

 Freigabe: Der Bearbeiter: Unterschriften

 Moiz Sajid

 Betreuer:

 Maximilian Denninger

 Der Institutsdirektor

 Prof. Alin Albu-Schäffer

 Dieser Bericht enthält 65 Seiten, 25 Abbildungen und 10 Tabellen

 Institut für Robotik und Mechatronik

 BJ.: 2021
 IB.Nr.: DLR-IB-RM-OP-2021-226

MASTERARBEIT

MULTIVIEW 3D SHAPE

RECONSTRUCTION USING DEEP

LEARNING

 Ort: Oberpfaffenhofen Datum: 02.12.2021 Bearbeiter: Maximilian Denninger Zeichen:

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Multiview 3D Shape Reconstruction using
Deep Learning

Moiz Sajid

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Multiview 3D Shape Reconstruction using Deep
Learning

Multiview 3D Rekonstruktion von Objekten
mittels Deep Learning

Author: Moiz Sajid
Supervisor: PD Dr. habil. Rudolph Triebel
Advisor: Maximilian Denninger
Submission Date: 12.11.2021

I confirm that this Master’s Thesis in Informatics is my own work and I have documented all
sources and material used.

Munich, 12.11.2021 Moiz Sajid

Acknowledgments

First of all, I would like to thank my parents, who supported me in various ways throughout my
studies. Their continuous support kept me motivated during my thesis, and I cannot thank them
enough. I would also like to thank my grandparents for their prayers and support. The person
who deserves the most credit for this thesis is my advisor Maximilian Denninger. Max was always
available to answer all my questions, no matter how silly they were. He explained all the complex
concepts in such a way that was easy for me to understand. Without his help and encouragement,
this thesis would not have been possible. I would also like to thank the whole BlenderProc team
for helping me out with different things that ultimately contributed to this thesis. Finally, I would
like to thank PD Dr. habil. Triebel for allowing me to do my thesis in the Department of Perception
and Cognition at the Institute of Robotics and Mechatronics, German Aerospace Center (DLR),
and making all the necessary resources available to me for doing this thesis. I had a great time
while working at DLR, and I will definitely miss it.

Abstract

Deep learning has revolutionized computer vision through recent developments on tasks in this
field. Although these developments initially started with 2D images, progress has been made
recently in 3D computer vision. Tasks such as inferring the 3D shape from multiple images have
also gained immense popularity recently due to the breakthroughs in the field of 3D deep learning.
These advancements are made possible firstly, by the availability of large 3D object datasets, for
example, ShapeNet [4], Pix3D [63], and ModelNet [72], secondly, by network architectures that can
better handle 3D data, for example, DeepSDF [50], ShapeHD [70], and PSG [15], and thirdly, by the
accessibility of efficient computing resources for processing 3D data.

Humans can actively infer the 3D world around them with just a single view of a scene. However,
unlike humans, for computers the same task of estimating 3D information with just a single view
becomes challenging because the single view reconstruction problem is generally ill-posed and
ambiguous. Instead of perceiving the object of interest from one viewpoint, computers are provided
with images from multiple viewpoints so that they can better reconstruct the 3D geometry of the
object present in the images.

The goal of this thesis is to present and evaluate a multiview 3D shape reconstruction method for
reconstructing the 3D environments better. More specifically, a sparse number of input images are
provided to the proposed method to get an object’s representation in 3D. The reconstructions from
these methods is crucial in applications such as virtual/augmented reality, autonomous driving,
and robotic manipulation and grasping.

To this end, this thesis firstly proposes a large scale multiview dataset with 1,050,816 rendered
images and 43,784 3D Truncated Signed Distance Function (TSDF) volumes based upon the
ShapeNet [4] dataset, including accurate camera pose and intrinsic parameters. Secondly, a novel
2D-3D end-to-end trainable deep learning-based method for 3D shape reconstruction is presented
using images taken from multiple viewpoints and camera parameters. The method maps the
2D features directly into 3D using a backprojection layer. Finally, detailed evaluation studies
are conducted using the proposed multiview 3D shape reconstruction approach on the newly
introduced dataset.

iv

Abstract - German

Deep Learning hat den Bereich Computer Vision durch seine jüngsten Entwicklung revolutioniert.
Obwohl diese Entwicklungen zunächst im 2D, meist auf Bildern begannen, ist es nun möglich
diese Fortschritte auch im 3D anzuwenden. Aufgaben wie die Rekonstruktion der 3D-Form eines
Objekts aus mehreren Bildern haben in letzter Zeit aufgrund der Durchbrüche auf dem Gebiet
des 3D-Deep-Learnings ebenfalls immense Popularität erlangt. Diese Fortschritte werden erstens
durch die Verfügbarkeit großer 3D-Objektdatensätze, wie z. B. ShapeNet [4], Pix3D [63] und
ModelNet [72], zweitens durch Netzwerkarchitekturen, die 3D-Daten besser verarbeiten können,
wie z. B. DeepSDF [50], ShapeHD [70] und PSG [15], und drittens durch den Zugang zu effizienten
Rechenressourcen für die Verarbeitung von 3D-Daten ermöglicht.

Der Mensch ist in der Lage die Welt um sich herum mit nur einem einzigen Blick auf eine
Szene aktiv zu erfassen. Im Gegensatz zum Menschen ist die gleiche Aufgabe der Schätzung von
3D-Informationen mit einer einzigen Ansicht für einen Computer jedoch eine Herausforderung.
Da das Problem der Rekonstruktion aus einer einzigen Ansicht im Allgemeinen nicht eindeutig ist.
Anstatt das zu untersuchende Objekt nur aus einem Blickwinkel zu betrachten, werden Computern
Bilder aus mehreren Blickwinkeln zur Verfügung gestellt, damit sie die 3D-Geometrie des Objekts
besser rekonstruieren können.

Das Ziel dieser Arbeit ist es, eine Multiview-3D-Form-Rekonstruktionsmethode vorzustellen
und auszuwerten, um die Rekonstruktion von 3D-Umgebungen zu verbessern. Genauer gesagt,
werden der vorgeschlagenen Methode eine geringe Anzahl von Eingabebildern zur Verfügung
gestellt, um die Rekonstruktion eines Objekts in 3D zu erhalten. Diese Rekonstruktionen solcher
Methoden sind entscheidend für Anwendungen wie virtuelle Realität, autonomes Fahren und
robotische Manipulation und Greifen.

Zu diesem Zweck wird in dieser Arbeit zunächst ein groß angelegter Multiview-Datensatz mit
1.050.816 gerenderten Bildern und 43.784 TSDF-Volumen (Truncated Signed Distance Function)
auf der Grundlage des ShapeNet-Datensatzes [4] erstellt, einschließlich genauer Kameraposition
und intrinsischer Parameter. Zweitens wird ein neuartiges, durchgängig trainierbares 2D-3D-
Verfahren auf der Basis von Deep Learning für die 3D-Formrekonstruktion vorgestellt, das Bilder
aus verschiedenen Blickwinkeln und Kameraparameter verwendet. Die Methode bildet die 2D-
Merkmale mithilfe einer Rückprojektionsschicht direkt in 3D ab. Schließlich werden detaillierte
Evaluierungsstudien mit dem vorgeschlagenen Multiview-3D-Form-Rekonstruktionsansatz auf
dem neu eingeführten Datensatz durchgeführt.

v

List of Acronyms

CNN Convolutional Neural Network

DAE Denoising Autoencoder

DBN Deep Belief Network

IoU Intersection over Union

MAE Mean Absolute Error

MSE Mean Squared Error

ResNet Residual Network

RNN Recurrent Neural Network

SfM Structure from Motion

SAE Sparse Autoencoder

TSDF Truncated Signed Distance Function

VAE Variational Autoencoder

vSLAM Visual Simultaneous Localization and Mapping

vi

Contents

Acknowledgments iii

Abstract iv

Abstract - German v

List of Acronyms vi

1. Introduction 1
1.1. Contributions . 1
1.2. Problem Statement and Notation . 2
1.3. Thesis Structure . 2

2. Related Work 3
2.1. Single-view 3D Reconstruction . 3

2.1.1. Shape Reconstruction . 3
2.1.2. Scene Reconstruction . 3

2.2. Multiview 3D Reconstruction . 3
2.2.1. Recurrent Neural Network (RNN) based methods 4
2.2.2. Encoder-Decoder based methods . 4
2.2.3. Attention based methods . 5

2.3. 3D Shape Completion . 5

3. Methodology 7
3.1. Image Formation . 7

3.1.1. Pinhole Camera Model . 7
3.1.2. 3D Projections . 10
3.1.3. View Frustum . 11

3.2. 3D Data Representations . 12
3.2.1. Point Cloud . 12
3.2.2. Binary Occupancy Grid/Voxel Grid . 12
3.2.3. Truncated Signed Distance Function (TSDF) 13
3.2.4. Mesh . 14

3.3. Truncated Signed Distance Function (TSDF) Generation 14
3.3.1. Problem Statement . 14
3.3.2. Methods . 15

3.4. Deep Learning . 16
3.4.1. Residual Network (ResNet) . 16
3.4.2. Autoencoder . 18

vii

Contents

4. Our Approach 20
4.1. Problem Statement and Notation . 20
4.2. Input and Output . 20
4.3. Architecture . 20

4.3.1. 2D Network . 21
4.3.2. Backprojection Layer . 22
4.3.3. 3D Network . 23
4.3.4. Autoencoder . 23

5. Experimental Setup 25
5.1. Dataset . 25
5.2. Synthetic Data Generation . 25

5.2.1. RGB Images, Camera Intrinsics, and Camera Extrinsics 26
5.2.2. Truncated Signed Distance Function (TSDF) Volumes 27

5.3. Neural Network Training . 29
5.3.1. Loss . 29
5.3.2. Evaluation . 30

5.4. Training Procedure . 31
5.4.1. Train, Validation and Test Splits . 31
5.4.2. Processing . 32
5.4.3. Implementation Details . 32

6. Results 34
6.1. Quantitative . 34
6.2. Qualitative . 35
6.3. Comparison to other approaches . 35
6.4. Space Complexity . 38
6.5. Compressed Output Visualization . 38
6.6. Changing Input Views . 39

7. Future Work 41
7.1. Problem Benchmark and Dataset . 41
7.2. Uncertainty Estimation . 41
7.3. Real World Transfer . 41
7.4. 3D Scene Datasets . 42
7.5. Camera Intrinsics and Extrinsics . 42
7.6. Adversarial Training . 42

8. Conclusion 44

A. BlenderProc Config 45

List of Figures 47

List of Tables 50

Bibliography 51

viii

1. Introduction

Nowadays, access to 3D data is possible thanks to not only 3D content creation but also better 3D
capture devices, such as stereo cameras, laser scanners, and LiDAR. However, manual 3D content
creation by artists is an expensive and time-consuming process since the 3D environments have to
set up from scratch. Also, the 3D capture devices are still beyond the reach of most people because
of the expensive cost. With each passing year, the demand for 3D data is likely to increase further
because of the growing interest in the robotics, autonomous driving, and virtual/augmented reality
communities. In order to meet this growing demand, new automatic 3D data generation methods
are needed for truly democratizing access to 3D data. The availability of large-scale 3D datasets,
like ShapeNet [4] and Pix3D [63], has further supported this mission.

The task of multiview 3D shape reconstruction is crucial in computer vision and robotics for
obtaining an accurate 3D representation of an object using just the 2D data. Multiview 3D shape
reconstruction methods infer the underlying 3D geometry of an object using RGB images taken
from multiple viewpoints. Application areas include virtual/augmented reality, autonomous
driving, and robotic manipulation and grasping.

Traditional approaches, such as Structure from Motion (SfM) [49] and Visual Simultaneous
Localization and Mapping (vSLAM) [18] use feature matching across images captured from
different views plus triangulation to recover the 3D coordinates of the image pixels. These methods
can produce semi-dense and dense reconstructions; however, these approaches only work if a
specific set of assumptions are satisfied, for example, a wide baseline and textured data.

The research area of multiview 3D shape reconstruction using deep learning has been studied
extensively in the literature [6, 60, 73, 74]. However, most of the previous methods generate a binary
voxel grid output of a small resolution which is non-smooth. This thesis, inspired by the previous
works in the literature, proposes an end-to-end deep Convolutional Neural Network (CNN)
for learning the mapping from the 2D to the 3D domain using a large-scale dataset without
any assumptions. The network takes multiview RGB images of the 3D object from different
viewpoints and camera parameters, namely camera intrinsics and extrinsics as input. The network
outputs an intermediate 3D TSDF representation of resolution 5123 which is converted into a mesh
representation using meshification methods, like Marching Cubes [42]. The network both, during
training and testing, does not require image annotations or object class labels. The network also
does not make any prior assumptions about the problem, like a large baseline or a lambertian
surface.

1.1. Contributions

The key contributions of our work are following:

New Multiview Dataset: A new dataset based upon the ShapeNet dataset [4] with the same
categories and data splits as in 3D-R2N2 [6] is proposed that provides RGB images, camera
poses and their respective TSDF volumes. Essential information, like textures in the images,

1

1. Introduction

is included from the ShapeNet dataset to make the new dataset as realistic as possible. The
RGB renderings and camera poses are generated using BlenderProc [12].

Improved Network Architecture: A novel deep learning-based architecture is proposed that di-
rectly associates the 2D features from n RGB images with 3D using camera intrinsics and
extrinsics.

Higher Output Resolution: The method proposed in this thesis can generate a 3D volume with
a resolution of 5123, making it one of the few methods capable of such a high-resolution
output.

1.2. Problem Statement and Notation

Given n number of RGB images Ic : Ωc → [0, 255]3 of dimension u× u× 3, u ∈N where Ωc ⊂ R2

and n number of camera poses as input, the task of multiview 3D shape reconstruction is to generate
a mapping from 2D image coordinates xc = (xc, yc) to 3D object coordinates xs = (xs, ys, zs). The
output is a high-resolution 3D TSDF V : Ωv → [−σtsd f ,, σtsd f] of dimension w× w× w where
Ωv = {0,, 511}3.

1.3. Thesis Structure

Chapter 2 outlines existing work done in literature for the task of 3D shape reconstruction and other
related tasks, like 3D shape completion. The strengths and weaknesses of the different 3D shape
reconstruction methods are also highlighted here. Plus, this chapter points out how the proposed
method handles the shortcomings of the other approaches. Chapter 3 introduces the methodological
background of concepts used, namely camera projection, different 3D representations, TSDF
generation, and deep learning. Chapter 4 presents the proposed neural network architecture for
solving the task of multiview 3D shape reconstruction. The different components of the neural
network as well as the different architectural choices are explained in this chapter. Chapter 5
discusses the experimental setup with regards to the dataset creation as well as the training aspects
of the proposed deep learning method. In Chapter 6 results from different experiments conducted
during the thesis are presented. The insights of the results are also discussed in this chapter.
Chapter 7 mentions some further steps that can be investigated as possible future work. Finally,
Chapter 8 provides the conclusion of this thesis work.

2

2. Related Work

In this chapter, an overview of the related 3D reconstruction or similar methods is provided.

2.1. Single-view 3D Reconstruction

Generating 3D reconstruction from just a single image is a challenging task because the single-view
3D reconstruction problem is an ill-posed and ambiguous problem since the partially predicted
points can be associated to an infinite number of 3D models as mentioned in Xie et al. [74].

2.1.1. Shape Reconstruction

Methods have been introduced recently with new data representations for the task of 3D shape
reconstruction. These data representations include point clouds [15], meshes [67] and signed
distance fields [75]. The PSG method [15] recovers a point cloud from a single RGB image. The
method of Pixel2Mesh [67] is the first method in literature for generating a triangular mesh from
a single RGB image. The approach of DeepSDF [50] provides the SDF representation of a set
of points provided as an input. However, this approach will not work for reconstruction from
just an RGB image. The proposed method in this thesis also generates encoded TSDF volume in
the end. However, the method is not a generative model, unlike DeepSDF, with no probabilistic
interpretation. The OGN [64] method uses an octree for handling the memory constraints of large
3D resolutions. Matryoshka Networks [55] decompose the 3D shape into nested shape layers. The
method can outperform octree-based reconstruction methods, and it can generate output resolution
as high as 2563.

2.1.2. Scene Reconstruction

The work of Denninger et al. [14] proposes not only an efficient method for generating TSDF
volumes but also a tree net architecture that solves the scene reconstruction task by splitting
channel-wise. This method uses an autoencoder for efficiently compressing TSDFs of a resolution
of 5123 to 323 × 64. The decoder part of the autoencoder is used to return to the original resolution
of 5123, which means it is one of the only methods out there that can generate this high of a
resolution. Furthermore, the method also proposes a custom loss shaping function, which penalizes
the loss around the surface of an object and the free space before an object more. This thesis makes
use of not only the autoencoder for compression and decompression but also a modified version of
the TSDF generation pipeline as proposed in Denninger et al.

2.2. Multiview 3D Reconstruction

Traditional dense 3D reconstruction methods, for example, SfM and vSLAM require a dense
number of RGB images with a certain set of assumptions. These traditional methods involve

3

2. Related Work

feature extraction and matching [49] or minimizing reprojection errors [3, 18]. Firstly, the feature
matching process can be slow especially if, for example, SIFT features are calculated, and secondly,
the extracted features should cover the whole surface of the 3D object. Otherwise, there may be
occlusions or holes in the final 3D reconstruction.

One of the first multiview deep learning based methods from literature is the MVCNN [62]
network. In MVCNN, 3D geometry is rendered into 2D after which the 2D features are calculated,
followed up by max pooling. This approach works suitably well for the task of classification;
however, it is not suitable for other upstream 3D tasks, like reconstruction.

2.2.1. Recurrent Neural Network (RNN) based methods

The 3D-R2N2 [6] method proposed an RNN for multiview 3D shape reconstruction where the
authors for each multiview image, use an RNN module . However, this approach suffers from
several issues. Firstly, the approach is order variant meaning that the generated results depend
on the order in which the images of the different viewpoints are given to the network. Secondly,
the approach suffers from long-term memory-related issues common in RNNs, which means
that the features learned from the initial images might be forgotten. Finally, the approach is not
parallelizable and hence time-consuming since the images are processed sequentially. The LSM [33]
method also uses an RNN for fusing 3D features from different views. However, it addresses
the RNN related problems identified in the approach of 3D-R2N2. The LSM approach also uses
feature projection and unprojection along the viewing rays for which it needs the camera intrinsic
and extrinsic parameters. As reported in Xie et al. [74], LSM performs better with more than
one view as compared to other methods. They argue that for more than one view, the camera
intrinsics and extrinsics help to align the 2D features of multiview images better. Our proposed
approach is firstly not dependent on the view order since the images are processed spatially
instead of being processed temporally. Additionally, the proposed approach makes use of camera
intrinsics and extrinsics, similar to LSM, which are generated, along with the 2D renderings, using
BlenderProc [12].

2.2.2. Encoder-Decoder based methods

The Pix2Vox [73] method uses an encoder-decoder based architecture alongside a context aware
module for fusion and a refiner module for correcting wrongly recovered reconstructions. Even
the network produce impressive results, the training process is not end-to-end where the modules
are tried separately. The authors tried to improve their work in a follow-up method named
Pix2Vox++ [74] that generates better reconstructions due to improved architectural choices. They
also propose a large scale multiview 3D shape reconstruction dataset named Things3D, based
upon the SUNCG [59] dataset, which unfortunately is no longer available. The work of Spezialetti
et al. [60] proposed to do multiview 3D shape reconstruction with the added task of estimating the
relative pose image pairs used for reconstruction. Unlike the encoder-decoder based approaches,
our approach uses a 2D network that calculates 2D features, which are directly associated with the
3D reconstruction using camera intrinsics and extrinsics parameters. Furthermore, a new dataset is
proposed with the output target having a TSDF representation with the same categories and data
splits as in 3D-R2N2 [6].

4

2. Related Work

Multi-view Input Images Ground Truth 3D-R2N2 AttSets Pix2Vox++/F

ShapeN
et
32
3

Pix2Vox++/A

Figure 2.1.: Figure shows the binary occupancy grid output of resolution 323 of the different
multiview 3D shape reconstruction methods on the dataset introduced in 3D-R2N2
from Choy et al. [6]. The image is taken from Xie et al. [74].

2.2.3. Attention based methods

The work of Yang et al. [77] proposed an attention aggregation module named AttSets and a
training algorithm named FASet. The work claims to have an aggregation approach comparable to
pooling-based approaches, such as average and max pooling. Most recently, Transformer Networks
have been used for the task of multiview 3D shape reconstruction in the work of Yagubbayli
et al.[76] and Wang et al. [66]. The Transformer Networks again have the advantage of using
attention for view aggregation. However, our approach uses 3D voxel-based max pooling for view
aggregation to avoid the dependency on the number of views.

All these approaches use occupancy grid representation with a resolution of 323, except for the
work of Xie et al. [74] that also presented some results for an output resolution of 1283. With this
small resolution, objects with fine details cannot be represented. Additionally, the surfaces are not
smooth in occupancy grid representation as shown in Figure 2.1. The proposed approach instead
uses a TSDF based representation which is a more dense and smooth representation compared to
an occupancy grid representation.

2.3. 3D Shape Completion

The task of 3D shape completion is also closely related to the task of 3D shape reconstruction. Shape
completion can be divided into two types, namely direct methods and data-driven methods. Data-
driven shape completion methods usually use depth images or 3D data in different representations,

5

2. Related Work

like point clouds or voxel grids directly. Extensive work has been done in the literature on shape
completion, and the reader is requested to refer to the latest literature on shape completion. The
three seminal works are from Wu et al. [72], Dai et al. [10] and Wu et al. [70]. The 3D-ShapeNets
from Wu et al. was the first method that proposed converting depth images into 3D voxel grids
using a Deep Belief Network (DBN) [25]. Wu et al. proposed not only a joint object recognition
and shape completion network but also the widely used ModelNet dataset, which is a large-scale
3D CAD model dataset. Another prominent work is the 3D-EPN network from Dai et al., which
operates on partial depth scans obtained using volumetric fusion from Curless et al. [8]. The
3D-EPN network uses 3D convolutional networks and non-parametric based shape synthesis for
generating shape completions at a resolution of 1283. Our approach also uses 3D convolutional
networks similar to Wu et al. and Dai et al. However, instead of using depth information directly,
the proposed approach lifts the 2D feature maps of RGB images into 3D using camera intrinsics
and extrinsics parameters.

The later work of Wu et al. [70] proposed the ShapeHD network which uses RGB images to
predict depth, normal, and silhouette images. The depth image is later passed into the shape
completion network for generating a voxel grid of resolution 1283. An adversarially pretrained
CNN is used for calculating a "naturalness" loss for the shape completion network, which helps
avoid blurry outputs. Our approach, however, uses an autoencoder from Denninger et al. [14] for
generating TSDF volumes with resolutions as high as 5123.

6

3. Methodology

3.1. Image Formation

3.1.1. Pinhole Camera Model

The pinhole camera model [43] is a simple camera model that explains the relationship between
the coordinates of a point in 3D and its projection onto the image plane. However, the model does
not account for distortion and blurring caused by the lenses. Usually, the distortion increases from
the center of the image to the edge of the image. However, distortion can be accounted for in the
transformation equations from the 3D coordinates to the 2D pixel coordinates. An illustration of a
pinhole camera model is shown in Figure 3.1.

Projection

In a pinhole camera model, a 3D point Pw is projected into its corresponding pixel p using
the perspective transformation. Without accounting for the image distortion, the perspective
transformation of the pinhole camera model is given by Equation 3.1. Here, Pw represents the 3D
point in the world coordinate system, p is the 2D pixel point in the image plane where p = (u, v),
K is the camera intrinsic matrix, R and t are the rotation matrix and translation vector respectively
for transforming the coordinates from the world to the camera coordinate system, and s is the
projective scaling which is not part of the camera model.

s p = K
[
R|t
]

Pw (3.1)

The camera intrinsic matrix K projects 3D points in the camera coordinate system to 2D pixel
coordinates as shown in Equation 3.2, where Pc is a 3D point in camera coordinate system and
p is the 2D pixel point. The camera intrinsic matrix K is composed, as shown in Equation 3.3, of
focal lengths fx and fy expressed in pixel units, as well as the principal points cx and cy, which are
usually close to the center of the image. Equation 3.4 is derived by replacing the camera intrinsic
matrix K in Equation 3.2 with Equation 3.3. The camera intrinsics matrix K remains constant for a
scene unless the focal length of the camera is changed. If the focal length is changed, the camera
intrinsic matrix K should be scaled up or scaled down accordingly.

p = KPc (3.2)

K =

 fx 0 cx

0 fy cy

0 0 1

 (3.3)

s

u
v
1

 =

 fx 0 cx

0 fy cy

0 0 1

Xc

Yc

Zc

 (3.4)

7

3. Methodology

Figure 3.1.: Figure shows the pinhole camera model with Pw in world coordinate system, Pc in
camera coordinate and p in the 2D image plane. The image is taken from OpenCV
Camera Calibration and 3D Reconstruction documentation [47].

The 3-by-4 perspective transformation is given by Equation 3.5 where x′ = Xc/Zc and y′ = Yc/Zc

in normalized camera coordinates. More details for perspective transformation are explained in
3.1.2. Equation 3.6 transforms the 3D points from the world coordinate system to the camera
coordinate system. The homogeneous transformation is composed of a 3-by-3 rotation matrix R
and a 3-by-1 translation vector t as shown in Equation 3.7. The 3-by-3 rotation matrix can also be
represented as a 3-by-1 rotation vector using Euler angles. However, the 3-by-3 rotation matrix
makes the math easier. There are other rotations representations as well, like quaternions, and it is
easy to switch from one rotation representation to another. Each rotation representation has its own
advantages and disadvantages. Equation 3.8 is derived from Equation 3.6 using the homogeneous
transformation as specified in Equation 3.7.

Zc

x′

y′

1

 =

1 0 0 0
0 1 0 0
0 0 1 0




Xc

Yc

Zc

1

 (3.5)

Pc =

[
R t
0 1

]
Pw (3.6)

[
R t
0 1

]
=


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

 (3.7)

8

3. Methodology


Xc

Yc

Zc

1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




Xw

Yw

Zw

1

 (3.8)

Equation 3.11 shows the projection of the 3D points in the world coordinate system to 2D pixel
coordinates which can be simplified further to get Equation 3.12 and Equation 3.13.

Zc

x′

y′

1

 =

1 0 0 0
0 1 0 0
0 0 1 0




r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




Xw

Yw

Zw

1

 (3.9)

s

u
v
1

 =

 fx 0 cx

0 fy cy

0 0 1

1 0 0 0
0 1 0 0
0 0 1 0




r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




Xw

Yw

Zw

1

 (3.10)

s

u
v
1

 =

 fx 0 cx

0 fy cy

0 0 1

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz




Xw

Yw

Zw

1

 (3.11)

[
u
v

]
=

[
fxXc/Zc + cx

fyYc/Zc + cy

]
(3.12)

Xc

Yc

Zc

 =
[
R|t
] 

Xw

Yw

Zw

1

 (3.13)

To summarize, the 3D point in the world coordinate system is transformed into a 3D point in the
camera coordinate system, using Equation 3.13. The transformed 3D point in camera coordinate
system can now be projected into the 2D image plane using Equation 3.12.

Unprojection/Backprojection

In the projection subsection, equations were presented for converting the 3D point in the world
coordinate frame to the 2D pixels in the image plane. The whole projection process can be
reversed for going from the 2D pixels in the image plane to the 3D point in the world coordinate
frame without depth information. The reverse process of projection is called unprojection or
backprojection. Equation 3.14 presents the conversion of a 2D pixel coordinate in the image plane
to a 3D point in the camera coordinate frame. Note the depth of point p is unknown, so Zc is taken
to be s as defined in the projection subsection.

Xc

Yc

Zc

 =


(u−cx)∗Zc

fx
(v−cy)∗Zc

fy

s

 (3.14)

9

3. Methodology

(a) Perspective projection (b) Orthographic projection

Figure 3.2.: Figure shows how the 3D objects are projected in the 2D image plane using perspective
projection in (a) and orthographic projection in (b). The images are taken from Jia et
al. [31].

Equation 3.6 changes the 3D point from the world coordinate frame to the camera coordinate
frame. The same equation with a slight modification can be used for converting the 3D point in
the camera coordinate frame to the world coordinate frame. If the homogeneous transformation is
moved to the left side of the equality in Equation 3.15, Equation 3.15 is derived. If the actual point
representation of Pc and Pw is plugged in Equation 3.6 and the homogeneous transformation is
expanded out, Equation 3.16 is derived where Pc and Pw have been homogenized similar to as in
Equation 3.8. Equation 3.8 shows how to convert a 3D point in the camera coordinate frame to the
world coordinate frame using the inverse of the homogeneous transformation.

Pw =

[
R t
0 1

]−1

Pc (3.15)

Xw

Yw

Zw

 =

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

−1


Xc

Yc

Zc

1

 (3.16)

3.1.2. 3D Projections

Perspective Projection

The perspective projection keeps the Zc component such that the 2D points x′ = Xc/Zc and
y′ = Yc/Zc are in normalized camera coordinates, as shown in Equation 3.17. Perspective
projection is shown in Figure 3.2a.

Zc

x′

y′

1

 =

Xc

Yc

Zc

 =

1 0 0 0
0 1 0 0
0 0 1 0




Xc

Yc

Zc

1

 (3.17)

10

3. Methodology

Figure 3.3.: Figure shows the perspective view frustum. The perspective view frustum takes the
shape of a truncated pyramid. The image is taken from Lighthouse3d.com [41] website.

Figure 3.4.: Figure shows the orthographic view frustum. The orthographic view frustum takes
the shape of a cuboid. The image is taken from Martin Kraus [36] and it is originally
published on Wikipedia.

Orthographic Projection

The orthographic projection eliminates the Zc component such that the 2D points x′ = Xc and
y′ = Yc are in normalized camera coordinates, as shown in Equation 3.18. Orthographic projection
is shown in Figure 3.2b.

x′

y′

1

 =

Xc

Yc

1

 =

1 0 0 0
0 1 0 0
0 0 0 1




Xc

Yc

Zc

1

 (3.18)

3.1.3. View Frustum

The view frustum takes a shape of a 3D volume indicating what would be visible on the image
plane. A truncation is usually performed at the near plane and far plane, which means everything
before the near plane and after the far plane is clipped out. The shape of the view frustum 3D
volume depends on the type of projection used. If the perspective projection is used, the view

11

3. Methodology

Figure 3.5.: Figure shows view frustum culling being applied to green, red, and yellow objects.
Taking the shape of the view frustum into account, all the green objects are rendered,
yellow objects are partially rendered and none of the red objects are rendered. The
image is taken from Lighthouse3d.com [41] website.

frustum takes the shape of a truncated pyramid as shown in Figure 3.3. If the orthographic
projection is used, the view frustum takes the shape of a cuboid as shown in Figure 3.4.

After the shape of the view frustum is known, view frustum culling can be applied to avoid
rendering objects outside the viewing frustum, thus saving computational resources. Figure 3.5
shows view frustum culling is being applied for the case of perspective projection. Everything
inbetween the near and the far plane is captured on the image screen, which means the green
objects are rendered fully while the yellow objects are rendered partially, since part of the object is
outside the viewing frustum. None of the red objects are rendered because they are outside the
viewing frustum as shown in Figure 3.5 with the current setting.

3.2. 3D Data Representations

There exists several ways to represent 3D data. The underlying methods change depending on the
type of 3D data representation used. The most common 3D data representations are described
below, these are shown in Figure 3.8.

3.2.1. Point Cloud

A point cloud is an unstructured and a memory-efficient representation that expresses the shape
geometry as 3D continuous points. However, point clouds do not have the concept of free space,
and do not capture geometry well due to the points spacing. However, point clouds have received
a lot of attention recently, and there are a lot of methods in the literature, like PointNet [53] and
PointNet++ [54], which work directly on point clouds as an input.

3.2.2. Binary Occupancy Grid/Voxel Grid

A binary occupancy grid or voxel grid is a 3D representation that encodes the geometry as a 3D
grid. Each cell in the 3D grid encodes whether it is occupied or empty. A value of zero is used for

12

3. Methodology

Figure 3.6.: Figure shows a 2D TSDF with a red curve depicting the surface with all the values
inside the surface being negative, on the surface being zero, and outside the surface
being positive. As can be seen in the figure, a truncation between -1 and 1 is applied.
The same concept can also be extended to 3D. The image is taken from Arm Community
website [44].

empty cells and a value of one is used for filled cells. The cells maintain spatial information, which
means that traditional deep learning architectures can also be applied to this data type. For smaller
resolutions, a binary occupancy grid does not capture fine geometric details. As the resolution size
increases, the representation suffers from computation and memory-related issues because of the
encoding of the occupied and the free space.

3.2.3. Truncated Signed Distance Function (TSDF)

This 3D data representation encodes geometry as a gradient field in terms of the signed distance to
the closest surface where all the values inside the surface are negative, the values on the surface
are zero and the values outside the surface are positive. Since these signed distance values can
be unbounded, the values are usually truncated in a range, for example, -1 to 1 as shown in
Figure 3.6; hence, the name Truncated Signed Distance Function (TSDF). TSDF is usually a dense
representation, thus it provides a better gradient flow through Deep Neural Network as compared
to a binary occupancy grid representation.

Similar to a binary occupancy grid, traditional deep learning operations like convolution can be
applied directly to this 3D data representation. Similarly, it also suffers from the same computation
and memory-related issues. Thus, it is desirable to have a binary occupancy grid and a TSDF grid
of higher resolution for capturing more finer details. Figure 3.7 shows the memory comparison
between binary occupancy/voxel grid and TSDF volume for different resolutions. For higher
resolutions, TSDF volumes take up more memory than binary occupancy grids. To obtain a mesh
from a TSDF volume, a meshification algorithm, like Marching Cubes [42] can be used.

13

3. Methodology

Figure 3.7.: Figure shows the memory comparison between binary occupancy/voxel grids and
TSDF volumes of different resolutions. As resolution increases, TSDF volumes take
up more memory than binary occupancy grids. For example, a volume of size 5123

corresponds to more than 134 million voxels. For storing this volume, a binary
occupancy grid representation would take approximately 134.22 MB while a TSDF
volume representation would take approximately 536.87 MB.

3.2.4. Mesh

A mesh representation explicitly encodes the surface representation using polygons. It is chal-
lenging to design deep learning networks that handle mesh data directly because applying
convolutional and pooling operations is not directly possible, and most previous works generated
mesh from an intermediate TSDF representation. However, there are already works in literature,
like MeshNet [17] and MeshCNN [22] that take mesh data directly as an input for a Deep Neural
Network. There are also methods like Deep Marching Cubes [40] that provide meshes directly as
output from well-sampled point clouds.

3.3. Truncated Signed Distance Function (TSDF) Generation

3.3.1. Problem Statement

The following equations come from Bærentzen et al. [1] and Denninger et al. [14]. In Equation 3.19,
T represents the triangle mesh which is a union of all the triangles Ti where i ∈ [1, N], N being the
total number of triangles.

T =
N⋃

i=1

Ti (3.19)

In a 3D voxel grid, each of the voxels contains a scalar that stores the value of the shortest
distance to a triangle mesh. The distance from the center of each voxel v to the triangle mesh is

14

3. Methodology

(a) Point Cloud (b) Binary Occupancy Grid

(c) Truncated Signed Distance
Function (TSDF)

(d) Mesh

Figure 3.8.: Figure shows the most commonly used 3D data representations. Different methods use
different 3D data representations. The images are taken from Wang et al. [68], Wang et
al. [69], Song et al. [59], and Dai et al. [11].

defined in Equation 3.20, where p is center of voxel v = (vx, vy, vz). If Equation 3.20 is expanded
out further, it can be written out as in Equation 3.21 which shows the shortest distance is computed
against all the triangles Ti in a triangle mesh T .

d (p, T) = min
t∈T
‖p− t‖ (3.20)

d (p, T) = min
i∈[1,N]

(
min
t∈Ti
‖p− t‖

)
(3.21)

A truncation is applied on the signed distance field to get the truncated signed distance field
or TSDF. If a truncation of −σtsd f to σtsd f is applied on the signed distance field represented in
Equation 3.21, Equation 3.22 specifies the TSDF for all the voxels v in the 3D voxel grid V. The
next section discusses methods for computing the shortest distance d (p, T) for each voxel v.

V[v] = dp = max
(
−σtsd f , min

(
σtsd f , d (p, T)

))
, ∀v ∈ Ωv (3.22)

3.3.2. Methods

In literature, there exists a number of ways for computing TSDFs from triangle meshes. The
fundamental problem that all these methods solve is essentially computing the distance for all the
points in a voxel grid to all the triangles in a mesh. To determine if a point is inside or outside the
surface, a surface normal vector can be used. However, it can be a challenge to compute normals
on vertices of a mesh and edges, since it is discontinuous.

15

3. Methodology

Figure 3.9.: Figure shows all the normals in orange that are used for calculating the distance
d (p, T). The orthogonal planes are shown in blue and dashed. The original figure is
taken from Denninger et al. [14] and adapted afterward.

Most methods are not efficient enough for computing high-resolution TSDF voxel grids. For
example, it can be challenging to compute a TSDF volume of resolution 5123 which contains more
than 134 million voxels. Besides the heavy computation involved in computing the high resolution
TSDF volumes, storing such a volume with 134 million voxels for just a single 3D mesh requires
significant memory. For example, a 5123 TSDF volume required 537 MB of memory for storage in
32-bit floating point format. Denninger et al. [14] introduced an efficient way for computing the
distance as defined in Equation 3.21 for all the 134 million voxels corresponding to a TSDF volume
of resolution 5123 in the order of seconds using flood filling and octrees. The method precomputes
the 10 vectors for each triangle Ti. These vectors, as shown in Figure 3.9 correspond to the normal
vector n of the triangle plane P, the vector n⊥ that are orthogonal to the edges of Ti and lie inside
the plane P, and the vectors n+ and n− that are parallel to the edges of Ti. The first thing to do is
to check if p is closer to the surface, the edge or the vertex. This is done in the paper by computing
the distance between P and p, and checking if the projection onto P is inside the triangle Ti, using
the normal vector n⊥. If this is the case, d (p, T) equals d (p,P), otherwise p is closer to an edge
or a vertex. For final checks, vectors n+ and n− are used for distance d (p, T) calculation.

3.4. Deep Learning

Deep learning [38] is a class of machine learning algorithms that use artificial neural networks for
learning representations of data. Neural networks saw its resurgence thanks to the availability
of large datasets, better algorithms, and powerful computational resources. Since then, deep
learning has achieved success in problems like machine translation, visual object recognition, and
3D reconstruction. For a more detailed discussion about deep learning, the reader is requested to
refer to the Deep Learning book by Goodfellow et al. [21].

3.4.1. Residual Network (ResNet)

ResNet, originally introduced in the paper from He et al. [23], was the state-of-the-art method for
the task of image classification on the ImageNet [58] dataset when the architecture was introduced
back in 2015. Because of this, ResNet found widespread use in the field of computer vision and
deep learning. ResNet is used not only for image classification tasks but also for other tasks in

16

3. Methodology

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 3.10.: Figure shows a simple residual block that makes use of a skip connection. The skip
connection adds the output from the previous layer. The image is taken from the
original ResNet [23] paper.

0 1 2 3 4 5 6
0

10

20

iter. (1e4)

tr
ai

ni
ng

 e
rr

or
 (

%
)

0 1 2 3 4 5 6
0

10

20

iter. (1e4)

te
st

 e
rr

or
 (

%
)

56-layer

20-layer

56-layer

20-layer

Figure 3.11.: Figures show that both the training and test performance of the neural network
suffers when the number of layers are increased from 20 to 56. ResNets alleviated this
problem through the use of skip connections. The image is taken from the original
ResNet [23] paper.

computer vision, such as object detection and face recognition due to its strengths in representation
learning.

The important contribution that the authors of ResNet made was being able to train exceptionally
deep neural networks without suffering from the vanishing gradient problem as explained in Glorot
et al. [20]. In theory, neural networks with more layers can learn more complex representations.
However, this was not the case practically. As the number of layers was increased in the neural
network, the training and test performance decreased in comparison to a network with less layers.
Figure 3.11 shows that a 20-layer network performs better on both the training and the test data
than a 56-layer network. An important thing to note here is that the 56-layer network is not
overfitting the data, as it performs worse on both training and test data.

To overcome the challenge in training deep neural networks, the core idea of ResNet was to
introduce "identity shortcut connection" or skip connections as shown in Figure 3.10 which allowed
the authors to train deeper neural networks with hundreds or thousands of layers, like in the work
of He et al. [24]. Instead of allowing the network to just learn F (x) output, the residual blocks force
the network to learn F (x) + x output. The additional path, firstly, provides an alternate shortcut
for the gradient to pass through which helps to alleviate the vanishing gradient problem. Secondly,
it ensures that the higher layers perform as well as the lower layers since some of the higher layers
can learn just the identity mapping, which is possible through the use of skip connections.

17

3. Methodology

(a) without skip connections (b) with skip connections

Figure 3.12.: Figure shows the loss surfaces of ResNet-56 with and without skip connections.
By adding skip connections, the loss surface becomes smoother leading to better
convergence. The image is taken from Li et al. [39].

Later on, the work of Li et al. [39] showed how by adding the skip connections, the loss landscape
of a neural network becomes smooth leading to better convergence as can be seen in Figure 3.12.
Without skip connections, the optimizer of a neural network can get stuck in local minima but with
skip connections, global minima can be found more easily.

ResNet exists in different versions, depending on the number of layers the network has, as
indicated in the architectural name. Each ResNet network consists of a collection of ResNet blocks.
Different ResNet versions use different residual blocks, such as a standard residual block or a
bottleneck residual block as shown in Figure 3.13. The bottleneck residual block initially reduces
and then increases the number of channels for the 3× 3 convolution using 1× 1 convolution.
Using this approach, the number of channels can be increased while keeping the same number of
parameters in a ResNet.

3.4.2. Autoencoder

Autoencoders, first introduced in Rumelhart et al. [57], are a type of an unsupervised neural
networks that are used to encode an input into a compressed and useful representation, also called
a latent representation, then decode it back, such that the reconstructed input is as similar as
possible to the original input. The encoding part of the autoencoder is known as an encoder while
the decoding part of the autoencoder is known as a decoder as shown in Figure 3.14. The other
main components in an autoencoder architecture are an input layer, a hidden layer, and an output
layer. A similarity loss function is applied to the output of the autoencoder and the original input
during the training process.

For image data, it is more common to use convolutional layers as the data is not only processed
spatially but also results in the reduction of parameters in both the encoder and decoder parts
of the autoencoder. There are different types of autoencoders like Sparse Autoencoder (SAE),
Denoising Autoencoder (DAE) and Variational Autoencoder (VAE). The VAE is an autoencoding
approach where the latent representation learns probability distribution parameters for modeling
the input data as proposed by Kingma et al. [35] in 2014. Some of the prominent application areas
in which autoencoders have been used extensively include anomaly detection, dimensionality
reduction, image processing, and machine translation.

18

3. Methodology

(a) Standard residual block (b) Bottleneck residual block

Figure 3.13.: Figures show the two different types of residuals blocks that are used in ResNet. The
standard residual block, which is used in ResNet-18 and ResNet-34 architectures,
has two convolutional layers of filter size 3× 3 while the bottleneck residual block,
which is used in ResNet-50, ResNet-101, and ResNet-152 architectures, has three
convolutional layers of sizes 1 × 1, 3 × 3 and 1 × 1 where the 1 × 1 filters firstly
increase and then decrease the channels while the 3× 3 filter acts as a bottleneck. The
rectangles represent convolutional layers. The filter size and number of channels are
mentioned inside the rectangle. The image is taken from the original ResNet [23]
paper.

Figure 3.14.: Figure show an autoencoder with an input layer, a hidden layer and an output layer.
An autoencoder is used extensively for compressing and decompressing data in an
unsupervised way. The image is taken from Jeremy Jordan’s blog [32].

19

4. Our Approach

4.1. Problem Statement and Notation

Given n number of RGB images Ic : Ωc → [0, 255]3 of dimension u× u× 3, u ∈N where Ωc ⊂ R2

and n number of camera poses as input, the task of multiview 3D shape reconstruction is to generate
a mapping from 2D image coordinates xc = (xc, yc) to 3D object coordinates xs = (xs, ys, zs). The
output is a high-resolution 3D TSDF V : Ωv → [−σtsd f ,, σtsd f] of dimension w× w× w where
Ωv = {0,, 511}3.

4.2. Input and Output

The overall network takes n RGB images, n camera extrinsics, and a fixed set of camera intrinsics
for any n number of views as an input which makes the proposed approach independent of the
number of viewpoints.

For output, a TSDF representation offers the most benefits when compared with the other 3D
representation techniques which are discussed in Section 3.2. The ground truth target is encoded
in TSDF representation which is explained in Chapter 5. Therefore, the output of the network
should be a high-resolution intermediate TSDF representation which can then be converted into
the final mesh representation using the Marching Cubes [42] algorithm as explained in Subsection
3.2.3. However, a TSDF volume with a bigger resolution takes more memory as also explained in
Subsection 3.2.3. Furthermore, it is desirable to have TSDF volumes with a bigger resolution, such
as a resolution of 5123, because such high resolutions can capture finer details.

So to benefit from the high-resolution while at the same time reducing the memory footprint,
the proposed approach uses the pretrained autoencoder from Denninger et al. [14], which can be
used for both compressing and decompressing the TSDF volumes of resolution 5123. Instead of
originally generating the higher resolution TSDF volume, the network generates a compressed
representation as output which is compared against the compressed representation of the ground
truth target during training. The compressed representation for the ground truth target is generated
using the encoder part of the autoencoder from Denninger et al. During testing, the compressed
representation is decompressed to the original resolution of 5123 using the decoder part of the
autoencoder.

4.3. Architecture

The proposed architecture for training consists of a 2D network, a backprojection layer, and a
3D network. The 2D network is used to calculate the 2D feature maps, the backprojection layer
for lifting the 2D feature into 3D using camera intrinsics and extrinsics, and the 3D network for
refining the 3D output further. During test time, an additional autoencoder from Denninger et
al. [14] decodes the output of the training architecture. Figure 4.1a shows the network architecture

20

4. Our Approach

(a) Training Network Architecture

(b) Testing Network Architecture

Figure 4.1.: Figure shows the network architectures for training in (a) and testing in (b). During
the training phase only the 2D network, the backprojection layer, and the 3D network
is used while only during the testing phase, an additional decoder network is used.
The network in (a) is trained end-to-end using a single optimizer.

for training, while Figure 4.1b shows the network architecture for testing. The different components
that make up the whole architecture are explained further below.

4.3.1. 2D Network

The input to the 2D network is n RGB images to calculate feature maps which are used for
recovering the 3D shape of the object. The camera parameters are not required here. The 2D
network comprises the initial 7 bottleneck residual blocks (explained in Subsection 3.4.1) of ResNet-
50 [23] and 4 subsequent convolutional layers of filter size 3× 3 including BatchNorm [29] and
ReLU [46] layers for feature extraction. The pretrained ResNet-50 layers are trainable which means
the gradient backpropagates through the layers until the input layer. Pretrained ResNet-50 for the
task of image classification on the ImageNet [58] dataset is used as in Pix2Vox [73], Pix2Vox++ [74]
and Spezialetti et al. [60]. Since the image classification task is not closely related to the shape
reconstruction, only the initial pretrained layers of ResNet-50 are used. These layers can help in
not only detecting edges and other low-level details, but also making the training faster since the

21

4. Our Approach

Figure 4.2.: Figure shows the different layers in the 2D network. Initial layers of the 2D network
make use of pretrained weights from ResNet-50. 7 bottleneck residual blocks are used
from ResNet-50. The bottleneck residual block is depicted in the figure on the right.
The 4 subsequent layers consist of regular convolutions that maintain the same spatial
dimension. The 2D network and the figure is inspired from Xie et al. [74].

weights are not randomly initialized, as explained in the paper from Oquab et al. [48].
The ResNet layers reduce the spatial dimension of the RGB input from 224× 224 with three

color channels to 28× 28 with 512 feature channels. This output is then passed through the next
set of four convolutional layers. The first convolutional layer preserves the 512 feature channels
and the spatial dimension of size 28× 28. The remaining three convolutional layers reduce the
feature channels by a factor of two until 64 feature channels remain, while preserving the spatial
dimension of size 28× 28. The final output from the 2D network then has a dimension of 28× 28
with 64 feature channels. The architecture of the 2D network is shown in Figure 4.2.

4.3.2. Backprojection Layer

The backprojection layer, inspired from 3DMV [9], is fully differentiable, and is the main component
that connects the 2D network with the 3D network, making the whole method end-to-end trainable.
The primary purpose of having this layer is to lift the 2D features into 3D for which it makes use of
camera parameters, namely the camera extrinsics and camera intrinsics. The backprojection layer
calculates the associations between the 3D voxel grid and the 2D feature maps that are provided
by the 2D network.

Since the minimum and the maximum depth is already prespecified, and the image dimensions
are already known, Equation 3.14 from Section 3.1.1 can be used for setting up the near and far
plane of the frustum bounds. This corresponds to the 8 corner coordinates: 4 corner coordinates
for the near plane and 4 coordinates for the far plane. These corner coordinates are in the camera
coordinate frame and can be transformed to the world coordinate frame using camera extrinsics
which are provided as an input. Finally, the corner points are transformed into the grid coordinate
frame. The corner points are then clamped within the voxel grid dimensions of size w3d × h3d × d3d
as the size of reconstruction output is already specified. This provides the corner points in the grid
coordinate frame for the near and the far plane of the frustum bounds.

Afterwards a voxel grid of size w3d × h3d × d3d is set up as defined initially in the grid coordinate
frame, and a check is performed if the voxel grid is within the size of the frustum bounds. The 3D
grid coordinates are transformed into the world coordinate frame, and then the camera coordinate
frame using Equation 3.6 from Section 3.1.1. The inverse of the camera extrinsics parameters is
then used for transforming from world coordinate frame to camera coordinate frame. Then 3D
points in the camera coordinate frame are projected into the 2D image plane using Equation 3.2

22

4. Our Approach

from Section 3.1.1. A check is also performed on these 2D pixel points to check if they are between
the valid and known image dimensions.

The 3D voxel grid coordinate and its corresponding 2D pixel coordinates (3D-2D associations)
are stored as indexes. During the forward pass of the backprojection layer, the network can map a
2D feature map (output of the 2D network) of one viewpoint into the 3D voxel grid coordinates
using the computed indexes. Similarly, during the backward pass, the network can map the
upstream gradients into the 2D pixel points again using the computed indexes. The indexes are
computed on the fly since GPU memory is limited. The process is repeated for the 2D feature map
of the other views.

Furthermore, to make the approach invariant to the number of views, voxel max-pooling is
used similar to Dai et al. [9]. The reason for using voxel max-pooling is that some voxels will be
associated with multiple 2D pixels from all views. Voxel max-pooling, which is is calculated across
the number of feature channels, combines these projected features from all the input views.

To summarize, n 2D feature maps of size w2d × h2d with n f eat input feature channel are projected
into 3D with a final output size of w3d × h3d × d3d with n f eat output feature channels where n is
equal to the number of input views. In our approach, each of the n 2D feature maps has a size of
64× 28× 28, where n f eat = 64, w2d = 28 and h2d = 28, which is then projected to a 3D volume of
size 64× 32× 32× 32, where n f eat = 64, w3d = 32, h3d = 32 and d3d = 32.

n× n f eat × w2d × h2d → n f eat × w3d × h3d × d3d

4.3.3. 3D Network

The output from the backprojection layer is already converted into 3D TSDF grid coordinates.
However, to refine the output further, a 3D network is used which applies further convolutional
layers. More precisely, the 3D network uses seven convolutional layers with filter size 3× 3× 3
along with BatchNorm [29] and ReLU [46] layers. The ReLU activation is not applied to the last
layer because the output of the last layer should not be constrained. The input to the 3D network
has a size of 323 with 64 feature channels (size similar to the output of the backprojection layer).
Since the convolutional layers with padding maintain the same spatial dimension as well as the
number of feature channels, the output of the 3D network also has a dimension of 323 with 64
feature channels, which represents the size of the compressed latent TSDF volume. Figure 4.3
shows the architecture of the 3D network.

4.3.4. Autoencoder

The output from the 3D network has a dimension of 323 with 64 feature channels which is then
passed into the decoder part of the pretrained autoencoder network from Denninger et al. [14]. The
decoder network takes the 3D network’s output as input, which is already a compressed represen-
tation, to generate the final decompressed TSDF volume with a dimension of 5123. Similarly, the
ground truth target volume, which is also in a compressed representation, is also decompressed
using the same decoder network. This is done to evaluate the difference between the prediction
and the ground truth target volume in their original representations. Also notable is that the
whole network architecture is trained using the compressed representation as explained in the
Data Generation Section 5.2.2.

23

4. Our Approach

Figure 4.3.: Figure shows the different layers that are a part of the 3D network. All layers consist
of a convolutional layer, a BatchNorm layer, and a ReLU layer except for the last layer
which does not use a ReLU layer. The layers maintain the same spatial resolution of
size 323.

Figure 4.4.: Figure shows the autoencoder used to decompress the TSDFs into a latent representa-
tion of size 64× 323 during the training phase and later to decompress in the original
resolution of 5123 during the testing phase. The image is taken from Denninger et
al. [14].

24

5. Experimental Setup

5.1. Dataset

The generated dataset is based on the ShapeNet [4] dataset, which is a large-scale dataset of
3D shapes organized according to the WordNet [16] hierarchy with more than 220,000 unique
3D models classified into 3,135 categories. The ShapeNetCore dataset is a subset of the original
ShapeNet dataset. It has two versions, namely the ShapeNetCore v1 dataset which has 55 object
categories and the ShapeNetCore v2 dataset which has 57 object categories. Our approach
specifically uses a subset of the ShapeNetCore v1 dataset with 13 different categories and 43,784
3D models in total, following the setting used in 3D-R2N2 [6] as shown in Table 5.1. The count
column represents the number of 3D objects in a particular ShapeNet category. One 3D object from
the rifle category with source id 4a32519f44dc84aabafe26e2eb69ebf4 is removed from evaluation as
the 3D object is incorrect.

Table 5.1.: Table shows the original number of 3D objects contained in each ShapeNet category.
Each ShapeNet category is identified with a unique Synset Id.

Object Category Synset Id Count

airplane 02691156 4045
bench 02828884 1816
cabinet 02933112 1572
car 02958343 7497
chair 03001627 6778
display 03211117 1095
lamp 03636649 2318
speaker 03691459 1618
rifle 04090263 2372
sofa 04256520 3173
table 04379243 8509
telephone 04401088 1052
watercraft 04530566 1939

Overall 43784

5.2. Synthetic Data Generation

The 3D objects are zero-centered and normalized between the inclusive range [−1, 1]. Specifically,
the normalization is performed with respect to the biggest width, length or height of the 3D object.

25

5. Experimental Setup

(a) The normals pointing out incorrectly in
the original object

(b) The normals pointing out correctly in
the watertight object

Figure 5.1.: Figures show the normals orientation of the original ShapeNet object in (a) and the
watertight version of the same object in (b). In the two figures, the color blue represents
that the normal is pointing outwards from the surface while the color red represents
that the normal is pointing inwards from the surface. As can be seen in figures,
the watertight version has correct normals orientation which is essential for TSDF
generation. The used object in both figures is from the car category with source id
1a1dcd236a1e6133860800e6696b8284. The normals are visualized using Blender [7].

The meshes are also made ’watertight’ using the ManifoldPlus algorithm from Huang et al. [28].
Given a mesh with incorrect normal orientation and thin structures, the ManifoldPlus algorithm
extracts watertight manifolds from meshes using the exterior faces between the occupied voxels
and the empty voxels, and a projection-based optimization method. One disadvantage of using the
ManifoldPlus algorithm is that watertight 3D objects lose the original texture information since the
structure of the watertight mesh changes including the count of the vertices and faces. However,
generally the count of the vertices and faces increases after making the meshes watertight using
the ManifoldPlus algorithm. The TSDF pipeline from Denninger et al. [14], however, does not
require the meshes to have texture information since it uses the face orientation information of
a mesh for efficiently computing the TSDF grid. So for the RGBA images, the zero-centered and
normalized 3D objects with the textures are used to make them as realistic as possible while the
TSDF generation pipeline makes use of the watertight 3D meshes without the texture information.

5.2.1. RGB Images, Camera Intrinsics, and Camera Extrinsics

The RGB images are rendered using BlenderProc [12], which is a photorealistic data generation
tool based on top of 3D modeling software Blender [7], which means that BlenderProc can make
use of features like raytracing and hardware-accelerated rendering. In BlenderProc, the 3D shape is
initially loaded after which light sources are placed in the specified position. Then, camera poses
are generated relative to the 3D shape. Finally, the RGBA image is rendered. All these steps are
explained further below:

3D Shape Loading

Since the 3D objects have already been centered and normalized, they can be loaded without any
further processing. Most preprocessing has already been applied such as centering and making
them watertight, which also fixes the normals. The 3D objects are stored in a .obj file with the

26

5. Experimental Setup

vertices, faces, and normals. An additional .mtl file contains material information. A majority of
the 3D objects also contain texture images.

Lighting

Lighting is notably important for creating realistic images. A point light source with a simulated
power of 1000 Watts at a radius of 5 is placed at six different locations around the 3D object, such
that the maximum coverage of the light can take effect. These also correspond to the top and
bottom of the 3D object, as well the four points in the plane, with all the points separated from
each other at 90 degrees relative to the center of the 3D object.

Camera Sampling

The pose of the camera relative to the 3D object is also generated through random camera sampling.
Using BlenderProc, the camera poses or camera extrinsics are sampled on the surface of a sphere
with a radius of 2.5 around the 3D object. The camera intrinsics parameters that make up the
camera matrix K, as explained in Equation 3.3, are also generated, which depends on the resolution
of the RGBA images, among other factors.

Rendering

In BlenderProc, the Cycles render engine from Blender is used which is a raytracing-based renderer.
Raytracing-based render engines produce photorealistic images that are not possible in classical
render engines like OpenGL [45]. This is because raytracing-based render engines simulate the
physical behavior of light, like reflections and shadows. Another benefit of raytracing-based
render engine is that it can reduce the sim-to-real gap, which means that the neural networks
trained on synthetic data generated using raytracing-based render engine have better generalization
capabilities, as shown in the work of Hodaň et al. [26] and Denninger et al. [13].

Through the use of BlenderProc, RGBA images of a resolution of 256× 256× 3 are rendered.
Each of the 43784 3D ShapeNet objects has 24 renderings. In total, there are 1,050,816 RGBA images
with a total size of approximately 68.7 GB. Figure 5.2 shows some of the RGB images rendered
using BlenderProc. The BlenderProc config is specified in Appendix A.

5.2.2. Truncated Signed Distance Function (TSDF) Volumes

For the TSDF generation, the pipeline of Denninger et al. [14] introduces an efficient way of
calculating TSDF volumes from meshes. A modified version of the TSDF pipeline is used in our
approach. The modification made are related to the view frustum. Instead of the perspective view
frustum, the modified version of the pipeline uses an orthographic view frustum such that the
different input views correspond to the same TSDF volume. The pipeline generates TSDF volumes
that originally have a resolution of 5123. By having a higher output resolution, finer details of
the 3D objects can be captured, which would better associate the 2D image features with the 3D
volume in our network.

Figure 5.3 shows different slices through the TSDF volume as the actual 3D TSDF volume is
difficult to visualize while Figure 5.4 shows the meshes that are generated from TSDF volumes of
different resolution.

27

5. Experimental Setup

Figure 5.2.: Figure shows the RGB renderings of the different ShapeNet categories,
namely the airplane category with source id 4561def0c651631122309ea5a3ab0f04,
car category with source id e4886a4d0c6ea960fe21694bd5f519d1, chair cate-
gory with source id 1fccc2ac4bfd3da535836c728d324152, sofa category with
source id 62e90a6ed511a1b2d291861d5bc3e7c8 and table category with source id
1011e1c9812b84d2a9ed7bb5b55809f8. All the renderings are generated using Blender-
Proc [12].

28

5. Experimental Setup

Since the resolution of 5123 is sufficiently high with 134,217,728 parameters, the TSDFs are
compressed to a smaller resolution of 64× 323 using just the encoder of the autoencoder from
Denninger et al. [14] as shown in Figure 4.4. This is the ground truth target that the network
in this thesis tries to predict. Both the prediction and ground truth target can be decompressed
to the original representation of size 5123 using the decoder of the same autoencoder. Table 5.2
shows that the difference between the original TSDF volume and the reconstructed TSDF volume
is minute as per the Mean Squared Error (MSE) (the lower, the better), which indicates that the
autoencoder from Denninger et al. can be used for both compressing and decompressing, since it
generalizes well to the generated TSDFs.

Figure 5.3.: Figure shows the different slices of the complete TSDF volume of a resolution 5123 are
visualized. Values range from -1 (dark blue) to 1 (dark red).

Table 5.2.: Table shows the Mean Squared Error (MSE) between the original 5123 volume and the
decompressed 5123 volume using the autoencoder from Denninger et al. [14].

Object Category MSE

airplane 2.892× 10−6

car 1.057× 10−5

chair 7.599× 10−6

table 5.846× 10−6

Overall 6.727× 10−6

5.3. Neural Network Training

5.3.1. Loss

Since the predictions of our approach are real valued TSDF volumes, regression-based loss functions
are used. The most commonly used losses for regression-based reconstruction tasks are Mean
Absolute Error (MAE) and Mean Squared Error (MSE) which are also used in our approach. They
are explained below:

29

5. Experimental Setup

(a) 643 (b) 1283

(c) 2563 (d) 5123

Figure 5.4.: TSDF meshes with different resolutions are visualized for the airplane category with
source id 4561def0c651631122309ea5a3ab0f04. As the resolution increases, more details
are captured. Note that the TSDFs have been converted into meshes using Marching
Cubes [42] algorithm.

Mean Absolute Error (MAE) Loss

MAE is the average of the absolute difference between the ground truth 3D volume Y and the
predicted 3D volume Ŷ as shown in Equation 5.1. Here n refers to the total number of samples.
In our approach, the loss is computed between the compressed ground truth 3D volume and the
compressed predicted 3D volume as hinted in Chapter 4.

Lmae(Y, Ŷ) =
1
n

n

∑
i=1
‖Yi − Ŷi‖1 (5.1)

Mean Squared Error (MSE) Loss

MSE is the average of the squared difference between the ground truth 3D volume Y and the
predicted 3D volume Ŷ as shown in Equation 5.2. Here n refers to the total number of samples.
In our approach, the loss is computed between the compressed ground truth 3D volume and the
compressed predicted 3D volume as hinted in Chapter 4.

Lmse(Y, Ŷ) =
1
n

n

∑
i=1
‖Yi − Ŷi‖2 (5.2)

5.3.2. Evaluation

For evaluating the performance of the proposed network, two metrics, namely Intersection over
Union (IoU) and F-Score@1% are used. The two evaluation metrics are explained below:

30

5. Experimental Setup

Intersection over Union (IoU)

The IoU between the ground truth 3D volume Y and the predicted 3D volume Ŷ is calculated as
shown in Equation 5.3. The numerator of Equation 5.3 calculates the intersection or the logical and
between the thresholded ground truth 3D volume Y and the thresholded predicted 3D volume Ŷ
at zero. The denominator of the same equation calculates the union or the logical or between the
thresholded ground truth 3D volume Y and the thresholded predicted 3D volume Ŷ at zero. The
IoU is computed between the original ground truth TSDF volume and the decompressed predicted
TSDF volume as shown in Figure 4.1b.

IoU(Y, Ŷ) =
∑i,j,k 1(Y(i,j,k)<0) · 1(Ŷ(i,j,k)<0)

∑i,j,k 1(Y(i,j,k)<0) + 1(Ŷ(i,j,k)<0)
(5.3)

F-score@1%

The F-score introduced in Tatarchenko et al. [65] provides an additional measure for evaluating 3D
reconstruction outputs. The F-score between the ground truth 3D volume Y and the predicted 3D
volume Ŷ is calculated as shown in Equation 5.4. P(d) is the precision and R(d) is the recall for a
distance threshold d as defined in Equation 5.5 and Equation 5.6. For F-score@1%, d = 0.01. Here G
and R represents the reconstructed point clouds from Y and Ŷ respectively. nG and nR refer to the
number of points in G and R respectively. The ground truth 3D TSDF volume Y and the predicted
3D TSDF volume Ŷ are converted into a mesh representation using Marching Cubes after which
8,192 points are then sampled from both object surfaces for computing F-score. Higher F-score
corresponds to better reconstruction outputs. Open3D [80] is used for implementing F-score. The
F-score@1% is computed between the original ground truth TSDF volume and the decompressed
predicted TSDF volume as shown in Figure 4.1b.

F-score(Y, Ŷ, d) =
P(d) · R(d)

P(d) + R(d)
(5.4)

P(d) =
1

nR
∑

r∈R
(min

g∈G
‖g− r‖ < d) (5.5)

R(d) =
1

nG
∑
g∈G

(min
r∈R
‖g− r‖ < d) (5.6)

5.4. Training Procedure

5.4.1. Train, Validation and Test Splits

Initially, a single network is trained for handling all views where the number of views were
changed randomly in the inclusive range [1, 24] after each epoch. However, with the number of
views changing in each epoch, the training becomes unstable, which means the network does not
converge to a minimum. Xie et al. trained their multiview 3D shape reconstruction networks,
Pix2Vox [73] and Pix2Vox++ [74] using single-view images initially for 250 epochs without training
their multi-scale context-aware fusion module. Afterwards, they trained the multiview networks
for a further 100 epochs but this time varying the number of views randomly between 1 and 24. In

31

5. Experimental Setup

the interest of training time, four different networks were trained that each handle 1, 6, 12 and 24
number of views.

The train, validation and test data splits for the four networks are shown in Table 5.3. For each
particular view, the number of RGB images as well the camera extrinsics change. However, the
ground truth TSDF target for each of the networks remains the same.

Table 5.3.: Table shows the train, validation and test data splits which follow the same split
distribution from 3D-R2N2 [6].

Views Train Validation Test

RGB Images and Camera 1 view 30642 4371 8770
Extrinsics (Input) 6 views 183852 26226 56620

12 views 367704 52452 105240
24 views 735408 104904 210480

TSDF Volumes (Target) 30642 4371 8770

5.4.2. Processing

The RGBA images generated from BlenderProc have a resolution of u × u × 3 where u = 256.
The generated images have focal lengths fx = 355.556 and fy = 355.556, and principal points
cx = 127.5 and cy = 127.5. However, the pretrained ResNet layers used in the 2D network require
the input RGBA images to have a resolution of v× v× 3 where v = 224, the RGBA images have to
be scaled down. Alongside the RGBA images, the camera intrinsics parameters, which are used
in the backprojection layer, also have to rescaled in the same proportion. The camera matrix K
is introduced in Equation 3.3 in Section 3.1.1. For scaling the camera matrix K to camera matrix
Kresized, Equation 5.7 is used in the implementation where the scale factor v

u adjusts the focal lengths
fx and fy, and the scale factor v−1

u−1 adjusts the principal points cx and cy. After scaling, the focal
lengths are fx = 311.112 and fy = 311.112, and principal points are cx = 111.5 and cy = 111.5.
To recall, the camera intrinsic are used in setting up the backprojection layer as explained in
Subsection 4.3.2.

Kresized =

 fx ∗ v
u 0 cx ∗ v−1

u−1
0 fy ∗ v

u cy ∗ v−1
u−1

0 0 1

 (5.7)

5.4.3. Implementation Details

PyTorch [51] is used for implementing 2D and 3D networks. The backprojection layer is imple-
mented using the PyTorch autograd following the implementation of Dai et al. [9]. For training,
Adam [34] optimizer with a β1 of 0.9 and a β2 of 0.999. The learning rate of all four networks is
initially set to 0.01 which is halved every 15 epoch. The loss function for training all the networks
in MSE. The batch sizes of the 1, 6, 12 and 24 view networks are 24, 16, 11 and 7 respectively. No
data augmentation is used in all of the networks because some of data augmentations like cropping
changes the camera intrinsic parameters, and this is not accounted for during training. The net-
work is trained using a fixed set of camera intrinsics. The camera intrinsics are not scaled initially.

32

5. Experimental Setup

Furthermore, each network is trained on a separate GPU with 24 GB VRAM. A SLURM [79] based
cluster is used for scheduling and monitoring the jobs for these four networks.

33

6. Results

The network is trained and evaluated on the data split distribution from 3D-R2N2 [6], as already
mentioned in Chapter 5. This is done so that the performance of our proposed approach can be
compared with other methods in literature even though the input and output data used in our
approach is different from those used in literature.

6.1. Quantitative

The quantitative results of the proposed approach are shown in the two tables below. Table 6.1
shows the quantitative result on the test set using IoU as an evaluation metric while Table 6.2
shows the result on the test set using the F-score@1% as an evaluation metric.

Table 6.1.: Table shows the result of our approach on the test set of ShapeNet following the test
split distribution from 3D-R2N2. The metric used here is IoU.

Object Category 1 view 6 views 12 views 24 views

airplane 0.074 0.272 0.322 0.320
bench 0.015 0.049 0.068 0.067
cabinet 0.235 0.429 0.450 0.460
car 0.555 0.619 0.642 0.634
chair 0.067 0.185 0.190 0.213
display 0.056 0.155 0.175 0.143
lamp 0.017 0.073 0.086 0.092
speaker 0.236 0.417 0.423 0.382
rifle 0.002 0.065 0.081 0.066
sofa 0.252 0.453 0.479 0.491
table 0.022 0.093 0.132 0.147
telephone 0.205 0.408 0.414 0.410
watercraft 0.072 0.235 0.309 0.258

Overall 0.163 0.275 0.301 0.302

One thing to take away from Table 6.1 and Table 6.2 is that as the number of views increases, the
performance of the proposed network also increases. However, when approaching a higher number
of views, the performance change is not substantial. Another trend that is visible in the tables
is that some ShapeNet categories performed better than the rest. For example, the car category
performed the best in terms of the IoU and F-score@1% metrics in all the views. The reason for
this could be that the car category is easier for our network to learn since car objects in ShapeNet
are similar to each other with less variation. This also means that the networks are better able to
associate the similar 2D features of the car with the 3D output, which helps in generating better

34

6. Results

Table 6.2.: Table shows the result of our approach on the test set of ShapeNet following the test
split distribution from 3D-R2N2. The metric used here is F-score@1%.

Object Category 1 view 6 views 12 views 24 views

airplane 0.083 0.250 0.297 0.299
bench 0.016 0.068 0.109 0.112
cabinet 0.085 0.172 0.187 0.190
car 0.341 0.434 0.485 0.475
chair 0.028 0.108 0.109 0.131
display 0.042 0.117 0.139 0.118
lamp 0.012 0.041 0.052 0.058
speaker 0.068 0.134 0.140 0.135
rifle 0.004 0.136 0.165 0.133
sofa 0.114 0.217 0.232 0.244
table 0.018 0.111 0.165 0.187
telephone 0.156 0.291 0.316 0.332
watercraft 0.073 0.231 0.267 0.073

Overall 0.097 0.195 0.227 0.224

reconstructions. Also, another reason could be that the car object contains fewer fine details as
compared to other 3D objects like a lamp. The main component of the car object is the body which
our network learned to reconstruct well, as shown in the Qualitative Section.

6.2. Qualitative

Table 6.3 and Table 6.4 present the qualitative results of our approach. The results show how the 1
view, 6 views, 12 views and 24 views networks perform for two different instances from the test
set. The evaluation metrics, namely IoU and F-score@1% are mentioned under the reconstructed
output.

Table 6.3 shows that our approach can reconstruct the car object sufficiently well. However, the
reconstruction is missing some fine details like tires, side-view mirrors, and the spoiler of the
car. Table 6.4 shows an example where our approach fails to reconstruct the cabinet object fully.
However, the partial reconstruction relates well with the original target, especially in the 24 input
views model. The reconstructions could be made better by using loss functions better suited for
TSDF volumes like loss shaping from Denninger et al. [14].

6.3. Comparison to other approaches

There are no literature methods that directly compare to our approach since this thesis uses a newly
generated dataset. However, most of the methods from literature are trained on the 3D-R2N2
dataset, which uses binary voxel grids of only a resolution of 323. Our approach makes use of
TSDF volume with a resolution of 5123. But, it is helpful to get insight about the performance
of the other works in comparison to our approach. Table 6.5 lists down the metrics of the other

35

6. Results

Table 6.3.: Table shows the qualitative results for one particular test instance from the car category
with source id 998f600899c76e4583653a771e25099b where our approach works well. The
rows show the results of the 1 view, 6 views, 12 views and 24 views model.

Images Output Target

IoU=0.791, F-score@1%=0.540

IoU=0.811, F-score@1%=0.577

IoU=0.836, F-score@1%=0.623

IoU=0.799, F-score@1%=0.566

36

6. Results

Table 6.4.: Table shows the qualitative results for one particular test instance from the cabinet
category with source id 91ac5c074c7d137762646c8cd54d58b4 where our approach does
not perform well. The rows show the results of the 1 view, 6 views, 12 views and 24
views model.

Images Output Target

IoU=0.138, F-score@1%=0.039

IoU=0.067, F-score@1%=0.043

IoU=0.136, F-score@1%=0.058

IoU=0.219, F-score@1%=0.118

37

6. Results

approaches and our approach. Our approach’s metrics are low compared to other approaches but
this is expected since the output size of our approach is a volume of size 5123 which is 4096 times
more data to predict.

Table 6.5.: Table shows the evaluation metrics for different input views of the other works from
literature. However, all the other works use the dataset from 3D-R2N2 so the results are
not directly comparable.

Method 1 view 6 views 12 views 24 views

3D-R2N2 [6] IoU 0.560 - 0.636 -
F-score@1% 0.351 - 0.382 -

AttSets [77] IoU 0.642 - 0.688 -
F-score@1% 0.395 - 0.445 -

Pixel2Vox/A [73] IoU 0.661 0.700 0.704 0.706
F-score@1% 0.405 0.456 0.460 0.462

Pixel2Vox++/A [74] IoU 0.670 - 0.717 0.720
F-score@1% 0.436 - 0.460 0.473

Our method IoU 0.163 0.275 0.301 0.302
F-score@1% 0.097 0.195 0.227 0.224

6.4. Space Complexity

To test the space complexity, our method is compared against other prominent multiview 3D shape
reconstruction methods. Table 6.6 shows the number of parameters in millions and memory usage
in MB of the different multiview 3D shape reconstruction methods, which predict a reconstruction
of resolution 323. Our approach instead predicts a compressed representation of resolution
64× 323, which is decompressed using an autoencoder to generate reconstructions of resolution
5123. The proposed method has lower space complexity as compared to other methods except
for the Pix2Vox++/A method. The memory requirement of the proposed multiview 3D shape
reconstruction method is evaluated using the torchinfo tool from Yep et al. [78].

Since there is an additional decompressing step for generating reconstructions of resolution 5123

using the autoencoder from Denninger et al., the proposed method has a higher time complexity
as compared to the other multiview 3D shape reconstruction methods.

6.5. Compressed Output Visualization

Our network is trained using a compressed representation of size 64× 323. The compressed
representation is generated from the original TSDF volume of size 5123. It is an interesting insight
to see what the network has learned in the compressed representation. Figure 6.1 shows the three
slices of the compressed output of different ShapeNet categories, namely aeroplane, bench, cabinet,
car, and sofa. It can be seen in Figure 6.1 that compressed output contains the essential features that

38

6. Results

Table 6.6.: Table compares the numbers of parameters and the memory requirement of different
multiview 3D shape reconstruction methods. The data of the other methods comes from
Xie et al. [74].

Method Number of Parameters (million) Memory (MB)

3D-R2N2 [6] 35.97 1407
AttSets [77] 17.71 3911
Pixel2Vox++/F [74] 4.83 647
Pixel2Vox++/A [74] 96.31 2411
Our method 14.75 4095

correlate with the final reconstruction output. Thus, the visualization confirms that the compressed
representation that the network has learned is meaningful for multiview 3d shape reconstruction.

6.6. Changing Input Views

In our approach, four different networks are trained, which correspond to the 1, 6, 12 and 24 input
views. The number of views remains fixed during training, unlike other approaches like Pix2Vox++
that change the number of views after each epoch in their multiview 3D shape reconstruction
network. It is interesting to see how the trained networks perform if the number of views are
changed for our approach. Table 6.7 shows the result of two such experiments.

In the first experiment, the input view is changed to 24 for the 1 view network while in the
second experiment, the input view is changed to 1 for the 24 views network. Table 6.7 also contains
the result from Table 6.1 and Table 6.2 of the original 1 view and 24 views network for comparison
purposes. Both the modified networks perform worse when the input views are changed. The
results show that the networks have a strong dependence on the original input views. One way to
alleviate this problem could be to change the input views during training, similar to how it is done
in Pix2Vox and Pix2Vox++.

Table 6.7.: Table shows the effect of testing the networks with different input views. The 1 view
network is tested using 24 input views while the 24 views network is tested using 1
input view.

Original input views 1 view 24 views
New input views

1 view IoU 0.163 0.009
F-score@1% 0.097 0.011

24 views IoU 0.013 0.302
F-score@1% 0.006 0.224

39

6. Results

Aeroplane

Bench

Cabinet

Car

Sofa

Figure 6.1.: Figures show the visualization of the three slices of the compressed output from
different test data examples. The categories include aeroplane, bench, cabinet, car, and
sofa. The compressed output has a size of 64× 323. The first channel is visualized only
using the 24 views model.

40

7. Future Work

There are some further steps that can explored as a possible future work building on top of our
methods. Some exciting future work ideas are summarized below:

7.1. Problem Benchmark and Dataset

As of this writing, a good benchmark and dataset does not exist for evaluating multiview 3D shape
reconstruction approaches. The most well known benchmark and dataset for the task of multiview
3D shape reconstruction comes from 3D-R2N2 [6]. However, the dataset only consists of a limited
set of ShapeNet categories. Also, the RGB images and the binarized voxel grids are limited in
resolution. Xie et al. [74] introduced a larger scale dataset with 1.68 million images of 280,000
objects named Things3D. However, since the Things3D dataset was based upon the SUNCG [59]
dataset, it is not available anymore.

Our dataset is generated and follows the same data distribution splits of the 3D-R2N2 in
order to have comparison on equal grounds. Nonetheless, a new large scale multiview 3D shape
reconstruction dataset could be created with more ShapeNet categories using the tools developed
in this thesis and BlenderProc [12], which would ultimately benefit the wider research community.

7.2. Uncertainty Estimation

Estimating uncertainty as an additional output of the network can be useful for some safety critical
applications like autonomous driving since the neural networks tend to be overconfident in the
predictions that they make as shown in [37]. Even though the problem of multiview 3D shape
reconstruction has been studied extensively, there are not any known methods in literature that
estimate uncertainty alongside the actual task of multiview 3D shape reconstruction. So as a
potential future research direction, network architectural changes can be made so that uncertainty
can be estimated as an additional output. Some methods that could be used a part of the future
work for estimating uncertainty include Monte Carlo Dropout [19] and Postels et al. [52].

7.3. Real World Transfer

Another future direction would be to explore how well the proposed approach transfers to the real
world examples, since the data is synthetically generated. However, considerable effort is spent in
ensuring the synthetic dataset as realistic as possible. There are datasets available in the literature
that provide real world RGB images along with 3D original mesh object like Pix3D [63]. As a
future work, it would also be insightful to see if the domain gap between Sim2Real transfer [27,
30] is low, which is difficult achieve as previously mentioned in literature.

41

7. Future Work

7.4. 3D Scene Datasets

Another possible future direction would be to try the proposed method on realistic looking 3D
scene datasets like the SUNCG [59] and Replica [61] datasets. Since the proposed approach should
also work on 3D scene datasets with some changes in ground truth 3D target, it would also be
interesting to see how well the proposed method performs on 3D scene data. However, there might
be difficulties in handling the 3D scene data. Possible problems that could be encountered maybe,
for example, too many 3D objects in one scene or occlusion. Hence, it may be more challenging to
get accurate reconstructions of 3D scenes.

7.5. Camera Intrinsics and Extrinsics

One of the limitations of the proposed approach is the reliance on the camera intrinsics and
extrinsics parameters. For robotic applications, it might be easy to obtain such parameters since the
system is already well calibrated, for example, DLR’s Rollin’ Justin [2]. However, for some other
applications, it might be difficult to obtain these parameters. For future work, a new architecture
can be proposed that does not require camera parameters as input. There are already works that do
camera pose estimation alongside the task of 3D shape reconstruction like the work of Spezialetti
et al. [60]. It is also important to note that methods that use camera parameters usually outperform
methods that do not as explained in Xie et al. [74].

7.6. Adversarial Training

Our proposed network is trained end-to-end from input to output. There are, however, adversarial
training strategies that can improve the network performance slightly, as reported in Roldao et
al. [56]. Some works from literature claimed to get better performance when trained adversarially,
including the work of Wang et al. [69], Chen et al. [5] and Wu et al. [71]. Following this trend,
it would be worth trying adversarial training because it provides a better training supervision
mechanism.

Figure 7.1 shows how neural networks can be trained adversarially. If adversarial training is to be
used, the end-to-end proposed network can be used as a generator network while the discriminator
network classifies the ground truth reconstructions from the output of the generator as being either
real or fake. The goal for generator network is then to produce accurate reconstructions so that
it can fool the discriminator, while the goal of the discriminator is to correctly classify whether
the reconstruction comes from the generator or the ground truth reconstruction. Through this
technique, both the generator as well as the discriminator networks improve in their tasks over
time. Later on, the generator network alone can be used for generating reconstructions.

42

7. Future Work

(2D/3D
grid)

Generator

Discriminator

Real/Fake

(3D grid)

(3D grid)

3D CNN

Figure 7.1.: Figure shows how neural networks can be trained adversarially which consists of a gen-
erator network whose task is to generate realistic looking samples and a discriminator
network whose task is to determine if the samples comes from the generator network
or ground truth data distribution. Similar to a min-max approach, both generator and
discriminator networks improve over time. The image is taken from Roldao et al. [56].

43

8. Conclusion

In this thesis, a novel learning-based approach for multiview 3D shape reconstruction is explained.
The proposed approach takes as input RGB images taken from multiple viewpoints and camera
parameters, and it makes use of a 2D network, a backprojection layer, and a 3D network. Unlike
existing methods in the literature, the proposed method directly associates the 2D feature maps
with the 3D output. The method can reconstruct complex 3D objects with an output resolution of
5123, making it one of the few methods in the literature for 3D shape reconstruction in such a high
resolution.

Alongside the proposed approach, the thesis also contributed with an improved dataset, based
upon the ShapeNet [4] dataset, with 1,050,816 image renderings of 3D objects and 43,784 TSDF
volumes, which corresponds to 24 different viewpoints following the split distribution from 3D-
R2N2 [6]. The thesis also presents detailed quantitative and qualitative results on the newly
introduced multiview 3D reconstruction dataset. The results conclude that the performance of our
multiview reconstruction method increases up to a certain input views after which the performance
stagnates.

44

A. BlenderProc Config

1 # Args: <path_to_shape-net-core> <output_dir>

2 version: 3

3 setup:

4 blender_install_path: /home_local/<env:USER>/blender/

5 pip:

6 - h5py

7 modules:

8 - module: main.Initializer

9 config:

10 global:

11 output_dir: <args:3>

12 - module: loader.ShapeNetLoader

13 config:

14 data_path: <args:0>

15 used_synset_id: <args:1>

16 used_source_id: <args:2>

17 move_object_origin: false

18 - module: lighting.LightLoader

19 config:

20 lights:

21 - type: POINT

22 location: [0, 0, 5]

23 energy: 1000

24 - type: POINT

25 location: [0, 0, -5]

26 energy: 1000

27 - type: POINT

28 location: [5, 5, 0]

29 energy: 1000

30 - type: POINT

31 location: [-5, -5, 0]

32 energy: 1000

33 - type: POINT

34 location: [-5, 5, 0]

35 energy: 1000

36 - type: POINT

37 location: [5, -5, 0]

38 energy: 1000

45

A. BlenderProc Config

39 - module: camera.CameraSampler

40 config:

41 intrinsics:

42 resolution_x: 256

43 resolution_y: 256

44 cam_poses:

45 - number_of_samples: 24

46 location:

47 provider: sampler.Sphere

48 center: [0, 0, 0]

49 radius: 2.5

50 mode: SURFACE

51 rotation:

52 format: look_at

53 value:

54 provider: getter.POI

55 - module: renderer.RgbRenderer

56 config:

57 transparent_background: true

58 output_key: colors

59 use_alpha: false

60 samples: 350

61 - module: writer.ShapeNetWriter

62 - module: writer.CameraStateWriter

63 config:

64 attributes_to_write: [location, rotation_euler, fov_x, fov_y,

65 shift_x, shift_y, cam_K, cam2world_matrix]

66 - module: writer.Hdf5Writer

67 config:

68 write_alpha_channel: true

46

List of Figures

2.1. Figure shows the binary occupancy grid output of resolution 323 of the different
multiview 3D shape reconstruction methods on the dataset introduced in 3D-R2N2
from Choy et al. [6]. The image is taken from Xie et al. [74]. 5

3.1. Figure shows the pinhole camera model with Pw in world coordinate system, Pc in
camera coordinate and p in the 2D image plane. The image is taken from OpenCV
Camera Calibration and 3D Reconstruction documentation [47]. 8

3.2. Figure shows how the 3D objects are projected in the 2D image plane using perspec-
tive projection in (a) and orthographic projection in (b). The images are taken from
Jia et al. [31]. 10

3.3. Figure shows the perspective view frustum. The perspective view frustum takes
the shape of a truncated pyramid. The image is taken from Lighthouse3d.com [41]
website. 11

3.4. Figure shows the orthographic view frustum. The orthographic view frustum takes
the shape of a cuboid. The image is taken from Martin Kraus [36] and it is originally
published on Wikipedia. 11

3.5. Figure shows view frustum culling being applied to green, red, and yellow objects.
Taking the shape of the view frustum into account, all the green objects are rendered,
yellow objects are partially rendered and none of the red objects are rendered. The
image is taken from Lighthouse3d.com [41] website. 12

3.6. Figure shows a 2D TSDF with a red curve depicting the surface with all the values
inside the surface being negative, on the surface being zero, and outside the surface
being positive. As can be seen in the figure, a truncation between -1 and 1 is
applied. The same concept can also be extended to 3D. The image is taken from
Arm Community website [44]. 13

3.7. Figure shows the memory comparison between binary occupancy/voxel grids and
TSDF volumes of different resolutions. As resolution increases, TSDF volumes take
up more memory than binary occupancy grids. For example, a volume of size 5123

corresponds to more than 134 million voxels. For storing this volume, a binary
occupancy grid representation would take approximately 134.22 MB while a TSDF
volume representation would take approximately 536.87 MB. 14

3.8. Figure shows the most commonly used 3D data representations. Different methods
use different 3D data representations. The images are taken from Wang et al. [68],
Wang et al. [69], Song et al. [59], and Dai et al. [11]. 15

3.9. Figure shows all the normals in orange that are used for calculating the distance
d (p, T). The orthogonal planes are shown in blue and dashed. The original figure
is taken from Denninger et al. [14] and adapted afterward. 16

47

List of Figures

3.10. Figure shows a simple residual block that makes use of a skip connection. The skip
connection adds the output from the previous layer. The image is taken from the
original ResNet [23] paper. 17

3.11. Figures show that both the training and test performance of the neural network
suffers when the number of layers are increased from 20 to 56. ResNets alleviated
this problem through the use of skip connections. The image is taken from the
original ResNet [23] paper. 17

3.12. Figure shows the loss surfaces of ResNet-56 with and without skip connections.
By adding skip connections, the loss surface becomes smoother leading to better
convergence. The image is taken from Li et al. [39]. 18

3.13. Figures show the two different types of residuals blocks that are used in ResNet. The
standard residual block, which is used in ResNet-18 and ResNet-34 architectures,
has two convolutional layers of filter size 3× 3 while the bottleneck residual block,
which is used in ResNet-50, ResNet-101, and ResNet-152 architectures, has three
convolutional layers of sizes 1× 1, 3× 3 and 1× 1 where the 1× 1 filters firstly
increase and then decrease the channels while the 3× 3 filter acts as a bottleneck.
The rectangles represent convolutional layers. The filter size and number of channels
are mentioned inside the rectangle. The image is taken from the original ResNet [23]
paper. 19

3.14. Figure show an autoencoder with an input layer, a hidden layer and an output layer.
An autoencoder is used extensively for compressing and decompressing data in an
unsupervised way. The image is taken from Jeremy Jordan’s blog [32]. 19

4.1. Figure shows the network architectures for training in (a) and testing in (b). During
the training phase only the 2D network, the backprojection layer, and the 3D network
is used while only during the testing phase, an additional decoder network is used.
The network in (a) is trained end-to-end using a single optimizer. 21

4.2. Figure shows the different layers in the 2D network. Initial layers of the 2D network
make use of pretrained weights from ResNet-50. 7 bottleneck residual blocks are
used from ResNet-50. The bottleneck residual block is depicted in the figure on
the right. The 4 subsequent layers consist of regular convolutions that maintain the
same spatial dimension. The 2D network and the figure is inspired from Xie et al. [74]. 22

4.3. Figure shows the different layers that are a part of the 3D network. All layers consist
of a convolutional layer, a BatchNorm layer, and a ReLU layer except for the last layer
which does not use a ReLU layer. The layers maintain the same spatial resolution of
size 323. 24

4.4. Figure shows the autoencoder used to decompress the TSDFs into a latent rep-
resentation of size 64× 323 during the training phase and later to decompress in
the original resolution of 5123 during the testing phase. The image is taken from
Denninger et al. [14]. 24

48

List of Figures

5.1. Figures show the normals orientation of the original ShapeNet object in (a) and
the watertight version of the same object in (b). In the two figures, the color blue
represents that the normal is pointing outwards from the surface while the color red
represents that the normal is pointing inwards from the surface. As can be seen in
figures, the watertight version has correct normals orientation which is essential for
TSDF generation. The used object in both figures is from the car category with source
id 1a1dcd236a1e6133860800e6696b8284. The normals are visualized using Blender [7]. 26

5.2. Figure shows the RGB renderings of the different ShapeNet categories, namely
the airplane category with source id 4561def0c651631122309ea5a3ab0f04, car cate-
gory with source id e4886a4d0c6ea960fe21694bd5f519d1, chair category with source id
1fccc2ac4bfd3da535836c728d324152, sofa category with source id 62e90a6ed511a1b2d291861d5bc3e7c8
and table category with source id 1011e1c9812b84d2a9ed7bb5b55809f8. All the ren-
derings are generated using BlenderProc [12]. 28

5.3. Figure shows the different slices of the complete TSDF volume of a resolution 5123

are visualized. Values range from -1 (dark blue) to 1 (dark red). 29
5.4. TSDF meshes with different resolutions are visualized for the airplane category

with source id 4561def0c651631122309ea5a3ab0f04. As the resolution increases, more
details are captured. Note that the TSDFs have been converted into meshes using
Marching Cubes [42] algorithm. 30

6.1. Figures show the visualization of the three slices of the compressed output from
different test data examples. The categories include aeroplane, bench, cabinet,
car, and sofa. The compressed output has a size of 64× 323. The first channel is
visualized only using the 24 views model. 40

7.1. Figure shows how neural networks can be trained adversarially which consists
of a generator network whose task is to generate realistic looking samples and a
discriminator network whose task is to determine if the samples comes from the
generator network or ground truth data distribution. Similar to a min-max approach,
both generator and discriminator networks improve over time. The image is taken
from Roldao et al. [56]. 43

49

List of Tables

5.1. Table shows the original number of 3D objects contained in each ShapeNet category.
Each ShapeNet category is identified with a unique Synset Id. 25

5.2. Table shows the Mean Squared Error (MSE) between the original 5123 volume and
the decompressed 5123 volume using the autoencoder from Denninger et al. [14]. . 29

5.3. Table shows the train, validation and test data splits which follow the same split
distribution from 3D-R2N2 [6]. 32

6.1. Table shows the result of our approach on the test set of ShapeNet following the test
split distribution from 3D-R2N2. The metric used here is IoU. 34

6.2. Table shows the result of our approach on the test set of ShapeNet following the test
split distribution from 3D-R2N2. The metric used here is F-score@1%. 35

6.3. Table shows the qualitative results for one particular test instance from the car
category with source id 998f600899c76e4583653a771e25099b where our approach
works well. The rows show the results of the 1 view, 6 views, 12 views and 24 views
model. 36

6.4. Table shows the qualitative results for one particular test instance from the cabinet
category with source id 91ac5c074c7d137762646c8cd54d58b4 where our approach
does not perform well. The rows show the results of the 1 view, 6 views, 12 views
and 24 views model. 37

6.5. Table shows the evaluation metrics for different input views of the other works from
literature. However, all the other works use the dataset from 3D-R2N2 so the results
are not directly comparable. 38

6.6. Table compares the numbers of parameters and the memory requirement of different
multiview 3D shape reconstruction methods. The data of the other methods comes
from Xie et al. [74]. 39

6.7. Table shows the effect of testing the networks with different input views. The 1 view
network is tested using 24 input views while the 24 views network is tested using 1
input view. 39

50

Bibliography

[1] A. Bærentzen and H. Aanæs. “Generating Signed Distance Fields From Triangle Meshes.” In:
Informatics and Mathematical Modelling (IMM) Technical Report (2002).

[2] O. Birbach, U. Frese, and B. Bäuml. “Rapid calibration of a multi-sensorial humanoid’s upper
body: An automatic and self-contained approach.” In: The International Journal of Robotics
Research (2015).

[3] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. Leonard.
“Simultaneous Localization And Mapping: Present, Future, and the Robust-Perception Age.”
In: IEEE Transactions on Robotics (2016).

[4] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich 3D Model Repository.
Tech. rep. arXiv:1512.03012 [cs.GR]. Stanford University — Princeton University — Toyota
Technological Institute at Chicago, 2015.

[5] Y.-T. Chen, M. Garbade, and J. Gall. “3D Semantic Scene Completion from a Single Depth
Image Using Adversarial Training.” In: 2019 IEEE International Conference on Image Processing
(ICIP). 2019.

[6] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. “3D-R2N2: A Unified Approach for
Single and Multi-view 3D Object Reconstruction.” In: Proceedings of the European Conference
on Computer Vision (ECCV). 2016.

[7] B. O. Community. Blender - a 3D modelling and rendering package. Blender Foundation. Stichting
Blender Foundation, Amsterdam, 2018. url: http://www.blender.org.

[8] B. Curless and M. Levoy. “A Volumetric Method for Building Complex Models from Range
Images.” In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques. 1996.

[9] A. Dai and M. Nießner. “3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene
Segmentation.” In: Proceedings of the European Conference on Computer Vision (ECCV). 2018.

[10] A. Dai, C. R. Qi, and M. Nießner. “Shape Completion using 3D-Encoder-Predictor CNNs
and Shape Synthesis.” In: Proc. Computer Vision and Pattern Recognition (CVPR), IEEE. 2017.

[11] A. Dai, D. Ritchie, M. Bokeloh, S. Reed, J. Sturm, and M. Nießner. “ScanComplete: Large-
Scale Scene Completion and Semantic Segmentation for 3D Scans.” In: Proc. Computer Vision
and Pattern Recognition (CVPR), IEEE. 2018.

[12] M. Denninger, M. Sundermeyer, D. Winkelbauer, D. Olefir, T. Hodan, Y. Zidan, M. Elbadrawy,
M. Knauer, H. Katam, and A. Lodhi. “BlenderProc: Reducing the Reality Gap with Photore-
alistic Rendering.” In: Robotics: Science and Systems (RSS). 2020.

51

http://www.blender.org

Bibliography

[13] M. Denninger, M. Sundermeyer, D. Winkelbauer, D. Olefir, T. Hodan, Y. Zidan, M. El-
badrawy, M. Knauer, H. Katam, and A. Lodhi. “BlenderProc: Reducing the Reality Gap
with Photorealistic Rendering.” In: Robotics: Science and Systems (RSS). July 2020. url: https:
//elib.dlr.de/139317/.

[14] M. Denninger and R. Triebel. “3D Scene Reconstruction from a Single Viewport.” In: Proceed-
ings of the European Conference on Computer Vision (ECCV). 2020.

[15] H. Fan, H. Su, and L. Guibas. “A Point Set Generation Network for 3D Object Reconstruction
from a Single Image.” In: Computer Vision and Pattern Recognition. 2017.

[16] C. Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books, 1998.

[17] Y. Feng, Y. Feng, H. You, X. Zhao, and Y. Gao. “MeshNet: Mesh Neural Network for 3D
Shape Representation.” In: AAAI 2019 (2018).

[18] J. Fuentes-Pacheco, J. R. Ascencio, and J. M. Rendon-Mancha. “Visual simultaneous localiza-
tion and mapping: a survey.” In: Artificial Intelligence Review (2012).

[19] Y. Gal and Z. Ghahramani. “Dropout as a Bayesian Approximation: Representing Model Un-
certainty in Deep Learning.” In: Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48. 2016.

[20] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feedforward neural
networks.” In: Journal of Machine Learning Research - Proceedings Track (2010).

[21] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[22] R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, and D. Cohen-Or. “MeshCNN: A
Network with an Edge.” In: ACM Transactions on Graphics (TOG) (2019).

[23] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recognition.” In:
"CVPR". 2015.

[24] K. He, X. Zhang, S. Ren, and J. Sun. “Identity Mappings in Deep Residual Networks.” In:
Computer Vision – ECCV 2016. 2016.

[25] G. E. Hinton, S. Osindero, and Y.-W. Teh. “A Fast Learning Algorithm for Deep Belief Nets.”
In: Neural Comput. (2006).

[26] T. Hodaň, V. Vineet, R. Gal, E. Shalev, J. Hanzelka, T. Connell, P. Urbina, S. Sinha, and B.
Guenter. “Photorealistic Image Synthesis for Object Instance Detection.” In: IEEE International
Conference on Image Processing (ICIP) (2019).

[27] S. Höfer, K. Bekris, A. Handa, J. C. Gamboa, F. Golemo, M. Mozifian, C. Atkeson, D. Fox,
K. Goldberg, J. Leonard, C. K. Liu, J. Peters, S. Song, P. Welinder, and M. White. Perspectives
on Sim2Real Transfer for Robotics: A Summary of the R:SS 2020 Workshop. 2020.

[28] J. Huang, Y. Zhou, and L. Guibas. “ManifoldPlus: A Robust and Scalable Watertight Manifold
Surface Generation Method for Triangle Soups.” In: arXiv preprint arXiv:2005.11621 (2020).

[29] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift.” In: Proceedings of the 32nd International Conference on
Machine Learning. 2015.

52

https://elib.dlr.de/139317/
https://elib.dlr.de/139317/
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography

[30] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz, S. Levine, R.
Hadsell, and K. Bousmalis. “Sim-To-Real via Sim-To-Sim: Data-Efficient Robotic Grasping via
Randomized-To-Canonical Adaptation Networks.” In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 2019.

[31] J. Jia, J. Liu, G. Jin, and Y. Wang. “Fast and effective occlusion culling for 3D holographic
displays by inverse orthographic projection with low angular sampling.” In: Applied optics
(2014).

[32] J. Jordan. Introduction to autoencoders. 2018. url: https://www.jeremyjordan.me/autoencoders/
(visited on 10/08/2021).

[33] A. Kar, C. Häne, and J. Malik. “Learning a Multi-View Stereo Machine.” In: NIPS. 2017.

[34] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization.” In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. 2015.

[35] D. P. Kingma and M. Welling. “Auto-Encoding Variational Bayes.” In: 2nd International Con-
ference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings. 2014.

[36] M. Kraus. File:Orthographic_view_frustum.png. 2011. url: https://commons.wikimedia.
org/w/index.php?curid=15389490 (visited on 10/07/2021).

[37] B. Lakshminarayanan, A. Pritzel, and C. Blundell. “Simple and Scalable Predictive Uncertainty
Estimation Using Deep Ensembles.” In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. 2017.

[38] Y. LeCun, Y. Bengio, and G. Hinton. “Deep Learning.” In: Nature (2015).

[39] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. “Visualizing the loss landscape of neural
nets.” In: Advances in Neural Information Processing Systems. 2018.

[40] Y. Liao, S. Donné, and A. Geiger. “Deep Marching Cubes: Learning Explicit Surface Repre-
sentations.” In: Conference on Computer Vision and Pattern Recognition (CVPR). 2018.

[41] Lighthouse3d.com. View Frustum’s Shape. url: http://www.lighthouse3d.com/tutorials/
view-frustum-culling/view-frustums-shape/ (visited on 10/07/2021).

[42] W. E. Lorensen and H. E. Cline. “Marching Cubes: A High Resolution 3D Surface Construction
Algorithm.” In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques. 1987.

[43] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry. An Invitation to 3-D Vision: From Images to
Geometric Models. SpringerVerlag, 2003.

[44] R. L. Mendez. The Rise of Depth on Mobile. 2018. url: https : / / community . arm . com /

developer/tools-software/graphics/b/blog/posts/the-rise-of-depth-on-mobile

(visited on 10/05/2021).

[45] A. Munshi, D. Ginsburg, and D. Shreiner. The OpenGL ES 2.0 programming guide. Addison-
Wesley, 2009.

[46] V. Nair and G. E. Hinton. “Rectified Linear Units Improve Restricted Boltzmann Machines.”
In: Proceedings of the 27th International Conference on International Conference on Machine Learning.
2010.

53

https://www.jeremyjordan.me/autoencoders/
https://commons.wikimedia.org/w/index.php?curid=15389490
https://commons.wikimedia.org/w/index.php?curid=15389490
http://www.lighthouse3d.com/tutorials/view-frustum-culling/view-frustums-shape/
http://www.lighthouse3d.com/tutorials/view-frustum-culling/view-frustums-shape/
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/the-rise-of-depth-on-mobile
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/the-rise-of-depth-on-mobile

Bibliography

[47] OpenCV. OpenCV Camera Calibration and 3D Reconstruction Documentation. 2021. url: https:
//docs.opencv.org/4.5.3/d9/d0c/group%20%5Ctextunderscore%20calib3d.html (visited
on 10/06/2021).

[48] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. “Learning and Transferring Mid-level Image
Representations Using Convolutional Neural Networks.” In: 2014 IEEE Conference on Computer
Vision and Pattern Recognition. 2014.

[49] O. Özyeşil, V. Voroninski, R. Basri, and A. Singer. “A survey of structure from motion.” In:
Acta Numerica (2017).

[50] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. “DeepSDF: Learning
Continuous Signed Distance Functions for Shape Representation.” In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2019.

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. “PyTorch: An Imperative Style,
High-Performance Deep Learning Library.” In: Advances in Neural Information Processing
Systems 32. 2019.

[52] J. Postels, F. Ferroni, H. Coskun, N. Navab, and F. Tombari. “Sampling-Free Epistemic
Uncertainty Estimation Using Approximated Variance Propagation.” In: 2019 IEEE/CVF
International Conference on Computer Vision (ICCV). 2019.

[53] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. “PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation.” In: CVPR (2016).

[54] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. “PointNet++: Deep Hierarchical Feature Learning on
Point Sets in a Metric Space.” In: (2017).

[55] S. R. Richter and S. Roth. “Matryoshka Networks: Predicting 3D Geometry via Nested Shape
Layers.” In: CVPR. 2018.

[56] L. Roldao, R. de Charette, and A. Verroust-Blondet. “3D Semantic Scene Completion: a
Survey.” In: International Journal of Computer Vision. 2021.

[57] D. E. Rumelhart and J. L. McClelland. “Learning Internal Representations by Error Prop-
agation.” In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition:
Foundations. 1987.

[58] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. “ImageNet Large Scale Visual Recognition
Challenge.” In: International Journal of Computer Vision (IJCV) (2015).

[59] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser. “Semantic Scene
Completion from a Single Depth Image.” In: CVPR (2017).

[60] R. Spezialetti, D. J. Tan, A. Tonioni, K. Tateno, and F. Tombari. “A Divide et Impera Approach
for 3D Shape Reconstruction from Multiple Views.” In: 2020 International Conference on 3D
Vision (3DV). 2020.

54

https://docs.opencv.org/4.5.3/d9/d0c/group%20%5Ctextunderscore%20calib3d.html
https://docs.opencv.org/4.5.3/d9/d0c/group%20%5Ctextunderscore%20calib3d.html

Bibliography

[61] J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green, J. J. Engel, R. Mur-Artal, C. Ren,
S. Verma, A. Clarkson, M. Yan, B. Budge, Y. Yan, X. Pan, J. Yon, Y. Zou, K. Leon, N. Carter,
J. Briales, T. Gillingham, E. Mueggler, L. Pesqueira, M. Savva, D. Batra, H. M. Strasdat, R. D.
Nardi, M. Goesele, S. Lovegrove, and R. Newcombe. “The Replica Dataset: A Digital Replica
of Indoor Spaces.” In: arXiv preprint arXiv:1906.05797 (2019).

[62] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller. “Multi-view convolutional neural
networks for 3d shape recognition.” In: Proc. ICCV. 2015.

[63] X. Sun, J. Wu, X. Zhang, Z. Zhang, C. Zhang, T. Xue, J. B. Tenenbaum, and W. T. Freeman.
“Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling.” In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2018.

[64] M. Tatarchenko, A. Dosovitskiy, and T. Brox. “Octree Generating Networks: Efficient Convo-
lutional Architectures for High-resolution 3D Outputs.” In: IEEE International Conference on
Computer Vision (ICCV). 2017.

[65] M. Tatarchenko, S. R. Richter, R. Ranftl, Z. Li, V. Koltun, and T. Brox. “What Do Single-view
3D Reconstruction Networks Learn?” In: 2019.

[66] D. Wang, X. Cui, X. Chen, Z. Zou, T. Shi, S. Salcudean, Z. J. Wang, and R. Ward. “Multi-view
3D Reconstruction with Transformer.” In: 2021.

[67] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang. “Pixel2Mesh: Generating 3D Mesh
Models from Single RGB Images.” In: ECCV. 2018.

[68] W. Wang, R. Yu, Q. Huang, and U. Neumann. “SGPN: Similarity Group Proposal Network
for 3D Point Cloud Instance Segmentation.” In: CVPR. 2018.

[69] Y. Wang, D. J. Tan, N. Navab, and F. Tombari. “ForkNet: Multi-branch Volumetric Semantic
Completion from a Single Depth Image.” In: Proceedings of the IEEE International Conference on
Computer Vision. 2019.

[70] J. Wu, C. Zhang, X. Zhang, Z. Zhang, W. T. Freeman, and J. B. Tenenbaum. “Learning Shape
Priors for Single-View 3D Completion And Reconstruction.” In: Computer Vision - ECCV 2018
- 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part XI. 2018.

[71] S.-C. Wu, K. Tateno, N. Navab, and F. Tombari. “SCFusion: Real-time Incremental Scene
Reconstruction with Semantic Completion.” In: 2020 International Conference on 3D Vision
(3DV). 2020.

[72] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. “3D ShapeNets: A Deep
Representation for Volumetric Shapes.” In: Computer Vision and Pattern Recognition. 2015.

[73] H. Xie, H. Yao, X. Sun, S. Zhou, and S. Zhang. “Pix2Vox: Context-aware 3D Reconstruction
from Single and Multi-view Images.” In: ICCV. 2019.

[74] H. Xie, H. Yao, S. Zhang, S. Zhou, and W. Sun. “Pix2Vox++: Multi-scale Context-aware 3D
Object Reconstruction from Single and Multiple Images.” In: International Journal of Computer
Vision (IJCV) (2020).

[75] Q. Xu, W. Wang, D. Ceylan, R. Mech, and U. Neumann. “DISN: Deep Implicit Surface
Network for High-quality Single-view 3D Reconstruction.” In: Advances in Neural Information
Processing Systems 32. 2019.

55

Bibliography

[76] F. Yagubbayli, A. Tonioni, and F. Tombari. LegoFormer: Transformers for Block-by-Block Multi-
view 3D Reconstruction. 2021. arXiv: 2106.12102 [cs.CV].

[77] B. Yang, S. Wang, A. Markham, and N. Trigoni. “Robust Attentional Aggregation of Deep
Feature Sets for Multi-view 3D Reconstruction.” In: IJCV. 2019.

[78] T. Yep and S. Chandel. torchinfo. https://github.com/TylerYep/torchinfo. Accessed 29
January 2014. 2018.

[79] A. B. Yoo, M. A. Jette, and M. Grondona. “SLURM: Simple Linux Utility for Resource
Management.” In: Job Scheduling Strategies for Parallel Processing. 2003.

[80] Q.-Y. Zhou, J. Park, and V. Koltun. “Open3D: A Modern Library for 3D Data Processing.” In:
arXiv:1801.09847 (2018).

56

http://arxiv.org/abs/2106.12102
https://github.com/TylerYep/torchinfo

	Acknowledgments
	Abstract
	Abstract - German
	List of Acronyms
	Contents
	Introduction
	Contributions
	Problem Statement and Notation
	Thesis Structure

	Related Work
	Single-view 3D Reconstruction
	Shape Reconstruction
	Scene Reconstruction

	Multiview 3D Reconstruction
	Recurrent Neural Network (RNN) based methods
	Encoder-Decoder based methods
	Attention based methods

	3D Shape Completion

	Methodology
	Image Formation
	Pinhole Camera Model
	3D Projections
	View Frustum

	3D Data Representations
	Point Cloud
	Binary Occupancy Grid/Voxel Grid
	Truncated Signed Distance Function (TSDF)
	Mesh

	Truncated Signed Distance Function (TSDF) Generation
	Problem Statement
	Methods

	Deep Learning
	Residual Network (ResNet)
	Autoencoder

	Our Approach
	Problem Statement and Notation
	Input and Output
	Architecture
	2D Network
	Backprojection Layer
	3D Network
	Autoencoder

	Experimental Setup
	Dataset
	Synthetic Data Generation
	RGB Images, Camera Intrinsics, and Camera Extrinsics
	Truncated Signed Distance Function (TSDF) Volumes

	Neural Network Training
	Loss
	Evaluation

	Training Procedure
	Train, Validation and Test Splits
	Processing
	Implementation Details

	Results
	Quantitative
	Qualitative
	Comparison to other approaches
	Space Complexity
	Compressed Output Visualization
	Changing Input Views

	Future Work
	Problem Benchmark and Dataset
	Uncertainty Estimation
	Real World Transfer
	3D Scene Datasets
	Camera Intrinsics and Extrinsics
	Adversarial Training

	Conclusion
	BlenderProc Config
	List of Figures
	List of Tables
	Bibliography

