation, task prioritization was selected as the
optimal solution. The comparison of the two approaches is
presented in section IV-C.

1) Task augmentation: This attempts to satisfy all tasks
in parallel and thus exploits all the available DOFs. In
our case, it was not delivering acceptable results as the
desired dimension of the task descriptors (2xm) was too
high to satisfy using the available number of joints n in the
mechanism. This leads to the failure of all the tasks during
trajectory targeting.

2) Task prioritization: This method allows the definition
of task descriptors as the subtasks with the order of priority.
The prioritized solution is then given by the procedure
defined in Algorithm 1. For more details on the task pri-
oritization and augmentation methods, we refer to the work
by Dariush et al. [24].

Task prioritization allows the movement of the mechanism
in the lower priority in the null-space of the higher priority
tasks and exploits all the available DOFs in the process. Here,
the main task was selected at the top and the secondary task
at the joint DIP of each finger.



Algorithm 1: Solving multi-tasking IK with task
prioritization [24]

Input: Tasks i = 1,...,k each defined by its Jacobian
matrix Ji and task descriptor ẋd,i

Output: q̇ joint velocities
N0 = I
for i = 1..k do

vi = ẋd,i
Ĵi = JiNi−1
v̂i = vi − Ji

∑i−1
j=i(J

†v̂)

q̇ =
∑k

i=1(Ĵiv̂i) + Nkz,
with z being an arbitrary vector

IV. EXPERIMENTS

To assess the validity of our approach we use the well-
established CoppeliaSim. This simulator has been widely
used in previous methods [25], [26], [27]. An exemplary
scene used for the evaluation of grasping is depicted in Fig.
5.

Fig. 5. CoppeliaSim simulation environment scene used during the
experiments. Shadow Dexterous Hand model was mounted on the UR-10
robotic arm.

For the experiments, 2 trajectories with arbitrary finger
motion of roughly 20 seconds were collected for the com-
parison of the parameters and methods of the mapping
algorithms. The experiments were conducted with α value
of 0.2. Errors are calculated as the sum over Euclidean
distances between the desired position of all of the finger
joints (including finger tips) and their corresponding mapped
positions and sampled with 10 Hz frequency.

A. Motion imitation

Fig. 6 and Fig. 7 depict the results of two of these
trajectories with task prioritization and two task handles. In
Fig. 6 there is only one sudden position change when the
fingers are bent. In turn, the fingers on trajectory in Fig. 7
are in constant motion.

It can be seen, that the sum of the errors for fingers
converges below 0.1 m with the error of each of the fingers
converging below 1 cm, as long as the finger joint angles
were possible to satisfy by the robotic hand. For example,
in Fig. 6 the middle finger position cannot be satisfied at
the end of the trajectory mapping and the error stays close
to 2 cm. It can be also observed, that the error is smallest

Fig. 6. Errors for each of the fingers with slow finger movement trajectory.

Fig. 7. Errors of pose mapping for faster finger movements.

on both trajectories for the thumb, which has 5 DOFs in
comparison to the other fingers with 3 DOFs for each.
This gives the additional freedom which can be exploited to
achieve motion that closely follows the target. The reaction
time can be estimated to roughly 1.3 seconds (10 Hz of the
error calculation loop) and is due to the low-pass filtering of
the HPE results. The slow reaction time could be improved
by increasing the rate of the HPE algorithm on the more
efficient hardware. Otherwise, the additional tuning of the
low-pass filter α parameter could be necessary.

It is visible that it takes approximately 10 iterations at
the beginning of the trajectory tracking until the error value
decreases. This is induced by the high values of the weight
matrix for the initiatory fully straightened out hand, which
has to be updated before the movement of the joint is
possible. An improved algorithm of the dynamic weight
matrix parameter calculation could improve the convergence
speed.

B. Selection of α parameter

In order to select the optimal α parameter, the calculation
of error over two trajectories with different parameter values
was performed. The results are presented in Table I. All the
results are the mean of 2 runs of each of the configurations.
It can be seen from the presented table, that the optimal α
parameter depends on the frequency of the HPE. For the
lower HPE frequency, the higher value of α is preferable,
which shifts the task descriptor position closer to the current
HPE readings. It is in line with our expectations since this
prevents adding to the response delay, which would be more
severe for lower frequency tracking input.



trajectory α = 0.1 α = 0.2 α = 0.3 α = 0.4

slow 5Hz 20.02 17.54 18.90 22.17
faster 5Hz 22.88 21.79 20.14 21.78
slow 2.5Hz 18.34 17.20 16.62 17.21

faster 2.5 Hz 23.69 23.32 19.60 19.53

TABLE I
RESULTS OF THE EVALUATION OF DIFFERENT VALUES FOR LOW-PASS

FILTER α PARAMETER IN TWO EXEMPLARY TRAJECTORIES. THE VALUES

REPRESENT MEAN TRACKING ERROR GIVEN IN MM OVER ALL JOINTS.

error over all joints error of finger tips

Task augmentation 15.54 0.4513
Task prioritization 19.38 0.3699

Single task 21.20 0.3987

TABLE II
EVALUATION OF DIFFERENT MULTI-TASK METHODS. TABLE PRESENTS

MEAN TRACKING ERROR GIVEN IN MM TESTED ON THE SLOW

TRAJECTORY.

C. Selection of task handling method

During the experiments 3 inverse kinematics task handling
methods were evaluated taking into consideration the error
over all the joints (coherence at trajectory mapping) and
the finger tip alone (critical for the successful grasping
performance):

1) Two task descriptors with task augmentation
2) Two task descriptors with task prioritization
3) Single task descriptor
The results are depicted in Fig. 8 and Fig. 9 and summa-

rized in Table II. Task augmentation would be the optimal
solution if we aim for minimal error over all the joints, but it
does not allow as good tracking of the task descriptor on the
finger tip as the other two methods. The task prioritization
with the main task set to the finger tip outperforms both other
methods. Averaging over both tasks in task augmentation
leads to failure at satisfying both the tasks at the same
time and leads to its inferior performance. This should be
taken into consideration when selecting a multi-task handling
method.

D. Qualitative results

During the experiments with grasping the smoothness of
the trajectory tracking is essential. This gives the required
stability when handling the object and induces a higher
success rate at task execution. The lower α values which
imply the stronger filtering were preferable. The success rate
when attempting to grasp and raise a prepared object in the
simulation was approximately 1 in 10. An example of the
successful task execution is presented in Fig. 10.

The lack of haptic feedback and any method, which would
assist the tracking to ensure a firm contact with the object’s
surface, still makes the successful grasping with the de-
manding objects difficult. Additional work for the improved
contact with the objects can be dedicated to improving the

Fig. 8. Errors of mapping of index finger tip and 2 top joints (evaluation
of the smoother trajectory). Task augmentation outperforms the other two
methods, but task prioritization still outperforms single task handling, since
it constraints all the DOFs of finger.

Fig. 9. Errors of mapping of index finger tip (evaluation of the smoother
trajectory). Task prioritization performs on par with single task handling for
finger tip control.

grasping performance. One of the possible solutions would
be the optimization with particle swarm optimization [28].

V. CONCLUSIONS

We have presented a framework for the motion retargeting
of the complex human hand motion to the dexterous robotic
hand from a single depth camera stream. The advantages
of different multi-tasking handling methods have been pre-
sented. The platform has been used to successfully grasp an
object in the simulation environment.

For the successful mapping of the trajectory, the low-pass
filtering and the correspondence point adjustment were nec-
essary. This allowed the calculation of the hand entirely in its
local frame independent of the used simulation environment.
The use of task prioritization allows the high accuracy of the
finger tip tracking while lowering the error of the positions
of otherwise unconstrained DOFs. The promising results
encourage further research of the computer simulations as
the possible environment to perform the conventionally very
expensive autonomous learning with the robot models.

The findings can open the door to the low-cost fully
autonomous learning process of dexterous manipulation also
in a simulator. In future work, we would like to evaluate
the captured demonstrations of dexterous hand manipulation
tasks with a variety of learning algorithms.



Fig. 10. Example of a successful grasping imitation in the simulation environment. The subject executing the task is visible in the lower left corner in
each frame.
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