

 Freigabe: Der Bearbeiter: Unterschriften

 Mohamad Elbadrawy

 Betreuer:

 Maximilian Denninger

 Der Institutsdirektor

 Prof. Alin Albu-Schäffer

 Dieser Bericht enthält 60 Seiten, 34 Abbildungen und 8 Tabellen

 Institut für Robotik und Mechatronik

 BJ.: 2021

 IB.Nr.: DLR-IB-RM-OP-2021-225

MASTERARBEIT

INDOOR SCENE SYNTHESIS:

GENERATION OF INTERIOR DESIGNS

WITH TRANSFORMER MODELS

 Ort: Oberpfaffenhofen Datum: 06.12.2021 Bearbeiter: Maximilian Denninger Zeichen:

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Indoor Scene Synthesis: Generation of Interior
Designs with Transformer Models

Mohamad Elbadrawy

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Indoor Scene Synthesis: Generation of Interior
Designs with Transformer Models

Indoor Scene Synthesis: Generierung von
Interior Designs mit Transformatormodellen

Author: Mohamad Elbadrawy
Supervisor: Dr. habil. Rudolph Triebel
Advisor: Denninger Maximilian
Submission Date: 15th September 2021

I confirm that this master’s thesis in informatics is my own work and I have documented all
sources and material used.

Munich, 15th September 2021 Mohamad Elbadrawy

Acknowledgments

Firstly I would like to thank the DLR and Dr. Rudolph Triebel, for giving me the
opportunity to work on my Master Thesis and expand my practical experience in Deep
Learning and Computer Vision. I would also like to thank my supervisor Maximillian
Denninger, who has been very supportive throughout my time at DLR. Additionally, I would
like to thank the rest of my team at DLR for helping me write my thesis.

Abstract - English

The task of indoor scene generation consists of creating a sequence of objects categories,
their locations, and orientations conditioned on the shape and size of a room. In order to
automize the easy and fast generation of authentic 3D scenes without the need of human
supervision. For that large scale indoor scene data-sets are used, which allow us to extract
patterns from expert-designed indoor scenes. Based on those it is possible to generate new
scenes based on the learned patterns hidden in these datasets.
Existing methods rely on representing the scene by its 2D or 3D appearance [SZW19]

[Ma+17]. There there are other methods representing it as a graph while making assumptions
about the possible relations between objects. In contrast to those, the aim of this thesis is
to learn relations between objects using the self-attention mechanism of transformers. This
approach leads to a similar or even better levels of realism, while being more salable.
Our approach named EnvironmentFormer is simple and an effective generative model

conditioned on the room shape, and room type. The room type here could be for example
be a kitchen or a living room. Our method is built on the transformer model from Vaswani
et al. [Vas+17]. The result of our method is a complete 3D scene, containing information
where which objects should be placed. Those results are then further improved by using
appearance-based methods for refinement and style consistency.

iv

Abstract - German

Die synthetische Erzeugung von Innenraumszenen besteht daraus, eine Abfolge von Objektkat-
egorien, deren Positionen und Ausrichtungen in Abhängigkeit von der Form und Größe eines
Raumes zu erstellen. Das Ziel hier ist die einfache und schnelle Generierung authentischer
3D-Szenen zu automatisieren, ohne dass ein menschlicher Eingriff erforderlich ist. Dazu
Werden große Datensätze von Innenraumszenen verwendet, sterben es uns erlauben, Muster
aus den von Experten entworfenen Innenraumszenen zu extrahieren. Auf diesen Aufbaud ist
es möglich, neue Szenen zu generieren, sterben auf den gelernten Mustern basieren, welche
in den Datensätzen versteckt sind.
Be Methoden basierend auf der Darstellung der Szene durch 2D- oder 3D-Darstellung

[SZW19] [Ma+17]. Es gibt zusätzliche andere Methoden, sterben sterben Szene als Graph
darstellen und dabei Annahmen über sterben Beziehungen zwischen verschiedenen Objekten
treffen. Im Gegensatz dazu ist es das Ziel dieser Arbeit, Beziehungen zwischen Objekten zu
lernen, wie man den Selbstbeobachtungsmechanismus von Transformern nutzt.
Unser Ansatz namens EnvironmentFormer ist ein einfaches und effektives generatives

Modell, das auf der Raumform basiert und dem Raumtyp Szenen generiert. Der Raumtyp
könnte hier zum Beispiel eine Küche oder ein Wohnzimmer sein. Unsere Methode dabei baut
auf dem Transformermodell von Vaswani et .al [Vas+17] auf. Als Ergebnis liefert unserer
Methode eine vollständige 3D-Szene, sterben Informationen darüber enthält, wo welche
Objekte platziert werden sollen. This Ergebnisse Werden Dann Mit Hilfe Von Stilbasierten
Methoden Zur Verfeinerung Des Stilkonsistenz Weiter Verbessert.

v

Contents

Acknowledgments iii

Abstract - English iv

Abstract - German v

1 Introduction 1
1.1 Problem Statement and notation . 2
1.2 Thesis Structure . 2

2 Related Work 4

3 Our Approach 6
3.1 Transformer for scene synthesis . 6

3.1.1 Tokenization . 6
3.1.2 Embedding . 7
3.1.3 Context . 7

3.2 The EnvironmentFormer . 9
3.3 Category EnvironmentFormer . 10
3.4 Orientation transformer . 11
3.5 Location transformer . 12
3.6 Dimension transformer . 12
3.7 Room Generation algorithm . 13
3.8 Texture styling model . 14

4 Experimental Setup 17
4.1 Environment . 17
4.2 Datasets . 17

4.2.1 SUNCG . 17

vi

Contents

4.3 Data preprocessing . 19
4.4 Models . 23

4.4.1 Transformer . 24
4.5 Training . 25
4.6 Implementation . 26

5 Experiments 27
5.0.1 Category EnvironmentFormer . 27
5.0.2 Orientation EnvironmentFormer . 28
5.0.3 Location EnvironmentFormer . 30
5.0.4 Dimension EnvironmentFormers . 32

6 Evaluation 33
6.1 Single room type results . 33
6.2 Room type encoded . 34
6.3 Styled rooms . 36

7 Future Steps 44
7.0.1 Datasets and Data representation . 44
7.0.2 Room types Encoding strategies . 44
7.0.3 Styling rooms . 45

8 Conclusion 46

List of Figures 47

List of Tables 51

Bibliography 52

List of Abbreviations 54

vii

1 Introduction

People spend a large percentage of their lives indoors -in bedrooms, living rooms, offices,
kitchens, and other such spaces- which increases the demand for indoor virtual 3D environ-
ments. The usage for those 3D virtual environments has increased between game developers,
VR/AR designers, architects, and interior designers, and even people who sometimes just
want to sketch their home and view it in 3D. Not only that but AI, vision and robotics
researchers had to turn to virtual environments [Son+17] when the real data was no longer
enough for the algorithms that kept getting more powerful.

As the vision community turns from passive internet-images-based vision tasks to applica-
tions such as the ones listed above, the need for virtual 3D environments becomes critical.
The community has recently benefited from large-scale datasets of both synthetic 3D environ-
ments and reconstructions of real spaces, and the development of 3D simulation frameworks
for studying embodied agents. While these existing datasets are a valuable resource, they are
also finite in size and don’t adapt to the needs of different vision tasks. To enable large-scale
embodied visual learning in 3D environments, one must go beyond such static datasets and
instead pursuing the automatic synthesis of novel task-relevant virtual environments.
Due to the rising interest and demand for 3D data modeling, which motivated this work,

one decided to tackle the indoor 3D virtual environments sub problem, those environments
are used in popular design-your-home 3D tools, tools like Planner5D, Sweet Home 3D, or
even Sketch-up, these tools help you design the interior of your home by simply asking
you for the floor plan (in most cases) and let you try adding objects and rearranging them,
bridging the gap between your vision of your home and what it is actually going to look like
by giving you visual feedback of your vision. Also, the increased reliance on 3D modeled
environments has dramatically increased across multiple domains, for instance, the size of
gaming environments of most games has increased, in some cases, it takes the designing
teams years to model such complex game environments.
The goal of this thesis is to investigate the task of automatic synthesis of novel task-

relevant virtual environments, specifically indoor environments. This work investigate existing

1

1 Introduction

Figure 1.1: A scene completion task done by [ZWK19]. This scene shows a bathroom
completed in iterative way.

deep learning based approaches and investigates the application of a transformer model to
the task.

1.1 Problem Statement and notation

The problem of automatic synthesis of indoor scenes is the problem of “where” to put “what”.
For example, “what” objects are relevant to a bedroom room, a bed is likely to be placed in
a bedroom and unlikely to be placed in a kitchen, while a stove is likely to be placed in
a kitchen and not in a bedroom. The "where" is more difficult because of the many more
possible correct answers to this question. There could be many possible ways to place a bed
in a bedroom room. This bed needs to placed where it would be surrounded with bed stands
and there is room around it. There should be some enough space to get on the bed from the
side. This work answers the question to "what" and "where" in an auto-regressive manner,
hence a sequence generation is used to treat the scene generation problem as a sequence
generation problem. Hence opening the way for sequence models to be used to solve it, in
this thesis transformer models.

1.2 Thesis Structure

This thesis is structured as follows. In chapter 1, an introduction to virtual 3D scenes
generation is provided along with the problem statement of this thesis and the thesis structure.
In chapter 2 an overview of existing approaches to the problem statement is given, high-

lighting the differences to our approach.

2

1 Introduction

Afterwards, in chapter 3, our approaches to the task of applying transformers networks to
scene generation are discussed in detail.

Afterwards, in chapter 4, the experimental setup for the thesis which includes the datasets
used, model architectures used, training and evaluation procedures, and a few implementation
details are discussed.
Following that, the experiments 5 summarizes our experiments and shows our training

graphs. In chapter 6, evaluation of our approaches and extension works are listed and
interpreted. Later in chapter 7, future steps and ideas that are out of scope for this thesis
but are related to our work are discussed. At the end in chapter 8, our work in this thesis is
summarized.

3

2 Related Work

This chapter provides an overview of existing indoor scene synthesis techniques and states
how their approaches differ from this approach.
Scene understanding is about parsing existing scenes into semantic parts. Scenes could

be represented by 3D models, point clouds, a graph, RGB-depth scans, or even just RGB
images, with each representation having its advantages and uses [Liu+14] [JGS19] [NKP18].
Scene understanding has many uses as 3D reconstruction, object recognition and segmentation
[Zho+18]. It is the inverse of scene synthesis which this work tries to solve by generating a
scene instead of understanding and analysing an existing one.
To solve the indoor scene synthesis problem, some approaches tried to make use of a

graph like structure of an indoor scenes, using models and learning algorithms which are
designed to work well on graph structured data as in [ZWK19] where they represent the
scene in a graph structure using hand crafted features to form the edges in the graph. To
construct such a graph, a heuristic to construct the edges is needed. Some intutive objects
relations could be used as such heuristics, typically those heuristics have, Surrounding an
object, On top of an object and Between two objects.
By using a neural message passing algorithm they were able to learn those relations

between the objects in the scene. And during generation, which is auto-regressive, if the
current input object is a bed, and if the predicted next object is a pillow then larger weight
would be given for the on-top-of relation. While this work produced some visually good
results as seen in figure 1.1, it depends on the quality of the selected heuristics that the
graph is built on.

Our work is different than [ZWK19] by the fact it doesn’t depend on hand crafted heuristics.
It differs as such our work can be trained once on more than a room type, it wouldn’t require
a model to be trained for each room type.

Another approach was introduced by [Wan+19], where they divide their approach into two
stages, a planning one and an instantiating one, they represent the scene as a relation graph
in a similar way. Objects are the nodes and the relationships between them are the edges.

4

2 Related Work

In the planning stage, it uses a deep graph Convolutional Generative Model to synthesize
relation graphs. And in the instantiating stage, it uses image-based CNN modules to place
objects into the scene in a manner consistent with the graph. The difference between this
approach and our, is that our work deals with another representations of the scenes. While
this work have good results, they are just images at the end. The output of our work in a
completely annotated 3D scene.

Plan2Scene [Vid+21] came out recently, it converts 2D floor plans to 3D scene, the main
focus of this work was the texture synthesis and not interior design and placing objects in
the scene as this work. While in our work we have introduced a room styling module, the
main focus was to get plausible scenes from rooms layouts.

5

3 Our Approach

Transformer networks and their components form the core of our work. In this section, a
discussion of applying the task of 3D indoor scene synthesis that is based on transformer
architecture is done. There are five networks that are responsible for five different tasks,
namely the object’s category, orientation, location, dimension, and texture style. These
networks and their variations are discussed in the following.

3.1 Transformer for scene synthesis

In this section, our first approach on how transformers can be used for the task of scene
synthesis is discussed. Transformers are used to handle sequential data [Vas+17], so reformu-
lating the scene synthesis problem to a sequence generation problem is what should enable
the transformer to process the 3D scene data.
Inspired by [WYN20], the scene is represented by the sequence of the objects it has.

This sequence is ordered from the most frequent object to the less frequent one. For the
transformer to answer the questions of "what" and "where" it needs to be trained on a
sequence that has the answers to those questions. Making our problem a supervised learning
problem. So for each object in the scene, sorted by frequency, "what" kind of object it is,
namely the category and "where" it is namely the 6D pose. These categories and poses are
then used as our training data.

3.1.1 Tokenization

Transformers work with discrete values, and so the input values for a category or 6D pose
have to be quantized. For example, the object location in a scene could take infinitely many
values. Transformers are not capable of working with such types of unconstrained values.
Therefore the object’s 6D pose and category are quantized into discrete numbers for the
transformer to work with them.

6

3 Our Approach

Each category is given a unique identifier which here is called a token.
For the location values, they are scaled by the maximum room size and quantized into

80 discrete categories. For the object orientation values are converted to degrees angles,
meaning 360 tokens for the orientation.

In order for our model to learn those token, they need to be presented in convenient way
for the transformer. Representing tokens in an one-hot encoding is common in the neural
language processing field. However, when the vocabulary of words becomes large, a more
efficient representation is needed. Which is the reason the embedding layer is added.

3.1.2 Embedding

The task of the embedding layer is to learn to map our tokens to latent vectors, possibly
finding a unique vector for each word in a much-lower dimensional space. Making this
approach much more efficient than the one-hot encoding of the tokens.
A example of the usage of two embedding layers is shown in figure 3.1. The category

and orientation sequences of a room are embedded. For the category sequence, 41 is start
token, 42 is the padding token, 43 is the stop token. The values between the start token and
the first padding token are the objects categories tokens. The number of padding tokens is
calculated by the following formula:

pad = lmax+ lobjects− 2

So the count of padding tokens is equal to, maximum sequence length - length of objects
in the room - 2 (for start and stop tokens).

For the orientation sequence, 361 is start token, 362 is the padding token, 363 is the stop
token.

The result vector is then summed with the positional encoding and the contextual informa-
tion which are provided to the transformer.

3.1.3 Context

As explained in chapter transformer , the main two components of a transformer are an
encoder and a decoder, the function of each encoder layer is to generate encodings that contain
information about which parts of the inputs are relevant to each other, while each decoder

7

3 Our Approach

Figure 3.1: The task of the embedding layer is to learn to map our tokens to vectors, possibly
finding a unique vector for each word in a much-lower dimensional space. For
the category sequence, 41 is start token, 42 is the padding token, 43 is the stop
token. The values between the start token and the first padding token are the
objects categories tokens. For the orientation sequence, 361 is start token, 362
is the padding token, 363 is the stop token. The values between the start token
and the first padding token are the objects orientation tokens.

layer does the opposite, taking all the encodings and using their incorporated contextual
information to generate an output sequence.

In order for the transformer to learn poses and classes of objects, it needs some informa-
tion about the shape of the interior space, like where the walls are. Hence providing the
transformer with awareness of the room shape, is a must for the model to learn.
The Room layout is presented as a one channel 2D array, and to present it in a way

consistent with transformer some inspiration from the work of [Nas+20] conditioning the
model on an image of the room layout is taken. As shown in figure 3.2, the room layout, as
an image is fed to a small Resnet [He+16] to extend some features. The features are then
flattened, and pixel indexes are embedded and added to the features.

This work further introduces a single model, that is able to learn multiple classes of rooms.
This is the first work that does this given our research on the topic. The room layout image
is colored by a specific color for each room type it belongs to as shown in figure 3.3.

8

3 Our Approach

Figure 3.2: How the network deal with the room shape as contextual information. One
channel image of the room layout is passed through three Resnet [He+16] blocks.
The resulting features are flattened and added to the pixel coordinates embedding,
inspired by [Nas+20]

3.2 The EnvironmentFormer

Figure 3.4 shows the full transformer model which is used for one of the tasks, namely
category prediction task, with small changes in the model from one task to another.

Positional encoding is directly the position of the object in the sequence. This position is
based on the object frequency in this across the whole dataset for same type of room. This
was chosen so the model would predict frequent objects more than less frequent ones.

The encoder and decoder blocks were repeated eight times as the original [Vas+17]. The
input sequences of tokens are converted to a fixed size vectors using embedding layers and
summed together. The results are then added with the positional encoding of each token in
the sequence.

9

3 Our Approach

Figure 3.3: This figures shows how our work deals with multiple room types, and how to
encode this information. One channel image of the room layout is passed through
three Resnet [He+16] blocks. The resulting features are flattened and added to
the pixel coordinates embedding, inspired by [Nas+20]. Giving a specific color
for the layout of each room type is what enables the model to learn multiple
classes of room.

3.3 Category EnvironmentFormer

In this section we explain the Category EnvironmentFormer, the EnvironmentFormer task is
explained by discussing the inputs and outputs of the EnvironmentFormer.

Inputs starts with the category sequence, since it is the target. This work investigates
which sequences could be useful for our EnvironmentFormer to learn categories with high
accuracy.

For the category sequence, choosing only the forty most frequent categories, because the
frequency of finding an occurrence from one of the next categories was very low, less than
1% [Son+17]. So the model would have a start token of 41, stop token of 42, and a padding
token of 43.

At the beginning of training or testing, the first category token is the category start token.
Each time the model decide to add an object to the scene, this object’s tokens are added to

10

3 Our Approach

the corresponding sequences. Dealing with the problem in an auto regressive way. The same
goes for the orientation sequence as well, except the model doesn’t learn it.

The location and dimension has three times the information per object compared to category
or orientation (there is only one orientation value which is needed, and which is used in the
sequence, explained 3.4). So for location and dimension input sequences, the model needs
three embedding layers for each.
The categories are obtained by mapping the original [Son+17] to the [NF12] categories,

because they provide a higher level of categorization.
Outputs is a categorical tensor of the top 20% object category IDs the transformer suggests

to be added next.

3.4 Orientation transformer

Inputs: the orientation sequence, since it is the target. As expected, after doing some
experiments with adding other sequences to the inputs, the model with the addition of
location, category and dimension sequences performed better than all other variants that
was tested, as shown in the results section 5.0.2. The orientation is chosen to have single
token because in our problem, there is only one orientation angle that matters. Placing an
object in a room, one would only need one orientation angle, because the object would
need to be placed on the floor, which constrains the other two degrees of freedom. Hence
making the orientation problem easier for our model. During the prepossessing step, the
object orientation is converted to degrees. The tokens are chosen to have 360 values, as to
match the degree angles directly.

Following the same procedure as in 3.3, the first token is the orientation start token. Each
time the model decide to add an object to the scene, this object’s tokens are added to the
corresponding sequences. Dealing with the problem in an auto regressive way. The same
goes for the category sequence as well, except this model doesn’t learn it.

The location and dimension has three times the information per object compared to category.
So for location and dimension input sequences, the model needs three embedding layers for
each, same as the category model.

Outputs is a categorical tensor of the top 20% object orientation in degrees.

11

3 Our Approach

3.5 Location transformer

Inputs: the location sequence, because it is the target. Using a model that knows all the
possible information about the object made the most sense. Learning the location is the most
difficult task out of the four of, category, orientation and dimension. It has three times the
data compared to the first two, and more possible combination of values than the third.

To have a consistent location values across all room, so the model can learn. A maximum
room size is set and the location if the object is scaled by that size. Then the result of that
is quantized to the maximum number of tokens, eighty tokens were used for location values.
Following the same procedure as in 3.3, the first token is the location start token. Each

time the model decide to add an object to the scene, this object’s tokens are added to the
corresponding sequences. Dealing with the problem in an auto regressive way. The same
goes for the category and the other two sequences as well, except this model doesn’t learn
them.
The location is three times the information of the category and orientation, so it has

three times the sequence length. To be able to add the sequences they must the same
size. The solution for this problem, inspired by [WYN20], was repeating both the category
and orientation sequence three times. Hence ending up with same size sequences, and the
transformer was still able to learn.

Outputs is a categorical tensor of the top 30% object locations.

3.6 Dimension transformer

In principle, the dimension transformer is the same as the location transformer 3.5.
Inputs: They key difference from the location transformer 3.5, is that the dimension model

learns the dimension instead of location. The loss is calculated based on the dimension
sequence instead of the location one.
The dimension is as well three times the information of the category and orientation,

so it has three times the sequence length. To be able to add the sequences they must the
same size. Using the same approach as used in the location transformer 3.5, category and
orientation sequences were repeated three times. Hence ending up with same size sequences,
and the transformer was still able to learn.

Outputs is a categorical tensor of the top 30% object dimensions.

12

3 Our Approach

3.7 Room Generation algorithm

In this section, the process of combining everything that was discussed so far in a single
algorithm. This algorithm is what is used to generate rooms.

The process of producing a room is divided into the following steps:

1. The input is a room type and a room shape.

2. An empty room is created using the input room shape.

3. The room type and shape are combined and represented as a single vector.

4. This vector is an input to all the different EnvironmentFormers.

5. The category EnvironmentFormer is the first one to be invoked. If it is the first object,
the input is the start token of each sequence this EnvironmentFormer takes. Else the
inputs are the sequences of the current objects which are already added. The position
for the positional encoding layer always points to the start token of the category
sequence.

6. Using the category which was produced by the first EnvironmentFormer, the Orientation
EnvironmentFormer is invoked. The category token, which is produced from the
previous step is used. The orientation, location and dimension tokens are the start
token of each sequence.

a) The location EnvironmentFormer is invoked three times. Once per coordinate, x,
y and z. The EnvironmentFormer takes the position in the sequence of the object
to infer its location. To get x, y and z for each run, the position of the object is
incremented. For example the position of the object in the sequence is (object
position in the sequence + 0) for x coordinate, (object position in the sequence +
1) for y and (object position in the sequence + 2) for z. The location sequence
is three times the length of the category or orientation sequence.

b) The output of the location EnvironmentFormer is filtered and only the top 20%
locations are considered.

i. Randomly sample one of the top 20% locations.

ii. The dimension EnvironmentFormer is invoked three times. The same tokens
that are the input to the location EnvironmentFormer are used for the dimen-

13

3 Our Approach

sion EnvironmentFormer, except for the location tokens. The location tokens
that are used in this step are now the result from the previous step.

iii. Use the dimension model to choose a model from the 3D models set.

iv. If there is no collision in the room, the model is placed. Else another location
is sampled and the dimension model is invoked again with the new location.

v. If the re positioning trails exceed maximum re positioning trails, the algorithm
stops.

3.8 Texture styling model

A neural style transfer network is integrated into this work, the network is based on [GEB15a]
finding, that the representations of content and style in the Convolutional Neural Network
are separable. When Convolutional Neural Networks are trained on object recognition, they
develop a representation of the image that makes object information increasingly explicit
along the processing hierarchy [GEB15b]. Which means, along the depth of the CNN, the
input image is transformed into a representation that care more about the actual and high
level content, instead of pixel level values.

And for the representation of the style of an input image, the model uses a feature space
originally designed to capture texture information [GEB15b]. This feature space is built on
top of the filter responses in each layer of the network. It consists of the correlations between
the different filter responses over the spatial extent of the feature maps. By including the
feature correlations of multiple layers, the result is a stationary representation of the input
image, which captures its texture information but not the global arrangement.

The key for this is defining two distances, one for the content (Dc) and one for the style
(Ds). After loading our target texture image, it is transformed to minimize both its content
distance with the itself and its style distance with the style image.

The figure 3.6 from [GEB15a] visualizes the network. It explains with an example how a
style and a content image are dealt with by the CNN. It also visualize what the results of
the intermediate stages of processing.

14

3 Our Approach

Figure 3.4: Our EnvironmentFormer model. N is, the number of how often this block is
repeated. The input sequences of tokens are embedded and added together. They
are then added with the positional encoding of each token in the sequence.
The objects in the scene are sorted based on frequency across all data set for
this specific room type. Depending on the type of the model, the contextual
information are then added with the latter before going to the encoder. The same
embedded vector goes through the decoder with the exception that the future
tokens are masked so it can learn the sequence.

15

3 Our Approach

Figure 3.5: Neural Style Transfer, allows you to take an image and reproduce it with a
new artistic style. The algorithm takes three images, an input image, a content-
image, and a style-image, and changes the input to resemble the content of the
content-image and the artistic style of the style-image [Pas+19].

Figure 3.6: Convolutional Neural Network (CNN). Style Reconstructions. On top of the
original CNN representations we built a new feature space that captures the style
of an input image. The style representation computes correlations between the
different features in different layers of the CNN. We reconstruct the style of the
input image from style representations built on different subsets of CNN layers
(‘conv1 1’ (a), ‘conv1 1’ and ‘conv2 1’ (b), ‘conv1 1’, ‘conv2 1’ and ‘conv3
1’ (c), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’ and ‘conv4 1’ (d), ‘conv1 1’, ‘conv2
1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’ (e)). This creates images that match the
style of a given image on an increasing scale while discarding information of
the global arrangement of the scene [GEB15a].

16

4 Experimental Setup

4.1 Environment

For our work, the GPU cluster provided by the Institute for Robotics and Mechatronics of
the DLR (German Aerospace Center), is used. The cluster consists of Titan V 12GB, Titan
RTX 24GB, 2080 RTX Ti 11GB and Quadro GV100 32GB GPU’s. Most of our training
and testing is carried out on a single Titan V 12GB GPU.

Our code for the work is implemented using Python 3.8 and Torch 1.4 [Pas+19] is used
for all Deep Learning-related GPU operations. PyTorch lightning [Fal19] is a lightweight
PyTorch wrapper for high-performance Machine Learning research. In our code PyTorch-
Lightning is used to wrap training methods.

4.2 Datasets

Datasets are important in any learning-based method. With the rise in the application of
Deep Learning in almost every field, there has been quite a steep increase in the number of
public datasets. But, when it comes to datasets of annotated 3D environments, which have
accurate 3D data of the objects in the environments including normal information, location,
orientation, and size. The amount of those datasets has not been increasing at the same pace.
This happens as those types of datasets are difficult and costly to build as explained in the
related work.

4.2.1 SUNCG

SUNCG dataset is a large-scale dataset of synthetic indoor 3D scenes with dense object
centered annotations [Son+17]
The pre-processing of the dataset is done using a modified version of the data creation

scripts from [RWL18], choosing just the rooms that contain a floor node. This leads to the

17

4 Experimental Setup

Figure 4.1: A bedroom from SUNCG dataset [Son+17] rendered with [Com18]. This bed-
room was‘ part of our training data.

creation of 2434 valid bedrooms, 930 kitchen and so on as shown in figure 4.4. Given that
the most valid room types are bedrooms, it became the chosen room type for single type
room models experiments.

18

4 Experimental Setup

Figure 4.2: Sample from the offices in the SUNCG dataset [Son+17] rendered with [Com18].

Room type Rooms
Bedroom 2434
Kitchen 1863
Toilet 1601
Hall 473
Office 451
Living room 313
Balcony 305

Figure 4.4: Rooms after our preprocessing and filtering in SUNCG 4.2.1 dataset.

4.3 Data preprocessing

The preprocessing steps of SUNCG data 4.2.1 is explained in this section.
Utilizing the scripts provided by [RWL18]. Those preprocessing scripts were used to filter

the rooms. They filtered by room type, which was necessary for our work. Filtered out

19

4 Experimental Setup

Figure 4.3: Sample from the offices in the SUNCG dataset [Son+17] rendered with [Com18].

rooms that are missing key components, like walls and a floor. Rendered room layouts,
which is the top down view of each room, a bedroom example is visualized in figure 4.5.
This layout is used to extract contextual information as explained in section 3.1.3.

20

4 Experimental Setup

Figure 4.5: A bedroom layout, which is used to provide our transformer with the room shape
information, as explained in section 3.2.

The location and orientation information could be directly processed from the 4.2.1 json
files. The category of each object model could be mapped by using resources provided by
4.2.1.

To write the dimension information of each object we used Blender API. Loading each
object into blender then directly writing the object dimension to a dictionary.
Objects in each room are sorted by their frequency in the whole dataset. The positional

21

4 Experimental Setup

encoding part of the network needs a position of each object as explained in section 3.2. So
a script was written to save a dictionary that has all room types and the frequency of objects
categories in these rooms. Figures 4.6 and 4.7 shows our findings about which objects are
more common in certain room types, and which objects are less common.

Frequency Category
1 Bed
2 Wardrobe Cabinet
3 Stand
4 Chair
5 Rug
6 Desk
7 Dresser
8 Dressing Table
8 Curtain
9 Ottoman
10 TV Stand
11 Indoor Lamp
12 Table
13 Shelving
14 Plant
15 Sofa
16 Music
17 Mirror
18 Person
19 Shoes
20 Hanger

Figure 4.6: Twenty most frequent object categories in bedrooms in 4.2.1 dataset.

22

4 Experimental Setup

Frequency Category
1 Sofa
2 Window
3 Table
4 Plant
5 Chair
6 TV Set
7 Rug
8 Indoor Lamp
8 Curtain
9 Music
10 Shelving
11 Ottoman
12 Fire Place
13 Wardrobe Cabinet
14 Toy
15 Vase
16 Sand
17 Picture Frame
18 Dresser
19 Column
20 Partition

Figure 4.7: Twenty most frequent object categories in Living rooms in 4.2.1 dataset.

4.4 Models

For Transformer and Convolutional Neural Network models, the model architecture and hyper
parameters have a huge impact on the performance. Which is the topic of many ongoing
and emerging research [Kha+19]. In our work, the focus was not to build a new transformer
architecture or a new style transfer neural network, but rather the adoption of these models
to solve our problem which is explained in section section 1.1.

23

4 Experimental Setup

In this work, three models are used. Two of them for scene generation, one for coloring
and styling textures. The main model is the transformer network which is explained in section
?? in details. The usage of the transformer in our work is further explained in section 3.2.
Both the second and third models are Convolutional Neural Network. Our second model

was a Renet HeZRS15. The model was used to extract features that were added later to our
transformer as explained in section 3.1.3. The third and final model used in our work was a
Neural Style Transfer Network [GEB15a]. The Network is used for coloring textures and
explained in details in section3.8.

4.4.1 Transformer

The Transformer was used for four main tasks. The tasks are Category, location, orientation
and dimension prediction. Our transformer was discussed in details in section 3.2. In this
section, our transformer process and hyper parameters are explained.

Trying not to converge away from [Vas+17] original architecture, the hyper parameter are
chosen to be the same, when possible. The number of heads was chosen according to that.
For the embedding dimension, 256 was chosen for the category and orientation transformer
instead of 512. The decrease in embedding dimension was because the extra 256 length
provided no additional performance for those two models. Those two tasks were simpler and
the information could be represented in a 256 vector. The transformers hyper parameters are
shown in tables 4.8 and 4.9.

The maximum sequence length is determined by the maximum number of object that are
processed per room. The sequence length is then the number of token of all sequences in the
transformer. For category and orientation transformers this value is (start token + maximum
number of object that are processed per room + stop token), having twenty four as a result.
While for the location and dimension transformers, the sequences are three times longer, for
example it would be, (start token + ((x-value + y-value + z-value) x maximum number of
object that are processed per room) + stop token).
To solve the problem of not having the same sequence lengths for all information, the

category and orientation sequences are copied twice to match size, this part was explained in
section. 3.3. The result sequence would look like (start token + ((category token of object)
x three) x maximum number of object that are processed per room) + stop token).

24

4 Experimental Setup

Loss

The loss function used by our transformer is the cross entropy loss. Which is the common
loss function used in transformer models [Lin+21].

CE(y, ŷ) = −
Nc
∑

i=1
yi log(ŷi) (4.1)

where y ∈ R1 is a vector of length embedding size and No is the number of objects in the
sequence.

Hyper parameters
Embedding dimension 256
Maximum sequence length 24
Heads for Multi-head attention 8

Figure 4.8: Transformer hyper parameters for category and orientation models.

Hyper parameters
Embedding dimensions 512
Maximum sequence length 64
Heads for Multi-head attention 8

Figure 4.9: Transformer hyper parameters for location and dimension models.

4.5 Training

In this section the training parameters for our EnvironmentFormers are shown.
Table 4.1 shows the hyper parameters for our EnvironmentFormers, in case of training a

single room type model, of type Bedroom.

25

4 Experimental Setup

Table 4.1: This table shows the hyper parameters for our EnvironmentFormers, iin case of
training a single room type model, of type Bedroom.

Hyper parameters
Learning rate 0.0003
Embedding dimensions 256
Objects per room 20
Drop out 0.3
Epochs 600
Training data length 2214
Validation data length 246

4.6 Implementation

Each room is stored as a single pickle dictionary. For constructing the scene and collision
checking, version 2.37.13 of Trimesh [Daw] was used.

26

5 Experiments

In this chapter the experiments are shown and discussed. Those experiments helped by giving
hints to solve the design problems that are faced. It begins by the Category Environment-
Former, then the Orientation EnvironmentFormer experiments. After that, the Location and
Dimension EnvironmentFormer are related experiments are presented.

5.0.1 Category EnvironmentFormer

The Category EnvironmentFormer task is to predict the possible categories that could be
added to the scene next. The input is a sequence of tokens of all the already present objects
in the scene.

Basic Category EnvironmentFormer

Our EnvironmentFormer is trained on just the category sequence as an input. Figure 6.7
shows the result of training this category EnvironmentFormer.

Orientation and location aware category EnvironmentFormer

In this variant of category EnvironmentFormer, the orientation and the location sequences
are provided as well. This variant gave lower loss, which means the location information
was useful for the category EnvironmentFormer.

Orientation, location and dimension aware category EnvironmentFormer

In this variant of the category EnvironmentFormer, the orientation, the location and the
dimension sequences are provided as well. This variant gave similar and close results to the
Orientation and location aware variant. Meaning the dimension sequence doesn’t hold much
useful information for the category EnvironmentFormer.

27

5 Experiments

Figure 5.1: This graph shows the training loss in blue, and the validation loss in pink, per
step for our category transformer. The lowest validation loss was 1.5. this loss
was achieved after 13,000 steps. After 13,000 steps our transformer started to
overfit.

5.0.2 Orientation EnvironmentFormer

This EnvironmentFormer task is to predict the possible orientations of an object given its
category. The EnvironmentFormer also takes into account all the objects already present in
the scene (auto regressive).

Location and dimension aware orientation EnvironmentFormer

In this variant of orientation EnvironmentFormer, the location, the category and the dimension
sequences are provided as well.
The orientation EnvironmentFormer is trained once with 90 tokens, and once with 360

tokens. The EnvironmentFormer which is trained with 90 tokens performed better, and
converged faster. Concluding that, 90 token is enough to represent degree angles and learn
them. However what is gained in performance in the EnvironmentFormer, is lost in precision.
Each token has a size of four degrees. A simple multiplication is used to interpolate the
results back into degrees.

28

5 Experiments

Figure 5.2: This graph shows the training loss in orange, and the validation loss in blue, per
step for our category transformer. The lowest validation loss was 1.48. This loss
was achieved after 22,000 steps. After 22,000 steps our transformer started to
overfit.

Figure 5.4: Orientation EnvironmentFormer trained with category, location and dimension
sequences. The validation loss is in orange, the training loss is in blue. There
are 360 used. The EnvironmentFormer started to converge after 14 thousand
steps with a validation loss of 1.735.

29

5 Experiments

Figure 5.3: This graph shows the training loss in orange, and the validation loss in blue, per
step for our category transformer. The lowest validation loss was 1.47. This loss
was achieved after 20,000 steps. After 20,000 steps our transformer started to
overfit.

Figure 5.5: Orientation EnvironmentFormer trained with category, location and dimension
sequences. The validation loss is in blue, the training loss is in red. There are
90 tokens used. The EnvironmentFormer started to converge after 11 thousand
steps with a validation loss of 1.6.

5.0.3 Location EnvironmentFormer

This EnvironmentFormer task is to predict the possible locations of an object given its
category and orientation. The EnvironmentFormer also takes into account all the objects
already present in the scene (auto regressive).

30

5 Experiments

Dimension aware location EnvironmentFormer

In this EnvironmentFormer variant, the dimension sequence is also a part of this Environ-
mentFormer input. This EnvironmentFormer achieved lower validation loss. Which means
the dimension information of the objects in the scene provide a hint for our location Envi-
ronmentFormer. This hint is used to predict where to place an object more accurately.
Two loss graphs for location EnvironmentFormer with dimension sequence as input, and

another with no dimension sequence as input, are shown below respectively.

Figure 5.6: Location EnvironmentFormer trained with category, orientation and dimension
sequences. The validation loss is in red, the training loss is in blue. The tokens
used were 80. The EnvironmentFormer converged, and after 20 thousand steps it
had a validation loss of 2.83.

Figure 5.7: Location EnvironmentFormer trained with category and orientation sequences.
The validation loss is in orange, the training loss is in grey. The tokens used
were 80. The EnvironmentFormer converged, and after 20 thousand steps it had
a validation loss of 2.9.

31

5 Experiments

5.0.4 Dimension EnvironmentFormers

This EnvironmentFormer task is to predict the possible dimensions of an object given its
category, orientation and location. The EnvironmentFormer also takes into account all the
objects already present in the scene (auto regressive). The complete category, orientation,
and location sequences act as an input to this EnvironmentFormer.

Figure 5.8: Dimension EnvironmentFormer trained with category, orientation and location
sequences. The validation loss is in red, the training loss is in blue. There are
90 tokens used, same as location model. The EnvironmentFormer converged, and
after 20 thousand steps it had a validation loss of 0.4.

32

6 Evaluation

In this chapter, the results of our work are presented. The results are also compared to
other related works. The results of training of the four EnvironmentFormers combined are
discussed. Then the results of applying a neural style transfer network to the textures is
shown.
The results for a single room type EnvironmentFormers are presented. Followed by the

results for multiple room types EnvironmentFormers.

6.1 Single room type results

The results of a single room type are first presented. These results are for the bedroom type.
The bedrooms were chosen because they had an average of more than 14 objects per room,
while also being the most rooms in the SUNCG dataset [Son+17].

The input to our algorithm is a room layout. Doors and windows are considered part of
the room layout, so they are treated as inputs as well.
Figure 6.1 shows an example of a room layout, which is what this algorithm needs to

generate the result shown in the next figure.
The bedroom in figure 6.2 was generated by running the full algorithm as explained in

section 4.7. The four EnvironmentFormers seem to have learned the symmetry of objects
around a bed in a bedroom. To position the objects in this room, our algorithm sampled the
location from the location EnvironmentFormers once, for the bed, and once for the stand,
and three times for the wardrobe. Then after reaching maximum re-posistioning trials, there
was no space to add another object that would not violate the collision threshold. Which
means our room is complete.
The room contains a bed, a wardrobe cabinet and a bed stand. Those objects are very

common to find in a bedroom.
A bedroom generated by running the full algorithm as explained in section 4.7. The room

has a bed, a stand and a wardrobe cabinet.

33

6 Evaluation

Figure 6.1: A room layout, an example for the input of the algorithm.

The closest bedroom in the dataset to the room generated in 6.3 is shown in figure 6.4.
This room has the same layout as the generated one, and is part of the algorithm training
data.

While this room 6.5 had 5 doors, it can still be recognized as a bedroom. Here there is a
sink in front of a chair in a bedroom, this shows some of the limitations in the category
EnvironmentFormer of this algorithm.

The symmetry around the bed holds. Some limitation of the location EnvironmentFormer
is shown in the position of the Chair. Not all the objects are in contact with the floor, some
are floating like the rug and the wardrobe cabinet on the left of the bed.

Even though this result show that the EnvironmentFormers are powerful and work with non
uniform room shapes. It shows some of the limitations of the location EnvironmentFormer
appears in this result. A bed shouldn’t be in front of the door like this. The wardrobe and
the bed are floating as well.

6.2 Room type encoded

The results of multiple room types sharing weights in a single EnvironmentFormer are first.
These results are for the bedroom, office and living room types.

Three types of rooms were chosen randomly. Mixing between room types that has small

34

6 Evaluation

Figure 6.2: A bedroom generated by running the our algorithm as explained. The room
contains a bed, a wardrobe cabinet and a bed stand.

average of objects per room, and the ones with very high average of objects per room
resulted in a bad performance for our EnvironmentFormer. For this reason bedrooms, offices
and living rooms are used to test our novel approach.
The input to our algorithm is a room layout, and a room type. Doors and windows are

considered part of the room layout, so they are treated as inputs as well.
Figure 6.8 shows how our algorithm produces an office. While figure 6.9 show the

generated living room. Figure 6.10 is an interesting result, because while the target room
type is bedroom. The input room shape belongs to an Office which is part of our training
set. This result shows that our EnvironmentFormer doesn’t overfit on room shapes.
Despite the collision of the objects in the bedroom. These results prove that our novel

approach to encoding the room type works. EnvironmentFormers don’t need to be re-trained

35

6 Evaluation

Figure 6.3: A bedroom generated by running the full algorithm as explained in section 4.7.
The room has a bed, a stand and a wardrobe cabinet. A bedroom that was part
of the training data, which has the same shape is shown in 6.4.

for each class of data, but rather can learn the class of which data goes through them by
encoding the data class.

6.3 Styled rooms

In this section a styled room is shown and the result is explained.
In figure 6.12 is the style photo used to produce our results. The hyper parameters used

for this result for the Neural Style transfer network. 100000 for the style weight was used
and 10 for the content weight was used. These values could be tuned to change how much
of weight of the original texture to have in the final one.

36

6 Evaluation

Figure 6.4: The closest bedroom in the dataset to the room generated in the figure 6.3

Figure 6.5: A bedroom generated by running the full algorithm as explained in section 4.7

37

6 Evaluation

Figure 6.6: General structure of a bedroom still holds. The symmetry around the bed when
there is a space still holds. Some limitation of the location EnvironmentFormer
is shown in the position of the Chair. Not all the objects are in contact with the
floor, some are floating like the rug and the wardrobe cabinet on the left of the
bed.

38

6 Evaluation

Figure 6.7: A bedroom generated by running the full algorithm as explained in section 4.7.
This shows how our EnvironmentFormer works with non square or rectangle
rooms.

39

6 Evaluation

Figure 6.8: An office generated by running our algorithm with multiple room types.

40

6 Evaluation

Figure 6.9: A living room generated by running our algorithm. When it came to the living
room, the EnvironmentFormer predicts the stop token sooner than the other two
room types. The conclusion that was drawn from this is that filtered living rooms
need better augmentations.

41

6 Evaluation

Figure 6.10: A bedroom generated by running the our algorithm. While the target is a
bedroom , the input room shape belongs to an office in the training set.

42

6 Evaluation

Figure 6.11: The style image used is the famous The Starry Night by Vincent van Gogh’s .

Figure 6.12: A bedroom generated and styled using our EnvironmentFormer.

43

7 Future Steps

In this chapter, the future steps to continue and improve this work is discussed.

7.0.1 Datasets and Data representation

More data, this means adapting this work to other indoor datasets. Front 3D [Fu+20] is a
very good example for a dataset like this. Combining datasets results in better generalization.
The increase in the amount of data would also result in a more better performance for
EnvironmentFormers.
Applying EnvironmentFormers to another kinds of data is still an open question. Instead

of training on indoor rooms, this EnvironmentFormers could be extended to generate other
kinds of data. Any set of objects where the location and category are present, this Environ-
mentFormers could work of them. For example, A chemicals factory floor is to be planned.
This floor would should have machines, pipes, pathways for workers, computers and desks.
With data for how a factory ground floors look like, and what kind of equipment and objects
it has, and what kind of factory it is adopting EnvironmentFormers should in theory work.

Another future area of research for the EnvironmentFormers is, if it could learn more than
one class of data at once. Meaning if it could learn how to design a whole apartment at
once and place the rooms and connect them.

7.0.2 Room types Encoding strategies

In this thesis, our approach to this was to convert each room type to a different grey scale
value. Encoding the information in the embedding of the room shape information.

Some other strategies could focus to solve this problem more from the transformer side.
Adding a sequence dedicated for this information could be an option, or integrating the
information into the already existent sequences.

44

7 Future Steps

7.0.3 Styling rooms

In this thesis, our approach was to style the textures with a style image, using neural style
transfer. The Neural style transfer network result is affected heavily by the parameters it is
given. More research is needed on how to style textures without the textures loosing their
original looking material when styled.

45

8 Conclusion

In this thesis, two approaches to the task of Indoor 3D scene generation are presented. In
the first approach, it is shown how a transformer [Vas+17] network could be used for Indoor
3D scene generation, treating it as a sequence generation task [WYN20].

In our second approach, EnvironmentFormer is introduced. Based on the transformer model,
our novel design allowed for learning multiple room types in a single EnvironmentFormer.
This solved the problem of having model weights for each room type the transformer is
trained on. Saving time and space, and making the task of Indoor 3D scene generation more
practical.
The EnvironmentFormer is not constrained by a room shape or a room type. A square

room is not required like the work from [Wan+18] and most of the solutions that involved
Convolutional Neural Networks.

46

List of Figures

1.1 A scene completion task done by [ZWK19]. This scene shows a bathroom
completed in iterative way. 2

3.1 The task of the embedding layer is to learn to map our tokens to vectors,
possibly finding a unique vector for each word in a much-lower dimensional
space. For the category sequence, 41 is start token, 42 is the padding token,
43 is the stop token. The values between the start token and the first padding
token are the objects categories tokens. For the orientation sequence, 361
is start token, 362 is the padding token, 363 is the stop token. The values
between the start token and the first padding token are the objects orientation
tokens. 8

3.2 How the network deal with the room shape as contextual information. One
channel image of the room layout is passed through three Resnet [He+16]
blocks. The resulting features are flattened and added to the pixel coordinates
embedding, inspired by [Nas+20] . 9

3.3 This figures shows how our work deals with multiple room types, and how
to encode this information. One channel image of the room layout is passed
through three Resnet [He+16] blocks. The resulting features are flattened and
added to the pixel coordinates embedding, inspired by [Nas+20]. Giving a
specific color for the layout of each room type is what enables the model to
learn multiple classes of room. 10

47

List of Figures

3.4 Our EnvironmentFormer model. N is, the number of how often this block is
repeated. The input sequences of tokens are embedded and added together.
They are then added with the positional encoding of each token in the se-
quence. The objects in the scene are sorted based on frequency across all
data set for this specific room type. Depending on the type of the model,
the contextual information are then added with the latter before going to
the encoder. The same embedded vector goes through the decoder with the
exception that the future tokens are masked so it can learn the sequence. . . 15

3.5 Neural Style Transfer, allows you to take an image and reproduce it with
a new artistic style. The algorithm takes three images, an input image, a
content-image, and a style-image, and changes the input to resemble the
content of the content-image and the artistic style of the style-image [Pas+19]. 16

3.6 Convolutional Neural Network (CNN). Style Reconstructions. On top of
the original CNN representations we built a new feature space that captures
the style of an input image. The style representation computes correlations
between the different features in different layers of the CNN. We reconstruct
the style of the input image from style representations built on different
subsets of CNN layers (‘conv1 1’ (a), ‘conv1 1’ and ‘conv2 1’ (b), ‘conv1
1’, ‘conv2 1’ and ‘conv3 1’ (c), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’ and ‘conv4
1’ (d), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’ (e)). This
creates images that match the style of a given image on an increasing scale
while discarding information of the global arrangement of the scene [GEB15a]. 16

4.1 A bedroom from SUNCG dataset [Son+17] rendered with [Com18]. This
bedroom was‘ part of our training data. 18

4.2 Sample from the offices in the SUNCG dataset [Son+17] rendered with
[Com18]. 19

4.4 Rooms after our preprocessing and filtering in SUNCG 4.2.1 dataset. . . . 19
4.3 Sample from the offices in the SUNCG dataset [Son+17] rendered with

[Com18]. 20
4.5 A bedroom layout, which is used to provide our transformer with the room

shape information, as explained in section 3.2. 21
4.6 Twenty most frequent object categories in bedrooms in 4.2.1 dataset. . . . 22
4.7 Twenty most frequent object categories in Living rooms in 4.2.1 dataset. . 23

48

List of Figures

4.8 Transformer hyper parameters for category and orientation models. 25
4.9 Transformer hyper parameters for location and dimension models. 25

5.1 This graph shows the training loss in blue, and the validation loss in pink,
per step for our category transformer. The lowest validation loss was 1.5.
this loss was achieved after 13,000 steps. After 13,000 steps our transformer
started to overfit. 28

5.2 This graph shows the training loss in orange, and the validation loss in blue,
per step for our category transformer. The lowest validation loss was 1.48.
This loss was achieved after 22,000 steps. After 22,000 steps our transformer
started to overfit. 29

5.4 Orientation EnvironmentFormer trained with category, location and dimension
sequences. The validation loss is in orange, the training loss is in blue. There
are 360 used. The EnvironmentFormer started to converge after 14 thousand
steps with a validation loss of 1.735. 29

5.3 This graph shows the training loss in orange, and the validation loss in blue,
per step for our category transformer. The lowest validation loss was 1.47.
This loss was achieved after 20,000 steps. After 20,000 steps our transformer
started to overfit. 30

5.5 Orientation EnvironmentFormer trained with category, location and dimension
sequences. The validation loss is in blue, the training loss is in red. There
are 90 tokens used. The EnvironmentFormer started to converge after 11
thousand steps with a validation loss of 1.6. 30

5.6 Location EnvironmentFormer trained with category, orientation and dimen-
sion sequences. The validation loss is in red, the training loss is in blue.
The tokens used were 80. The EnvironmentFormer converged, and after 20
thousand steps it had a validation loss of 2.83. 31

5.7 Location EnvironmentFormer trained with category and orientation sequences.
The validation loss is in orange, the training loss is in grey. The tokens used
were 80. The EnvironmentFormer converged, and after 20 thousand steps it
had a validation loss of 2.9. 31

49

List of Figures

5.8 Dimension EnvironmentFormer trained with category, orientation and location
sequences. The validation loss is in red, the training loss is in blue. There are
90 tokens used, same as location model. The EnvironmentFormer converged,
and after 20 thousand steps it had a validation loss of 0.4. 32

6.1 A room layout, an example for the input of the algorithm. 34
6.2 A bedroom generated by running the our algorithm as explained. The room

contains a bed, a wardrobe cabinet and a bed stand. 35
6.3 A bedroom generated by running the full algorithm as explained in section

4.7. The room has a bed, a stand and a wardrobe cabinet. A bedroom that
was part of the training data, which has the same shape is shown in 6.4. . 36

6.4 The closest bedroom in the dataset to the room generated in the figure 6.3 37
6.5 A bedroom generated by running the full algorithm as explained in section 4.7 37
6.6 General structure of a bedroom still holds. The symmetry around the bed

when there is a space still holds. Some limitation of the location Environ-
mentFormer is shown in the position of the Chair. Not all the objects are
in contact with the floor, some are floating like the rug and the wardrobe
cabinet on the left of the bed. 38

6.7 A bedroom generated by running the full algorithm as explained in section
4.7. This shows how our EnvironmentFormer works with non square or
rectangle rooms. 39

6.8 An office generated by running our algorithm with multiple room types. . 40
6.9 A living room generated by running our algorithm. When it came to the

living room, the EnvironmentFormer predicts the stop token sooner than the
other two room types. The conclusion that was drawn from this is that filtered
living rooms need better augmentations. 41

6.10 A bedroom generated by running the our algorithm. While the target is a
bedroom , the input room shape belongs to an office in the training set. . . 42

6.11 The style image used is the famous The Starry Night by Vincent van Gogh’s . 43
6.12 A bedroom generated and styled using our EnvironmentFormer. 43

50

List of Tables

4.1 This table shows the hyper parameters for our EnvironmentFormers, iin case
of training a single room type model, of type Bedroom. 26

51

Bibliography

[Com18] B. O. Community. Blender - a 3D modelling and rendering package. Blender
Foundation. Stichting Blender Foundation, Amsterdam, 2018.

[Daw] Dawson-Haggerty et al. trimesh. Version 3.2.0.

[Fal19] W. Falcon. “PyTorch Lightning.” In: GitHub. Note: https://github.com/PyTorchLightning/pytorch-
lightning 3 (2019).

[Fu+20] H. Fu, B. Cai, L. Gao, L. Zhang, C. Li, Q. Zeng, C. Sun, Y. Fei, Y. Zheng, Y.
Li, Y. Liu, P. Liu, L. Ma, L. Weng, X. Hu, X. Ma, Q. Qian, R. Jia, B. Zhao, and
H. Zhang. “3D-FRONT: 3D Furnished Rooms with layOuts and semaNTics.”
In: arXiv preprint arXiv:2011.09127 (2020).

[GEB15a] L. A. Gatys, A. S. Ecker, and M. Bethge. “A Neural Algorithm of Artistic
Style.” In: CoRR abs/1508.06576 (2015). arXiv: 1508.06576.

[GEB15b] L. A. Gatys, A. S. Ecker, and M. Bethge. “Texture synthesis and the controlled
generation of natural stimuli using convolutional neural networks.” In: CoRR
abs/1505.07376 (2015). arXiv: 1505.07376.

[He+16] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image
Recognition.” In: June 2016, pp. 770–778. DOI: 10.1109/CVPR.2016.90.

[JGS19] M. Jaritz, J. Gu, and H. Su. “Multi-view PointNet for 3D Scene Understanding.”
In: CoRR abs/1909.13603 (2019). arXiv: 1909.13603.

[Kha+19] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi. “A Survey of the Recent
Architectures of Deep Convolutional Neural Networks.” In: CoRR abs/1901.06032
(2019). arXiv: 1901.06032.

[Lin+21] T. Lin, Y. Wang, X. Liu, and X. Qiu. “A Survey of Transformers.” In: CoRR
abs/2106.04554 (2021). arXiv: 2106.04554.

52

Bibliography

[Liu+14] T. Liu, S. Chaudhuri, V. G. Kim, Q.-X. Huang, N. J. Mitra, and T. Funkhouser.
“Creating Consistent Scene Graphs Using a Probabilistic Grammar.” In: ACM
Transactions on Graphics (Proc. SIGGRAPH Asia) 33.6 (Dec. 2014).

[Ma+17] L. Ma, J. Stückler, C. Kerl, and D. Cremers. “Multi-View Deep Learning for
Consistent Semantic Mapping with RGB-D Cameras.” In: CoRR abs/1703.08866
(2017). arXiv: 1703.08866.

[Nas+20] C. Nash, Y. Ganin, S. M. A. Eslami, and P. W. Battaglia. PolyGen: An Autore-
gressive Generative Model of 3D Meshes. 2020. arXiv: 2002.10880 [cs.GR].

[NF12] P. K. Nathan Silberman Derek Hoiem and R. Fergus. “Indoor Segmentation and
Support Inference from RGBD Images.” In: ECCV. 2012.

[NKP18] M. Naseer, S. H. Khan, and F. Porikli. “Indoor Scene Understanding in 2.5/3D:
A Survey.” In: CoRR abs/1803.03352 (2018). arXiv: 1803.03352.

[Pas+19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z.
Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M.
Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala.
“PyTorch: An Imperative Style, High-Performance Deep Learning Library.” In:
Advances in Neural Information Processing Systems 32. Ed. by H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran
Associates, Inc., 2019, pp. 8024–8035.

[RWL18] D. Ritchie, K. Wang, and Y.-A. Lin. “Fast and Flexible Indoor Scene Synthesis
via Deep Convolutional Generative Models.” In: CoRR abs/1811.12463 (2018).
arXiv: 1811.12463.

[Son+17] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser. “Semantic
Scene Completion from a Single Depth Image.” In: Proceedings of 30th IEEE
Conference on Computer Vision and Pattern Recognition (2017).

[SZW19] V. Sitzmann, M. Zollhöfer, and G. Wetzstein. “Scene Representation Networks:
Continuous 3D-Structure-Aware Neural Scene Representations.” In: CoRR abs/1906.01618
(2019). arXiv: 1906.01618.

[Vas+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser, and I. Polosukhin. Attention Is All You Need. 2017. arXiv: 1706.03762
[cs.CL].

53

Bibliography

[Vid+21] M. Vidanapathirana, Q. Wu, Y. Furukawa, A. X. Chang, and M. Savva. “Plan2Scene:
Converting Floorplans to 3D Scenes.” In: CoRR abs/2106.05375 (2021). arXiv:
2106.05375.

[Wan+18] K. Wang, M. Savva, A. X. Chang, and D. Ritchie. “Deep convolutional priors for
indoor scene synthesis.” In: ACM Transactions on Graphics (TOG) 37.4 (2018),
p. 70.

[Wan+19] K. Wang, Y.-A. Lin, B. Weissmann, M. Savva, A. X. Chang, and D. Ritchie.
“PlanIT: planning and instantiating indoor scenes with relation graph and spatial
prior networks.” In: ACM Trans. Graph. 38.4 (2019), 132:1–132:15.

[WYN20] X. Wang, C. Yeshwanth, and M. Nießner. “SceneFormer: Indoor Scene Genera-
tion with Transformers.” In: arXiv preprint arXiv:2012.09793 (2020).

[Zho+18] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and A. Torralba.
Semantic Understanding of Scenes through the ADE20K Dataset. 2018. arXiv:
1608.05442 [cs.CV].

[ZWK19] Y. Zhou, Z. While, and E. Kalogerakis. “SceneGraphNet: Neural Message Passing
for 3D Indoor Scene Augmentation.” In: CoRR abs/1907.11308 (2019). arXiv:
1907.11308.

54

	Acknowledgments
	Abstract - English
	Abstract - German
	Contents
	Introduction
	Problem Statement and notation
	Thesis Structure

	Related Work
	Our Approach
	Transformer for scene synthesis
	Tokenization
	Embedding
	Context

	The EnvironmentFormer
	Category EnvironmentFormer
	Orientation transformer
	Location transformer
	Dimension transformer
	Room Generation algorithm
	Texture styling model

	Experimental Setup
	Environment
	Datasets
	SUNCG

	Data preprocessing
	Models
	Transformer

	Training
	Implementation

	Experiments
	Category EnvironmentFormer
	Orientation EnvironmentFormer
	Location EnvironmentFormer
	Dimension EnvironmentFormers

	Evaluation
	Single room type results
	Room type encoded
	Styled rooms

	Future Steps
	Datasets and Data representation
	Room types Encoding strategies
	Styling rooms

	Conclusion
	List of Figures
	List of Tables
	Bibliography
	List of Abbreviations

