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Abstract— High precision industrial applications call for
equally precise functioning of industrial manipulators, which
in turn requires accurate modeling of the manipulators. This
paper carries out a detailed study on the modeling of industrial
manipulators with elastic joints to improve their accuracy. In
particular, the effect of adopting a simple harmonic drive (HD)
model and ignoring a dynamic effect called low inertia coupling
between the actuators and links on the model accuracy has
been analyzed from a parameter estimation perspective. Since
the aforementioned model characteristics have been generally
ignored for high gear reduction ratios, this study is carried
out with five different reduction ratios ranging from low to
high, where three different models of a three-joints elastic
manipulator are considered. The accuracy of the models
is compared using the torque performance metrics of a
predefined joint motion of the robot. Furthermore, the impact
of the models with different accuracy is assessed by carrying
out a state-of-the-art dynamic parameter estimation, and
the resulting errors are compared to ascertain the merits of
adopting a detailed elastic dynamic model of a manipulator.

Keywords – Flexible joints, Dynamic model, Modelling errors,
Manipulators, Parameter estimation.

I. INTRODUCTION

In modern days, industrial manipulators play a vital role to
achieve quality products at low cost and time. The growing
demand for quality particularly increases the need for ac-
curacy in manipulator applications. In robotic measurement
applications, the accuracy requirements for manipulators are
even greater, in the order of [µm]. These requirements
can only be met with accurate dynamic models that can
facilitate precise pose estimation and control of manipulators.
Lately, to reduce the overall cost of operation and for
safety concerns, lightweight and elastic manipulators are
mostly sought after. The inclusion of elasticity makes it even
more challenging to model the non-linear dynamics of a
manipulator with high accuracy and to control it effectively.

Several types of models have been used to represent
the dynamics of industrial manipulators and estimate their
corresponding parameters to simulate their dynamic motion.
The most common one is a rigid body model, which assumes
the joints and links to be rigid. This model has been used
extensively in many parameters estimation works [1]–[6]
to estimate the various inertial parameters—mass, center
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of mass, and inertia of each link. Interestingly, in [7],
by ignoring some dynamic terms and estimating link-side
torques, an elastic joint model is adapted to make use of the
rigid joint model structure to estimate inertial parameters.
On the other hand, citing the insufficiency of the rigid body
models to accurately capture highly non-linear dynamics of
manipulator systems, several different types of works have
been proposed to enhance the model accuracy: in [8], the
parameters are estimated offline using the rigid body models
and further tuned online using a neural network to capture the
dynamics which is not represented by the models. Although
such online tuning approach has been fairly successful, it
requires a large amount of data that encompasses different
movements of the robot, which is difficult to achieve in
practice; and as an alternative, online adaptive controllers
have been proposed to compensate for the model inaccuracy,
as reported in [9].

Since most of the robot’s joints have inherent elasticity
stemming from the transmission elements such as harmonic
drives and belt-pulley, an elastic joint model has been
considered in some parameter estimation works. In [10], a
simplified elastic joint model for a single joint has been
considered to estimate the inertia, joint elasticity, and ac-
tuator parameters, separately for each joint. The estimated
parameters are validated with a 7 degrees-of-freedom (DoF)
DLR light-weight robot by performing several point-point
constant velocity movements, and the results are shown
to be good. However, no quantitative data on the end-
effector’s accuracy has been reported. Unlike [10] where only
drive flexibility has been considered, authors in [11]–[13]
additionally consider flexibility in the joint due to bearings
to further increase the accuracy of the elastic models. The
dynamic characteristics of the model with estimated param-
eters are verified using frequency response functions (FRF)
between motor torques (input) and its corresponding speeds
(output). A close correspondence between the experimental
and predicted FRF matrices along the diagonal terms has
been reported in [11], [12], but the off-diagonal terms vary
considerably, which suggests that the dynamic effects of
distal links on a particular joint are not captured accurately
by the model. Nevertheless, in [12], which also considers
joint offset, misalignment, gear backlash, and kinematic
parameters, the maximum absolute error of the end-effector
with the estimated parameters is reported to be 0.32 mm over
150 different poses.

The use of elastic models in the aforementioned works is
more likely to represent the robot dynamics closely when
compared to those with rigid dynamic models. However, the
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reported accuracy of the former models is still insufficient
for measurement applications which demand high accuracy
than precision, e.g., inspection of manufactured parts. While
moderately precise manipulators can be achieved with fairly
accurate models and controllers, to obtain high accuracy, it
is necessary to have highly accurate robot models. This calls
for pushing the accuracy of elastic models even further. Inter-
estingly and importantly, a closer look at the aforementioned
elastic models reveals the following facts:
1) a simplified version of the complete elastic model ignored

the low inertia coupling terms between the link and
actuator dynamics; and

2) no separate model has been considered for the transmis-
sion system elements.

Both the facts are based on the assumption that the additional
torque contributed by them is relatively small due to high
joint reduction ratios, and doing so simplifies the model.

Accordingly, this study aims at understanding the effects
of ignoring low inertia coupling terms and transmission
system models on the robot’s model accuracy, and thereby,
propose an elastic manipulator model which can potentially
improve the model’s accuracy. In particular, the work makes
the following contributions: 1) a detailed elastic model error
analysis of ignoring low inertia coupling terms and adopting
a simple HD model; 2) the aforementioned error analysis
repeated across a range of transmission ratios to understand
its effect and to quantify the resulting error; and 3) impact
of less accurate elastic models of a manipulator on the
estimation of its dynamic parameters/coefficients.

II. PROBLEM DESCRIPTION

The dynamic equations of motion for an elastic joint robot
in its general form can be written as given in [14] as follows:(

M(q) S(q)
ST (q) B

)(
q̈
θ̈

)
+

(
c(q, q̇)+ c1(q, q̇, θ̇)

c2(q, q̇)

)
+

(
g(q)+K(q−θ)

K(θ−q)

)
=

(
0
τ

)
−
(

D(q̇− θ̇)
D(θ̇− q̇)

)
,

(1)

where M, B, ci, g, K, and D are the link and actuator inertia
matrix, Coriolis and centrifugal terms, gravity terms, joint
stiffness, and damping matrices respectively. In (1), q and θ
are the link and motor side joint angles respectively, and τ
is the motor side torque. The link and motor side equations
in (1) are coupled through the elastic torque τJ = K(θ−
q) at the joints and also via S(q) the low inertia coupling
matrix. In (1), two factors have often been overlooked in the
conventional elastic models that can potentially affect the
accuracy of those models and these are discussed below:
1) Low Inertia Coupling: S is usually a constant in the planar

case or zero in the case of robots which has 2 links with
orthogonal joint axes. In other general cases, S is usually
ignored due to large reduction ratios (100-150), which
reduces the coupling effect of S [14]. This simplifies the
elastic model significantly but it also reduces the model’s
accuracy to some extent. The exact effect of ignoring S
on the elastic model’s accuracy has never been studied

extensively in complex robotic systems, and this has been
done in this work.

2) Simplified Harmonic Drive Model: Another important
term that is being traded off for simplicity is the B
matrix which includes the models of various transmission
elements used for each robot joint. Since harmonic drives
are more common in the robotics field, they are consid-
ered here. HD includes three main components: a wave
generator, flex spline, and cylindrical spline. Of the three
components, flex spline is flexible, and the joint elasticity
is mainly due to this component. Most of the elastic joint
models [11]–[13] consider the elasticity parameters but
ignore the inertia of input and output components of an
HD. In few other models [10], input inertia is added to
the rotor inertia, and the output element is assumed to be
an integral part of the link which is connected to the HD
output. The insufficiencies of these simplifications have
been reported elaborately in [15]–[17] with more detailed
HD models. The complexity of the HD model that needs
to be considered in the elastic robot model to compute
a relatively more accurate B matrix which in turn can
result in a better representation of system dynamics is
also studied in this work.

For this study, we have considered three different numerical
models: 1) mod1 with a simple HD model, 2) mod2 with a
relatively complex HD model, and 3) mod3 with a complex
HD model and S. A virtual model (modad) developed using
MSC Adams software is used for comparison.

III. SYSTEM SETTINGS FOR ANALYSIS

A manipulator with three non-coplanar elastic joints has
been considered in this work to analyse the effect of low
inertia coupling and HD model. The system has 3 movable
links with a reach of 1.5 m and weighs 139 kg. A 3-
dimensional (3D) model of the system is shown in Fig. 1a.
The following are the unique features and some assumptions
about the system which has been considered for this study:
• The actuators of joints 1 and 2 are mounted on link 1 to

reduce the inertia of the moving links by keeping them
close to the robot’s base.

• The motion transmission from the joint actuators to their
respective links is done in two stages: belt-pulley (stage-1)
and HD system (stage-2).

• Due to the above arrangement of actuators, the harmonic
drive output for joint 1 is taken from the cylindrical spline.
Whereas for joints 2 and 3, the output is taken from the
flex splines of their respective drives.

• The joints are considered to be frictionless in order to study
the other effects.

• Both joint and drive flexibility, i.e., rotational elasticity
along the XY Z axes is considered for all three joints.

The aforementioned features 1-3 are common in most com-
mercial industrial manipulators such as ABB’s IRB 1600,
IRB 2400, IRB 140, etc. The reason for choosing a system
with 3 joints is to maximize the effect of the two factors
mentioned in Section II and at the same time maintain the
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system’s complexity to a moderate level. While a single
joint system reduces the effects of ignoring S and adopting
a simple HD model, choosing a system with > 3DoF
only increases the system’s complexity. The contribution of
adverse effects from joints beyond 3 is minimal due to the
usage of lighter actuators and transmission systems.
A. Adams Model of the System

A virtual model of the manipulator is created using MSC
Adams software along with the elasticity considered for each
joint as shown in Fig. 1a. The virtual model includes the
HD model but not the belt-pulley for each joint, and in
the HD, the flex spline is modeled as a rigid body. These
are done to keep the virtual model relatively simple and
easy to use. The implementation of joint elasticity for a
single joint in Adams is shown in Fig. 1b. In particular,
the figure shows joint 3 connecting Link 2 and Link 3. In
Fig. 1b, cylindrical spline is fixed to Link 2 and revolute
joints are defined for rotor (Rrotor), wave generator (RWGen),
and flex spline (RFSpl) keeping Link 2 as the reference. The
motion transmission obtained due to the belt-pulley system
is replicated by defining a coupler joint of ratio rb between
Rrotor and RWGen. Similarly, the reduced motion due to HD
is modeled by defining another coupler between RWGen and
RFSpl with rhd set as its transmission ratio. In the above
coupler joints, Rrotor and RWGen are taken as the driver joints.
Since the drive compliance due to belt and HD is along the
same axis (Z), they are combined and only its resultant is
considered here. The joint and drive compliance along XY Z
axes is modeled by defining a 6D bushing between Link 3
and Flex Spline 3. A bushing is a connection tool in Adams
that can render 6D compliance (3 translational + 3 rotational)
between any two rigid bodies. High stiffness and damping
parameters are set for translational displacements, and for
rotational compliances, the values are chosen based on the
datasheets of HD and bearing systems.

IV. MANIPULATOR MODEL WITH JOINT AND DRIVE
ELASTICITY AND VARIOUS HD MODELS

A. Manipulator Model with Joint and Drive Elasticity

The numerical model of the manipulator is developed
considering the joint and drive flexibilities, the low inertia
coupling between the actuators and links, and the HD model.
Figure 2 shows the manipulator model with the reference
frame for each joint (Oi), joint coordinates for the input
motion by each rotor (θmi), output motion after a two-stage
reduction (θi), and the link motion due to drive compliance
(qi) and joint compliance along X(qix) and Y (qiy) axes.
For the kinematic transformation between different joint
reference frames, the Denavit-Hartenberg’s (DH) parameters
derived for the 3-joint manipulator shown in Table I are
used. For instance, the representation of O0 in terms of the
ground or inertial reference frame OG denoted by T G

0 can be
computed as follows,

T G
0 = Rθ0,z ·Trd0,z ·Tra0,x ·Rα0,x, (2)

where Rθ0,z and Rα0,x are 4 × 4 homogeneous matrices with
a zero displacement vector and their rotational components

TABLE I
DENAVIT-HARTENBERG PARAMETERS OF A 3-JOINT MANIPULATOR

DH Frame ai di αi θi
O0 0 0.285 0◦ 0◦
O1 0 0.15 -90◦ θ1
O2 -0.75 -0.16 0◦ θ2 + 90◦
O3 -0.75 -0.0375 0◦ θ3 + 90◦

being a 3D rotational matrix along z and x axis respec-
tively. Similarly, Trd0,z and Tra0,x are homogeneous matrices
with unit rotation matrix and the displacement vectors are[

0 0 d0
]T and

[
0 0 a0

]T respectively.
To represent O1 in terms of OG, the joint compliance of

joint 1 along X and Y axes should also be taken into account.
As a result, T G

1 is computed as shown below:

T G
1 = T G

0 · (Rq1y,y ·Rq1x,x) · (Rθ1,z ·Trd1,z ·Tra1,x ·Rα1,x), (3)

where the first expression (right side) is the homogeneous
transformation of O1 in terms of O0 denoted by A1. This
is further transformed by the second expression representing
joint 1 compliance along X and Y axes and finally trans-
formed to the G frame by pre-multiplying with T G

0 .
The dynamic equation of the system considering both joint

and drive flexibilities are computed using the well known
Euler-Lagrange equation as shown below:

d
dt

∂L
∂ Θ̇
− ∂L

∂Θ
= f, (4)

where, L is the difference between the total kinetic and
potential energy of the system, f is the generalized force
vector, and Θ =

[
qix qiy qi θi

]T is the generalized
joint coordinate vector that includes the joint compliance,
drive compliance, and reduced motion coordinates of all the
joints. The total kinetic and potential energy of the system
are computed as K = ∑

nl
i=1(K

l
i +Kr

i +Kwg
i +K f s

i +Ke
i ) and

P = ∑
nl
i=1(P

l
i + Pr

i + Pwg
i + P f s

i ) respectively. In the above
equation, Kl,r,wg, f s

i and Pl,r,wg, f s
i represent the kinetic and

potential energy of ith link, rotor, wave generator, and flex
spline respectively, nl is the number of links, and Ke

i denotes
the ith joint stiffness. The computation of the above elements
are explained briefly in [18].

Using (4), the total inertia matrix of the system M∈Rn×n

can be computed as shown below:

M=
∂d
∂ Θ̈

(
d
dt

∂L
∂ Θ̇

), (5)

where n = n j f + nd f + na is the total DoF of the system
considered in the model, in which, n j f and nd f represents
the joint and drive flexibilities, and the number of actu-
ated joints is denoted by na. From M various equation of
motion elements shown in (1) such as M ∈ Rnd f×nd f , S ∈
Rnd f×na , B ∈ Rna×na , and ci ∈ R(nd f +na)×1 can be extracted
as explained in [14]. With the above equation of motion
elements extracted from M, the complete dynamic equation
of motion given in (1) is obtained in symbolic form for a
3-joint elastic manipulator. To evaluate the accuracy of
the numerically computed model mod3, that includes S and
all HD components as defined in (1), a pre-defined joint
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Base

Flex Spline (J1)

Cyl. Spline (J1)

Rotor (J1)

Link 1

Link 2

Link 3

(a)

Rotor

Cyl.Spline 3 
Wave Generator 3

Flex Spline 3

Joint Compliance

Link 2

Link 3
(connects Flex Spline 3 
and Link 3 via 6D bushing) 

(fixed to Link 2)

(b)

Fig. 1. (a) A virtual model of a 3 joint elastic robot modelled in Adams. (b) Implementation of joint elasticity in Adams is shown here for joint 3 along
with the rotor and harmonic drive components. θm3, θwg3, θ3, and q3 represents the position of rotor, wave generator, flex spline, and link respectively.

Fig. 2. A 3-joint elastic model of a manipulator is shown here with the joint
reference frames, rotor motion, reduced motion after two stage reduction,
link motion due to drive and joint compliance represented by Oi, θmi, θi, qi,
qix, and qiy respectively. OG denotes the ground or inertial reference frame
of the model and the helical coils around XYZ axes show the rotational
compliance along each axis.

motion is used to compute the joint (τm
1 , τm

2 , τm
3 ) and link-

side torque (τ l
1, τ l

2, τ l
3) values. These values are compared

to those obtained with the virtual model (modad) developed
using Adams (see Fig. 2), as shown in Fig. 3. For the pre-
defined motion, a step ramp of 0.1 rad on the output side of
HD in 1s is used. The joint side torque values here refer to
those obtained at the HD output. The rb and rhd considered
for this motion are 3 and 121 respectively, resulting in a total
transmission ratio (rtot ) of 363. This is the maximum value
considered in this work to show the extreme possible errors
in the numerical model. From Fig. 3, we can see that the
τm

i of mod3 correlate well to that of modad . However, in the
case of τ l

i , the torque values computed using mod3 are not
exactly zero when compared to those obtained using modad .
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Fig. 3. Joint (τm
1 , τm

2 , τm
3 ) and link side torque (τ l

1, τ l
2, τ l

3) values comparison
made between the virtual model (modad ) and numerically computed model
(mod3) using (1), for a pre-defined joint motion.

This discrepancy is due to the 6 DoF bush joint modeled
between flex spline and the link to represent the system’s
joint compliance in modad , as shown in Fig. 1b.

B. Various Harmonic Drive Models

The conventional approach to model a HD system numer-
ically is to consider the rotor and wave generator as a single
component and the flex spline as part of the link that is being
moved. Using this approach can result in erroneous torque
results for the following reasons:
• The input motion from the rotor to the link is done in

two stages: belt-pulley (stage-1) and HD (stage-2). This is
unlike the conventional ones, where the rotor is directly
connected to the HD’s input component.

• Depending upon the transmission ratio of stage-1 reduc-
tion, the dynamics of the wave generator inferred at the
rotor can vary considerably.

• The dynamic properties of HD components are consider-
ably high for bigger systems, like the one considered here,
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making it harder to ignore them.
• Finally, for applications that require high accuracy rela-

tively more accurate HD models are required to capture
its dynamics reliably.

On the other hand, there are also several complex HD models
that have been reported in [16], [17], and they can capture
more accurately the dynamics of systems which are harmonic
driven. Though these models closely represent the harmonic
drives, they are predominantly applied on 1 DoF systems
Further, incorporating such complex HD models in multi-
DoF joint elastic systems like the one considered in this work
can make it too complex for computational reasons. As a
result, two different models have been considered here, to
determine the one which is less complex and at the same
time accurate enough to capture joint dynamics.

1) HD Model With Only Wave Generator (mod1): The
first model considers the rotor and wave generator as indi-
vidual components, and the cylindrical/flex spline is taken to
be an integral part of the link that is attached to HD’s output.
In this case, the joint compliance is assumed to be before the
flex spline, and the reflected inertia at the HD output (Ir f l

hd )
and its resultant torque (τhd) are computed as

Ir f l
hd = Iwg ·n2

hd + Ir · r2
b · r2

hd ,

τhd = αwg× Ir f l
hd ,

(6)

where Iwg and Ir are the inertia of the rotor and wave
generator respectively, and αwg is the acceleration of the
wave generator. The above reflected inertia form appears
in the diagonal actuator inertia matrix, B, for each joint
i computed with their respective Ii

r and Ii
wg values. Since

the cylindrical/flex spline components are not considered
separately, the other equation of motion elements such as M,
g, c, and ci also changes in (1). Due to the non-consideration
of S, it is taken to be a null matrix in (1) for mod1.

2) HD Model With Wave Generator and Splines (mod2):
The second model is relatively more detailed when compared
to the previous one, involving the splines of HD along
with the rotor and wave generator components. The cylin-
drical/flex spline is considered to be a separate part, and it
is coupled to the link through joint compliance. In this case,
the reflected inertia at the HD output and its resultant torque
are computed as given below

Ir f l
hd = Ispl + Iwg · r2

hd + Ir · r2
b · r2

hd ,

τhd = αspl× Ir f l
hd ,

(7)

where Ispl and αspl are the inertia and acceleration of cylin-
drical/flex spline depending upon the mounting arrangement
of the HD. Since the cylindrical/flex spline component of HD
is also considered in the model, all the equation of motion
elements in (1) remain the same, except for S, which is taken
to be a null matrix since it is ignored here.

C. Effect of Adopting a Simplified HD Model

The τm
i and τ l

i values computed for the pre-defined joint
motion (Fig. 3) using three different numerical models:
mod1, mod2, and mod3 are compared in Fig. 4a. From

the figure, we can observe a close correspondence of τm
i

values between mod1, mod2, and mod3. In the case of τ l
i ,

mod1 and mod2 differ slightly from mod3 with the former
showing large variation. This is attributed to the fact that
the S term is not considered in mod1 and mod2. Between
mod1 and mod2 also some difference is observed due to
the different way of modeling the HD system. To quantify
the differences between the models and make an efficient
comparison, two performance metrics on the torque values
have been considered here: maximum error (emax) and root
mean square error (ermse). Both emax and ermse are computed
with respect to mod3.

To understand how the HD model error propagates as the
transmission ratio is increased, five different rtot values (5,
51, 128, 230, and 363) have been considered for the perfor-
mance metric comparisons shown in Fig. 4b. As observed
in Fig. 4a, the difference between mod1 and mod2 is very
minimal for the τm

i values as rtot is increased. The reason
can be visualized by comparing the computation of Ir f l

hd in
mod1 and mod2, as seen in (6) and (7) respectively. The
main difference is the inclusion of Ispl in (7) but its effect is
relatively minimal since the rest of the terms are multiplied
by r2

b and r2
hd . The difference is relatively more pronounced

in τm
1 because HD output is at the end of the cylindrical

spline instead of the flex spline, and the former’s inertia is
10 times higher than the latter. This is due to a different
arrangement of the HD assembly for joint 1.

On the other hand, the difference between mod1 and mod2
is more pronounced on τ l

i values and the latter reporting
relatively less error. This is due to the less accurate modeling
of HD in mod1 since it doesn’t include the spline components
of HD. The modeling error appears predominantly through
the M(q) and ci terms because of the absence of Ispl in those
terms in mod1, which is not the case with mod2. The error in
mod1 and mod2 and their inter differences increases linearly
as rtot increases for joint 1 and 2. The causality of this can
be visualized in (1), in which one of the ci is a function
of θ̇ and it is related to the rotor angular velocity θ̇m as
θ̇ = rtot · θ̇m. The error observed in mod2 for joint 1 and 2 is
mainly due to the absence of the S term. In the case of joint
3, the performance metric error remains constant for mod1 as
rtot is increased, and is 0 for mod2. The former trend suggest
that the error is mainly through M(q) due to the ignorance
of Ispl because of simple HD model in mod1. Since joint 3
is the last one and there are no relatively moving bodies, the
components corresponding to τ l

3 in ci and S are 0.

V. EFFECT OF IGNORING LOW INERTIA COUPLING

The effect of excluding spline components in the HD
model and ignoring the S matrix can be analyzed by com-
paring mod3 with the other two models mod1 and mod2.
mod3 includes the detailed HD model of mod2, and it also
considers S. For the system considered here, the computed
S matrix looks like the following:

S =

 S1,1 S1,2 S1,3
0 0 S2,3
0 0 0

 , (8)
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Fig. 4. (a) Joint and link side torque obtained for a pre-defined motion using three different models are shown here. The three different models considered
here are: simple HD model (mod1), relatively complex HD model (mod2), and complex HD model with low inertia coupling (mod3). (b) The performance
metrics (maximum error(emax) and root mean square error (ermse)) of the joint and link side torque values computed with different reduction ratios are
compared here between mod1 (1st stacked bar) and mod2 (2nd stacked bar). In each stacked bar, the bottom and top bars represent emax and ermse
respectively. (c) Comparison of torque performance metrics made between mod1, mod2, and mod3 (3rd stacked bar).

with S1,1 = Ir,1
zz rbrhdσ1,

S1,2 = I f s,2
zz σ2 + Iwg,2

zz rhdσ2 + Ir,2
zz rbrhdσ2,

S1,3 = I f s,3
zz σ3 + Iwg,3

zz rhdσ3 + Ir,3
zz rbrhdσ3,

S2,3 = I f s,3
zz σ4 + Iwg,3

zz rhdσ4 + Ir,3
zz rbrhdσ4.

(9)

In (9), coefficients which are functions of q are represented
in the form of σi for brevity.

Similar to Fig. 4b, the performance metrics of τm
i and τ l

i
values are compared in Fig. 4c between the three models
to understand the aforementioned effect. The performance
metric of τm

i values computed with mod3 are much better
than those computed using mod1 and mod2. Both emax and
ermse of mod3 increases linearly as the rtot is increased but
they are ≈50% less when compared to those of other models.
The significant improvement in the accuracy is due to the

inclusion of S in mod3 as shown in (1), and this is not the
case with mod2 and mod1. However, torque due to the rotor
and HD component’s inertia, which are part of the B term,
dominate significantly since they are multiplied by rb and
rhd as shown in (7).

In the case of τ l
i , both emax and ermse are very minimal

because of the consideration of S term in mod3 as seen in
(1). This is replaced by a null matrix 0 in the case of mod1
and mod2 to achieve a simplified model. Hence, the values
computed with mod3 are relatively more accurate than the
others. Since the elements in S corresponding to τ l

3 are 0
as observed in (8) both mod2 and mod3 values of τ l

3 match
exactly. The constant error observed with mod1 for τ l

3 is due
to the exclusion of spline component in its HD model.
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VI. ESTIMATION ERROR OF DIFFERENT MODELS

Sections IV-B and V demonstrate the likely error to occur
in the joint and link-side torque values due to different
models, but the relative torque error appears to be minimal.
To understand its exact impact, it is necessary to assess
the effect of each model’s torque errors in estimating their
respective dynamic parameters Ψ, i.e., the mass, center of
mass, inertia of different components, and the stiffness and
damping of joints. Few works have already been proposed
to estimate the dynamic parameters of a manipulator, such
as [6], [7], [19], etc. In this work, we have adapted the
estimation procedure proposed in [6] for our elastic joint
model. For the estimation here, we have set qix, qiy, and
their respective derivatives to 0. The elements of equation of
motion shown in (1) M(q), S(q), B, g(q), K(q,θ), D(q̇,θ̇),
and ci(q,q̇,θ̇) are all functions of the dynamic parameters Ψ.
Since the aforementioned elements are also functions of q,
q̇, q̈, θ, θ̇, and θ̈, they can be rewritten in a linear regression
form as shown below

[0 τ ]T = Φ(q, q̇, q̈,θ, θ̇, θ̈)Ψ, (10)

where Φ is the regression or identification matrix, and Ψ

is the dynamic parameter vector that needs to be estimated,
and this is observed to be linear as seen in (10). Φ can be
computed easily since it is a function of motion parameters.

A. Dynamic Parameters and Coefficients Estimation

To estimate the parameters reliably, it is necessary to
design motions that can sufficiently excite the parameters
which are to be estimated. We have used a parametric way
based on the Fourier series to design trajectories, and the
parameters are optimized using a pattern search algorithm
from Matlab. For more details please refer to [5]. The
resulting optimal excitation trajectory is used to simulate the
virtual Adams model, and the corresponding joint and link-
side torque values are recorded. Using the linear regression
form in (10), the parameter/coefficient vector Ψ can be
estimated in a linear least-square form Ψls as follows:

Ψls = (FT F)−1FT b, (11)

with

F =


Φ(q, q̇, q̈,θ, θ̇, θ̈)1

. . .

. . .
Φ(q, q̇, q̈,θ, θ̇, θ̈)Ns

 , b =


[0 τ ]T1
. . .
. . .

[0 τ ]TNs

 (12)

is the measured torque vector collected for Ns samples. For
the estimation here, 100 samples are collected at a frequency
of 10Hz over a trajectory duration of 10 secs. Due to the
linear dependency of some of the columns in the F matrix,
few parameters can only be estimated in a linear combination
with other parameters, i.e., dynamic coefficients [20].

Following the parameter estimation procedure, the dif-
ferent models are rewritten in their respective standard re-
gression forms, as shown in (10). This is followed by the
least square estimation of each model’s dynamic parameters

0-20 21-50 51-100
0

10

20

30

40

50

60

70
mod3

mod2

mod1

Fig. 5. The Ψi
err is categorized into three categories (0-20%, 21-50%, and

51-100%) and the percentage of Ψi
ls elements falling under each category

is compared across three models: mod1, mod2, and mod3.

using (11). Since the F matrix is likely to differ for different
models, the estimated Ψls can also vary for various models.
The total number of parameters that can be estimated with
mod2 and mod3 are 75, and for mod1 it drops down to
65. The parameters that cannot be estimated with mod1 are
the mass and inertia of cylindrical/flex spline components.
This is due to the assumption of a relatively simple HD
model, as discussed in Section IV-B. In the case of mod1
and mod2, though the actual number of parameters that can
be estimated is the same, most of them are estimated in a
linearly combined form, and hence, they are likely to differ.

B. Comparison of Relative Estimation Error (Ψerr)

In order to deduce the estimation error for each model i,
the true Ψi vector is computed for each one using the actual
values of the dynamic parameters, and the relative estimation
error vector Ψi

err in percentage is computed as shown below:

Ψ
i
err = ((Ψi

ls−Ψ
i)/Ψ

i)×100. (13)

Again, the individual elements of Ψi
err of different models

cannot be compared directly due to the number of parame-
ters and its various linear combinations. Hence, the overall
estimation accuracy of mod1, mod2, and mod3 are compared
by segregating the error into three categories: low (0-20%),
mid(21-50%), and high (51-100%). Figure 5 compares the
percentage of Ψi

ls elements computed for each model modi
falling under three different error categories. From the figure,
we can see that the relatively simple model mod1 estimates
62.5% of Ψi

ls with high error, and only 29.69% of them are
estimated with low error. This trend is associated with the
fact that mod1 uses a relatively simple HD model and also
ignores the S term. In the case of mod2 and mod3, though
both the models can estimate the same number of parameters,
mod2 doesn’t consider the S term. As a result, mod3 reports a
higher percentage (68.42%) of Ψi

ls estimated with low error
when compared to mod2 which reports a slightly lower value
(60.53%). However, with mod2 and mod3, a significantly
higher percentage of Ψi

ls can be estimated with a lower
error when compared to mod1. Also, a significantly lower
percentage of Ψi

ls have been estimated with high error using
mod2 (26.32%) and mod3 (21%) when compared to that of
mod1. In the mid-range error category, the difference between
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different models seems to be minimal, with mod2 reporting
a slightly higher value of 13.16%. Overall, mod2 and mod3
estimate more number of Ψi

ls with lower error, and of which
mod3 being the relatively accurate model performs better
across different error categories.

VII. DISCUSSION AND CONCLUSION

1) Discussion: For this study, we haven’t considered any
sensor noises, and this may have some minor effects on
the reported results. The noise effect will be minor because
for the estimation reported in Section VI we require only
joint encoders and joint torque sensors. Joint velocity and
accelerations can be analytically estimated instead of offline
differentiation, thanks to the use of the Fourier series wave
to design the excitation trajectories. Of the two sensors,
joint torque sensors are notorious for noisy measurements.
Assuming a white Gaussian noise (µ = 0, σ = 0.26 Nm) for
torque sensors [21], only the results reported for τm

1 in Fig.
4b and Fig. 4c are most likely to be dominated by noise
since the maximum value is < 0.5 Nm across different rtot .

In Section VI, most of the elements of Ψls are estimated
in a linear combination of dynamic parameters, except
for a few. Though it is possible to estimate the individual
parameters from their linear combinations using non-linear
optimization [20], we have chosen Ψerr for comparison in
Section VI-B Even if the individual parameters are extracted
from Ψls using [20], the overall results and observations
drawn in Section VI-B may not change significantly since
the extraction error is still limited by the accuracy of Ψls.
However, it will certainly give us more information about
the exact estimation error of each parameter. Further, in
Fig. 5, even for mod2 and mod3 around 20-30% of Ψls
have estimation error percentage > 51%. This is because
the elements of Ψls are in a linear combination of inertia,
CoM, and mass of various components, and they are likely
to result in low values due to the lower values of inertia
and CoM. As a result, even a small change in ψ i

ls can result
in high ψ i

err for each model as computed in (13).

2) Conclusion: In this work, the effect of ignoring S and
adopting a simple HD model on the accuracy of a joint elastic
model of an industrial manipulator has been studied. Three
different models are considered here for comparison: mod1,
mod2, and mod3. The torque performance metric computed
across different reduction ratios for all three models reported
a relatively better accuracy of mod3. Though the torque
difference between the models seems to be minimal, using
these models to estimate the system’s dynamic parame-
ters/coefficients resulted in a considerable error, with mod3
having a relatively better estimation. The proposed detailed
elastic model mod3 can improve the manipulator’s accuracy
reported in [11], [12], [22] Experimental verification of this
will be carried out in our future work.
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