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Abstract

The turbulent equilibrium conditions are derived for the Reynolds-stress transport equa-

tions in two-dimensional incompressible mean flow. The most general formulation of the

pressure-strain correlation model is employed so that the result holds for virtually any pres-

sure-strain correlation model suggested so far.

Zusammenfassung

Es werden die Bedingungen für das turbulente Gleichgewicht der Reynolds-Spannungs-

gleichungen für die zweidimensionale, gemittelte Strömung eines inkompressiblen Fluids

hergeleitet. Da die allgemeinst mögliche Formulierung des Modells der Druck-Scher-Korre-

lation verwendet wird, gilt das Ergebnis für praktisch jedes bisher vorgeschlagene Modell

der Druck-Scher-Korrelation.
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Symbols

Latin Symbols

Symbol Dimension Explanation

bi j - Component of Reynolds-stress anisotropy tensor

C
(s)
α - Coefficient of slow term of pressure-strain correlation model,

α = 1, 2

k m2/s2 Specific kinetic turbulence energy

P (k) m2/s3 Production term of specific kinetic turbulence energy

Pi j m2/s3 Component of Reynolds-stress production term

Q
(r)
α - Coefficient of rapid term of pressure-strain correlation model,

α = 1 . . . 9

Ri j m2/s2 Component of specific Reynolds stress tensor

Si j 1/s Component of mean-flow strain-rate tensor

Ui m/s Component of mean-flow velocity

xi m Coordinate

Greek Symbols

Symbol Dimension Explanation

δi j - Kronecker symbol

� m2/s3 Isotropic dissipation rate

�i j m2/s3 Component of Reynolds-stress dissipation term

Πi j m2/s3 Component of pressure-strain correlation

Π
(r)
i j m2/s3 Component of rapid part of pressure-strain correlation

Π
(s)
i j m2/s3 Component of slow part of pressure-strain correlation

Ωi j 1/s Component of mean-flow rotation tensor
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1 Introduction

The equilibrium between production and dissipation of specific kinetic turbulence energy is

a cornerstone in the development of two-equation eddy-viscosity turbulence models [9]. It

has been derived by Hinze [4] for the boundary-layer equations and holds also in turbulent

channel flow [1].

A generalised equilibrium condition based on the Reynolds-stress transport equations has

been exploited recently in the analysis of the characteristics of turbulent free-shear flow

[3]. It additionally accounts for the pressure-strain correlation and, in incompressible flow,

reduces to the classical equilibrium condition, when taking its trace.

With two-equation models, only the eddy viscosity enters into the equlibrium condition,

whereas, with Reynolds-stress models, the model of the pressure-strain correlation needs

to be accounted for. Therefore, the equilibrium conditions depend on the details of the

respective model.

The foundations of Reynolds-stress modeling have been laid by Chou [2] and, particularly

for the pressure-strain correlation, by Rotta [7]. According to Rotta [7], in homogeneous

turbulence, the pressure-strain correlation can be decomposed into two contributions. The

so-called slow term involves only velocity fluctuations and is, therefore, only affected indi-

rectly by the mean flow. In contrast, the so-called rapid term is proportional to the mean-

flow velocity gradients, thus reacting immediately to any changes in the mean flow.

Based on physical considerations, Rotta [7] concludes that, in the absence of mean-velocity

gradients, the slow term should drive the Reynolds-stress tensor towards isotropy. This im-

plies a dependence of the slow term on the Reynolds-stress anisotropy. For the rapid

term, Rotta [7] derives a generic expression with associated constraints that imply a de-

pendence on the specific Reynolds stresses or, in nondimensional form, the corresponding

anisotropies.

Various models for the pressure-strain correlation have been developed along the lines of

Rotta’s [7] ideas. The most general forms of the slow and rapid terms have been provided
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1 Introduction 7

by Lumley [6] and by Johansson and Hallbäck [5], respectively, based on tensor series ex-

pansions. They involve a number of coefficients that might be functions of the invariants of

the Reynolds stress anisotropy tensor. Virtually any model of the pressure-strain correlation

suggested so far can be viewed as a subset of these general formulations.

Abid and Speziale [1] provide equilibrium values of the Reynolds-stress anisotropies for

various models of the pressure-strain correlation, but without giving any details of the

underlying equations. In order to close this gap, the turbulent equilibrium conditions for

Reynolds-stress models will be derived subsequently for the most general formulations of

the pressure-strain correlation model. From this, the conditions for any particular model

can be derived by identifying its respective terms in the general formulation and setting all

others to zero.

The equilibrium conditions hold in several canonical flows, in particular in the log-law

region of boundary layers. They can therefore be exploited in the calibration of Reynolds-

stress models as well as in the analysis of model behavior.

DLR
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2 Modeled Pressure-Strain
Correlation

Following Rotta [7], the pressure-strain correlation Πi j is decomposed into a slow term Π
(s)
i j

and a rapid term Π
(r)
i j according to

Πi j = Π
(s)
i j +Π

(r)
i j . (2.1)

To this point, the influence of the domain boundary, particularly the effect of viscous walls,

is neglected. The slow as well as the rapid term are symmetric and traceless and are

modeled independently.

2.1 Slow Term

According to Lumley [6], the most general model of the slow term reads

Π
(s)
i j = −� C

(s)
1 bi j − C

(s)
2 bikbkj −

1

3
bklblkδi j , (2.2)

in which � is the specific dissipation rate and

bi j =
Ri j
2k
− 1
3
δi j (2.3)

are the anisotropies associated with the specific Reynolds stresses Ri j and the specific

kinetic turbulence energy k = 1
2Ri i . The coefficients C

(s)
1 and C

(s)
2 might be functions of

the invariants of the Reynolds-stress anisotropy tensor,

IIb = bklbkl , (2.4)

IIIb = bklblmbmk . (2.5)

The slow term according to Eq. (2.2) is symmetric and traceless.

DLR
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2 Modeled Pressure-Strain Correlation 9

2.2 Rapid Term

According to Johansson and Hallbäck [5], the most general model of the rapid term

reads

Π
(r)
i j = k Q

(r)
1 δipδjq +Q

(r)
2 bipδjq + bjpδiq −

2

3
bpqδi j

+Q
(r)
3 bpqbi j +Q

(r)
4 biqbjp −

1

3
bpkbkqδi j

+Q
(r)
5 bplblqbi j + Q

(r)
5 bpq +Q

(r)
6 bplblq bikbkj −

1

3
bmnbmnδi j Spq

+k Q
(r)
7 bipδjq + bjpδiq +Q

(r)
8 bpk bjkδiq + bikδjq

+Q
(r)
9 bpk bjkbiq + bikbjq Ωpq , (2.6)

in which

Si j =
1

2

∂Ui
∂xj

+
∂Uj
∂xi

, (2.7)

Ωi j =
1

2

∂Ui
∂xj

− ∂Uj
∂xi

(2.8)

denote the strain rates and rotation rates of the mean flow, respectively. As with the

slow term, the coefficients of the rapid term, Q
(r)
α , α = 1 . . . 9, can be functions of the

anisotropy invariants IIb (2.4) and IIIb (2.5).

The rapid term according to Eq. (2.6) is also symmetric and traceless.

DLR
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3 Turbulent Equilibrium Conditions

3.1 General Relations

Consider a turbulent shear flow that is governed by the incompressible boundary-layer

equations. At sufficiently high Reynolds number, there exists a sublayer, which is in turbu-

lent equilibrium [3], i.e., a region, in which the production term Pi j , the pressure-strain

correlation Πi j and the dissipation term �i j of the Reynolds-stress transport equation are in

balance,

0 = Pi j + Πi j − �i j . (3.1)

Taking the half of the trace, the contribution of the pressure-strain correlation drops out,

and there remains the turbulent equilibrium of the k-equation

0 = P (k) − �, (3.2)

with P (k) = Pi i/2 and � = �i i/2. These relations also hold in turbulent channel flow when

assuming diffusion to be negligible.

The Reynolds-stress production term is defined exactly by

Pi j = −Rik
∂Uj
∂xk

− Rjk
∂Ui
∂xk

, (3.3)

from which the k-production term

P (k) = −Rik
∂Ui
∂xk

(3.4)

follows. Since the Reynolds number is assumed to be high, the dissipation term can be

taken as isotropic,

�i j =
2

3
�δi j . (3.5)

For analysis, the pressure-strain correlation Πi j = Π
(s)
i j + Π

(r)
i j , is substituted by the general

models for the slow and the rapid term, Eqs. (2.2) and (2.6).
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3 Turbulent Equilibrium Conditions 11

3.2 Two-Dimensional Flow

Consider a two-dimensional flow in the x1-x2-plane, so that U1 is the principal mean flow

velocity and U3 = R13 = R23 ≡ 0. According to the boundary-layer assumptions, there

is only one dominating velocity gradient, ∂U1/∂x2, leading to a considerable simplification

of the production terms,

P11 = 2P
(k) = −2R12

∂U1

∂x2
, (3.6)

P22 = P33 = 0, (3.7)

P12 = −R22
∂U1

∂x2
. (3.8)

Introducing the Reynolds-stress anisotropies according to Eq. (2.3), the nonzero production

terms can be written

P11 = 2P
(k) = −4kb12

∂U1

∂x2
, (3.9)

P12 = −2k b22 −
1

3

∂U1

∂x2
. (3.10)

For turbulent channel flow these conditions hold exactly.

Furthermore, for two-dimensional flow, the general model of the rapid term (2.6) simplifies

to

Π
(r,2D)
i j =

Q
(r)
1

2
δi1δj2 + δi2δj1 +

Q
(r)
2

2
bi1δj2 + bi2δj1 + bj1δi2 + bj2δi1 −

4

3
b12δi j

+Q
(r)
3 b12bi j +

Q
(r)
4

2
bi1bj2 + bi2bj1 −

2

3
b1kbk2δi j

+Q
(r)
5 b1lbl2bi j + Q

(r)
5 b12 +Q

(r)
6 b1lbl2 bikbkj −

1

3
IIbδi j

+
Q
(r)
7

2
bi1δj2 − bi2δj1 + bj1δi2 − bj2δi1

+
Q
(r)
8

2
bik bk1δj2 − bk2δj1 + bjk (bk1δi2 − bk2δi1)

+
Q
(r)
9

2
bik bk1bj2 − bk2bj1 + bjk (bk1bi2 − bk2bi1) k

∂U1

∂x2
. (3.11)

Finally, due to the equilibrium condition (3.2), the isotropic dissipation rate can be written

DLR
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3 Turbulent Equilibrium Conditions 12

as

� = −2kb12
∂U1

∂x2
, (3.12)

which yields the general model of the slow term for two-dimensional flow (2.2)

Π
(s,2D)
i j = 2b12 C

(s)
1 bi j − C

(s)
2 bikbkj −

1

3
IIbδi j k

∂U1

∂x2
(3.13)

With these simplifications for two-dimensional boundary layer flow, one obtains the fol-

lowing equilibrium conditions for the different Reynolds-stress components based on the

most general formulations of the pressure-strain correlation model according to Lumley [6]

and Johansson and Hallbäck [5]:

Component 11

0 = −8
3
+ 2 C

(s)
1 b11 − C

(s)
2 b211 + b212 −

1

3
IIb

+
1

3
Q
(r)
2 +Q

(r)
3 b11 +

1

3
Q
(r)
4 (2b11 − b22) +Q

(r)
5 b11 (b11 + b22)

+ Q
(r)
5 +Q

(r)
6 (b11 + b22) b211 + b212 −

1

3
IIb

−Q
(r)
7 −Q

(r)
8 (b11 + b22)−Q

(r)
9 b11b22 − b212 (3.14)

Component 22

0 =
4

3
+ 2 C

(s)
1 b22 − C

(s)
2 b212 + b222 −

1

3
IIb

+
1

3
Q
(r)
2 +Q

(r)
3 b22 +

1

3
Q
(r)
4 (2b22 − b11) +Q

(r)
5 b22 (b11 + b22)

+ Q
(r)
5 +Q

(r)
6 (b11 + b22) b212 + b222 −

1

3
IIb

+Q
(r)
7 +Q

(r)
8 (b11 + b22) +Q

(r)
9 b11b22 − b212 (3.15)

Component 33

0 =
4

3
+ 2 C

(s)
1 b33 − C

(s)
2 b233 −

1

3
IIb

−2
3
Q
(r)
2 +Q

(r)
3 b33 −

1

3
Q
(r)
4 (b11 + b22) +Q

(r)
5 b33 (b11 + b22)

+ Q
(r)
5 +Q

(r)
6 (b11 + b22) b233 −

1

3
IIb (3.16)
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3 Turbulent Equilibrium Conditions 13

Component 12

0 = −2 b22 +
1

3
+ 2b12 C

(s)
1 b12 − C

(2)
2 b12 (b11 + b22)

+
1

2
Q
(r)
1 +

1

2
Q
(r)
2 (b11 + b22) +Q

(r)
3 b212 +

1

2
Q
(r)
4 b11b22 − b212

+ 2Q
(r)
5 +Q

(r)
6 (b11 + b22) b212 (b11 + b22)

+
1

2
Q
(r)
7 (b11 − b22) +

1

2
Q
(r)
8 b211 − b222

+
1

2
Q
(r)
9 b11b22 − b212 (b11 − b22) (3.17)

As is verifyed easily, Eqs. (3.14), (3.15) and (3.16) sum up to zero and are, hence, linearly

dependent. Eq. (3.16) can therefore be ignored, and only Eqs. (3.14), (3.15) and (3.17)

need to be accounted for. They are valid for any model of the pressure-strain correlation

that can be expressed as a subset of the general formulations for the slow term (2.2)

according to Lumley [6] and the rapid term (2.6) according to Johansson and Hallbäck

[5].

Note that the equilibrium conditions (3.14), (3.15) and (3.17) are independent of the

mean-flow velocity gradient. Hence they hold identically for any incompressible two-

dimensional flow, in which a turbulent equilibrium is present. They essentially relate the

components of the Reynolds-stress anisotropy tensor b11, b22 and b12 to the model coef-

ficients C
(s)
1 , C

(s)
2 and Q

(r)
α , α = 1 . . . 9, independently of whether they are constant or

functions of the invariants of the Reynolds-stress anisotropy tensor.

Equations (3.14), (3.15) and (3.17) can be used for calibration of the pressure-strain corre-

lation to a particular equilibrium state. However, different canonical flows are associated

with different equilibrium states [3]. Therefore, independent of the complexity of the

pressure-strain correlation model considered, a tailored approach is required for coping

with different types of flow.

DLR
DLR – DLR-IB-AS-BS-2021-182



4 Conclusion

The turbulent equilibrium conditions have been derived for the Reynolds-stress transport

equations based on two-dimensional incompressible boundary-layer assumptions. The

derivation employs the most general model formulations for the slow and the rapid term

of the pressure-strain correlation.

Three equations are obtained relating the Reynolds-stress anisotropies to the model coef-

ficients that might be functions of the invariants of the Reynolds-stress anisotropy tensor.

The equations are independent of the velocity gradient and therefore hold identically for

any two-dimensional incompressible flow, in which a turbulent equilibrium is present. Due

to the generality of the formulation, the result can be transferred to virtually any pressure-

strain correlation model suggested so far.

The obtained equilibrium conditions can be used for calibrating the respective pressure-

strain correlation model to a particular equilibrium state, e.g., in the log-law region of

a boundary layer. Since different flows are associated with different equilibrium proper-

ties, a tailored approach will be needed for broadening the range of accurate predictions,

independent of the complexity of the pressure-strain model that is employed.
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DLR
DLR – DLR-IB-AS-BS-2021-182 15


