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Abstract 

Up to now, bulk transports have been carried out via a hub-and-spoke network in the general cargo sector. However, it is 

expected that the use of autonomous vehicles will enable a more flexible delivery. Such developments may, economically, make 

sense for shippers. From an ecological point of view, also negative effects can be expected due to enhanced transport 

performance. In the framework of this research, we investigate the impacts of automation on general cargo transport at the 

logistics network level. For assessing the impacts of autonomous vehicles on logistics network structures and on freight transport 

routes ex-ante, an instrument for strategic transport and logistics network planning is needed. We develop an effective heuristic 

to find new facilities and adjust the network, while thereby considering the routing characteristics by tackling the large-scale 

location routing problem (LRP). By the linked approach, we can optimize the logistics network and also measure exact transport 

distances, driving transport lead times and number of necessary vehicles on the infrastructure network. We operationalize this 

approach in the framework of a case study focusing on the food retail distribution in Germany. In fact, this research reveals that 

the utilization of autonomous vehicles significantly enhances transportation ranges and the number of tours, while reducing the 

number of operating facilities.  
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1. Introduction 

Autonomous trucks offer the potential to reduce the problems in freight transport sector and as a result, transport 

costs. The reduction of transport costs, the emergence of new business models and the improved utilization of trucks 

represent positive effects of digitalization in freight transport. The role and professional profile of the driver will 

change significantly (Flämig et al. 2015). In order to reduce fuel costs, savings in wage costs also plays an important 

role. Overall, positive effects for both the truck industry and society can be expected. (VDA, 2015)  

However, due to the high investment costs, significant cost savings by autonomous vehicles can only be expected 

with long-term use. Autonomous trucks will dominate in long-distance transport between large distribution centres 

outside of agglomeration areas in the future (PWC, 2016). When a driver is no longer required (automation level 5), 

the transport distances can also increase considerably which in turn leads to an increase in transport performance 

and to a loss of the necessary hubs in the system. This would change the logistics network or adapt it to the new 

circumstances in the long-term. For this reason, an instrument for strategic transport and logistics network planning 

is needed which assess the impacts of future technologies – and in this case autonomous technologies in logistics – 

on logistics network structures and on freight transport routes.  

To investigate such problems, optimization methodologies need to be applied. In general, the network 

optimization problem can be divided into two sub-problems – location planning (Facility Location Problem [FLP]) 

and route planning (Vehicle Routing Problem [VRP]). Both topics are among the central questions in the field of 

operations research and are the research objects in various sciences. Since successive examination of the two 

problems leads to a suboptimal result, combined approaches have been developed in recent decades (see Perl and 

Daskin, 1985; Srivastava, 1986; Harks et al. 2013; Schneider and Drexl, 2017; Nagy and Salhi, 2007; Prins and 

Prodhon, 2014). However, heuristic and metaheuristic approaches are mainly used, since an exact numeric 

procedure is suitable only for small instances with a limited number of nodes.  

We consider the problem of integrated optimization for both FLP and VRP using a clustering heuristic and an 

analytical cost approximation for routing. This approach enables to find and assign the best locations depending on 

the routing costs incurred even within oversized instances. Furthermore, we implement a route optimization 

framework Jsprit which is integrated in the microscopic transport simulation MATSim to investigate impacts of 

automated vehicles on freight transport at an infrastructural level. In this contribution, we describe this approach in-

depth and demonstrate its functionality in a case study focussing on food retail distribution in Germany.  

In the following, we will present the State of the Art for logistics network optimization focussing on integrated 

FLP and vehicle routing approaches, the so-called Location Routing Problems (LRP). Chapter 3 will focus on our 

methodological approach. Furthermore, we will provide a general overview of the fundamentals used here which are 

prerequisite for our integrated clustering approximation approach. In chapter 4, two scenarios for a food retailer in 

Germany will be developed. In addition, the secondary data collected and prepared for parametrizing the developed 

model will be shown. Afterwards, selected results of our approach will be presented. The results of the autonomous 

scenario (use of autonomous vehicles in food retail distribution) will be compared with the baseline scenario (status 

quo). Finally, we will conclude with the relevant findings in chapter 6.  

2. State of the Art for integrated Location and Routing Problems 

Efficient modelling of the logistics networks cannot be done effectively without considering the interactions 

between route and location planning. Salhi and Rand (1989) showed that an optimal solution of the FLP in the first 

step does not necessarily lead to the best solution for tour planning in the second step. In the course of this, these 

have been extensively examined in recent decades (see Min et al. 1997; Goudz, 2015; Prins et al. 2007; Barreto et al. 

2007; Balakrishnan et al. 1987; Schneider and Drexl, 2017). Since both problems, FLP and VRP, are NP-difficult in 

many cases, the combination of both is also NP-difficult (Guerra et al. 2007). To address this problem, an iterative 

procedure for solving the extra-large LRP was developed by Arnold and Sörensen (2018). The methodological 

procedure is based on trade-off between both facility costs and routing costs, whereby multiple VRPs are iteratively 

solved using time-limited Clark and Wright heuristic. In contrast to classical LRPs, Escobar et al. (2014) and 

Guemri et al. (2016) develop an alternative approach that addresses route planning in the first step and determines 

distribution centre locations in the second step. The procedure is therefore a semi-successive search metaheuristic 

and focuses on placing the locations by solving the closed, capacity-limiting tours. To reduce computational time, 

various studies have used clustering methods to efficiently address the LRP. Guerra et al. (2007) develop a two-step 
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metaheuristic, in which first the customers are linked to the closest facility and then VRP is carried out. Barreto et 

al. (2007) analyse density metrics to apply clustering heuristics in a capacitated LRP. Their study provides an 

overview of clustering techniques to determine the most advantageous proximity (e.g. single linkage, complete 

linkage, group average, centroid, ward and saving cluster density metrics) in sequential LRP heuristic. However, 

although this study declares group average as the most advantageous density measures for aggregating the 

customers, no technique shows significantly superior result than others. Nadizadeh et al. (2011) use a four-phase 

greedy clustering heuristic to evaluate the best location for depots from a set of potential sites. Oudouar et al. 2020 

applied clustering approach based on neural network in order to determine the depots combined with Clark and 

Wright heuristic for routing solution. Although only small and medium (up to 200 customers) classic benchmark 

instances were evaluated the authors advocate the suitability their technique for large instances as well. Schiffer et 

al. (2020) develop a dynamic metaheuristic considering real-world decisions at operational and strategic levels, such 

as fleet composition, routing, charging infrastructure investment, and battery degradation for electric vehicles. The 

authors evaluate the economic and environmental impacts of deploying electric vehicles in the freight network. 
In general, when one deals with network optimization, there are two options: (i) either discretizing the general 

problem and starting with various computing optimization approaches with high computing complexity (both 

problems the FLP and VRP are NP-difficult), like discussed above, or (ii) exploring the problem in an analytical 

way by means of approximation algebraic techniques. The last one focuses more on generic problem if the 

uncertainties in the system are significant. Continuum Approximation (CA) allows very fast but general estimation 

of line-haul distances, routing distances and routing costs as a function of the area, the topology, the distribution of 

customers in the region and the vehicle characteristics. Many of these CA approaches in literature take their origin 

in classical CA techniques first developed in Daganzo and Newell (1985, 1986) as well as in Daganzo (2005). 

Cachon (2014) uses the CA approach to evaluate the environmental impacts of placing 𝑘-numbers of retailer stores 

and first combines both the Travelling Salesman Problem (TSP) and the continuous 𝑘-median problem to find the 

optimal density of stores for serving all customers in a region and the facility configuration as well as to reduce 

carbon emission. In this model, the retailer uses trucks to serve the shops and consumers use cars to travel to the 

shops, so that the trade-offs in the network configuration are examined in-depth. For example, this study shows that 

if the objective of the retail supply chain is to minimize emissions, a dense network of small shops close to the 

consumers can significantly reduce the environmental impacts. Smilowitz and Daganzo (2007) develop a continuum 

model for a large-scale transportation network for parcel distribution. The study refers to a classical CA technique 

and estimates the overall network costs considering customers demand, level of service, variable costs and spatial 

data. The major aspect that sets this approach apart from the classic models concerns multi-level extension, which 

includes several integrated cost models for each network level. Cui et al. (2010) compare FLP solutions of random 

generated instances using mixed integer programming and CA model. The authors conclude that both costs and 

number of facilities predicted by continuous model are near optimal and does not exceed 10% in most cases. 

However, the gap between discrete and analytical models increases with high demand density. A more detailed 

overview of the most relevant studies related to CA optimization is provided by Ansari et al. (2017). 

In general, due to the high computational complexity of discrete LRP models often applied in the literature, there is 

a strong need to relax the constraints of iterative facility selection. For this reason, we develop a combined clustering 

search heuristic with an integrated analytical approximation of vehicle routing costs to iteratively optimize the 

network for an autonomous food retailer.  

3. Methodology: Iterative heuristic approach for solving large-scale LRP 

In the following, the developed methodology for optimizing the entire logistics network is described in-depth. The 

optimization algorithm consists of three stages. In the first stage, customers are aggregated using k-Means++ 

clustering. In the next stage, the clusters are evaluated due to estimated routing costs by an analytical approach. An 

iterative approach is used to find an optimal number of the most advantageous distribution of the locations. Within 

this stage, the two sub-problems, VRP and FLP, are interrelated. In the third stage, the discrete VRP is solved by the 

routing optimization Jsprit (Schröder et al. 2012) which is linked to the microscopic agent-based transport 

simulation MATSim (Horni et al. 2016).  

Our algorithm starts with the k-Means++ clustering method which distributes the constant number of 𝑘-centroids in 

a 2D-Space. The k-Means++ algorithm shows very efficient computational complexity (𝑂(𝑙𝑜𝑔(𝑘)) which enables to 

be considered as appropriate choice for combined heuristics (Arthur and Vassilvitskii, 2006). By means of this 

https://www.dict.cc/englisch-deutsch/large-scale.html
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algorithm first all customers become grouped into {𝐺} and then potential depots from a predefined list {𝐷} inside 

each cluster are selected. Furthermore, the groups are merged by this algorithm when the same potential areas are 

selected during the iteration. Note also that the algorithm can already converge at this point regarding the number of 

depots, since an increasing number of 𝑘 usually results in the same nearest, most favourable depots being chosen for 

small groups. 

The solution by the k-Means++ algorithm is primarily aimed at solving the location problem by selecting the 

candidate sites and assigning customer groups. To find the best combination and the finite number of potential 

depots that minimize the routing costs, we implement an approximation of the routing costs based on the well-

studied technique according to Daganzo (2005). Subsequently, we first describe an analytical routing cost 

approximation technique that our model is based on.  

Consider a convex distribution zone 𝑅 and assume that the service to uniformly distributed customers consists of a 

line-haul and locally operated TSP tours. The local distances in a convex region with equally distributed customers 

can be estimated by the well-known relationship: 𝑑𝑙𝑜𝑐𝑎𝑙 ≈ 𝑘𝑡𝑠𝑝 ∗ √𝑛𝐴 =
𝑘𝑡𝑠𝑝∗𝑛

√𝜌
, where 𝑛 is the number of customers 

in the region and ρ is the density of customers of the area (stops/m²). 𝑘𝑡𝑠𝑝 represents a spatial factor for the distance 

metrics that depends solely on the spatial characteristics of the region. To the best of our knowledge only few papers 

have studied accuracy and calibration of the spatial factor 𝑘𝑡𝑠𝑝 in CA research. Nicola et al. (2019) carried out the 

numerical simulation for analytical estimation of distances by applying the regression analysis. Although there is a 

substantial need for further research to estimate a true distance with the means of CA, in this study we use constant 

𝑘𝑡𝑠𝑝 = 1,15 in accordance to Daganzo (1984) and L1 metric. That is owed to the fact that rather than estimate the 

true transport distances the general cost ratio for each customer cluster is the main object of interest in this step. The 

future work should substantiate the use of this spatial factor 𝑘𝑡𝑠𝑝 as well as the true transport distance by the means 

of CA. The total travelled distance of a VRP-tour can be rough estimated as: 

 𝑑𝑡𝑜𝑡𝑎𝑙 ≈ 2 ∗ 𝑑𝑙𝑖𝑛𝑒ℎ𝑎𝑢𝑙 ∗ [
𝐷𝑖

𝑄𝑣𝑒ℎ
+

1

2
] +

𝑘𝑡𝑠𝑝∗𝑛

√𝜌
, where 𝐷𝑖  is the demand in cluster i and 𝑄𝑣𝑒ℎ  is the vehicle capacity 

(Gabris et al. 2016). Let the total costs results in three cost sources: (i) distance costs 𝑐𝑑𝑖𝑠𝑡 , (ii) costs per stop 𝑐𝑠𝑡𝑜𝑝 

and (iii) the unit costs 𝑐𝑖𝑡𝑒𝑚. Consequently, the total transport costs of all transports in the region 𝑅 are the sum of 

all three cost components defined as: 

 

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑓𝑖𝑥 + 𝑐𝑑𝑖𝑠𝑡 (2 ∗ [
𝐷𝑖

𝑄𝑣𝑒ℎ
+

1

2
] ∗ 𝑑𝑙𝑖𝑛𝑒ℎ𝑎𝑢𝑙 +

𝑘𝑡𝑠𝑝𝑛

√𝜕
) + 𝑐𝑠𝑡𝑜𝑝 ∗ (𝑛 + [

𝐷𝑖

𝑄𝑣𝑒ℎ
+

1

2
]) + 𝑐𝑖𝑡𝑒𝑚 ∗ 𝐷𝑖  (1) 

 

The fixed costs 𝐶𝑓𝑖𝑥 in equation (1) include two subcomponents: (i) the fixed cost for the facility: 𝐷 ∗ 𝐶𝑟𝑒𝑛𝑡 ∗ 𝑎𝑠𝑡𝑜𝑟 

and (ii) the fixed transport cost 𝐶𝑉𝑒ℎfor operating the vehicles in the particular cluster:  

 

𝐶𝑓𝑖𝑥 = 𝐷𝑖 ∗ 𝐶𝑟𝑒𝑛𝑡 ∗ 𝑎𝑠𝑡𝑜𝑟 + 𝐶𝑉𝑒ℎ          (2) 

 

where 𝐶𝑟𝑒𝑛𝑡 is the predefined average rent for the candidate site and 𝒂𝒔𝒕𝒐𝒓 is the scalar selected to enhance the fix 

cost ratio. By including the minimum fixed costs, we achieve a well-known trade-off: the greater the number of 

clusters in the system, the lower the routing costs and the higher the fixed costs for operating the vehicles. 

Applying the CA technique, we aim at estimating instantly the transport costs with a time complexity of 𝑂(1). 
As a result, this allows us to carry out up to 1,000 iterations for each of the k clusters. In each of the iterations we 

assign appropriate depots to the clusters, estimate the maximum costs and select a solution with a minimum total 

value. The practical application and the output of the LRP approximation algorithm are demonstrated in the 

framework of the case study German food retail distribution (see chapter 4 and 5). 

The subject of the third stage is the discrete route optimization. In this module, VRP and vehicle choice are 

solved by the Java based framework Jsprit for each single cluster provided from the clustering algorithm described 

above. We apply a Single Depot Vehicle Routing Problem (SDVRP) by Jsprit, since the customers are either already 

assigned to their real depot locations (baseline scenario) or grouped using k-Means++ clustering algorithm (future 

scenario). The general LRP framework is presented in Figure 1. 



 Deineko,Thaller,Liedtke / Transportation Research Procedia 00 (2021) 000–000  5 

4. Case Study: German Food Retail Distribution 

In the following, the scenarios developed will be presented. We will also provide an overview, how to parametrize 

the model for simulation. In the framework of this case study, we investigate the food retail distribution in Germany. 

A case study on food retail distribution was already developed for the investigation area Berlin by Gabler et al. 

(2013), and is extended to the investigation area Germany for the present study. In this publication, we focus only on 

the German food retailer Lidl. In baseline scenario (BAS), we focus on the traditional freight transport in German 

food retail distribution carried out by diesel-driven vehicles. In a further scenario (AUS), BAS is extended by 

including autonomous trucks with specific vehicle characteristics. Due to the usage of autonomous vehicles the 

expected effects are the changed fleet composition, the increased number of tours and mileage performed and as a 

result increased fuel consumption and GHG-emissions. 

 

 

Figure 1: An integrated approach applied to solve both problems simultaneously, FLP and VRP. The combined heuristic for large-scale LRP 

provides a fast solution consisting of locations of depots, estimated routing costs and aggregated clusters of customers. Based on this, Jsprit 

finally calculates the exact routes for each scenario. 

Baseline scenario BAS: Conventional food retail distribution 

The following data of the depots of the logistics service providers, the customers and the vehicles are necessary for 

parametrizing the model. The Nielsen database (2012) for food retailing provides the exact addresses of the depots 

and branches of the food retailers in Germany. We extracted for this case study 35 warehouses which are 

georeferenced. The 3,049 locations of the customers, in this case the selected food retail branches of Lidl, are also 

georeferenced. The various products are aggregated into the following three groups: (i) fresh, (ii) frozen and (iii) dry 

goods. For generating the freight demand of the food retail branches, we mainly refer to Gabler et al. (2013). 

Hereby, the demand per m² of the respective store space is calculated from the shares of the product types (dry, fresh 

and frozen goods) in the total store turnover. Determining the delivery time window for each branch we assume that 

frozen and dry goods are delivered within the time window between 9:00 a.m. to 7:00 p.m. and fresh products 

between 4:00 to 9:00 a.m.. Furthermore, we assume that three minutes for each stop (constant stop time) and two 

minutes for the concrete delivery of the single pallet with dry and fresh goods to the branch (variable stop time) is 

needed. The variable stop time for frozen goods, which are delivered in cool boxes, is one minute per delivered cool 

box. In this scenario, deliveries to the food retail branches are carried out by diesel-driven trucks with a permissible 

total weight (ptw) of 7.5t, 18t, 26t and 40t. These truck types are primarily used in food retail distribution.  

Scenario AUS: Automated food retail distribution  

In this scenario, we use exactly the same input data as for BAS with some necessary extensions due to utilizing 

automated vehicles. Since unmanned trucks are used, we have not to consider personnel costs per driver. 

Furthermore, we assume that the trucks could be in use for 24 hours within a business day. In conclusion, the 

transport cost structure for the autonomous vehicles will change compared to conventional vehicles. By means of 

autonomous handling technologies for loading and unloading at the depot and at the ramp of each retail branch, we 
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assume that the handling times could be reduced by 50%. The digital landscape model for Germany DLM (2007) is 

used in our LRP algorithm to select further potential depot locations for the FLP (see chapter 3). Based on this, 

12,382 industrial and green areas, containing exact information about coordinates, area as well as minimum and 

maximum land rent in € per m², are extracted from this database and thereby declared as potential depot locations.  

For a deeper insight into the preparation of the secondary data used to parameterize the model, we refer to Gabler et 

al. 2013.  

5. Results 

In the following, the simulation results of our approach will be presented. In general, several control variables drive 

the behaviour of the FLP and VRP integrated approach described in chapter 2. By means of a factor astor introduced 

in equation 3 we aim to incorporate the fix costs for establishing a facility. Thus, with a high astor factor (for 

example 20) the result of choosing a facility depends exclusively on location costs and the optimum is always found 

in the minimum of K,where K is the facility number in the system. In contrast, the astor = 0 indicates, that only 

routing costs are considered for choosing an optimal facility. By testing different sets of these control variables, the 

trade-off between the optimal total costs and the optimal number of depots was found. Two different cases derived 

from LRP heuristics in chapter 2 are visualized in Figure 2.  

 

  

Figure 2: Potential locations (A) identified by LRP algorithm and the original warehouse locations (C) for the analyzed food retailer Lidl in 

Germany. In case 1 (left) 35 depots are found due to parameter 𝒂𝒔𝒕𝒐𝒓 = 𝟎. In case 2 (right) the LRP for the parameter 𝐚𝐬𝐭𝐨𝐫 = 𝟐 results in 23 

depots. 

To apply and simulate the autonomous scenario, the parameter a = 2 is chosen, since the larger transport distances 

are expected to be covered by autonomous vehicles and the required lowest rent is essential for the choice of 

location. The proposed methodology tends to locate depots outside or at the margins of the clusters. This is due to 

the fact that according to equation 3 the algorithm prioritizes the depots with lowest site rent, which, however, are 

mainly located at the periphery of the regions. Thus, in contrast to BAS with 35 facilities, only 23 facilities 

identified by LRP algorithm with the parameter acost = 2 are allocated to supply all 3,049 customers in the 

autonomous scenario.  
Figure 3 shows the percentage deviation between the scenarios BAS and AUS of selected transport-related, 

economic and ecological key performance indicators for the selected German food retailer Lidl. In particular, we 

observe that in AUS 7% more tours have to be carried out. The road mileage performed increases by 60% compared 

to BAS. This has a negative environmental impact due to fuel consumption (+54.7%) – if diesel-driven vehicles are 

considered in AUS. If the network for autonomous vehicles is adjusted, an increase up to 32% of operating small 

trucks (7.5t and 18t ptw) to deliver goods was observed. Although the distances in AUS are much longer, the 

transport lead time increases only by 28.4% due to the fact that the stop and loading/unloading time is reduced by 

50% by autonomous handling technologies. It has to be noted that in scenario AUS the personnel costs for the driver 
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are completely excluded. However, the total transport costs are reduced by approximately 3%. Therefore, a trade-off 

between the reduced number of facilities in the entire network and the new routing costs is considered to be 

determined. 
 

 
Figure 3: Selected key performance indicators: Percentage deviation between the scenarios AUS and BAS for the selected German food retailer 
Lidl. 

6. Conclusion and Outlook 

By achieving automation level 5 in freight transport, a profound effect is expected not only in terms of tactical and 

operational planning, but also at a strategic planning level, like logistics network adaptation. In this context, a 

combined consideration of the VRP and FLP, also known as LRP is needed. Moreover, for large networks, even the 

classical metaheuristic approaches are often not feasible due to not polynomial time complexity of both sub-

problems. For this reason, we implemented a large-scale LRP using a clustering technique and an analytical routing 

cost approximation to adjust the logistics network for the usage of autonomous vehicles in regional and urban 

freight transport. Our simulation results indicated that in a network with autonomous vehicles without drivers, the 

number of logistics facilities could be reduced from 35 to 23, without breaking the total transport costs compared to 

the actual state. In this new adapted network, the total road mileage performed by automated vehicles increases up to 

60%. This can lead to an increase of 54.7% in CO2-emissions, as obtained from microsimulation results in Figure 3.  

As a result, we investigated the effects of an adjusted logistics network on freight transport at the infrastructural 

network level by using the microscopic, agent-based transport simulation MATSim and the integrated logistics 

module Jsprit. Although this approach yields an effective heuristic with a polynomial time complexity, further 

researches are needed to numerically calibrate the analytical routing costs and vehicle choice decisions under 

simulated conditions. However, applying the k-Means++ clustering in combination with CA routing costs estimation 

allows us to find a solution for LRPs even for oversized instances in a short computation time which has been one of 

the most sophisticated complexities in traditional heuristics. 
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