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TopoCluster: A Localized Data Structure for
Topology-based Visualization

Guoxi Liu, Federico Iuricich, Riccardo Fellegara, and Leila De Floriani

Abstract—Unstructured data are collections of points with irregular topology, often represented through simplicial meshes, such as
triangle and tetrahedral meshes. Whenever possible such representations are avoided in visualization since they are computationally
demanding if compared with regular grids. In this work, we aim at simplifying the encoding and processing of simplicial meshes. The
paper proposes TopoCluster, a new localized data structure for tetrahedral meshes. TopoCluster provides efficient computation of the
connectivity of the mesh elements with a low memory footprint. The key idea of TopoCluster is to subdivide the simplicial mesh into
clusters. Then, the connectivity information is computed locally for each cluster and discarded when it is no longer needed. We define two
instances of TopoCluster. The first instance prioritizes time efficiency and provides only a modest savings in memory, while the second
instance drastically reduces memory consumption up to an order of magnitude with respect to comparable data structures. Thanks to the
simple interface provided by TopoCluster, we have been able to integrate both data structures into the existing Topological Toolkit (TTK)
framework. As a result, users can run any plugin of TTK using TopoCluster without changing a single line of code.

Index Terms—Data visualization, data structures, topological data analysis, simplicial meshes, tetrahedral meshes

✦

1 INTRODUCTION

P ROCESSING irregularly distributed data has always posed
challenges in scientific visualization. Most tools (e.g., Paraview

[1], VisIt [5], or Inviwo [21]) prioritize the analysis of regularly
distributed data (i.e., 2D and 3D images), whose encoding is both
simple and efficient. The same tools present relevant overheads
when analyzing irregularly distributed data that require more
involved data structures to be encoded.

This work focuses on data defined on tetrahedral meshes and
aims at simplifying the processing and encoding of such data.
Specifically, our goal is to define a data structure that is both
compact and easy to integrate into existing visualization tools. We
tackle this problem by introducing a new data structure called
TopoCluster. TopoCluster partitions a simplicial complex into
clusters and processes its simplices with a two-level technique.
At the global level, only the minimum amount of information is
stored. At the local level, the full information is extracted within
each cluster and discarded when no longer needed. The result is a
data structure capable of self-adjusting its memory consumption at
run time.

The main contributions of this work are two instances of
TopoCluster designed with opposite intents. While one instance
prioritizes time performance, the second instance focuses on
reducing the memory footprint with a consequent loss in time
efficiency. Both data structures are designed to easily adapt to
existing frameworks for mesh processing and visualization. To
prove their flexibility, we have integrated our data structures into
the Topological Toolkit (TTK) [30]. Such integration is transparent
to a user or a developer. That is, TTK plugins can be executed
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either by using the original data structure provided by TTK, or our
proposed structures, without changing a single line of code.

The structure of the paper is organized as follows. In Sections

2 BACKGROUND

A simplex of dimension k, k-simplex for short, is defined as the
convex hull of k+1 linearly independent points in the Euclidean
space. A k-simplex σ is a (proper) face of an m-simplex τ , with
k < m, if σ is a proper subset of τ . In this case, τ is said to be a
coface of σ . A simplex which is not the proper face of any other
simplex in Σ is called top simplex. The set of cofaces of a simplex
σ forms the star of σ .

A simplicial complex Σ is a collection of simplices such that
every face of a simplex σ is also in Σ, and the intersection of any
two simplices σ and τ is either a face of both, or it is empty. The
dimension d of Σ is the largest dimension of its simplices. Even if
a simplicial complex can be defined in any dimension, we focus on
its 3D instances, called tetrahedral meshes.

2.1 Topological relations
In a simplicial complex, simplices are involved in topological
relations. A boundary relation maps a simplex to its faces, for
instance, σ is on the boundary of τ iff σ is a face of τ . Vice versa,
τ is said to be on the coboundary of σ . Two k-simplices τ1 and
τ2 are said to be adjacent if they share a (k−1)-simplex on their
boundaries. Informally, we say that two 0-simplices (vertices)
are adjacent if they share the same 1-simplex (edge) in their
coboundaries. A relational operator associates a simplex σ to
a set of simplices having a specific topological relation with σ .

In the remainder of this paper, we only consider relational
operators for tetrahedral meshes. We use capital letters to indicate
whether the operator involves vertices (V ), edges (E), triangles (F),
or tetrahedra (T ), and each operator is specified with a pair of letters.
For example, EF indicates the relational operator associating an
edge (E) to the triangles (F) on its coboundary. On a tetrahedral
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Fig. 1. (a) Tetrahedral mesh composed by two tetrahedra sharing a
triangle. (b) V E relational operator for the vertex v0 (c) EF relational
operator for the edge e2.

mesh we have six boundary operators (EV , FV , TV , FE, T E, T F),
six coboundary operators (V E, V F , V T , EF , ET , FT ), and four
adjacency operators (VV , EE, FF , T T ). Figure

3 RELATED WORK

Generally speaking, data structures differ in the type of simplices
and relational operators they encode. Data structures described in
Section

3.1 Static data structures
There has been extensive research on topological data structures
for simplicial complexes, especially for triangle and tetrahedral
meshes [8].

The incidence graph [11] encodes explicitly all simplices plus
all boundary and coboundary operators, which makes it the most
general data structure for simplicial complexes. Multiple data
structures have been defined to reduce the extremely large memory
requirements of the incidence graph, either by cutting down the
number of relational operators or by limiting the simplices encoded.
The Simplex tree [2] is a variant of the incidence graph which
organizes all simplices in a trie [14] and avoids encoding boundary
operators. When data size increases, representing all simplices
is no longer feasible. For this reason, alternative representations
have been designed to prevent encoding simplices of specific
dimensions. The half-edge [23] is a well-known data structure for
triangle meshes, which drastically reduces memory consumption
by encoding only the relational operators involving edges.

More recently, compact representations have been developed
to maintain the same expressive power of the incidence graph
while halving the space required [3], [7], [9]. The novelty of
these data structures relies in the encoding of adjacency operators,
instead of the more expensive coboundary operators. Examples
include the Indexed data structure with Adjacencies [24], [25], the
Corner-Table data structure [27] and its several extensions proposed
specifically for triangle meshes [16], [22] and tetrahedral meshes
[17]. The generalized indexed data structure with adjacencies
(IA∗) [4] is the first data structure extending this approach to non-
manifold simplicial complexes of arbitrary dimension. Among
static data structures for non-manifold simplicial complexes, the
IA∗ is the most compact [15].

3.2 Stellar decomposition
The Stellar decomposition [12] represents a family of data struc-
tures in which relational operators are computed and discarded, at
runtime, based on user requests. For this reason, they are called
dynamic as opposed to the static data structures discussed in Section

The simplicial complex is processed with a localized approach.
Instead of extracting relational operators altogether in a prepro-
cessing step, the localized approach extracts operators, inside each

cluster, at runtime. Given a k-simplex σ and a relational operator
o, the simplices in relation with σ (i.e., o(σ)) will be extracted as
follows:

(i) locate the cluster c of ∆ containing σ ;
(ii) compute the relational operator o for all the k-simplices

contained in c;
(iii) return the set of simplices in relation with σ (i.e., o(σ));
(iv) discard (delete) o.

The first data structure implementing this model was the PR-
star octree [32], which was explicitly defined for tetrahedral meshes
embedded in R3. Successively, this has been generalized by the
Stellar tree [12], which can encode simplicial complexes embedded
in any dimension and with arbitrary domain. The Stellar tree uses
a hierarchical decomposition H (an n-dimensional bucketed Point
Region quadtree [28]) to organize the mesh vertices. Relational
operators are extracted locally to the leaf nodes of such hierarchy,
following the Stellar decomposition model. As a result, the Stellar
tree is even more compact than adjacent-based data structures like
the IA∗ data structure [4]. On the other hand, simplices in a Stellar
tree can only be accessed through a visit of the hierarchy H, which
introduces an additional layer of complexity for the developer (see
Appendix

Our work aims to maintain the low memory footprint of the
Stellar tree while providing an easy interface for implementing and
running topological algorithms.

4 TOPOCLUSTER

The goal of all data structures for simplicial complexes is that of
providing easy access to the relational operators. The proposed
data structure, called TopoCluster, inherits the localized approach
for extracting relational operators from the Stellar decomposition.
Different from the Stellar decomposition, it aims at enumerating all
the simplices of the simplicial complex Σ through an enumeration
schema. An explicit enumeration of the simplices of Σ provides
multiple benefits from a developer perspective. A practical example
is shown in Appendix

In the following, we describe the enumeration schema used by
TopoCluster. In the remainder of this paper, σi indicates a simplex
σ based on its index i; σ̄ indicates a simplex σ based on its vertices
{v0, ...,vk}.
Cluster-based enumeration. Given any subdivision ∆ that
divides the vertices of the simplicial complex Σ into clusters,
we define an enumeration schema by assigning each k-simplex to
a single cluster. We assume that each vertex v is associated to a
single cluster c. We say that v is internal to c, and c contains v.

For edges, triangles, and tetrahedra we define a k-simplex, with
k > 0, internal to a cluster c as follows.

Definition 4.1. Without loss of generality, we assume a total order
on the clusters of ∆. Given a cluster c ∈ ∆ and a k-simplex σ ∈ Σ,
with 0 < k≤ d, σ is internal to c iff. c is the first cluster containing
a vertex of σ .

In Figure
The cluster-based enumeration is obtained by enforcing the

following rules:
• k-simplices internal to a cluster c are enumerated within a

closed interval [l,u], where u− l + 1 is the number of k-
simplices internal to c;

• For any pair of clusters, the corresponding intervals do not
overlap. As a consequence, for any pair of clusters ci,c j, with
i < j, k-simplices in c j have indices greater than those in ci.
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Fig. 2. Tetrahedral mesh Σ formed by two clusters. (a) Subdivision of
vertices and edges across two clusters depicted with red and blue colors.
(b) Enumeration of the edges of Σ.

Fig. 3. Table on the left shows the global layer of Explicit TopoCluster for
the tetrahedral mesh on the right. V encodes the coordinates of each
vertex, I stores the cluster index of each vertex, TV stores the boundary
vertices of each tetrahedron, E and F are hash maps encoding indices for
edges and triangles respectively, Text stores indices of external tetrahedra,
SE , SF , and ST are arrays storing the enumeration intervals for edges,
triangles and tetrahedra respectively.

The result is an explicit enumeration of the simplices of Σ,
where each simplex is associated with a unique integer. Figure

Once defined the enumeration schema, we describe how such
enumeration is encoded in the data structure. To this end, we
have designed two strategies. The first strategy, named Explicit,
prioritizes the time efficiency (see Section

5 EXPLICIT TOPOCLUSTER

The first approach for encoding the enumeration schema is that of
explicitly storing the index associated with each simplex of Σ. This
is the strategy implemented by the first data structure introduced in
this paper called Explicit TopoCluster. We recall that the idea
behind TopoCluster is that of computing relational operators
at runtime. To allow for this interaction, Explicit TopoCluster
organizes information into two layers: the global, and the local
layer.

The global layer, described in Section

5.1 Global layer
The global layer of Explicit TopoCluster includes the input
tetrahedral mesh Σ, the input subdivision ∆, the enumeration
schema, and the list of simplices intersecting each cluster defined
in ∆.
Tetrahedral mesh. Mesh Σ is represented through an indexed
representation, in which the vertices and tetrahedra are encoded
in two arrays, V and TV , respectively. V encodes the coordinates
of each vertex, while TV stores the boundary vertices of each
tetrahedron (i.e., TV operator). For example, as shown in Figure
Clustering. The subdivision ∆ is encoded with an array I, storing
the cluster index of each vertex v in the simplicial mesh. For
example, in Figure

Fig. 4. The local layer of Explicit TopoCluster. An initialized cluster c1
contains only external edges and triangles denoted by Eext and Fext
respectively. The full cluster stores two additional arrays containing FE
and FV relational operators.

Enumeration. As described in Section
Internal and external simplices. Finally, we need to encode
how simplices are distributed across the clusters of ∆. Specifically,
for each cluster c, we encode the simplices internal to c and the
tetrahedra intersecting c that are internal to some other cluster. This
information provides the full connectivity of the simplicial complex
and will be used to compute relational operators (see Section

To retrieve the simplices internal to each cluster c, the number
of tetrahedra, triangles, and edges encoded in c are stored in three
global arrays named ST , SF , and SE respectively. As mentioned in
Section

Finally, an indexed array Text stores the list of external
tetrahedra for each cluster. As shown in Figure

5.1.1 Initializing global structures
All information in the global layer are either received as input,
or computed at initialization time. Vertex coordinates (i.e., array
V ), TV operators (i.e., array TV ), and clustering function I are
provided as input. Vertices and tetrahedra are reindexed in order
to conform with the enumeration property. In practice, this means
assigning contiguous indices to vertices(/tetrahedra) contained in
the same cluster which takes O(|V |+ |T |) time. The array of
external tetrahedra Text and array ST are populated in O(|T |) time
by iterating over the array TV .

Hash tables E and F are initialized by visiting the clusters
in any order. For each cluster c, internal edges and triangles are
enumerated by checking the list of tetrahedra intersecting c. Since
each internal tetrahedron is visited exactly once, and each external
tetrahedron is visited at most four times, hash tables E and F are
computed in O(|T |). Arrays SE and SF are initialized during the
same step with no additional cost.

Encoding the input mesh requires O(|V |+ |T |) memory. This
cost includes the coordinate values of the each point and the TV
operator of each tetrahedron. The size of SE , SF , and ST arrays
have size linear in the number of clusters (i.e., O(|C|)). The size
of the hash maps E and F are determined by the number of
edges and triangles in the mesh. Then, the global layer requires
O(|V |+ |E|+ |F |+ |T |+ |C|) memory.

5.2 Local layer: clusters
The local layer is where relational operators are computed and
stored. Once a relational operator for a simplex σ is required,
TopoCluster locates the cluster ci containing σ , computes the
relational operators of the simplices internal to ci, and returns the
relational operator of σ .

The cluster ci is considered to be empty until a new relational
operator is requested. Upon request, the cluster is initialized by
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Algorithm 1 computeVT(c)
1: Input: c, cluster
2: Output: V T , tetrahedra incident in each vertex of cluster c
3:
4: V T = {} // create empty table
5: for each tetrahedron ti intersecting c // both internal and

external do
6: for each vi in TV [ti] do
7: if vi internal to c then
8: V T [vi]← ti // save ti in the list associate to vi
9: end if

10: end for
11: end for
12: return V T

Algorithm 2 computeFE(c)
1: Input: c, cluster
2: Output: FE, edges of each triangle of cluster c
3:
4: FV ← computeFV(c) // retrieve local information
5: FE = {} // create empty table
6: for each internal triangle fi in c do
7: for each pair of vertices ē = {vi,v j} in FV [ fi] do
8: ei = E(ē) // retrieve edge index
9: FE[ fi]← ei

10: end for
11: end for
12: return FE

retrieving the information necessary to compute the relational
operator. After a relational operator is computed and stored in ci,
we refer to ci as full.

5.2.1 Initializing clusters

Initializing the cluster ci means computing the list of internal and
external simplices for ci. Internal simplices are deduced from the
arrays ST , SF , and SE . The list of external tetrahedra intersecting
the cluster is encoded in the global layer, specifically the array
Text [i]. Upon initialization, the cluster ci creates two arrays, Eext and
Fext , encoding the list of external edges and triangles of c. Array
Eext is computed by cycling on the list of external tetrahedra Text [i].
For each external tetrahedron t̄ = {v1,v2,v3,v4}, for each pair of
vertices ē = {v j,vk} such that {v j,vk} ∈ t̄ and v j ̸= vk, the index
e j is retrieved from the global hash map E (i.e., e j = E(ē)) and
added to Eext . Array Fext is built in a similar fashion by considering
triples of vertices for each tetrahedron.

When both Eext and Fext are computed, ci is said initialized.
Since the number of vertices per tetrahedron is constant, the
initialization of cluster ci requires O(|Text [i]|) time. Figure

5.2.2 Computing relational operators

Relational operators for a cluster ci are computed only after the
cluster is initialized. In the following, we describe as an example
the extraction of relational operators V T and FE.

V T operator represents the set of tetrahedra incidents in each
vertex. Algorithm

Algorithm
Figure

6 IMPLICIT TOPOCLUSTER

Explicit TopoCluster fully encodes the enumeration of edges and
triangles with the two hash tables E and F . We defined a second
data structure, called Implicit TopoCluster, implementing a different
strategy. Instead of encoding the two hash tables E and F in the
global layer, the indexing of edges and triangles is computed on-
the-fly when accessing a cluster. This drastically reduces the total
cost of the global layer to O(|V |+ |T |+ |C|).

In the following, we describe the local layer of Implicit
TopoCluster since the initialization of the global layer is as in
the Explicit TopoCluster (see Section

6.1 Local layer: clusters
The local layer of Implicit TopoCluster resembles that of Explicit
TopoCluster. Also in this case, a cluster ci is said empty until a
new relational operator is requested. Upon request, the cluster is
initialized by retrieving the information necessary to compute the
relational operator. After a relational operator is computed and
stored in ci, we refer to ci as full.

6.1.1 Initializing clusters
Upon initialization, cluster ci computes the hash tables of external
edges and triangles (i.e., Eext and Fext ) as in the Explicit TopoClus-
ter. Additionally, two hash tables are computed associating the
enumeration of edges and triangles to their vertices (i.e., hash tables
E and F). The latter encodes the same information of the hash
tables used by Explicit TopoCluster, but instead of being stored
globally, these are stored locally to ci and encode information
limitedly to edges and triangles internal to ci.

Figure
All structures are generated by iterating the list of tetrahedra

intersecting ci. First, we create hash tables E and F by computing
a local enumeration of the internal edges and internal triangles
defined over a closed interval [0, p], where p is either the total
number of internal edges or the total number of internal triangles.
Global indices for the edges are obtained by shifting the local
enumeration according to the global enumeration, i.e., [SE [i−1]+
1,SE [i]] = [l,u]. If an edge has local index j, its global index is
j+ l. Global indices for triangles are retrieved in a similar way. The
time complexity for computing the local enumeration is O(|Tint |),
where |Tint |= ST [i]−ST [i−1] is the number of internal tetrahedra
of ci.

External edges and triangles are retrieved by iterating the list of
external tetrahedra Text [i], similarly to the Explicit TopoCluster. The
difference is that the index of each external simplex is no longer
provided by global hash maps. To get the index corresponding
to an external edge or triangle, we have to access the cluster c j
containing it and compute the internal simplices of c j. This step
requires O(∑n

j=0 |T
j

int |) time, where |T j
int | indicates the tetrahedra

internal to the cluster c j, sharing a simplex with cluster ci. Hence,
initializing the cluster ci requires O(|Tint |+∑

n
j=0 |T

j
int |) time in

total.

6.1.2 Computing relational operators
The strategy for computing relational operators for the Implicit
TopoCluster is similar to the Explicit TopoCluster. For example, let
us consider the extraction of EF operator (as detailed in Algorithm

Similar to the Explicit TopoCluster, the time complexity of
extracting a relational operator is linear to the number of higher
dimensional simplices involved. For example, the complexity of
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Fig. 5. The local layer of Implicit TopoCluster. An initialized cluster c1
contains the hash maps for edges and triangles denoted by E and F
respectively, and external edges and triangles denoted by Eext and Fext
respectively. The full cluster stores and additional array containing the
EF relational operator.

Algorithm 3 computeEF(c)
1: Input: c, cluster
2: Output: EF , triangles incident in each edge of cluster c
3:
4: // Initialize the cluster c
5: E, F , Fext ← initialize(c)
6: EF = {} // create empty table
7: for each triangle f̄ in (F ∪Fext) // both internal and external

do
8: for each pair of vertices ē = {vi,v j} of f̄ do
9: if ē is internal to c then

10: if f̄ is internal to c then
11: fi = F( f̄ )
12: else
13: fi = Fext( f̄ )
14: end if
15: EF [E[ē]]← fi
16: end if
17: end for
18: end for
19: return EF

extracting the EF operator is linear to the number of triangles in
the cluster, i.e., O(|F ∪Fext |).

7 PERFORMANCE OPTIMIZATION STRATEGIES

To optimize memory and time performance, we have defined two
strategies: a preconditioning approach, and a cache system.

The first strategy adopts the same preconditioning approach
used by TTK [30]. A developer declares the set of relational
operators required by an algorithm. Then, clusters will be initialized
only with information for those relational operators. For example,
suppose we implement an algorithm using only VV and TV
operators. The data structure will never enumerate edges and
triangles at generation time and it will never compute the associated
structures when initializing a cluster. In practice, all structures
depicted in green (for edges) and yellow (for triangles) in Figures

Both Explicit and Implicit TopoCluster use the same approach
for computing relational operators. Specifically, they compute and
discard information each time a cluster is accessed. This introduces
a clear drawback when a cluster is accessed multiple times. To
tackle this problem, we have defined a second technique inspired
by the Stellar tree [12]. This strategy defines a cache system for
the clusters based on the Least Recently Used (LRU) replacement
strategy. Each time a full cluster ci is computed, it is saved in
the cache. The cluster in the cache will be replaced based on the

TABLE 1
Overview of the experimental datasets. For each dataset, we list the

type, the number of vertices |V |, edges |E|, triangles |F | and tetrahedra
|T |. Regular means the dataset comes from 3D regular grids, while

Irregular means the dataset comes from a tetrahedral mesh with
irregularly distributed points.

Data Type |V | |E| |F | |T |

Red Sea Regular 0.95M 6.33M 10.58M 5.20M

Engine Regular 1.39M 9.14M 15.18M 7.43M

Cat Irregular 1.97M 13.24M 22.25M 10.99M

Sphere Irregular 2.62M 17.54M 29.46M 14.53M

Foot Regular 4.60M 30.79M 51.51M 25.32M

Shapes Irregular 7.87M 52.37M 87.63M 43.13M

Hole Irregular 9.26M 63.70M 108.29M 53.85M

Stent Regular 17.37M 118.79M 201.40M 99.98M

last time it was accessed. Since the cache size (i.e., the maximum
number of clusters that the cache can maintain) is controlled by
a user-defined parameter, the memory requirements cannot be
estimated theoretically, but we provide an experimental analysis in
Section

8 EVALUATION OF PERFORMANCE

Explicit and Implicit TopoClusters have been implemented as two
modules of the Topology Toolkit (TTK version 0.9.7) [30], and use
the same interface as the abstractTriangulation class of TTK. As a
result, all modules implemented in TTK can run seamlessly with
TopoCluster.

We recall that TopoCluster requires a clustering for the vertices
of the tetrahedral mesh to be provided in input. In the following
evaluation, we use a clustering technique based on the Point
Region (PR) octree [28]. An octree uses a hierarchical domain
decomposition based on a nested refinement of the unit cube.
The containment relationship on such cubes defines a hierarchical
relationship among the nodes in the octree. The PR octree is
constructed by defining the maximum number of vertices allowed
in any leaf node of the octree. In the end, vertices belonging to
the same leaf node in the PR octree form a cluster in TopoCluster.
We select this clustering approach for its generality since any
spatially-embedded mesh can be decomposed into clusters using
this subdivision.

The following performance analysis is conducted on tetrahedral
meshes with the number of vertices between 950K and 17M and
with number of tetrahedra between 5.2M and 100M (see Table

8.1 Computing relational operators
In this section, we compare our data structures against the Stellar
tree [12] and TTK triangulation [30]. All four data structures
use the same encoding for the underlying mesh, that encodes in
two arrays the vertex coordinates and the TV operator of each
tetrahedron σ , i.e., the list of vertices in the boundary of σ .
TTK Triangulation. TTK triangulation [30] precomputes rela-
tional operators at generation time and stores them in multiple
lookup tables. Lookup tables, as well as the list of edges and
triangles, are extracted in O(|T |) by enumerating all pairs/triplets
of vertices. This approach achieves best time performance at
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Fig. 6. Memory (in Megabytes) and time (in seconds) required for computing all relation operators with TTK triangulation, Stellar tree, Explicit
TopoCluster and Implicit TopoCluster. kL and kS indicate a Stellar tree computed with either the larger (800) or smaller (400) bucketing threshold.

runtime since the data structure will provide fast access to all
necessary relational operators. At the same time, this strategy is
very demanding in terms of memory since relational operators are
stored, for the entire execution of the algorithm.
Stellar tree. The Stellar tree is the first data structure defined
upon the Stellar decomposition model [12]. It uses a hierarchical
decomposition (a Point Region octree [28]) to organize the mesh
vertices. The hierarchy H is encoded through a tree structure used
to navigate the mesh. A bucketing threshold is used for limiting
the number of vertices per leaf node. In our experiments, we
use the bucketing threshold 400 and 800 following the guidelines
from the original paper [12]. Another difference compared with
TopoCluster is the internal representation of simplices. The Stellar
tree enumerates globally only vertices and tetrahedra while it avoids
enumerating edges and triangles and represents such simplices as a
tuple of vertices.

We compare the performance of the four data structures for
extracting relational operators. We start by computing all relational
operators involving vertices. Then, we move to edges, triangles,
and tetrahedra. Notice that TopoCluster requires two user-defined
parameters. The first parameter is the cache size which defines the
maximum number of clusters stored in cache (see Section

Figure
Regarding the memory footprint, Explicit TopoCluster provides

a good improvement compared to TTK triangulation. Memory
usage decreases by three times when using Explicit TopoCluster.
Implicit TopoCluster is always the most compact data structure
requiring 10% less memory than the Stellar tree.

Considering execution time, Implicit TopoCluster is always the
slowest at extracting relational operators. On average, it requires
up to 20% time more than the Stellar tree, 70% more time than
the Explicit, and it is twice slower than TTK triangulation. TTK
triangulation and the Explicit TopoCluster have overall similar
performance, even if the latter requires on average 20% more time
than TTK triangulation.

Compared to TTK triangulation, the scalability provided by
TopoCluster is of practical relevance. Implicit TopoCluster is twice
slower than TTK triangulation, but it is also ten times more compact.
Explicit TopoCluster is 20% slower than TTK triangulation, but it
is also three times more compact.

Compared to the Stellar tree, Implicit TopoCluster is 20%

slower, but also 10% more compact. Explicit TopoCluster uses
three times the memory than a Stellar tree, but it is also 30% faster.
We recall that each simplex is referenced as a unique number in
TopoCluster. The generation of such enumeration schema requires
more time, which is why TopoCluster is slower than the Stellar
tree. Since the enumeration lets us represent each simplex as a
single integer, this also explains why Implicit TopoCluster is more
compact.

Overall the main advantage of the enumeration strategy im-
plemented in TopoCluster is the easy integration with existing
frameworks. In the following sections, we drop the comparison
with the Stellar tree, since it does not allow for such integration,
and we compare TTK Triangulation and TopoCluster performance
by running existing TTK plugins.

8.2 Plugins for topology-based visualization
TTK offers several plugins for topology-based visualization [19].
For the sake of our comparison, we are interested in distinguishing
plugins based on how they process the input mesh.

Some plugin visits simplices in a sequential order follow-
ing the enumeration schema. As a consequence, TopoCluster
will access clusters in the same sequential order. We select
TTKScalarFieldCriticalPoints as an example of a plugin of this
kind. Conversely, other plugins visit simplices in a pseudo-random
fashion which will force TopoCluster to visit clusters in a random
order, possibly initializing the same cluster multiple times. We
select TTKMorseSmaleComplex as an example of a plugin of this
kind.
TTKScalarFieldCriticalPoints. This plugin is used for comput-
ing critical points from a given input scalar function. Cluster sizes
5000, and 10000 are chosen for Explicit and Implicit TopoCluster,
respectively. Cache size of 1% is selected for both structures.

This plugin requires extracting VV and V T operators. Moreover,
V F and FT operators are computed to identify the list of boundary
vertices. We recall that a vertex v is on the mesh boundary if at
least one of the triangles incident in v has only one tetrahedron on
its coboundary.

Figure
TTKMorseSmaleComplex. This plugin is used for computing
a Morse-Smale (MS) complex from an input scalar function f
defined on a simplicial complex Σ. An integral line is a path on
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Fig. 7. Memory (in Megabytes) and time (in seconds) required for computing critical points (plugin ScalarFieldCriticalPoints) with TTK triangulation
(TTK), Explicit TopoCluster (Explicit), and Implicit TopoCluster (Implicit).

(a) (b)

Fig. 8. Memory (in Megabytes) and time (in seconds) required for computing Morse-Smale complex (plugin MorseSmaleComplex) with TTK
triangulation (TTK), Explicit TopoCluster (Explicit), and Implicit TopoCluster (Implicit).

(a) (b)

Fig. 9. The changes of memory and time usage on TTKScalarFieldCriti-
calPoints plugin for Foot dataset with Implicit and Explicit TopoCluster
when (a) cache rate changes from 1% to 50% and (b) cluster size
changes from 10 to 1,000,000.

Σ which is everywhere tangent to the gradient of f . Integral lines
connect pairs of critical points of f . Intuitively, the MS complex is a
segmentation of the input scalar field in regions where integral lines
are connected to the same pair of critical points. Many algorithms
have been proposed in the last twenty years [10] to compute MS
complexes both in 2D and 3D. Among these, approaches based
on discrete Morse theory [13] have proved to be efficient, simpler

(a) (b)

Fig. 10. The changes of memory and time usage on TTKMorseSmale-
Complex plugin for Foot dataset with Implicit and Explicit TopoCluster
when (a) cache rate changes from 1% to 30% and (b) cluster size
changes from 10 to 10,000.

to implement, and more scalable [18], [26], [33]. The algorithm
implemented in TTK, also based on discrete Morse theory, requires
almost all relational operators (i.e., V E, V F , V T , EF , ET , FE,
FT and T F operators) [30].

First, a discrete gradient is computed by visiting the simplices of
the mesh, dimension by dimension, with an embarrassingly parallel
process. After all vector pairs have been computed, simplices that
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are left unpaired are called critical. The cells of the MS complex
are computed by visiting the discrete gradient starting from the
critical simplices.

For the sake of our evaluation, it is important to underline that
the extraction of the MS complex requires visiting clusters in a
random fashion. That is, starting at a critical simplex σ , the visit is
not limited to the cluster containing σ , but it may expand to the
surrounding clusters. Then, there is no limit to the number of times
each cluster is visited. This represents a worst-case scenario for
TopoCluster, which is forced to recompute topological operators
multiple times during the plugin execution.

For this experiment, the cluster size is set to 50, while the
cache size is set to 10% for both Explicit and Implicit structure
(see Section

We can also observe how the memory footprint of TopoClus-
ter does not increase monotonically when using datasets with
increasing size. This is a consequence of reducing the memory
footprint of relational operators. With only a limited amount of
memory dedicated to relational operators, the memory requirement
of TopoCluster becomes output-sensitive (i.e., it depends on the
size of the MS complex). For this reason, the dataset with a more
complicated MS complex, e.g., Foot or Engine datasets, uses more
memory than larger datasets.

Figure

8.3 Cache and cluster size

In this section, we discuss the effects that different cache sizes and
cluster sizes have on performance. Since a trend has been observed
for all datasets, we only show the results about the Foot dataset for
brevity.
TTKScalarFieldCriticalPoints. For a sequential algorithm, the
cache size is of limited importance. Increasing cache size only
results in increased memory usage with limited effects on run time.
Figure

Different cluster sizes, instead, affect both execution time and
memory usage. Figure
TTKMorseSmaleComplex. Unlike the sequential access pattern,
the cache size parameter plays an important role in the algorithm
that accesses clusters in a pseudo-random way. Figure

Timings increase when increasing the cluster size (see Figure
The lesson learned is that small cluster size is beneficial when

an algorithm accesses clusters in a pseudo-random fashion. The
available system memory should guide the choice of the optimal
cache size since a larger cache size is always beneficial as long as
the program does not run out of memory.

8.4 Parallel processing

TTK allows multithread execution by using OpenMP [6]. The main
problem in allowing the use of OpenMP with TopoCluster is the
cache system. A global LRU cache becomes the main bottleneck
since each thread needs exclusive access to it. To address this
problem, we have implemented a thread-based caching system. In
practice, each thread has a dedicated cache.

If the thread-based cache solves the bottleneck issue, the cache
size requires some adjustment since the maximum number of
clusters stored in each cache will be multiplied by the number of
threads. To this end, TopoCluster provides the functionality of a
dynamic caching system, which allows the user to specify the size
of the cache for a specific subset of the algorithm. In practice, the

user can increase the cache size for serial sections, and divide the
cache size across multiple threads for parallel sections.

The performance of the new thread-based caching system
has been evaluated with TTKScalarFieldCriticalPoints and
TTKMorseSmaleComplex plugins, using the same cluster size of
the serial execution and using 12 threads. Since the main goal
of TopoCluster is to provide control over memory usage, we
balance the cache size requested for multi-thread and single-thread
executions. We select a 12% cache size for the single-thread
execution, while in parallel sections the cache size is reduced to 1%.

The algorithm implemented in TTKScalarFieldCriticalPoints is
embarrassingly parallel. Thus, the cache size is maintained at 1%
for the entire algorithm. Figure

The memory consumption is roughly the same as the serial
execution for all data structures. Among the three data structures,
Implicit TopoCluster always uses less memory and is the only data
structure that can execute the plugin on all the datasets.

Although the run time improves for all data structures, general
trends remain similar to the single-thread run. Implicit TopoCluster
uses 50% less memory than the TTK triangulation but is 1.5x
slower. Implicit TopoCluster has similar time performance as
Explicit TopoCluster, while using only 60% of the memory.

Figure
Finding general trends in the TTKMorseSmaleComplex plugin

is more challenging since not all steps can be executed in parallel.
In this case, we use the dynamic caching system allocating 12%
cache size for sequential steps, and 1% cache size for the parallel
ones.

Figure
Figure
Since the complexity of the MS complex impacts on the

performance of TopoCluster (see Section
In general, TTK triangulation provides best time performance,

but it can only be used with meshes of limited size. If the user needs
to limit memory consumption while maintaining competitive time
performance, Explicit TopoCluster is a satisfactory pick. Implicit
TopoCluster is the best choice with very large datasets or when the
system has limited memory.

9 CONCLUSION

In this work, we have designed two new data structures, Explicit
and Implicit TopoCluster, based on the Stellar decomposition model
[12]. The scope of both data structures is to improve scalability
by reducing memory consumption. Both data structures divide
the simplicial mesh into clusters in order to process the mesh
locally. Explicit TopoCluster encodes more information in the
global layer and guarantees run-time efficiency while requiring
more memory. On the contrary, Implicit TopoCluster encodes less
information in the global layer and guarantees lower memory
consumption with limited overhead. We have integrated both data
structures in the Topology Toolkit [30], which provides an easy-
to-use interface to developers and practitioners in topological data
analysis. TopoCluster supports shared memory parallelization based
on OpenMP [6], and it can be used with any plugin implemented
in TTK.

In our experimental evaluation, we have compared Explicit and
Implicit TopoCluster with TTK triangulation [30] and the Stellar
tree [12]. Compared to TTK triangulation, Explicit TopoCluster
requires half of the memory while still having comparable time
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(a) (b) (c)

Fig. 11. The results obtained computing critical points (i.e., plugin TTKCriticalPoints) with TTK triangulation (TTK), Explicit TopoCluster (Explicit), and
Implicit TopoCluster (Implicit) and enabling OpenMP support. (a) Memory consumption when 1% cache rate is used for TopoCluster. (b) Time usage
when 1% cache rate is used for TopoCluster. (c) Speedup for all three data structures compared to serial execution.

(a) (b) (c)

Fig. 12. The results obtained computing Morse-Smale complex (i.e., plugin TTKMorseSmaleComplex) with TTK triangulation (TTK), Explicit
TopoCluster (Explicit), and Implicit TopoCluster (Implicit) and enabling OpenMP support. (a) Memory consumption when 1% cache rate is used for
TopoCluster. (b) Time usage when 1% cache rate is used for TopoCluster. (c) Speedup for all three data structures compared to serial execution.

performance. When minimal memory usage is crucial, Implicit
TopoCluster requires an order of magnitude less memory but is
twice slower than TTK triangulation. Compared to the Stellar tree,
Explicit TopoCluster uses twice the memory while being 30%
faster. Implicit TopoCluster uses 20% less memory while being up
to 25% slower than the Stellar tree. However, TopoCluster provides
a much easier interface for developers, and it is easier to integrate
into existing frameworks for mesh processing.

Even though TopoCluster is currently designed for tetrahedral
meshes, it is straightforward to adapt the data structure for
triangle meshes. Generalizing TopoCluster to higher dimensions
by enumerating all simplices is possible, but this could lead to
severe performance decay since the number of simplices grows
exponentially with the increase of the complex dimension. This
problem affects all data structures that enumerate simplices in full
[12].

By enabling OpenMP support in TopoCluster, we have observed
that the local processing of the relational operators provides a
higher speedup than TTK triangulation. A promising direction
of our research is designing a new version of TopoCluster for
distributed environments where groups of clusters are distributed
across multiple machines.
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APPENDIX A
Associating unique identifiers to the simplices of a simplicial
complex represents a clear advantage for developers.

Figure
The code shown in Figure

Fig. 13. Code snippet for the procedure computeEdgeValues() imple-
mented in TopoCluster.

Fig. 14. Code snippet for the procedure computeEdgeValues() imple-
mented in the Stellar tree.

The code is simplified thanks to the enumeration provided by
TopoCluster. First, results are saved in a simple indexed vector
(row 5). Second, each edge is visited by means of a simple for loop
(row 6). As a consequence, making a parallel version of the same
function would be trivial using OpenMP [6].

Implementing the same procedure without the enumeration
property would require more involved code. Figure

The std::vector is now replaced by a std::map since now each
edge is internally represented by a pair of vertices (row 2). The
visit of all the edges is replaced by a breadth-first search of the
hierarchical decomposition. The visit starts at the root of the
hierarchy (row 4) and traverses the entire hierarchy until reaching
the leaf nodes, which are the nodes storing the edges (row 8).
Moreover, since each edge may appear in multiple nodes, duplicate
entries need to be handled accordingly (row 10).


