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A B S T R A C T   

A recent suite of new global-scale satellite sensors and regional-scale airborne campaigns are providing a wealth 
of remote sensing data capable of dramatically advancing our current understanding of the spatial distribution of 
forest structure and carbon stocks. However, a baseline for forest stature and biomass estimates has yet to be 
established for the wide array of available remote sensing products. At present, it remains unclear how the es
timates from these sensors compare to one another in terrestrial forests, with a clear dearth of studies in high 
carbon density mangrove ecosystems. In the tallest mangrove forest on Earth (Pongara National Park, Gabon), we 
leverage the data collected during the AfriSAR campaign to evaluate 17 state-of-the-art sensor data products 
across the full range of height and biomass known to exist globally in mangrove forest ecosystems, providing a 
much-needed baseline for sensor performance. Our major findings are: (Houghton, Hall, Goetz) height estimates 
are not consistent across products, with opposing trends in relative and absolute errors, highlighting the need for 
an adaptive approach to constraining height estimates (Panet al., 2011); radar height estimates had the lowest 
calibration error and bias, with further improvements using LiDAR fusion (Bonan, 2008); biomass variability and 
uncertainty strongly depends on forest stature, with variation across products increasing with canopy height, 
while relative biomass variation was highest in low-stature stands (Le Quéréet al., 2017); a remote sensing 
product’s sensitivity to variations in canopy structure is more important than the absolute accuracy of height 
estimates (Mitchardet al., 2014); locally-calibrated area-wide totals are more representative than generalized 
global biomass models for high-precision biomass estimates. The findings presented here provide critical baseline 
expectations for height and biomass predictions across the full range of mangrove forest stature, which can be 
directly applied to current (TanDEM-X, GEDI, ICESat-2) and future (NISAR, BIOMASS) global-scale forest 
monitoring missions.   

1. Introduction 

Forests hold approximately 45% of the world’s active carbon 

(Houghton, Hall, Goetz, Cohenet al., 2013, Bonan, 2008), sequestering 
approximately 32% of anthropogenic emissions every year (Le 
Quéréet al., 2017). Accurate estimates of the distribution and total 
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carbon held in Earth’s forests are essential for modelling and monitoring 
climate change, yet many global maps of carbon storage disagree in 
critical regions of high carbon density (Mitchardet al., 2014). Man
groves, in particular, have the highest total carbon density of any forest 
on Earth with a mean of 856 Mg ha− 1, 49–98% of which is stored in the 
first 3 m of soils (Donato et al., 2011), (Kauffmanet al., 2020), with C 
burial rates of 226 ± 39 g C/m2/yr in comparison to 4 ± 0.5 g C/m2/yr 
in tropical terrestrial forests (Mcleodet al., 2011). Total mangrove 
aboveground biomass (AGB) is estimated at 1.75 Pg (Simardet al.), with 
soil carbon measurements in the range of 1.93–6.4 Pg C (Ouyang, Lee), 
(Sandermanet al., 2018), yielding approximate total carbon estimates of 
2.7–7.2 Pg C. Additionally, these forests provide valuable ecosystem 
services – fuel, construction materials, and protection from storms – to 
local coastal populations (Barbier, 2016), (Ewel et al., 1998) and 
essential habitat for rare and endangered animal species (Gopal and 
Chauhan, 2006). Despite their importance, anthropogenic-driven loss is 
occurring on a global scale (Thomas et al., 1996), (Goldberg et al., 
2020). In the face of climate change, a detailed understanding of the 
spatial distribution of carbon storage across the landscape will make 
future conservation efforts more fruitful (Worthingtonet al.) and help 
countries attain Nationally Determined Contribution (NDC) emissions 
reduction targets over the next half century. 

National-scale carbon inventories contrast in level of detail and un
certainty of estimates. The confidence in reported carbon stocks dictate 
the three IPCC tiers, corresponding to estimates from [i] Tier 1: a mean 
ecosystem carbon density, [ii] Tier 2: deploying height-stratified field 
plots for improved mean carbon density, or [iii] Tier 3: spatially 
continuous carbon estimates calibrated with field plots and modeled 
with remote sensing (2006Guideline, 2006). Global conservation and 
forest ecology is entering a “golden age” of satellite measurements that 
stands to significantly improve our current understanding of fine-scale 
patterns in forest structure and carbon storage (Lucaset al. et al., 
2017). Remote sensing is enabling near-universal Tier 3 carbon esti
mates, but the long list of mapping products have yet to be directly 
compared to one another and important sensor-specific differences in 
forest height and biomass have not been quantified. 

Key missions designed specifically for measuring forest structure 
include NASA’s Global Ecosystem Dynamics Investigation (GEDI), ESA’s 
BIOMASS (Le Toanet al., 2850), and NASA-ISRO’s Synthetic Aperture 
Radar (NISAR (Rosenet al., 2016);). GEDI - a large-footprint waveform 
LiDAR (Light Detection And Ranging) sensor - solves many of the 
greatest challenges for creating high-certainty global forest carbon maps 
(Dubayahet al.). To capture sub-kilometer variations in forest structure, 
sampling instruments like GEDI or ICESat-2 (dense photon counting 
LiDAR) must be matched to contiguous height estimates – from either 
optical or, preferably, radar (Qi and Dubayah, 2016). DLR’s TerraSAR-X 
add-on for Digital Elevation Measurement (TanDEM-X or TDX) DEM 
product provides a ~12 m resolution digital surface model (DSM) at a 
global scale, making it ideal for creating high-resolution spatially 
continuous forest height products (Kriegeret al., 2007), (Lee et al., 
2018). In tropical forests, upcoming SAR sensors like BIOMASS (P-band) 
and NISAR (L-band) can penetrate cloud cover, enabling detailed esti
mates of forest structure that are unreachable with optical and LiDAR 
remote sensing alone (Mitchardet al., 2012). However, radar backscatter 
loses sensitivity at high biomass densities - highlighting the need for 
more direct estimates of structure from SAR (i.e. InSAR) together with 
multi-faceted fusion approaches as the most viable option for globally 
consistent estimates of forest structure. In mangroves specifically, 
Simard et al. (Simardet al.) created a global high-resolution mangrove 
height and biomass maps using Shuttle Radar Topography Mission 
(SRTM) data calibrated with NASA Ice, Cloud, and land Elevation Sat
ellite (ICESat) Geoscience Laser Altimeter System (GLAS) and forest 
inventory data. However, these maps represent the status of global 
mangrove forest in the year 2000 with 30-m spatial resolution and 
limited accuracy at local scales. Given the wealth of current and up
coming near-global remote sensing data capable of estimating forest 

height and biomass, there is a clear need to evaluate the consistency and 
differences across sensors in the context of height and biomass. 

In this study, we evaluate 17 forest biomass products from five types 
of sensors measuring canopy structure ([i] stereo optical photogram
metry, [ii] SAR interferometry, [iii] Polarimetric SAR interferometry, 
[iv] large-footprint waveform LiDAR and [v] photon counting LiDAR in 
the tallest known mangrove forest (Simardet al.), leveraging data 
collected from the 2016 AfriSAR airborne campaign as well as in situ 
measurements in Gabon (Fatoyinboet al., 2017), (Fatoyinboet al., 
2021). These products were derived from airborne and spaceborne 
sensors representing the suite of current and future missions used for 
measuring forest height, estimating aboveground biomass and 
ecosystem carbon stocks. The specific objectives of this study are:  

1. Directly compare remotely sensed height products;  
2. Develop and evaluate sensor-specific biomass calibration models 

from plot data;  
3. Directly compare spatial distributions of locally calibrated and other 

biomass products;  
4. Directly compare area-wide totals from locally calibrated and other 

biomass products. 

The goal of our analysis is to provide a baseline comparison of height 
and biomass estimates for the most commonly available airborne and 
spaceborne remote sensing products, providing a much-needed baseline 
for current and forthcoming sensor performance. 

2. Methods – 2362 

The analysis in this study used field inventory biomass estimates to 
calibrate a suite of remotely sensed height to generate spatially 
comprehensive maps of biomass over the study site. The height and 
biomass maps, and biomass totals are then intercompared. 

2.1. Site description and field data 

The study site is the Pongara National Park located in Gabon (Fig. 1). 
Pongara National Park is located on the southern bank of the Komo 
Estuary, directly south of Libreville, Gabon’s capital city. The Park 
covers an area of 87,000 ha and is covered primarily by mangroves 
(52,700 ha) and some terra firme rainforests (Dauby et al., 2008). This 
site holds both the tallest known mangrove forests on Earth and large 
areas of short low density stands – an excellent test case for capturing a 
range in forest stature from 2 m to in excess of 60 m in height 
(Simardet al.). 

Circular field plots (n = 17) were sampled with a radius between 6 
and 12.5 m diameter, with small plots coinciding with short stature 
forest stands (Trettinet al., 2020). At each plot, aboveground biomass 
(AGB) was estimated from stem diameter measurements (0.5 m above 
the last prop-root). In addition, tree height was estimated using a laser 
hypsometer. In this study, we chose to use height-based field allometry 
from Chave et al. (Chaveet al., 2014)’s wet tropical equation as it best 
related to our remotely-sensed height estimates: 

Aboveground Biomass (kg) = exp
(
α+ β ln

(
ρ D2H

))
[1]  

Where α and β are model coefficients derived from least squares 
regression, ρ is species-specific wood density (0.9 for Rhizophora sp.), D 
is tree diameter, and H is tree height. 

For reference and to determine the impact of allometric equation 
selection, we also evaluated the difference in plot-level biomass esti
mates using allometry relying solely on tree diameter (See Fig. S1, 
Table S1, and Fig. S2; (Komiyama, Poungparn, Kato)). 
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2.2. Remote sensing datasets 

We evaluated height and/or biomass products of global and local 
spatial extent (Fig. 2; Table 1). We evaluated five types of sensors 
measuring canopy structure using [i] stereo optical photogrammetry, 
[ii] SAR interferometry, [iii] Polarimetric SAR interferometry, [iv] 
large-footprint waveform LiDAR and [v] photon counting LiDAR. Spe
cific details on products and processing techniques for individual 
products can be referenced from the associated publications in Table 1. 
Spatially continuous height products were not modified prior to biomass 
calibration to ensure the generalization of our analysis and results. 
Measurements from spaceborne LiDAR instruments –ICESat-2 and GEDI 
were used to calibrate TanDEM-X heights at the corresponding sensor 
resolution to produce two additional LiDAR-calibrated height and 
biomass map products. 

2.2.1. Brief sensor overview 
Several of the global sensor products evaluated here were produced 

in the 2000–2010 timeframe. The Advanced Land Observing Satellite 
(ALOS) Panchromatic Remote-sensing Instrument for Stereo Mapping 
(PRISM) is an optical instrument providing a 30 m stereo imagery-based 
digital surface model (DSM; (Tadono, Ishida, Oda, Naito, Minakawa, 
Iwamoto)), also referred to as a Digital Elevation Model (DEM). The 
Shuttle Radar Topography Mission (SRTM) was a C-Band SAR interfer
ometry mission that flew in February 2000 producing a global ~30 m 
resolution Digital Surface Model (DSM). The SRTM DSM was used in 
concert with ICESat-1 (Ice, Cloud, and land Elevation Satellite 
(Zwallyet al., 2002);) canopy height estimates to create local (Simard 
et al., 2008) and continental-scale (Fatoyinbo and Simard, 2013) and, 
more recently, the first global-scale (Simardet al.) canopy height and 
biomass models for mangrove forests. TanDEM-X is a high-resolution 
interferometric SAR mission launched by DLR (German Aerospace 
Center) to produce ~12 m (commercially available), ~30 m, and ~90 m 
(freely available) resolution global DSMs (Kriegeret al., 2007). 

We evaluated two recently launched global LiDAR sensors for 
measuring vegetation structure. The ICESat-2 satellite uses a photon- 
counting LiDAR to measure elevations (Abdalatiet al., 2010), 

producing 100 m granule with vegetation indices. The low sampling 
density and polar orbit of ICESat-2 prevents evaluation of a continuous 
gridded height product. We therefore created continuous ICESat-2 mean 
canopy height product by calibrating 90 m TanDEM-X heights with 100 
m ICESat-2 mean canopy height granules using a simple least squares 
regression model. The Global Ecosystem Dynamics Investigation (GEDI) 
instrument is a full-waveform LiDAR designed specifically to measure 
forest structure at a near-global scale using four high-powered (power) 
and four-low powered (coverage) beams (Dubayahet al.). Aboard the 
International Space Station (ISS), GEDI produces vegetation metrics at 
the footprint-level (~25 m) with high vertical resolution. Similar to 
ICESat-2, we created a continuous GEDI RH100 height product by cal
ibrating 30 m TanDEM-X heights with footprint-level GEDI RH100 
heights using a least squares regression model. Geolocation errors are 
common in the version 001 release of GEDI data and erroneous height 
measurements often occur in edge areas. A recent simulation study 
found that the expected GEDI geolocation error of 10 m may introduce 
more than 50% uncertainty into the resulting height estimates (Roy, 
Kashongwe, Armston). We therefore flagged and removed GEDI shots 
within 40 m of the forest edge to avoid potential mixed or non-mangrove 
footprints resulting from geolocation error. 

Local scale sensors in this study were flown as part of the AfriSAR, a 
joint NASA and ESA (European Space Agency) airborne campaign 
(Fatoyinboet al., 2017), (Fatoyinboet al., 2021). The goal of the mission 
was to fly overlapping airborne sensors analogous to future missions (e. 
g. ESA BIOMASS (Le Toanet al., 2850), NASA-ISRO Synthetic Aperture 
Radar (NISAR (Rosenet al., 2016);) and GEDI) to measure forest struc
ture. DLR deployed the airborne F-SAR - a dual band Pol-InSAR instru
ment analogous to NISAR (L-band) and BIOMASS (P-band) - and covered 
a small portion of the study area and field plots. JPL’s UAVSAR, an 
L-band SAR covered nearly the entirety of Pongara National Park 
(Denbina et al., 2018). The Land Vegetation Ice Sensor (LVIS; (Blair, 
Rabine, Hofton)) has near-identical technology as GEDI, though with 
nearly continuous sampling, providing ~25 m footprints of 
full-waveform LiDAR measurements. 

Fig. 1. Map of Pongara National Park with heights from SRTM-based global height product (from Simard et al. (Simardet al.)). Inventory plots were placed such that 
canopy heights were sampled proportionally according to the height distribution across the site. 
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2.2.2. ICESat-2- and GEDI-TanDEM-X fusion 
ICESat-2- and GEDI heights were used to calibrate two continuous 

TanDEM-X canopy height maps covering the entirety of the study area. 
For both spaceborne LiDAR sensors, we calibrated TanDEM-X heights 
with a similar procedure: [i] directly matching LiDAR heights to 
TanDEM-X heights, [ii] developing a calibration model between LiDAR 
height and TanDEM-X height, and [iii] producing a LiDAR corrected 
continuous height product covering the entirety of Pongara National 
Park. 

All available overlapping ICESat-2 data were extracted for the study 
area comprising 46 total orbits of ATL08 data. All orbits were con
strained to the study area and only those classified as mangrove were 
retained, leaving a total of 597 at 100 m intervals. We used the 
h_mean_canopy variable in our calibration procedure – the mean of 
canopy heights within a 100 m granule. We used the 90 m TanDEM-X 
geoid-corrected height product (Simardet al.) to upscale ICESat-2 mea
surements since the two were closely matched in spatial scale. Next we 
extracted the 90 m resolution TanDEM-X heights at the overlapping 
ICESat-2 granules. In an initial assessment between the two heights, we 
found beam three had consistently anomalous height estimates; We 
therefore excluded data from this beam entirely. We identified and 
removed two extreme outliers in the calibration, based on the values 
exceeding 10× the mean Cooks Distance in the linear model. In total, we 
built the calibration model on 391 ICESat-2 height measurements. 

Similarly, all available overlapping GEDI data was extracted for the 
study area – 21 total orbits of L2B data. Again, all orbits were con
strained to the study area, retaining only mangrove areas and quality 
flag 1 data, leaving a total of 3482 canopy height estimates. We used the 
rh100 variable in our calibration procedure – the tallest detectable 
height aboveground. 

As expected, the two height variables for both ICESat-2 and GEDI 
data were closely and linearly related, so we used a least squares 
regression to develop the calibration model: 

ICESat2 or GEDI Canopy Height (m) = β0 + β1hTDX  

Where β0 and β1 are model coefficients and hTDX is 90 m resolution 
geoid corrected TanDEM-X height. 

2.3. Height and biomass analysis 

The aim of our analysis was to compare the current available 
airborne and spaceborne remote sensing products for estimating forest 
height and biomass (Fig. 2). Both analyses of height and biomass 
compared each individual remote sensing product to a mean map (and 
standard deviation) created from all products. We evaluated the devia
tion of each product height and biomass from the mean with residual 
plots. Finally, we compared the total estimated biomass (and uncer
tainty) across the study site from each remote sensing product, along 

Fig. 2. Workflow detailing major processing and analysis steps used to compare 17 area-wide biomass products in Pongara National Park.  
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with six other external AGB maps and IPCC Tier 1 and Tier 2 AGB es
timates. In doing so, we provide a basis for comparison and a baseline 
expectation for height and biomass estimates for all products analyzed in 
this study. 

2.3.1. Evaluating remotely sensed mangrove height 
Height estimates from nine height products were intercompared at 

the pixel level over their mutually overlapping area. To evaluate the 
variability across all height products (Hproduct), we calculated the per- 
pixel (i) average (mean) and standard deviation (sd) of all height maps 
to create a single map representing the mean height (Hmean) and stan
dard deviation (Hsd) of height: 

Hmean(i)= mean
(
Hproduct (i)

)
[2]  

Hsd(i) = sd
(
Hproduct (i) − Hmean(i)

)
[3] 

We evaluated the overall trend in standard deviation from Eq. (3) 
with respect to 1 m bins of Hmean. For individual continuous AGB 
products (AGBproduct ; n = 9) by calculating the mean signed deviation 
(MSD) and standard deviation (Hsd) as a function of 1 m bins of Hmean, 
represented as h in equations (4) and (5): 

MSD(h)= mean
(
Hproduct (i, h) − Hmean(i, h)

)
[4]  

Hsd(h)= sd
(
Hproduct (i, h) − Hmean(i, h)

)
[5] 

We also determined how well specific products capture field- 
measured heights (based on RMSE and bias) by directly comparing the 
remotely sensed heights to plot-level tree height percentiles. 

2.3.2. Sensor aboveground biomass calibration and uncertainty 
For each of the remote sensing height products, we built a calibration 

model relating in-situ plot biomass to remotely sensed height using non- 
linear least squares regression (nls; R Core Team 2019) with the form: 

Aboveground Biomass
(
Mg ha− 1) = β0hm

α [5]  

Where β0 is the scaling coefficient, hmis a sensor-specific height metric, 
and α is the scaling exponent. Note, none of the remote sensing products 
we evaluated had a resolution smaller than the plot size (6–12.5 m 
diameter), so the value of hm was simply extracted at the plot location. 
However, plots were established in ~0.5 ha areas of homogeneous 
height to mitigate the effects of the smaller plot size (See Trettin et al. 
(Trettinet al., 2021) for details), making the plot data representative for 
resolutions up to ~70 m. In addition, we used this same model form to 
evaluate a purely plot-based allometric model (see Supplementary Ma
terial Fig. S1). 

The precision and accuracy of all locally calibrated predictive 

Table 1 
Specifications of sensors and products used for local calibration and/or validation in the study.  

Extent Sensor/Product Product 
Resolution 

Technology Acquisition 
Period 

Availability Variablea Relevant Publications 

Global 
Height 
Products 

[a] ALOS PRISM 
DEM 

30 m Stereo Optical Jan 24, 
2006–Apr. 22, 
2011 

Open Elevation (Tadono, Ishida, Oda, 
Naito, Minakawa, 
Iwamoto) 

[b] SRTM 30 m C-Band SAR 
Interferometry 

Feb 11–22, 2000 Open Ice-SAT-GLAS-Corrected 
Mangrove Canopy Height 
(Hmax) 

(Simardet al.), (Farret al., 
2007) 

[c] TanDEM-X (12 
m) 

12 m X-Band SAR 
Interferometry 

Dec 12, 
2010–Jan 16, 
2015 

Commercial Geoid corrected height asl Kriegeret al. (2013) 

[d] TanDEM-X (30 
m) 

30 m Commercial 

[e] TanDEM-X (90 
m) 

90 m Open 

[f] ICESat-2- 
TanDEM-X 

100 m Photon Counting LiDAR Sept 15, 2018 - 
Present 

Open TanDEM-X Elevation 
corrected with ATL08 98th 
percentile heights 

(Farret al., 2007), ( 
Kriegeret al., 2013) 

[g] GEDI- 
TanDEM-X 

30 m Large-Footprint Full- 
Waveform Spaceborne 
LiDAR 

Mar 25, 2019 - 
Present 

Open TanDEM-X Elevation 
corrected with RH100 
heights 

(Dubayahet al.) 

Local Height 
Products 

[h] LVIS 50 m Large-Footprint Full- 
Waveform Airborne 
LiDAR 

Mar 3, 2016 Open RH100 (Blair, Rabine, Hofton) 

[i] F-SAR L bandc 30 m Airborne L-Band 
PolinSAR 

Feb 2016 Open Modeled Canopy Height (Pardini et al., 2018), ( 
Horn et al., 2009) 

[j] F-SAR P-bandc 30 m Airborne P-Band 
PolinSAR 

Feb 2016 Open Modeled Canopy Height (Pardini et al., 2018), ( 
Horn et al., 2009) 

[k] UAVSAR 30 m Airborne L-Band 
PolinSAR 

Feb 27, 2016 Open Modeled Canopy Height Hensleyet al. (2008) 

AGB 
products 

LVIS (Regional 
Calibration) 

50 m Large-Footprint Full- 
Waveform Airborne 
LiDAR 

Mar 3, 2016 Open AGBDb (Horn et al., 2009), b( 
Hensleyet al., 2008) 

Global SRTM 30 m C-Band SAR 
Interferometry 

Feb 11–22, 2000 Open AGBDb b (Simardet al.), ( 
Fatoyinbo and Simard, 
2013) 

Avitabile et al. 
2016 

~1 km SAR, Optical, Large 
Footprint LiDAR 

2011–2012 Open AGBDb b (Saatchiet al., 2019), b( 
Armstonet al., 2020) 

GEOCARBON 
IPCC Tier 1 value: 
192 Mg ha− 1 

– – Mar 2016 – IPCC mean mangrove 
AGBD 

b (2006Guideline, 2006) 

IPCC Tier 2 value: 
215 Mg ha− 1 

Plot-based  

a The predictor variable matched to plot data used for calibrating the allometric models of aboveground biomass. 
b Aboveground biomass density estimates derived in the cited study. 
c Height-biomass calibration is only evaluated due to limited spatial extent. 
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biomass models were assessed with a bootstrapped estimate of root 
mean square error (RMSE) and bias. Over 1000 iterations, a random set 
of 70% of the plot data was selected for model training using Equation 
(2). The predicted value was then compared against the independent 
(measured) plot biomass values using the following equations: 

RMSE
(
Mg ha− 1) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(predictedi − measuredi)
2

n

√

[6]  

RMSE (%) =
RMSE

measured
[7]  

Bias
(
Mg ha− 1) =

∑n
i=1predictedi − measuredi

n
[8]  

Bias (%) =
Bias

measured
[9]  

Where measured is the mean plot-level biomass density estimate across 
all iterations. In an additional analysis, we evaluated the role of model 
uncertainty in calibration coefficient estimates. A robust parameter- 
based non-linear pixel-level error estimate for each biomass product 
was estimated directly from the non-linear calibration models using the 
first-order Taylor series method as implemented in the errors package in 
R (Language, 2019), (Ucar et al., 2019). In essence, this method line
arizes the predicted biomass uncertainty for a given height, accounting 
for the variance and covariance between model coefficients (See docu
mentation for errors package for further details). The approach simply 
uses the uncertainty in the calibration model parameters to properly 
estimate pixel-level prediction error. 

2.3.4. Spatial patterns and variability in biomass 
As in our height analysis (Section 2.3.1), AGB estimates from all 

spatially continuous height products were directly compared at the pixel 
level (excluding pixels with missing values from any senor). To evaluate 
the variability across all height products (AGBproduct), we calculated the 
per-pixel average and standard deviation of all AGB maps to create a 
single map representing the mean AGB (AGBmean) and standard devia
tion (AGBsd) of height: 

AGBmean(i)= mean
(
AGBproduct (i)

)
[10]  

AGBsd(i) = sd
(
AGBproduct (i) − AGBmean(i)

)
[11] 

We evaluated the overall trend in standard deviation with respect to 
10 Mg ha− 1 bins of AGBmean. For individual continuous height products 
(AGBproduct; n = 9), we calculated the mean signed deviation (MSD) and 
standard deviation (AGBsd) as a function of 10 Mg ha− 1 bins of AGBmean, 
represented as b in equations (4) and (5): 

MSD(b)= mean
(
AGBproduct (i, b) − AGBmean(i, b)

)
[12]  

AGBsd(b)= sd
(
AGBproduct (i, b) − AGBmean(i, b)

)
[13] 

In addition, we compared the mean biomass predictions (AGBmean) of 
our area-wide locally calibrated estimates on a per-pixel basis to two 
contrasting high-resolution independent biomass products based on 
SRTM (30 m; (Simardet al.)) and LVIS (50 m (Armstonet al., 2020);). We 
quantified systematic deviations, highlighting these differences using 
residual variation figures. 

2.3.4. Total biomass and uncertainty 
Total biomass and uncertainty was estimated across the entire study 

area for all continuous remote sensing biomass products – nine locally 
calibrated models and six baseline biomass estimates (Fig. 2). For the 
nine locally-calibrated biomass products, we limited the spatial extent to 
that of the product with lowest spatial coverage (i.e. LVIS). Across this 
area, we derived the mean biomass prediction and associated 

uncertainty (determined with pixel-level model parameter-based first- 
order Taylor series method). The mean and uncertainty estimates were 
applied across the ~40,000 ha study area for area-wide biomass totals. 
Uncertainty was propagated using the errors package in R (Language, 
2019), (Ucar et al., 2019). 

We evaluated the totals from six baseline biomass estimates 
described in Table 1: [i] Global SRTM mangrove biomass (Simardet al.), 
[ii] regionally calibrated three-variable LVIS biomass (Armstonet al., 
2020), [iii] Avitabile et al. (Avitabileet al., 2016), [iv] Santoro et al. 
(Santoroet al., 2015) global biomass products (1 km), [v] IPCC Tier 1 
values (192 Mg.ha-1), and [vi] IPCC Tier 2 (215 Mg ha− 1). The global 
SRTM mangrove biomass product is based on globally calibrated 
ICESat-GLAS adjusted SRTM heights (Hmax variable, (Simardet al.)). The 
regional LVIS biomass product was calibrated from all other 
non-mangrove field data included in the Gabon AfriSAR campaign (see 
(Armstonet al., 2020)). The Avitabile et al. (Avitabileet al., 2016) and 
Santoro et al. (Santoroet al., 2015) global biomass products are built 
from a suite of active and passive remote sensing variables covering the 
pantropical and global scale, but are not specifically calibrated for 
mangroves. To ensure our area-wide totals were not biased by product 
coverage, we limited the extent of each continuous mapped product to 
the study area, calculated the mean mangrove biomass density estimate 
of all pixels, and applied the mean values to the entirety of Pongara 
National Park. For comparison, we included Tier 1 and Tier 2 
IPCC-based biomass estimates in our total biomass and assessment. The 
Tier 1 IPCC estimate was based on the Mangrove Tropical Wet 
area-based mean (192 Mg ha− 1). The field plots were established using 
probability-based sampling, so for comparison we also derived a Tier 2 
IPCC estimate calculated as the mean plot-based biomass (215 Mg ha− 1). 
Both Tier 1 and 2 mean values are not spatially explicit and were simply 
applied to the total mangrove area used in this study. To ensure a 
consistent estimate of product uncertainty, baseline product uncertainty 
was estimated as the standard deviation of the difference between in-situ 
plot biomass and the mapped biomass estimate. 

3. Results – 915 

3.1. ICESat-2- and GEDI-TanDEM-X fusion 

The ICESat-2 and GEDI height estimates successfully calibrated 
TanDEM-X heights (R2 = 0.84–0.93). Table S2 provides an overview of 
the statistics of the final calibration models and Fig. 3 shows the cali
bration models, along with anomalous excluded data. The ICESat-2 
calibration had an order of magnitude fewer measurements available 
than GEDI, reducing the power of the calibration model. The ICESat-2 
calibration model reduced TanDEM-X heights, while GEDI RH100 cali
bration increased TanDEM-X heights. The major factor affecting the 
quality of GEDI height estimates was the ground elevation estimate, 
which was used as criteria for data quality filtering. 

3.2. Evaluating remotely sensed mangrove height 

Height estimates from nine products were compared to the field 
height measurements and the mean height map (Hmean). Different as
pects of canopy height are captured, depending on sensor (Fig. 4). 
TanDEM-X products generally underestimate, LVIS closely estimates, 
and the SRTM Hmax product overestimates compared to field height. The 
ALOS PRISM DEM was highly variable and generally underestimated 
field height. 

Most products generally followed a linear trend with the mean height 
map (Hmean) (Fig. 5, Fig. S4A). ALOS PRISM product had the lowest and 
SRTM Hmax had the tallest height estimates covering ~25 m difference 
in the tallest stature stands, with TanDEM-X-based estimates clustering 
towards Hmean. UAVSAR had the only clear non-linear trend, with a 
saturating relationship above 20–30 m in mean height. Variability 
across all sensors increased non-linearly with mangrove stature (Figs. 5B 
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and 3D) to a maximum of ~8 m. Variability of individual products with 
respect to height class displayed a peak of ~2.5–7 m at ~30 m Hmean 
after which remained constant or decreased slightly (Supplementary 
Material; Fig. S3; Fig. S4). Relative variation (%; Hsd normalized by 
Hmean) universally decreased with increasing Hmean (Supplementary 
Material, Fig. S4). 

3.3. Sensor aboveground biomass calibration and uncertainty 

Calibration models scaling coefficients ranged from 0.85 (SRTM 
Hmax and ALOS PRISM Stereo DEM) to 3.11 (UAVSAR L-band height), 
with lower scaling coefficients generally having higher calibration un
certainty (Fig. 6; Table 2). The locally calibrated AGB products fell into 
two broad categories: [i] global spaceborne and [ii] local airborne 
sensors. AGB of spaceborne sensors had higher RMSE (mean = 78%, sd 
= 14%) than airborne sensors (mean = 62%, sd = 27%). Biomass models 
using airborne products were ~5% less biased than global spaceborne 
products. The best performing models for local and global height 
products were PolInSAR (L-band F-SAR; RMSE = 121 Mg ha− 1; P-band 
F-SAR; RMSE = 71 Mg ha− 1; UAVSAR; RMSE = 92 Mg ha− 1) and X-band 
interferometry (TanDEM-X; RMSE = 142 Mg ha− 1), respectively. The 
GEDI calibrated TanDEM-X AGB product had lower uncertainty than the 

TanDEM-X AGB product of the equivalent spatial resolution (RMSE =
139 Mg ha− 1; 146 Mg ha− 1). ICESat-2 calibration of TanDEM-X heights 
did not improve model performance (RMSE = 180 Mg ha− 1). The F-SAR 
products covered only 4–5 of the field plots and 20% of the study area, 
altering mean plot biomass (238–277 Mg ha− 1; ~50 Mg ha− 1 higher 
than other height products), but, while heights were lower than Hmean 
(Fig. S7), AGB predictions remained similar to AGBmean (Fig. S8). Given 
the fact that LiDAR is considered one of the best means of creating 
areawide biomass maps, the large-footprint waveform LiDAR (LVIS 
RH100) had a higher than expected RMSE (174 Mg ha− 1), putting it on- 
par with other global spaceborne sensors (e.g. C-band SAR interferom
etry (SRTM; 190 Mg ha− 1) and stereo photogrammetry (ALOS PRISM 
DEM; 220 Mg ha− 1)). 

3.4. Spatial patterns and variability in biomass 

Nearly all AGB products approximated AGBmean, with ~60 Mg ha− 1 

maximum standard deviation across all models above 600 Mg ha− 1 

(~30 m Hmean; grey, Fig. 7). All TanDEM-X products clustered towards 
the AGBmean, with ICESat-2 and GEDI estimate increasing AGB above 
400 Mg ha− 1 AGBmean. The ALOS DEM AGB product was lower than 
average above 200 Mg ha− 1, while SRTM Hmax AGB was higher than 

Fig. 3. Calibration models used to create spatially continuous height estimates by fusing ICESat-2 mean canopy height and GEDI RH100 to TanDEM-X continuous 
heights. Red points are removed outliers in the ICESat-2 calibration (anomalous beam 3 data not shown). Colored points in C show anomalous elevation values that 
were removed from the final calibration model (B and D). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.) 
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average below 200 Mg ha− 1. UAVSAR AGB was highly variable, but 
predicted consistently higher than AGBmean. AGBsd increased with 
AGBmean class for all AGB products (Fig. 7; Supplementary Material; 
Fig. S5; Fig. S6). The 30 m global SRTM mangrove biomass product was 
consistently ~40% higher than AGBmean, while the regional LVIS AGB 
product was ~200–400 Mg ha− 1 lower compared to AGBmean (Fig. 8). 
Both of these trends are clear in the difference maps (SRTM AGB – 
AGBmean and LVIS AGB - AGBmean; Fig. 8A and B). 

3.5. Total biomass and uncertainty 

We compared area-wide totals of nine different locally calibrated 
AGB products, along with four regional and globally calibrated AGB 
products, and two IPCC tier-based estimates (Table 2; Fig. 9). All 
biomass models calibrated with the local plot data predicted similar 
total biomass for the entirety of Pongara National Park (Fig. 9) using 
both global spaceborne (mean = 6.8 Tg, sd = 1.1 Tg) and local airborne 
sensors (mean = 7.8 Tg, sd = 0.8 Tg). The global SRTM-based biomass 
model predicted ~29% higher total biomass than the locally calibrated 
SRTM model. The regionally calibrated tropical forest 3-variable LVIS 
model predicted ~41% lower biomass than the single-variable RH100 
model. The local mean predictions were ~19–29% higher than the two 
1 km global biomass maps (Avitabileet al., 2016), (Santoroet al., 2015). 
The global models had total uncertainty of 1.1–1.4 Tg or ~18–21%, 
compared to the 14% total uncertainty in the UAVSAR AGB product. In 
contrast, the IPCC Tier 1 area-based estimates for Mangrove Tropical 

Wet forests had 9.6 Tg or 137% total uncertainty and the total predicted 
biomass was 6.9 Tg. The IPCC Tier 2 estimates increased average 
biomass from in-situ plot data, resulting in an increase to 7.8 Tg total 
AGB. The IPCC estimates were less than 0.8 Tg (12%) difference from 
the average biomass predicted from all locally calibrated high-resolution 
biomass products. 

4. Discussion – 3335 

Few previous studies have compared canopy height products from 
airborne and satellite products for terrestrial and mangrove forests and 
those that have are limited in the number of datasets (Sexton et al., 
2009)– (Lucaset al.). Recently, new satellite sensors were launched and 
new overlapping airborne campaigns occurred, collecting a wealth of 
spatial data. We evaluate the broad spectrum of state-of-the-art sensor 
data products across the full range of height and biomass known to exist 
globally in mangrove forest ecosystems, providing a much-needed 
baseline for sensor performance. Our major findings are as follows: 

(Houghton, Hall, Goetz)height estimates are not consistent across 
products, with opposing trends in relative and absolute errors, 
highlighting the need for an adaptive approach to constraining 
height estimates, depending on forest stature; 
(Panet al., 2011)radar products had the lowest calibration error and 
bias, with superior results from airborne instruments and improve
ments to spaceborne estimates with LiDAR fusion using height alone; 

Fig. 4. [A] Comparison between maximum field measured height and remotely sensed heights (RMSE shown). Several remote sensing products estimate maximum 
field measured height, while some represent a specific percentile of field measured tree height. [B] RMSE and [C] bias in the comparison between field tree height 
percentiles (50th to 100th) and each remote sensing product. Colors correspond to point color shown in panel A and X’s indicate the percentile at which RMSE or bias 
are lowest. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 5. (A) Example map of mean mangrove canopy height (Hmean) and (B) variation across the 9 sensors compared in this study. Relationship between sitewide 
mean mangrove canopy height (Hmean) and (C) product heights minus Hmean and standard deviation (within a product (color) and across products (grey)) from 9 
remote sensing products. Variability increases with Hmean, while the equivalent relative variation decreases with Hmean (See Supplementary Material Fig. S3). (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 6. Non-linear height allometry for 11 remote sensing products. See Table 2 for corresponding model coefficients and fit and validation statistics.  

Table 2 
Summary of comprehensive biomass calibration and predictions for the 17 products evaluated. All aboveground biomass (AGB) values are in Mg ha− 1 unless other 
units are specified. Uncertainty in the AGB prediction (σ) was derived from area-wide mean uncertainty from the AGB model parameter fits. Uncertainty in all baseline 
datasets was derived from an independent validation of the mapped values with the plot-level AGB estimates.    

Calibration Validation Totals   

Mean 
AGB 

Plots β  α  RMSE Bias Bias 
(%) 

RMSE 
(%) 

Mean 
AGB 

σ Area 
(ha) 

Total AGB 
(Tg) 

σ 

Global [a] ALOS Stereo DEM (30 
m) 

215 17 20.21 0.85 220 7 3 102 178 57 34,960 6.4 2.1 

[b] SRTM Local (30 m) 226 16 15.89 0.85 190 18 8 84 232 59 37,870 8.4 2.1 
[c] TanDEM-X (12 m) 215 17 4.90 1.29 142 16 8 66 155 29 35,295 5.6 1.1 
[d] TanDEM-X (30 m) 215 17 6.47 1.21 146 21 10 68 156 30 36,350 5.6 1.1 
[e] TanDEM-X (90 m) 215 17 8.33 1.16 165 26 12 77 169 37 37,690 6.1 1.3 
[f] ICESAT-2 TanDEM-X 
Fusion (100 m) 

215 17 9.20 1.11 180 26 12 84 205 45 37,771 7.4 1.6 

[g] GEDI TanDEM-X 
Fusion (30 m) 

215 17 4.24 1.30 139 11 5 64 215 41 36,808 7.8 1.5 

Local [h] LVIS RH100 (50 m) 215 17 11.45 1.01 174 17 8 81 230 57 26,650 8.3 2.1 
[i] F-SAR L-Band (30 m) 277 6 2.05 1.56 121 16 6 44 408 50 7322 – – 
[j] F-SAR P-Band (30 m) 238 7 0.10 2.37 71 − 11 − 5 30 368 33 7595 – – 
[k] UAVSAR (30 m) 215 17 0.01 3.11 92 − 5 − 2 43 200 28 36,191 7.2 1.0 

Baseline SRTM Global (30 m)         301 90 31,491 10.9 3.3 
LVIS 3-Variable Regional 
(50 m)         

136 36 26,864 4.9 1.3 

Avitabile et al., 2015 (1 
km)         

170 31 83,791 6.2 1.1 

GEOCARBON (1 km)         182 38 73,880 6.6 1.4 
IPCC Tier 1         192 264 – 6.9 9.6 
IPCC Tier 2         215 264 – 7.8 9.6  
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Fig. 7. (A) Example map of mean mangrove biomass (AGBmean) and (B) variation across the 9 sensors compared in this study. Relationship between AGBmean and (C) 
product biomass (AGBproduct) minus AGBmean (residuals), with standard deviation (within product (color) and across all products (grey)) from 9 remote sensing 
products. AGB variability increases with AGBmean, while the equivalent relative variation decreases with AGBmean (Supplementary Material, Fig. S5). (For inter
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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(Bonan, 2008)AGB variability and uncertainty strongly depends on 
forest stature, with AGBsd increasing with canopy height, while 
relative AGBsd variation was highest in low-stature stands, suggest
ing the greatest improvements may be in low-to mid-biomass density 
ecosystems; 
(Le Quéréet al., 2017)for AGB mapping, a remote sensing product’s 
sensitivity to variations in canopy structure is more important than 
the absolute accuracy of height estimates; 
(Mitchardet al., 2014)locally-calibrated area-wide totals are more 
representative than generalized global biomass models for 
high-precision biomass estimates; 

Here, we first consider the more technical aspects of our results 
(Section 4.1) and follow with a discussion in the context of scientific and 
application-focused relevance at local, national, and global spatial scales 
(Section 4.2). 

4.1. Evaluating remotely sensed forest height and biomass 

4.1.1. Evaluating remotely sensed mangrove height 
Mangrove canopy height estimates disagreed substantially across 

sensor type with absolute errors increasing as a function of canopy 
height. We attribute these differences almost universally to the sensor 
measurement approach capturing canopy height (Lagomasino, 

Fatoyinbo, Lee, Feliciano, Trettin, Simard). An extreme example of the 
effect of measurement approach is with the ALOS PRISM product; 
Though past work highlighted the ALOS PRISM product as capable of 
capturing broad successional patterns in mangrove stands (Aslan et al., 
2018), here, height estimates were insensitive to both low and tall 
stature forests compared to active remote sensing methods. Our com
parison of remotely sensed height to plot-level height percentiles from 
tree-level inventory measurements highlights major differences in what 
part of the forest canopy is being measured with each height estimate 
(Fig. 3). InSAR instruments are simultaneously sensitive to height and 
vegetation volume density, which is preferable for biomass modeling. 
The existing SRTM Hmax product is most representative of maximum tree 
height, but these estimates have high error (RMSE: ~7–8 m). The 12 m 
TanDEM-X phase center elevation product captures the 75th percentile 
of tree heights with 50% lower error than SRTM (RMSE: ~4 m) – 
potentially since TanDEM-X measurements were more closely tempo
rally aligned to the field campaign (5 years vs. 17 years for SRTM). In 
both cases, field based validation of these remote sensing estimates is 
key to understanding the specific height attribute represented with a 
particular remote sensing product (Harding et al., 2001) and sensor 
choice should be dependent on the end goal (e.g. height vs. biomass). 

Radar instrument wavelength and measurement technique reflected 
specific height anomalies. SRTM heights (C-band PolInSAR) differed 
positively from average with increasing canopy height, but height esti

Fig. 8. Pixel-level comparison of local mean (across 9 products) aboveground biomass estimates (AGBmean) and the [A] Global SRTM mangrove biomass and [B] 
regional LVIS biomass products. The residual plots indicate a systematic positive difference in the [C] SRTM-based model, increasing with increasing biomass values, 
and a systematic negative difference in the [D] regional LVIS biomass model. 
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mates would be substantially underestimated without the ICESat GLAS- 
calibration and is likely affected by secondary structural variables (e.g. 
canopy cover or basal area). In agreement with past work (Denbina 
et al., 2018), UAVSAR (L-band) heights were consistent (~± 10 m 
average difference) until ~40 m height, above which heights became 
shorter than average – evidence of sensor saturation. TanDEM-X offers a 
precise, high-resolution height product that makes it one of the best 
options for continuous mapping of mangrove stands at a global scale. 
With the inclusion of additional height data (e.g ICESat-2 and GEDI), 
height estimates became less biased (up to 20 m offset in the tallest 
stands), pointing to a key fusion application in future studies. However, 
when calibrating continuous height products with sampling in
struments, ground surface identification is a major issue in closed can
opy systems and is likely exacerbated in the presence of water and dense 
aboveground mangrove root networks. All of these trends are consistent 
with our expectations of radar wavelength and forest height. In general, 
longer wavelengths penetrate further into the canopy, decreasing height 
estimates from the canopy top, but we expect height estimates are also 
influenced by canopy density. 

4.1.2. Sensor aboveground biomass calibration and uncertainty 
The height-biomass allometry across sensors varied from sublinear to 

linear with high uncertainty to more power-like models with low cali
bration uncertainty. In fact, we found a consistent negative trend be
tween the scaling coefficient and model uncertainty. We also found a 
consistently higher mean biomass prediction with high-uncertainty 
models with lower scaling coefficient values – suggesting higher un
certainty models may be systematically over predicting biomass density 
(Simardet al.). Sensor measured height was the major factor affecting 
calibration uncertainty in our analysis, but other factors (e.g. plot size, 
plot shape, plot sample location, sample size, geolocation errors) can 
directly impact biomass calibration models and predictions. Future work 
in mangrove systems that independently evaluate these factors affecting 
model errors will provide more precise estimates of the spatial distri
bution of prediction uncertainty. 

In general, radar sensors provided the lowest error and bias biomass 
calibration of the 11 local models, but the addition of LiDAR-derived 
canopy heights improved model statistics. InSAR (TanDEM-X) is likely 
the best available option for developing an updated global mangrove 
biomass product, evidenced by the low errors in calibration minimally 

Fig. 9. Aboveground biomass totals for [A] nine locally calibrated and [B] six regional, global, and IPCC-based estimates. Totals are based on the mean estimates 
across the study area extrapolated via an area-based estimate. Error bars represent the 95% confidence interval of the total biomass estimate derived from plot based 
independent validation. Dotted black line and grey shaded area in B shows the mean and standard deviation of the locally calibrated area-wide biomass totals. Note: 
the y-axis scales between A and B are not fixed to highlight differences in each figure. 
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affected by product resolution (e.g. aggregating by a factor of 7.5 
inflated RMSE by only 9%). The local scale L-band UAVSAR Polarimetric 
InSAR product performed even better, likely due to higher sensitivity to 
canopy cover, trunks and woody components (i.e. basal area). The 
higher than expected RMSE in the LVIS AGB model, suggests canopy 
height alone is a less powerful predictor than the phase center height 
captured with radar instruments. Radar-LiDAR fusion approaches (e.g. 
GEDI-corrected TanDEM-X heights) improve calibration by reducing 
bias and RMSE, but even greater benefits are possible in areas with 
greater topographic relief (e.g. non-mangrove systems), since LiDAR is 
primarily improving heights through more accurate ground detection. 
Though our intercomparison provides a robust analysis of height- 
biomass allometry for calibration of remote sensing datasets, we did 
not explicitly evaluate the suite of potential multi-variate approaches 
possible for predicting spatial distributions of AGB (e.g. (Armstonet al., 
2020)), especially for LiDAR sensors (e.g. GEDI, ICESat-2, and LVIS). As 
such, the results presented here do not emphasize the full benefits of 
using LiDAR-based multivariate models for biomass prediction. Future 
biomass calibration approaches should incorporate multivariate statis
tical approaches to take full advantage of the ability of LiDAR to capture 
internal canopy structure. 

4.1.3. Spatial patterns and variability in biomass 
Summarizing height-biomass trends from pixel-level predictions 

highlights the product-specific variations across AGB products in this 
tall mangrove system. Though plot based calibration models were often 
super-linear, site scale height-biomass allometry was more linear across 
all products, with AGBmean increasing by 13 Mg ha− 1 per unit Hmean. The 
most non-linear calibration model (UAVSAR) deviated most clearly from 
the general linear trend increasing more rapidly than AGBmean from 0 to 
25 m and increasing less rapidly above 25 m Hmean. The observed 
consistent linear relationship is ideal for cross-calibration, enabling 
more compatible multi-sensor approaches to biomass monitoring 
(Duncansonet al., 2020). Variability of a single AGB product was on the 
same order as the AGB variation across all products. Between 0 and 30 
m, the standard deviation in mean biomass across all sensors increased 
linearly from 20 to 80 Mg ha− 1. Trends in pixel-level prediction uncer
tainty were similar for all sensors and within the range of AGB variation, 
increasing from 0 to 30, leveling off, then increasing to a maximum of 
60–90 Mg ha− 1. Relative to traditional forest inventory methods, all 
locally calibrated remote sensing estimates had pixel-level uncertainty 
that was low, suggesting the use of a remote sensing framework is more 
important than the choice of sensor itself. For instance, the worst per
forming product calibration (ALOS PRISM; RMSE = 102%) only trans
lated to a marginal site-wide average uncertainty (~30–80 Mg ha− 1), 
suggesting a product’s sensitivity to variations in canopy structure is 
more important than the absolute accuracy of height estimates. 

Calibration of remote sensing products should be as local as possible 
in areas of high biomass density. Our comparison of the global SRTM 
biomass product to AGBmean highlights the effects of generalized pre
dictive models excluding representative plot data. The global product 
was systematically ~40% higher than the local predictions, resulting in 
more than 400 Mg ha− 1 higher biomass density in some instances of high 
AGBmean. While the Simard et al. (Simardet al.) map is unable to accu
rately capture biomass density in the high biomass areas of Pongara 
National Park, we believe the core cause is lack of calibration data in 
these extremely tall stands. Moreover, the map clearly provides the most 
accurate AGB predictions in mid-stature stands (10–20 m), where nearly 
all plot-level calibration data and global mangrove canopy heights 
reside. Alternatively, the regional LVIS AGB product is more precise, but 
is negatively biased, remaining within 100 Mg ha− 1 throughout the 
AGBmean range. The negative bias is similarly related to the product 
calibration, relying on lower mean wood density forest inventory data, 
pushing predictions lower than expected in Pongara, where Rhizophora 
sp. have ~0.9 specific gravity. We suggest establishing future field plots 
and planning airborne campaigns that fill data gaps in high-biomass 

locations. For example, a targeted approach could use current AGB es
timates to identify key areas of high AGB density with few or no avail
able field data. Adding these additional in-situ observations will 
ultimately improve AGB calibration and provide more stable AGB pre
dictions. In summary, these two global and regional products highlight 
the importance of appropriate plot-level calibration data to ensure both 
precise and accurate area-wide biomass distributions. 

Two opposing patterns were clear with respect to variation in spatial 
biomass trends with forest stature: (Houghton, Hall, Goetz) absolute 
variation increases and (Panet al., 2011) relative variation decreases. 
The extreme, tall forests have ~200 Mg ha− 1 (or ~20%) standard de
viation on average across sensor predictions. Short forests (0–15 m) 
disagree by 40 Mg ha− 1 (or ~50%), on average. So, where will biomass 
model improvements be most impactful at the global scale: short or tall 
stands? We evaluated biomass models in a unique system capturing 
greater than 60 m of variation in mangrove forest structure, but more 
than 95% of the worlds mangroves are less than 40 m tall (Simardet al.), 
suggesting the greatest benefits may be in low-to mid-biomass density 
ecosystems. Biomass is an essential biodiversity variable (Jetzet al.), so 
improved biomass predictions stand to also directly affect biodiversity 
mapping and conservation efforts. These improvements will help to 
better capture changes in biomass over time in areas of growth, regen
eration, degradation, and loss (Lagomasinoet al., 2019). With this 
knowledge, we suggest developing global biomass products that are 
most precise in low-to mid-stature forests, but identifying and locally 
calibrating biomass models in tall-stature forests. 

4.1.4. Total biomass and uncertainty 
Locally calibrated biomass products provided similar total area-wide 

biomass estimates (all 95% confidence intervals overlap), even though 
biomass distributions often differed depending on sensor choice, having 
implications for carbon reporting and forest management. Accurate 
representations of the AGB distribution is key for identifying potential 
sites for restoration or conservation and carbon accounting priority 
(Worthington and Spalding, 2018), (Zeng et al., 2021). 

Globally available biomass maps (Avitabileet al., 2016), 
(Santoroet al., 2015) performed well, underestimating total biomass by 
only ~0.6 Tg (6.2–6.6 Tg totals), with total uncertainty ranging from 18 
to 20%. In contrast, compared to the mean AGB predicted with local 
models, the global SRTM model (Simardet al.) over predicted total 
biomass by ~3.9 Tg or 56%. The overprediction reflects two major is
sues: [i] the structure of this extremely tall mangrove stand is more 
closely analogous to a high wood density tropical forest than mangroves 
and [ii] inclusion of representative plot data is essential when building 
global biomass products (i.e. predictions outside of observations should 
be considered with caution). 

From a carbon accounting perspective, the high uncertainty of these 
predictions substantially reduces their utility in tall forest stands, sug
gesting these global, coarse resolution generalized models should not be 
universally relied on for precise and accurate forest carbon estimates. 
The majority of mangrove calibration data resides in shorter stands 
(Simardet al.) and it is here where global biomass maps have less biased 
carbon estimates. Future global carbon maps should incorporate upda
ted global height datasets that are freely available (e.g. TanDEM-X 90 m 
resolution), while also addressing the need for recalibration of past 
datasets as more calibration plot data becomes available. Surprisingly, 
the average area-based IPCC biomass density produced superior pre
dictions, albeit not spatially explicit, limiting their utility for forest 
management and conservation. 

4.2. Implications for multi-scale forest structure applications 

4.1. Local scale 
Mangrove forest height is uncertain across the products evaluated, 

posing a major challenge for incorporating remote sensing products into 
local forest management schemes. We found the relative uncertainty 
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across height products to be highest in low stature stands (>50% in 
stands <15 m), while in the tallest stands (~45 m Hmean) uncertainty 
was ~20% or 7–8 m. For context, many forest definitions rely on height 
thresholds of 5 or 10 m, so the uncertainty in these lower stature forests 
may impact estimates of forest extent, depending on the product 
selected (Bastinet al., 2017). Further, canopy height is a major deter
mining factor in selecting harvest or conservation areas and these model 
errors could potentially lead to misinformed local forest management 
decisions (Chazdonet al., 2016). In the context of coastal flood protec
tion, mangrove forest density/cover improves flood buffering capacity 
and consistent monitoring over time will provide consistent and precise 
estimates for superior disaster planning (Menéndez, Losada, 
Torres-Ortega, Narayan, Beck). The broad relationship between cover 
and forest height suggests a similar flood buffering capacity may be 
observed in taller mangrove forests. 

4.2. National scale 
Inconsistent forest height estimates did not translate to dramatically 

different estimates of area-wide AGB – an encouraging finding for 
adopting a diverse array of sensors, depending on data availability, for 
national carbon accounting (Fatoyinboet al., 2017), (Duncansonet al., 
2020). The most important factor to consider at the national scale is the 
availability of representative forest plot data to ensure the accuracy of 
remote sensing-based AGB predictions (Chen et al., 2015, 
Fassnachtet al., 2014, Hill et al., 2013, Ketterings et al., 2001, Vorster, 
Evangelista, Stovall, Ex). 

Interestingly, even in the absence of field data or spatially explicit 
estimates (e.g. IPCC), average mangrove biomass density provided un
biased total AGB estimates (in this case). The accuracy of IPCC estimates 
is encouraging from a mangrove biomass and accounting perspective 
(~12% from locally calibrated remote sensing-based totals), particu
larly with the inclusion of mangroves within payment for ecosystem 
service (PES) schemes such as REDD+, since nominally attributed values 
are deemed to be generally representative of reality (Reducing Emis
sions from D, 2013), (Miles and Kapos, 1454). Middle and low income 
countries make up the majority of mangrove holding nations and forest 
area (Giriet al., 2011), (Buntinget al., 2018), but may be less likely to 
prioritize expensive field data for improved calibration models. In these 
cases, the use of the IPCC estimates for regional and national reporting is 
encouraging, but should be more thoroughly evaluated in other coun
tries. Regardless of the accuracy, the high true uncertainty (based on 
validation) of IPCC totals (~130%) is still a major barrier limiting their 
application in the context of PES, which reduce valuations as AGB un
certainty increases (Global Forest Observation, 2016). 

Spatially explicit estimates made with locally calibrated AGB models 
were essential to reducing uncertainty in area-wide total mangrove AGB, 
underscoring the importance of applying remote sensing-based mapping 
of AGB for carbon accounting, whenever feasible (White et al., 2016). In 
contrast, the global mangrove AGB model (Simardet al.) was ~40% 
biased in every height class in comparison to the locally calibrated es
timates. After a direct comparison of AGB predictions from our local 
allometric model, we can clearly attribute this consistent bias to a global 
allometric height-biomass model calibrated without reference data 
representing the forest heights observed in Pongara National Park 
(maximum observed plot height in the Simard et al. study was ~40 m; 
Fig. 10). In the same respect, application of regional calibration models 
outside of the specific forest systems can result in bias, altering the total 
estimates AGB in a forest (Mitchardet al., 2014). In short, both regional 
and global AGB products must be locally re-calibrated and validated 
before being taken as “truth” at the local or national scale (Huanget al.), 
(McRoberts et al., 2019). 

4.3. Global scale 
The next generation of global mangrove forest structure (height and 

AGB) products will need to address three major challenges: (Houghton, 
Hall, Goetz) reducing uncertainty in remotely sensed heights covering 

the vast majority of mangrove area (Panet al., 2011), ensuring repre
sentativeness of sparse plot data and AGB allometry, and (Bonan, 2008) 
understanding of factors controlling secondary structure variables 
beyond height that directly influence AGB (e.g. basal area). 

Approximately 95% of all mangrove forests are below 40 m in height 
with a global median of ~13 m – around 50% of global mangrove area 
has between 50 and 70% uncertainty in remotely sensed height esti
mates (Simardet al.). In effect, our findings of substantial disagreement 
in height estimates across sensors for the most common height range of 
mangroves globally suggests a universal field-based plot height-biomass 
allometry cannot be confidently applied across sensors. Yet, the com
parisons made here provide clear expectations for the biases for each 
height product and the potential for cross calibration (Duncansonet al., 
2020). The near-linear height biomass relationship present across most 
remote sensing products in this study suggests cross-calibration is 
possible with a maximum total uncertainty of ~50–100 Mg ha− 1. 
Similar to the disagreements in height, relative variations in AGB pre
dictions across products was high in short stature forests (<15 m), 
reaching between 50 and 200%. Given the high cross sensor variability it 
is critical global continuous height products be created with rigorously 
validated and spatially continuous height products (e.g. TanDEM-X). 
Moreover, the key to global validation of canopy height is likely to 
come with spaceborne LiDAR sensors (e.g. GEDI; (Dubayahet al.)) with 
direct ground detection – a major limitation with PolInSAR height es
timates in other forests with topography (Qi and Dubayah, 2016). 

Global AGB calibration datasets are sparse and likely have unrep
resentative tree-level allometric estimates of biomass (Mitchardet al., 
2014), (Chaveet al., 2014), (Stovall et al., 2018) (Fig. 10). The most 
exhaustive remotely sensed mangrove specific AGB map to date used 
332 AGB field plots to calibrate ICESat-GLAS adjusted SRTM data 
(Simardet al.). Spatial biases are especially prevalent in the global 
calibration dataset, with 45% of plot data from a single country 
(Bangladesh). Simard et al. (Simardet al.) compared several regional 
allometric relationships with significant biases. They did not have 
allometry for the Atlantic coast of Africa which may be reflected in the 
observed biases. Improved plot-level calibration data is clearly needed 

Fig. 10. Comparison between Simard et al. (Simardet al.) global Hmax biomass 
predictions (red) and the locally calibrated Hmax model developed in this study 
(blue). (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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to improve the predictions of global models (Rovaiet al., 2021). Sensor 
calibration in unique forest ecosystems is limited by a lack of unrepre
sentative plot-based calibration data (i.e. plot-level biomass estimates 
may be inaccurate due to biased tree-level allometry; (Domke et al., 
2012), (Duncanson, Huang, Johnson, Swatantran, McRoberts, 
Dubayah)). Here, we constrained our analysis to a single allometric 
equation (Chaveet al., 2014), but the representativeness of this equation 
in such an understudied ecosystem remains unknown (Fatoyinbo et al., 
2018), (Feliciano, Wdowinski, Potts, Lee, Fatoyinbo). Our evaluation of 
variation due to plot-level allometric biomass estimates using the 
Komiyama et al. (Komiyama, Poungparn, Kato) equation the highlights 
potential for a propagation of changes in plot-based calibration by a 
simple change in tree-level allometry (Vorster, Evangelista, Stovall, Ex). 
In protected and unique systems, as found in Pongara National Park, 
non-destructive allometric equations with novel technologies (e.g. 
Terrestrial Laser Scanning; (Calders et al.)) can bridge a critical gap in 
our understanding of scaling relationships without detrimentally 
impacting the study system (Stovall et al., 2018), (Feliciano et al., 2014), 
(Stovall et al., 2019). Future work should focus on updating these 
scaling relationships (Olagokeet al., 2016) and assessing their impact on 
sensor calibration (Stovall and Shugart, 2018) to better predict changes 
in forest biomass over time (Lagomasinoet al., 2019), (Harriset al., 
2021), (Richards, Thompson, Wijedasa). 

Major advances in global AGB modeling in mangrove systems will 
come with the inclusion of measured or modeled secondary structural 
variables. Only approximately half of the variation in global AGB models 
can be explained by height alone (Simardet al.), suggesting secondary 
axes of variation (e.g. basal area, stem density, regional allometry) will 
substantially improve mapped AGB. Of the available plot data, efforts to 
understand the drivers in spatial variability of these secondary structural 
characteristics will be key in precisely capturing AGB at a global scale. 

Moving forward – especially in the context of this “golden age” of 
forest-focused active remote sensing – the findings of this study enable 
sensor cross calibration for consistent monitoring of forest function. 
Calibrated forest height is a key physiological variable representing 
organismal function beyond biomass alone (e.g. moderate disturbance: 
(Atkinset al., 2020); hurricane damage (Lagomasinoet al., 2020, 
Atkinset al., 2020, Taillieet al., 2017); drought susceptibility: (Stovall, 
Shugart, Yanga, Stovall, Shugart, Yangb, McGregoret al., 2020)). With 
the sensor evaluation performed here we gain the ability to monitor 
three-dimensional structural change across sensors in mangrove forest 
systems globally by matching past spaceborne missions (e.g. SRTM) with 
ongoing (e.g. TanDEM-X, GEDI and ICESat-2) and future (e.g. BIOMASS 
or NISAR) missions. 
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