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Abstract—Precise navigation solutions are fundamental for
new intelligent transportation systems and robotics applications,
where attitude also plays an important role. Among the differ-
ent technologies available, Global Navigation Satellite Systems
(GNSS) are the main source of positioning data. In the GNSS
context, carrier phase observations are mandatory to obtain pre-
cise positioning, and multiple antenna setups must be considered
for attitude determination. Position and attitude estimation have
been traditionally tackled in a separate manner within the GNSS
community, but a recently introduced recursive joint position
and attitude (JPA) Kalman filter-like approach has shown the
potential benefits of the joint estimation. One of the drawbacks
of the original JPA is the assumption of perfect system knowledge,
and in particular the baseline distance between antennas, which
may not be the case in real-life applications and can lead to a
severe performance degradation. The goal of this contribution is
to propose a robust filtering approach able to mitigate the impact
of a possible GNSS antenna baseline mismatch, exploiting the use
of linear constraints. Illustrative results are provided to support
the discussion and show the performance improvement, for both
GNSS-based attitude-only and JPA estimation.

Index Terms—GNSS, position and attitude estimation, robust
filtering, model mismatch, linear constraints.

I. INTRODUCTION

It is well known that Global Navigation Satellite Systems
(GNSS) have become the cornerstone source of positioning
data, and this dependence can only but grow in the future [1].
It is commonly said that “GNSS are everywhere”, a thought-
provocative statement which refers to the huge variety of mass-
market, safety-critical, civil and military applications, within a
plethora of engineering fields, where reliable, continuous and
precise positioning information is nowadays of paramount im-
portance. In addition of being the position-related information
technology of choice, GNSS are also fundamental for timing
applications, and if using multiple antenna setups they can also
be exploited for attitude estimation. The latter is of particular
interest in aerospace, for satellite orbit determination [2]–[4],
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and outdoor navigation in vehicular and robotics applications
[5]–[7].

Standard GNSS receivers resort to a multilateration proce-
dure, where a set of code (delay) and Doppler measurements
are fused to estimate the receiver position and velocity, as
well as the receiver clock offset and drift. Such solution
can be obtained in a snapshot manner using least squares
(LS)-type methods [8], or in a recursive way using Kalman
filter (KF)-like techniques [1, Ch. 22]. In order to obtain
a precise positioning solution (i.e., sub-decimeter precision),
carrier phase measurements must be exploited, which in turn
implies the challenging estimation of a set of integer ambigu-
ities, widely known as ambiguity resolution (AR). This is the
case for instance in Real Time Kinematic (RTK) differential
positioning. Again, both LS-type [1, Chap 26] or KF-based
approaches [9] exist in the literature. In both cases, integer
ambiguities are typically estimated with a so-called Integer
LS (ILS) [10].

In addition to precise navigation, GNSS carrier phase mea-
surements can also be exploited for attitude determination,
which refers to the estimation of a moving rigid body orienta-
tion with respect to (w.r.t.) its environment [11]. Indeed, con-
sidering a multi-antenna GNSS system, the goal is to estimate
the rotation which relates the baseline vectors joining each
pair of antenna positions across two frames of interest. The
most popular GNSS attitude estimation method is the so-called
MC-LAMBDA [12]. Attitude estimation has been traditionally
decoupled from position estimation, and only addressed in a
snapshot manner, but in practice the recursive joint position
and attitude (JPA) estimation is of interest. A recursive JPA
KF-based solution was recently proposed in [13] to correctly
cope with the cross-correlation between the positioning- and
attitude-related observations. The main drawback of this ap-
proach is that a perfect system knowledge is considered, i.e.,
a perfectly surveyed distance between antennas. In real-life
applications, such antenna baseline may be misspecified for
several reasons, which may induce a significant performance
degradation, therefore, robust solutions must be accounted for.

Within the GNSS-based attitude and JPA estimation context,



the goal of this contribution is to propose a robust KF-based
filtering approach able to mitigate the impact of a possible
antenna baseline mismatch (i.e., system model mismatch). The
idea is to resort to linear constraints to mitigate the mismatch,
that is, using the recently introduced linearly constrained
extended KF [14], [15]. Illustrative results are provided to
support the discussion and show the performance improvement
w.r.t. state-of-the-art solutions, for both GNSS-based attitude-
only and JPA estimation.

II. GNSS-BASED PRECISE POSITION AND ATTITUDE
ESTIMATION

In the following, the navigation problem for a vehicle
equipped with multiple GNSS antennas is addressed. In par-
ticular, we are interested in exploiting GNSS code and carrier
phase observations for obtaining precise position and attitude
estimates.

A. Recursive Estimation for the Navigation Problem

Considering a discrete state-space (DSS) model, the state
vector for the navigation problem can be described by

x>k =
[
q>k ,a

>
k ,b

>
k

]
,

with (qk,ak,bk) ∈ S3 × ZM × RL,
(1)

where qk denotes the unit quaternion rotation from the body
to the (global) navigation frame –denoted with subscripts B
and G respectively–, ak is the vector of carrier phase integer
ambiguities, and bk is a vector comprising the remaining
L real-valued unknown parameters. This work analyzes two
applications:

i) Attitude estimation with gyroscope integration. In this
case, the gyroscope biases are estimated b = bω, L = 3
and the number of ambiguities is M = n ·N , with n+1
GNSS tracked satellites over N +1 antennas installed on
the vehicle.

ii) JPA estimation with gyroscope integration. In addition to
the gyroscope biases, and the vectors of position (w.r.t.
the base station) and velocity are included in b: b> =
[bω
>,p>,v>], L = 9, and the integer ambiguities are of

dimension M = n · (N + 1).
The dimension of the vector of ambiguities directly comes
from the use of double differences in the measurement model,
as recalled in Section II-C, and detailed in [13].

Recursive estimation for the previous DSS is typically
addressed via KF, which allows modeling the evolution of the
states over time, through a process model f(·), and the rela-
tionship of these to the observations, through an observation
model h(·), as

xk = f (xk−1,ωk−1,wk−1) , (2)
yk = h (xk,θk) + ηk, (3)

ωk−1 is a given input, and wk−1 ∼ N (0,Qk−1) the process
noise vector. Here, in both attitude-only and JPA cases, ωk−1
is a set of gyroscope readings. The full process-model is
detailed in Section II-B. The measurement function h(·)

relates the GNSS observations (i.e., the code and carrier phase
pseudoranges tracked over the antennas on the body frame
and, for JPA, also for the base station) to the state estimate,
as detailed in Section II-C, and of known noise distribution
ηk ∼ N (0,Σk). The measurement function is conditioned on
a set of known parameters θk, in this case the inter-antenna
baseline vectors, measured in the local vehicle frame. For
nonlinear models, as for (2)-(3), the time recursion estimation
is commonly addressed with a nonlinear KF formulation.

Recursive attitude estimation must also take into account
and respect its inherent non-linear geometric constraints –
either the orthogonality and unit determinant for the rotation
matrix or the unit norm for the quaternion– [16], [17]. This is
now a well-known problem, typically addressed by geometric
tools such as Lie group theory [18]. This work considers the
Error State KF (ESKF) –also known as Indirect KF– [19], [20],
for which the state to be estimated x belongs to a manifold
and its perturbations δx “live” in the tangent space of that
manifold. Thus, the unknown true state is formulated as the
composition of the nominal estimate x̂ and the error state δx,
noted x = x̂ ⊕ δx, and defined by (6), with the error state
described by

δx>k =
[
δψ>k , δa

>
k , δb

>
k

]
,

with (δψk, δak, δbk) ∈ R3 × RM × RL,
(4)

and δψk the rotation vector. The Euclidean space for δψk
connects to the Lie algebra uϕ ∈ s3 (with u an unit vector of
rotation and ϕ the rotated angle) with the isomorphism (·)∧ :
R3 7→ s3. Then, the Lie algebra connects with S3 through
exponential mapping. The overall procedure is given by

δψ ∈ R3 (·)∧7−−→ uϕ ∈ s3
exp(·)7−−−−→ δq ∈ S3, (5)

(δψ)∧ :

{
u = δψ

‖δψ‖2

ϕ = ‖δψ‖2
, exp(uϕ) :

[
cos(ϕ/2)

u sin(ϕ/2)

]
.

In a compact expression, the composition of nominal and error
state is as follows

x = x̂⊕ δx =


q̂k ◦ δqk
âk + δak
b̂k + δbk

, (6)

with ◦ the quaternion product. For a more detailed discussion
on Lie group theory, please refer to [18], [21], [22].

The ESKF adapts the EKF framework to a chosen non-linear
parametrisation, here given by (6) to preserve the unit-norm
quaternion constraint, while using a minimal parametrisation
of the covariance matrix. That is, it uses the ⊕ operator, instead
of the standard addition, to linearise and update the system. Let
x̂k−1|k−1 denote the estimate at step k− 1, and Pk−1|k−1 its
estimated covariance. Then the propagation and update steps



of the ESKF are given by

x̂k|k−1 = f(x̂k−1|k−1,ωk−1) (7a)

Pk|k−1 = Fk−1Pk−1|k−1F
>
k−1 + Qk−1, (7b)

Sk = HkPk|k−1H
>
k + Σk, (7c)

Kk = Pk|k−1H
>
k S−1k , (7d)

x̂k|k = x̂k|k−1 ⊕Kk(yk − h(x̂k|k−1,θ)), (7e)
Pk|k = (I−KkHk)Pk|k−1. (7f)

The matrices Fk−1,Hk are the Jacobians of f ,h with respect
to ⊕, which can be computed by the chain rule as

Fk−1 =
∂f(x⊕ δx,ωk−1)

∂δx

∣∣∣∣
x̂k−1|k−1,ωk−1

=
∂f

∂x

∣∣∣∣
x̂k|k−1,ωk−1

∂x⊕ δx
∂δx

∣∣∣∣
x̂k−1|k−1

(8)

Hk =
∂h(x⊕ δx,θ)

∂δx

∣∣∣∣
x̂k|k−1,θ

=
∂h

∂x

∣∣∣∣
x̂k|k−1,θ

∂x⊕ δx
∂δx

∣∣∣∣
x̂k|k−1

(9)

Hereinafter, the dynamics and the observation models are
detailed.

B. Constant-Speed Model with a Gyroscope

A typical dynamical model regards a vehicle to move ac-
cording to the constant-velocity non-turning model [23], which
was the one considered initially for JPA [13]. Because of the
limitations of a non-turning model, we extend JPA to systems
equipped with a gyroscope. Indeed, gyroscopes allow tracking
fast and more complex rotations, and are typically equipped in
a growing number of applications [24]. Since accelerometers
are not strictly required for attitude determination, this work
disregards its use. Most gyroscopes are subject to an inherent
and slowly varying bias, which needs to be estimated online,
and was thus included in (1). Moreover, the ambiguities are
assumed time invariant in the absence of cycle slip occurrence.
The constant-speed model then writes, for JPA and without
noise

f(xk−1,ωk−1) =


qk−1 ◦Ωk−1
ak−1
bωk−1
pk−1 + dt vk−1
vk−1

with Ωk−1 = exp((ωk−1 − bωk−1)
∧).

(10)

using (5) to define Ωk. Notice that, for case i) of attitude-only
estimation, it is exactly the same, simply without the position
and velocity lines. Thus, the associated Jacobians are easily
obtained, in both cases of attitude-only and JPA estimation

Fatt
k =

Ω>k −dtI3
IM

I3

 ,FJPA
k =

Fatt
k

I3 dtI3
I3

 .

Fig. 1. On the left, illustration for the GNSS-based JPA problem: the base
station, the rover with multiple antennas. On the right, the configuration of
the sensors on the body frame. The master antenna is highlighted in orange
color.

C. GNSS-Based Position and Attitude Observation Model

Consider a vehicle equipped with N + 1 antennas and
receiving corrections from a nearby base station of known
location, as illustrated in Fig. 1. In multi-antenna platforms,
one of the antennas is considered as master and center of
the local body frame, and the remaining antennas are denoted
as slaves. The global frame G is typically centered on the
base station location. To eliminate atmospheric delays and
other nuisance parameters, the “original” undifferenced GNSS
measurements at the base and slaves antennas are mixed with
those of the master antenna using the double difference (DD)
combination [13, Sec. 3]. The DD code and carrier phase
combinations constitute the positioning- and attitude-related
observations. The subscripts m, b, and j = 1, . . . , N refer
to the GNSS measurements for the master, base and slaves
antennas respectively. For simplicity, in the remaining of this
Section the time index k is dropped.

a) Position-related observations: These observations,
noted ypos, are described as

ypos =

[
Φb,m

ρb,m

]
, Φb,m,ρb,m ∈ Rn, (11a)

[Φb,m]i = −u>i pk + λ · ari + εb,mi
, (11b)

[ρb,m]i = −u>i pk + εb,mi
, (11c)

with ρ and Φ the vector of DD code and carrier phase
observations, [α]i and/or αi denote the i-th coordinate of a
generic vector α, ui is the DD line-of-sight satellite steering
vector, λ is the GNSS carrier wavelength and εb,mi

, εb,mi

indicate the carrier phase and code noises for the i-th obser-
vation (i = 1, . . . , n). The subscript ri in (11b) refers to the
ambiguity associated with the i-th DD observation between
the base station and master antennas.



b) Attitude-related observations: Their vector of obser-
vations, denoted yatt, is as follows

y>att =
[
Φ>1,m, . . . ,Φ

>
N,m,ρ

>
1,m, . . . ,ρ

>
N,m

]
,

with Φj,m,ρj,m ∈ Rn, j = 1, . . . , N.
(12a)

[Φj,m]i = −u>i R(q)Bbj,m + λ · arj ,i + εj,mi
, (12b)

[ρj,m]i = −u>i R(q)Bbj,m + εj,mi
, (12c)

where R(q) is the rotation matrix from the body frame B
to the global navigation frame G, derived from the associated
quaternion, and Bbj,m denotes the baseline vector between the
j-th slave and master antennas, measured in the body frame
B of the vehicle. The subscript rj , i in (12b) refers to the
ambiguity associated with the i-th DD observation between the
j-th slave and master antennas. Based on the two study cases,
attitude-only and JPA estimation, the vector of observations
consists on y = yatt and y> =

[
y>pos, y>att

]
, respectively

and the associated covariance matrix Σ is as defined in [13].
The inter-antenna baselines in the local frame B constitute the
parameters θ, on which the observation model is dependent:

θ =
[
Bb
>
1,m, . . . , Bb

>
N,m

]>
. (13)

III. LINEARLY CONSTRAINED FILTERING

A. Mismatch-Induced Bias

As explained in Section II-A, standard filtering techniques
rely on models of the considered system (2), (3). The obser-
vation models involves some parameters θk, and, in general,
the process model might also show such a dependency to
parameters ξk−1. In theory, both are supposed to be known.
In practice, one might only have approximate, or assumed,
values of ξk−1,θk, denoted as ξ̂k−1, θ̂k. The difference be-
tween the true and assumed models can be expressed as
dξk−1 = ξk−1 − ξ̂k−1 and dθk = θk − θ̂k, which we do not
try to estimate: either i) to keep the system’s dimension low, ii)
because we have no adequate prior distribution for its value, or
iii) because we have no adequate model of its evolution. Since
the systems which are considered in this paper use constant
velocity models, no mismatch is present on the evolution, so
that dξk−1 = 0.

Assuming that the mismatch dθk is small enough, one
can carry a first-order expansion to study its impact on the
estimation. We thus have

yk ' h(xk, θ̂k)︸ ︷︷ ︸
ŷk

+
∂h

∂θ

∣∣∣∣
xk,θ̂k

dθk (14)

Consider an EKF devised to estimate x from (2), (3) but
with the assumed parameter θ̂k. Denote its estimate as x̂k|k−1
after the prediction, and as x̂k|k(L) after an update step using
a gain L. In addition, let the error be e = x̂ − x. Then, it
becomes after the update

ek|k = x̂k|k(L)− xk = x̂k|k−1 − xk

+ Lk(h(xk,θk) + vk − h(x̂k|k−1, θ̂k))

In the standard EKF methodology, a first-order expansion
of h and f with respect to x is carried out to determine
the appropriate gain. However, here, the difference between
h(xk,θk) and h(x̂k|k−1, θ̂k) would not boil down to a term
involving ek|k−1 due to the mismatch. Thus, expansions both
with respect to x and θ must be carried out, computed at
x̂k|k−1 and θ̂k. Indeed, we have

ek|k = ek|k−1 + Lvk + L(h(xk,θk)− h(x̂k, θ̂k)) (15a)

Thus, neglecting the cross derivatives in x and θ, and noting
Ĥk = ∂h

∂x

∣∣
x̂k,θ̂k

, this leads to

ek|k ' (I− LĤk)ek|k−1 + Lvk + L
∂h

∂θ

∣∣∣∣
xk,θ̂k

dθk︸ ︷︷ ︸
εk(L)

, (15b)

It thus appears that the mismatch induces an additional bias
term εk(L), which will not be corrected by the subsequent
filtering steps.

B. Mitigating the Mismatch: the LCEKF Methodology
In order to mitigate the bias induced by the model mismatch,

it was recently proposed to choose the gain L in order to cancel
out the uncontrolled error: εk(L) = 0, so that (15b) falls
down to its well-known form. We can then minimize the filter
MSE, but only under this constraint. This yields the linearly
constrained Extended KF (LCEKF) [14], [15]. We briefly
recall here the methodology, specifying it for the problem we
consider (in particular, no mismatch on the process model).
Since it focuses on the linearised system, it is not affected by
the parametrisation of the state, and can thus be seamlessly
applied to the ESKF.

The goal is to cancel the bias for any value of the mismatch
dθk, as long as the Taylor expansion holds. However, since
the true state xk is unknown, the partial derivative must be
approximated at x̂k|k−1 [14]. Thus, the gain is chosen as that
of the standard EKF, but with constraints, according to

Lk = argmin
L

{
E
[
ek|ke

>
k|k

]}
s.t. L∆k = 0, ∆k =

∂h

∂θ

∣∣∣∣
x̂k|k−1,θ̂k

(16)

Considered on the linearised system (15b), this constrained
optimisation problem has a closed form, which is given by
[14]

Lk = Kk(I−∆kΨ
−1
k ∆>k

(
Sk|k−1

)−1
) (17)

where Kk is the unconstrained gain of the EKF, which
is given along with Sk|k−1 by (7d)-(7c), and Ψk =
∆>k (Sk|k−1)

−1∆k. Using this modified gain also impacts how
the covariance is updated. It is now obtained as

Pk|k = (I−KkĤk)Pk|k−1 + Kk∆kΨ
−1
k ∆>k K>k (18)

Note that the constraint needs to be feasible, i.e., ∆k must be
of size Nk× sk, with sk < Nk, and of rank sk. Similarly, the
updated state estimate reads

x̂k|k = x̂k|k−1 + Lk(yk − h(x̂k|k−1, θ̂k)), (19)



for a general form. In the following, we particularize the
aforedescribed linearly constrained filter for the attitude and
JPA problems estimated via an ESKF.

C. Application to the Attitude-only and JPA Problems

The GNSS-based position and attitude estimation method
presented in Section II relies on a strong assumption: that we
precisely know the master-slave base vectors. This is however
not always true in practice. In particular, suppose that the
base vectors’ lengths are subject to distorsions, then they
write Bbj,m = (1 + δj)Bb̂j,m, where Bb̂j,m is the assumed
vector, and δj an unknown and unmodelled perturbation on the
surveyed baseline to the j-th antenna. It turns out that it does
not affect the position observation, as Bbj,m does not appear
in (11). The components of the attitude observation yatt, in
(12), are however impacted, so that

ypos = ŷpos (20)

[Φj,m]i = [Φ̂j,m]i − δju>i R(q)Bb̂j,m (21)

[ρj,m]i = [ρ̂j,m]i − δju>i R(q)Bb̂j,m, (22)

This mismatch is noticeable, because it is linear w.r.t. δj . Thus,
the only approximation made in (16) is the use of q̂k|k−1,
meaning that the quality of the Taylor expansion will only
depend on the quality of the estimate. Indeed, the constraints
which will be used for attitude or JPA estimation are given by

∆att
k =

[
Datt

1 · · · Datt
N

]
(23)

∆JPA
k =

[
DJPA

1 · · · DJPA
N

]
(24)

Datt
j =



0
...

UR(q̂k|k−1)Bb̂j,m
0
...

UR(q̂k|k−1)Bb̂j,m


, DJPA

j =

[
0

Datt
j

]
(25)

where the non-zero block of Datt
j is located at the rows

related to the j-th slave antenna, i.e. those of Φj,m and ρj,m.
U ∈ Rn,3 is the matrix which stacks the steering vectors u>i .
The obtained linearly constrained ESKF (LC-ESKF) for the
attitude-only and JPA estimation is summarised in Algorithm 1

IV. RESULTS

To assess both the sensitivity of JPA and attitude estimation
to a mismatch on the base vectors, and the performance of the
proposed linearly constrained filter to mitigate this mismatch,
simulation experiments were carried out. We considered a
medium-sized vehicle (e.g., a ship), containing 3 slave anten-
nas in addition to the master one, and observing seven satellites
(the sky plot coincides with [25]). Each slave antenna is
assumed to be separated from the master antenna by a distance
‖Bb̂j,m‖ = 5 m. The vehicle starts at a distance of 5 km from
the base station, and its velocity follows a random walk, while
its roll, pitch and yaw follow sine waves of amplitudes 0.1◦,

Algorithm 1: LC-ESKF algorithm for attitude-only
and JPA in case of mismatched base vectors’ lengths

Input: Prior x0,Cx0
, (Bb̂j,m)m;

Initialisation
Set P0|0 = Cx0

,x0|0 = x0;

for k ≥ 1 do
1 Apply the process model in (7a)-(7b) to get

Pk|k−1 and xk|k−1 ;
2 Compute the unconstrained gain Kk, ∆k, and the

constrained gain Lk from (7d), (25) and (17) ;
3 Compute Pk|k from (18)

4 x̂k|k = x̂k|k−1 ⊕ Lk(yk − h(x̂k|k−1, (Bb̂j,m)m));

Output: (xk|k)k≥1, (Pk|k)k≥1;

3◦ and 180◦, and of period 60 s, 10 s and 25 s, respectively.
Constant length mismatches of 2 to 5% were considered for
each master-slave vectors, i.e. δj ∈ [−0.05, 0.05]. GNSS data
was obtained at 1 Hz, and recorded for 100 s. The probability
of cycle-slip was fixed at 0.5%. Stochastic modelling for the
undifferenced GNSS observations follows a satellite elevation-
dependent model [26], with the zenith-referenced code and
carrier standard deviations given in Table I. Integer ambiguity
resolution is performed via LAMBDA [27].

TABLE I
MONTE CARLO SIMULATION PARAMETERS.

Initial uncertainties
standard deviations

Position: 10 [m], Velocity: 1 [(m/s)]
Attitude: 10 [deg], Ambiguities: 5 [cycles]
Gyroscope bias: 2.10−3 [◦/

√
s3]

Process noise
standard deviations

Gyroscope: 2.10−3 [◦/
√
s3]

Bias random walk: 2.10−5 [◦/(s
√
s3)]

Velocity (East-North-Up): [1, 1, 10−3] [m/s]

Observation noise
standard deviations

Code zenith-referenced: 0.3 [m]
Carrier phase zenith-referenced: 3 [mm]

The standard and linearly constrained versions of the
attitude-only and the JPA ESKF filters were compared through
200 Monte Carlo runs. The latter are named LCAtt and
LCJPA respectively. The root mean square error (RMSE)
in position, attitude are displayed in Figure 2, along with
the mean ambiguity success rate (MASR) –i.e., the average
empirical success rate for the integer estimation over the
Monte Carlo experiments–. Solutions before and after am-
biguity resolution are presented, denoted “Float” and “Fix”
respectively. It clearly appears that the mismatched lengths
impact mostly the attitude and ambiguity estimations, and
severely degrade them. Indeed, the Float position accuracy
simply boils down to that of a single antenna, which does not
depend on the mismatched vectors anymore. The failure in
ambiguity resolution for standard JPA, however, happens to
degrade its position accuracy, contrary to the LCJPA which
reaches centimeter level. On the contrary, the constrained fil-
ters provide much better attitude estimates, and the advantage



Navigation results of filters

with mismatched baseline vectors

Fig. 2. Comparison of conventional and constrained filtering solutions for
attitude-only and JPA problems under mismatched master-slave baseline
lengths. Top: position RMSE over time. The Float solution accuracy is the
same for JPA and LC-JPA, since the baseline mismatch does not directly
impact the positioning. However, integer estimation on JPA induces biases
due to the mismatch and its Fixed positioning is strongly degraded. Only the
LCJPA takes advantage of the multi antennas to reach centimeter level error
after ambiguity resolution. Middle: attitude RMSE. It clearly appears that the
addition of constraints allows better performance. Moreover, LCJPA proves
more accurate than attitude estimation only. Bottom: Mean ambiguity success
rate (MASR). The standard JPA fails completely, explaining its degraded float
results. Only the LCJPA and LCAtt quickly reach perfect ambiguity resolution.

of JPA over attitude-only estimation is clearly noticeable.

V. CONCLUSIONS

In this work, we studied how a mismatch on the master-slave
antennas lengths can impact the accuracy of multi-antenna
attitude-only and of the recently introduced joint position and
attitude estimation. It turns out that a few percentages of error
can lead to noticeable performance loss, in particular in the
capability of JPA to correctly solve integer ambiguities. We
proposed to leverage the framework of linearly constrained
Kalman filtering to derive robust filters for these two problems.
They proved to be able to mitigate this mismatch, and to
recover the expected accuracy in a simulation experiment. The
use of linear constraints thus offered an easy-to-implement and

effective solution to maintain the filters’ performance in the
face of these mismatches, in a simulated environment. Future
work will include validation of the proposed method on real
data.
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