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We present a neural network-based method to detect anomalies in time-dependent
surface deformation fields given a set of geodetic images of displacements collected from
multiple viewing geometries. The presented methodology is based on a supervised
classification approach using combinations of line of sight multitemporal, multi-
geometry interferometric synthetic aperture radar (InSAR) time series of displacements.
We demonstrate this method with a set of 170 million time series of surface deformation
generated for the entire Italian territory and derived from ERS, ENVISAT, and COSMO-
SkyMed Synthetic Aperture Radar satellite constellations. We create a training dataset that
has been compared with independently validated data and current state-of-the-art
classification techniques. Compared to state-of-the-art algorithms, the presented
framework provides increased detection accuracy, precision, recall, and reduced
processing times for critical infrastructure and landslide monitoring. This study
highlights how the proposed approach can accelerate the anomalous points
identification step by up to 147 times compared to analytical and other artificial
intelligence methods and can be theoretically extended to other geodetic
measurements such as GPS, leveling data, or extensometers. Our results indicate that
the proposed approach would make the anomaly identification post-processing times
negligible when compared to the InSAR time-series processing.

Keywords: multi-temporal InSAR, anomalies detection, landslides, infrastructure monitoring, pattern recognition,
neural network, surface displacement, geodetic measurements

INTRODUCTION

Synthetic aperture radar (SAR)-based geodetic imaging has revolutionized Earth science research in
disciplines such as solid Earth, ecosystems, and cryosphere. Yet, the ability to effectively utilize SAR
data for research, long-term monitoring of extensive spatial areas of interests (AOIs), and rapid
hazard response has been limited due to processing complexity, data volume sizes, and latencies in
the end-to-end process. For example, barriers in urgent response include the lack of automated data
triggers from forecasts, the need for specialized processing parameters that currently rely on expert
intervention, and the manual delivery of actionable science data products to the decision support
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communities. Decision support products, which often are most
useful if they are generated rapidly and with simplified
information (e.g., damaged or not damaged or accelerating or
not accelerating), often require change detection-based
approaches utilizing the before and after event scenes to be
processed often with threshold values set ad hoc on the
underlying SAR processing parameters values (Refice et al.,
2014; Yun et al., 2015; Confuorto et al., 2017; Milillo et al.,
2018; Karimzadeh and Matsuoka, 2018; Raspini et al., 2018;
Giardina et al., 2019). These steps requiring a human-in-the-
loop have become a bottleneck for rapid and reliable exploitation
of geodetic data for both long-term monitoring and event
response with SAR data.

If done correctly, SAR data can also be used to monitor for
events such as volcano inflation or precursory signals to landslide
events and infrastructure collapse (Sousa and Bastos, 2013;
Milillo et al., 2015; Bonì et al., 2018; Intrieri et al., 2018;
Selvakumaran et al., 2018; Burrows et al., 2019; Carlà et al.,
2019; Gaddes et al., 2019; Milillo et al., 2019; Infante et al., 2019).
Automating these time domain-based feature detection methods
have even larger barriers due to processing of large temporal co-
registered data stacks, processing complexity, as well as human
expertise needed to assess the time domain signals. With the
launch of European Space Agency (ESA)’s Sentinel 1A and 1B
providing open access to near-global SAR data, the number of
AOI that can be continuously monitored as well as AOIs for
disaster response have grown significantly.

The all-weather multi-temporal characteristics of SAR make
its products suitable for structural health monitoring systems,
especially in areas where in situmeasurements are not feasible or
not cost-effective. This provides opportunities to exploit multi-
temporal data stacks for long-termmonitoring such as those from
earthquake events, flooding events, volcanoes, landslides, and
infrastructure monitoring (Ito et al., 2000; Ngo et al., 2018;
Anantrasirichai et al., 2019; Ji et al., 2019). Here, we focus on
InSAR surface displacement time-series post-processing aspects
related to the creation of an early warning system.

Several machine learning-based technology demonstrations
have been developed to help classify events and other features
from Earth observation data. Though many prior classification
approaches focused on land-use and ground-based object
classification (Lazebnik et al., 2006; Cheriyadat, 2014; Penatti
et al., 2015), newer methods for machine learning have focused
on natural phenomena detection. More recently, convolutional
neural networks (CNNs) have been applied to phenomena-based
Earth science image classification (Maskey et al., 2017). Machine
learning approaches for Earth science data have typically been
applied on these types of single-scene feature detection. Now,
with more availability of low-latency and global multi-temporal
remote sensing data, opportunities exist to exploit time-
dependent features of highly temporal Earth science
observations. Unlike the current state-of-the-art pairwise
change detection techniques, multi-temporal spatial prediction
techniques that leverage long-term historical observations yield
more accurate and interpretable predictions (Yun et al., 2015).

Literature studies investigate the automatic classification of
InSAR time series of surface deformation (Berti et al., 2013;

Chang and Hanssen, 2016; Tomàs et al., 2019; Fiorentini et al.,
2020) (Table 1). These studies propose methods focused mainly
on conditional sequence of statistical tests (Berti et al., 2013) or
probabilistic multiple hypotheses testing (Chang and Hanssen,
2016) based on a pre-defined set of known functions that could
better represent the temporal behavior of a time series of surface
deformation. Existing approaches have been mainly developed as
post-processing tools for shedding new light on the physical
behavior of landslides (Berti et al., 2013) and to provide insights
into the standardization of InSAR time-series products (Chang
and Hanssen, 2016). Other studies, instead, focus on the
definition of anomalous points or areas and how they can be
identified in an InSAR time series of surface displacement
(Raspini et al., 2018; Meisina et al., 2008). However, several
limitations can influence the effectiveness of these methods
(see Methods and Algorithms) including (1) the manual ad hoc
thresholds inferred over the specific region of interest; (2) the
absence of a parameter taking into consideration the time-series
noise level; (3) the time required by the algorithm for a full
analysis of a single region; and (4) the overall time-series length of
at least 1 year [i.e., more appropriate for a yearly analysis leading
to increased ghost anomalies when used in a near-real time
response mode or if the signal is affected by seasonal periodic
trends (Chaussard et al., 2017). The effectivity of the proposed
methodology depends not only on the chosen thresholds, but also
on the data quality and data take acquisition rate (Moretto et al.,
2017). Other limiting factors are related to the limited automation
[30] and the high number of requested input features such as
topographic wetness index, drainage capacity of the soil, erosion
susceptibility, and wind exposition (Fiorentini et al., 2020) that
make the algorithm less generic and inapplicable over areas
where all the aforementioned input features are not available.
Existing studies only couple a maximum of two of the
following aspects related to (1) large-scale statistical
analyses; (2) the use of ground-truth data based on the
analysis of optical/radar data and field inspections; and (3)
detection of anomalies in the satellite data. As an example, the
analyzed synthetic and real dataset are only extended to a local
(Chang and Hanssen, 2016; Tomàs et al., 2019; Fiorentini et al.,
2020) or regional scale (Raspini et al., 2018) and do not exceed
750,000 time series analyzed at a maximum speed rate of 32
samples/s (Chang and Hanssen, 2016).

In this paper, we further develop this topic and present an
automated large-scale machine learning analysis framework of
multi-temporal transient detection and precursory signal analysis
of Interferometric SAR (InSAR) time series of surface
deformation. We exploit a dataset of 170 million time series of
InSAR surface deformation and highlight the advantages of the
proposed framework for shortening post-processing times of
ESA’s ERS, Envisat, and Sentinel-1A/B and the Italian space
agency’s (ASI) COSMO-SkyMed data archives. Our training
dataset is based on data validated by an independent study (Di
Martire et al., 2017) using field analysis and remote sensing data.
As explained in detail in the conclusions of this paper, the
proposed experiments can be considered an initial proof of
concept to provide a preliminary early warning system capable
of detecting anomalous points in InSAR time series of surface

Frontiers in Earth Science | www.frontiersin.org February 2022 | Volume 9 | Article 7286432

Milillo et al. MT-InSAR Neural-Network Experiments

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


displacement. The simplicity of the proposed method when
compared to previous more sophisticated approaches (Berti
et al., 2013; Chang and Hanssen, 2016; Fiorentini et al., 2020;
Tomàs et al., 2019) constitutes a key advantage in terms of
processing time, which is fundamental when looking at
deformation assessment in near-real time.

The discussion is organized as follows. Methods and
Algorithms describes the methodology and algorithms focusing
on the InSAR time-series analysis, anomalies detection, and the
neural network framework. Dataset presents the dataset and the
model optimization. Results and Discussion describes the results
and comparisons with independent datasets including state-of-
the-art classification approaches. Conclusion and Perspectives
describes the potential for our technique to improve the

understanding dynamic processes characterizing the field of
Earth science and its applications.

METHODS AND ALGORITHMS

In this section, we describe details of the different
methodologies adopted for detecting anomalies. Specifically,
we use an analytical method already proposed in literature
(Raspini et al., 2018), a state-of-the-art random forest
algorithm (Breiman, 2001), and the proposed neural
network approach. An updated landslide inventory
map produced through the Landslide Detection Integrated
System (LADIS) (Di Martire et al., 2017) together with the

TABLE 1 | Revised literature of the main classification approaches applied to InSAR.

Topic Research motivation Case of
study

Data source Innovation Reference

Ground
deformation

Geological Interpretation Piedimont (Italy) ERS Zonal statistical analysis Meisina et al. (2008)

Ground
deformation

Large areas deformation Campania (Italy) ERS Clustering data mining approach Milone and Scepi,
(2011)

Ground
deformation

Geological process
monitoring

Naro, Italy ERS, RST Back monitoring Cigna et al. (2011)

Ground
deformation

Automatic classification of PSI Italy ENVISAT Time series statistical analysis Berti et al. (2013)

Ground
deformation

Monitoring of geological
processes

Italy Several SAR Dataset Quality Index (SDQI) Notti et al. (2015)

Infrastructure
monitoring

Mealth and stability of
engineered structures

Florence, Italy ERS, ENVISAT Propose a set of index to rate health and
stability of engineered structures

Pratesi et al. (2015)

Ground
deformation

Natural hazards Netherlands ENVISAT Multiple hypotheses testing Chang et el., 2016

Subsidence Geological interpretation Po Plain, Italy ERS, RST Linear, non-linear, and seasonal
deformational trends

Bonì et al. (2016)

Ground
deformation

Ground water management California
(United States)

CSK Cross-correlation and ind. component
analyses

Chaussard et al.
(2017)

Landslides Pre-failure landslide analysis Italy GB-SAR Failure Forecasting Methods Moretto et al. (2017)
Ground
deformation

Surface deformation time
series analysis

United States ERS-1/2, ENVISAT Parallel Small Base-line Subset (P-SBAS)
processing

De Luca et al. (2015)

Landslides Risk assessment Tuscany (Italy) SNT-1 Time-series trend analyses Raspini et al. (2018)
Subsidence Geological and Geotechnical

deformation
Tuscany (Italy) SNT-1 GIS tool Tomàs et al. (2019)

Volcano Detect volcanic unrest Sierra Negra
(Galapagos)

Synthetic, SNT-1 ML applied to geophys. signal detection Gaddes et al. (2019)

Landslides Co-seismic Large-Scale
Landslide classification

Nepal Gorkha Eq SNT-1 Coherence maps for creating a co-seismic
landslide density map

Burrows et al. (2019)

Volcano Monitoring platform Several Eruptions SNT-1, SNT-2, SNT-
5P, eq. catalog

AI providing insight into eruptive precursors Valade et al. (2019)

Subsidence Subsidence identification Campi Fregrei, ITA Synthetic, SNT-1 Mean filtering method and Convolutional
neural networks

Anantrasirichai et al.
(2019)

Infrastructure
deformation

Risk assessment Tuscany (Italy) SNT-1 ML regression technique Fiorentini et al. (2020)

Subsidence Automatic ground motion
areas mapping

NE Italy ERS, ENVISAT, CSK,
SNT-1

ModelBuilder tool (ArcGis) Bonì et al. (2020)

Volcano Real-Time Natural Hazard
Monitoring

Yellowstone
volcanic area

SNT-1 Real-time streaming data analytics and ML Kelevits et al. (2021)

Glaciers Rock Glacier inventory Tibetan Plateau SNT-1, SNT-2, TDX Rock glacier inventory autom. Class Reinosch et al.
(2021)

DEM InSAR phase eand coh Synthetic Synthetic. TDX RL applied to InSAR phase and coherence
estimation

Sica et al. (2020)

Atmosphere Atmosphere filtering Hong Kong SNT-1 InSAR time-series atmosphere filtering Zhao et al. (2021)

ML, Machine learning; RL, Residual learning.
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CSK dataset presented in Costantini et al. (2017) is used as
input for the analytical model (Raspini et al., 2018) (see
Dataset). The output dataset is formed by data tagged as
“Signal/Anomaly or noise/no anomaly” and is used for
training the Random Forest and the proposed neural
network (Breiman, 2001). Figure 1 provides details of the
data processing workflow and the contribution of each
dataset to the processing workflow.

InSAR Time-Series Analysis
SAR is a coherent active sensor operating in the microwave band
that exploits relative motion between antenna and target in order
to obtain a finer spatial resolution in the flight direction
(Azimuth) exploiting the Doppler effect. In this way, it is
possible to synthetize a kilometer-scale antenna with a several-
meter real antenna (typically 10 m). In the direction transverse to
the direction of flight (range), pulse modulation technique is used

FIGURE 1 | Data Processing workflow scheme adopted in this study. The contribution of reference (Di Martire et al., 2017) is highlighted as a black dashed line,
whereas the contribution of this paper is highlighted by a red dashed line. Our Training dataset is formed by anomalous points [as described in (Raspini et al., 2018)]
belonging to the CSK dataset falling within a landslide area extracted from the landslide inventory map described in Di Martire et al. (2017). These points are then used to
train the Neural network and the Random Forset classifiers, which are then applied to the entire dataset.
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in order to increase spatial resolution. Because of its coherent
nature, SAR can exploit both amplitude and phase of an
electromagnetic signal. SAR data can be seen as a
bidimensional array containing both phase and amplitude
information related to the backscattered electromagnetic
radiation. SAR interferometry (InSAR) consists of the coherent
cross-multiplication of two coherent signals and extraction of the
phase component. The repeat pass interferometric phase depends
on the ground changes that occurred within the time acquisition
interval of two acquisitions. This technique is called differential
SAR interferometry (DInSAR) and is a powerful tool for detecting
surface changes. Multitemporal analysis extends InSAR
technique by combining several acquisitions highlighting the
temporal behavior of the relative displacement between each
acquisition along the satellite line of sight (LOS). In this study,
we used pre-processed data according to the PS-like approach
described in Costantini et al. (2017).

Anomaly Detection Using an Analytical
Model
Once a time series of surface deformation has been generated
using a multi-temporal InSAR approach, each time-series
measurement point is systematically analyzed in order to
identify changes in the deformation pattern and to highlight
“anomalous points” (Raspini et al., 2018). In our study, we adopt
the definition of “anomalous point” as described by Raspini et al.
(2018), i.e., a measurement that changes its velocity (VC
threshold) by 10 mm/year between subsequent epochs
spanning 150 days (TW time window). This method is based
on the temporal under-sampling of displacement time series, and
once the VC and TW arbitrary thresholds are set, the analysis is
then carried out automatically according to the following
procedure reported in Raspini et al. (2018): “

• within the entire monitoring interval (T0–Tn), a temporal
window of 150 days is set in the final part of the TS
(Tn–150–Tn), allowing the sampling of two different sub-
intervals within the time series, i.e., the Historical (H)
(T0–Tn–150) and the Recent (R) intervals (Tn–150–Tn).

• the TS of deformation within the sub-interval R is analyzed to
identify any potential deviations that occurred during the
monitoring period Tn–150–Tn, with respect to the previous
part of the TS;

• when a change in the deformation pattern is identified, a
breaking point, Tb is defined;

• the average deformation rates for each subsample (i.e., v1 in
the time interval T0–Tb and v2 in the time interval Tb–Tn)
are recalculated as simple linear regressions on ground
deformation data;

• when |ΔV|� v2−v1 > 10 mm/yr (velocity threshold, THR), an
anomalous point is highlighted.”

The analytical method is extremely simple and has been
applied over the Tuscany region in Italy (Raspini et al., 2018)
in order to produce warning bulletins. We run the analytical
model and all the proposed algorithms on MacBook Pro with a

2.4-GHz Intel Core i9 processor and a 32-Gb 2400-MHz DDR4
RAM. We found the inference speed of the analytical model to be
5.1 × 105 samples/s.

Random Forest Classification
Random Forest (Breiman, 2001) is a powerful ensemble
algorithm used for regression and classification problems
where a set of randomly generated decision trees are trained
separately, and a decision is made based on majority voting. One
of the several appeals of this technique is that the user could rely
on domain specific knowledge in engineering the input features
and have a better physical interpretation of the results based on
the relative importance that the algorithm assigns to each of
them. We performed two sets of experiments where we used
engineered features in one and the entire time series was utilized
in another. In the first set of experiments, we used the following
features (ad hoc features):

• Mean and standard deviation of the time-series
displacements.

• Mean and standard deviation of the time-series velocity.
• Mean and standard deviation of the time-series acceleration.
• The maximum absolute displacement in within one-third,
two-thirds, and the whole time series.

The results of the different experiments are presented in
Results and Discussion. For the sake of clarity, we report here
the definition of each metrics: Precision is the ratio between true
positives (TP) and the sum of true positives and false positives
(FP). Precision attempts to answer the following question: What
proportion of positive identifications was actually correct? Recall
is the ratio between TP and the sum of TP and false negatives
(FN). Recall attempts to answer the following question: what
proportion of actual positives was identified correctly? Accuracy
is the ratio between the sum of TP and the true negatives (TN)
and the sum of TP + TN + FP + FN. The inference speed is simply
the number of single time series of 101 samples that can be
analyzed within one second.

Proposed Neural Network Approach
Neural Networks (NNs) (Schmidhuber, 2015) have seen a revival
in the past decade thanks to the invention of new techniques for
normalization (Ioffe and Szegedy, 2015), regularization (Hinton
et al., 2012), and new activations functions (for instance, Rectified
Linear Unit or ReLU) that improved their overall performance
and allowed to train deeper topology. Because of the ability to
learn complex patterns, NNs are good candidates to tackle the

TABLE 2 | Description of the adopted neural network model.

Layer Size

Input 101
FCa + BNb + ReLU 64
Dropout (rate � 0.5) 64
FCa + BNb 2

aFC, Fully connected.
bBN, batch normalization.
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landslides classification problem. In our experiment, we used a
simple two-layer fully connected NN with dropout and batch
normalization and cross entropy for loss function (see Table 2).
We adopted the Batch Normalization (BN) described by Sergey
Ioffe and Christian Szegedy in order to improve the
performance of the neural network (Ioffe and Szegedy, 2015).
The NN described in Table 1 was implemented using
TensorFlow (Shukla, 2018). Because of the unbalanced
dataset, the size of the batch resulted in an important
hyperparameter. We obtained the best performance for a
batch size of 2048, whereas smaller batch sizes resulted in an
unstable loss function. The selection of the best model was made
by checkpointing the state of the model with the highest F1 score
during the validation step. After few iterations, we converged to
the model in Table 2.

DATASET

In this section, we describe how the training and testing datasets
are generated and how the different experiments are set up. We
use data from the Non-ordinary Plan of Environmental Remote
Sensing (Piano Straordinario di Telerilevamento Ambientale)
financed by the Italian Ministry of the Environment
(Ministero dell’Ambiente e della Tutela del Territorio e del
Mare—MATTTM), which has the goal of mapping and
preventing geo-hazards within the Italian territory (Costantini
et al., 2017). The datasets include 20,000 SAR images acquired
between 1992 and 2014 over the whole Italian Territory.
Specifically, a global coverage of the Italian territory has been
provided between 1992 and 2000 by the ERS-1/2 data while
ENVISAT data have been used to cover the time-span 2002–2010

(Figure 2). This dataset comprises a database of 40 million PS
points and 2 billion displacement measurements. From 2011 to
2014, a hundred COSMO-SkyMed (CSK) data stacks acquired in
ascending and descending geometries have been processed
over selected areas of the Italian territory (Figure 2). The
CSK dataset provided 130 million PS Points and 6 billion
displacement measurements. To our knowledge, this is the
largest highly curated dataset freely available through the
Geoportale Nazionale (National Geoportal), which is a
publishing platform also containing geospatial information
related to landslide risk (Di Martire et al., 2017; Trigila and
Iadanza, 2018). Further details of the satellite data used in this
study can be found in Table 3. We used a validated landslide
catalogue from Trigila and Iadanza (2018) as an additional
ancillary dataset in order to start the data preparation process
and the NN initial training. The landslide shapefile data consist
in a highly curated dataset validated by independent studies
(Di Martire et al., 2017). Further information related to the
dataset used in this study and the ground-based validation
technique used for generating the landslide ground truth can

FIGURE 2 | Multi-temporal time-series dataset used in this study. The Validated Landslide areas as presented in Di Martire et al. (2017) have been used to
subsample the CSK dataset and create a validated training dataset.

TABLE 3 | Input CSK, ERS and ENVISAT data characteristics adapted from
Costantini et al. (2017) and Di Martire et al. (2017).

Sensor name COSMO-SkyMed ERS ENVISAT

Revisit Time 16 days 33 days 35 days
Incidence Angle 26–38° 23° 23°

Polarization HH VV VV
Frame extension 40 × 40 km 100 × 100 km 100 × 100 km
Band X C C
Wavelength 3.1 cm 5.6 cm 5.6 cm
Ground resolution 3 × 3 m 6 × 30 m 28 × 28 m
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be found in Costantini et al. (2017), Di Martire et al. (2017),
and Trigila and Iadanza (2018).

Our initial dataset consisted of a large-scale surface
displacement time-series map of the Italian peninsula
(Figure 2). Separately, we were provided a set of shapefiles
with the polygons circumscribing the regions where landslides
were manually identified (Di Martire et al., 2017). One challenge
we had to face was the fact that the polygons (Figure 2 validated
landslides) represented a best estimate of the region that was
affected by a landslide, but in actuality, not all the PS time series
showed a pattern corresponding necessarily to an actual active
accelerating landslide [i.e., not all points within a landslide
polygon would be possibly classified as “anomalous” as
defined in our analytical model (Raspini et al., 2018)]. As an
example, there could be landslides moving toward a direction
perpendicular to the satellite LOS (i.e., the satellite-based time
series of displacement is insensitive to the direction of motion
perpendicular to the LOS). Another example could be related to
the fact that the landslide LOS deformation could simply be
steady without showing changes over time. On the other hand,
the prior knowledge that a landslide has been identified in the
area allows the use of the analytical model described in Raspini
et al. (2018) Anomaly Detection Using an Analytical Model to
classify the time-series points within the polygons as a positive
signal (i.e., accelerating landslide) or not. Using the CSK dataset
as training together with the approach described in Anomaly
Detection Using an Analytical Model, we were able to identify
almost 560,000 positive signals (Persistent Scatterers points)
within the polygons identified by the landslide detection
integrated system (based on field surveys occurring at the
same time of the CSK data acquisition time) (Di Martire
et al., 2017). The negative signals were similarly identified by
considering PS that were randomly selected and that were not
part of any of the polygons provided to us and for which the
analytic model provided a negative signal. The ensemble of the
positive signals and the negative signals represent our gold
standard that will be used to train and validate our neural
networks to identify anomalous deformation patterns. Since
landslides are rare events, the nature of the problem is highly
unbalanced and the chance of selecting an unidentified (i.e., not
included in the shape files) positive signal and wrongly classify it
as a negative signal are very small. To reflect the data
distribution, we created a training set with 16% of positives
(448,000 positive signal persistent scatterers points) and 84% of
negatives (2,352,000 negative signals) and a testing set with 4%
of positives (112,000 positive signals persistent scatterers
points) and 96% of negatives (2,688,000 negative signals). We
did not perform randomization before performing the
aforementioned splitting because PS that are in proximity of
each other could be highly correlated (i.e., temporal
displacement might look very similar). We avoided the
randomization step also to avoid leaking of some training
data into the test data. This step was performed in order to
ensure the two datasets originate from separate physical
regions. Because the time series of displacement were not
all of the same length, we interpolate them and made them
of length 101, resampling them to constant steps.

RESULTS AND DISCUSSION

We provide in all our neural network experiments the same gold
standard dataset described in Dataset. Two independent sets of
2,8000,000 persistent scatterers points were used as training and
validation. The results of the NN anomalies classification of the
ERS dataset are presented in Figure 3. The main criteria adopted
for model selections were accuracy and inference speed. The
second criterion becomes critical when developing a system that
is meant for large-scale real-time monitoring. The accuracies and
inference speed for the NN experiment applied on the test dataset
are shown in Table 4. Given that the problemmight be thought as
a multi-objective one (optimize accuracy and inference speed), we
used Random Forest (RF) with the intent of devising a model that
would possibly outperform our first attempt using NN. We
performed a first set of experiments using the features
previously described in Random Forest Classification and
changing the number of trees adopted. We used the software
package skit-learn (Pedregosa et al., 2011) and specifically the
Random Forest Classifier. The results of the RF classifier using ad
hoc features are summarized in Table 5. As it can be seen, limiting
the model to 100 trees is sufficient to reach a performance
comparable to the more complex model with 500 trees with a
higher inference speed. However, the NN model outperforms the
RF models presented in Table 4 on both metrics, i.e., accuracy
and speed. In our second set of experiments, we did not engineer
the features (i.e., we do not calculate the ad hoc features a priori)
and instead we provided to the RF model the same inputs as for
the NN, i.e., the 101 elements time series. The results are listed in
Table 6.

It can be seen that the 50- and 100-tree models have very
similar accuracy. On the other hand, the 5- and 10-tree models
have lower precision or recall, respectively, most likely due to a
larger variance given the smaller number of trees available. The
RF algorithm also provides the importance of each feature,
namely, what weight each feature contributes to the final
prediction. Since the input to the algorithm is the actual time
series, each time step represents a feature. Table 7 shows the nine
most important features of the best-performing RF algorithm. As
it can be seen, the algorithm relies mostly on the later time steps in
the time series to make a prediction. This is expected since the
later time steps are an indication of an anomalous point as
defined in Raspini et al. (2018) in Anomaly detection using an
analytical model.

Random Forest and Neural Network
Comparative Analysis
A comparison between the RF models and the NN in terms of
inference speed, accuracy, precision, and recall provides detailed
insights into the characteristics of each method. Given the results
shown in Tables 4–7, we highlight that the NN model can be
considered the fastest one outperforming the second fastest (RF
with five trees without engineered features) by a factor of 2. In
terms of accuracy the RF model with 100 (RF100) trees without
engineered features outperforms the RF with 50 trees (RF50)
without engineered features and the NN model by 0.01% and
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0.02%, respectively. In terms of precision, the RF model with 10
trees without engineered features outperforms the RF100 and NN
by 0.006% and 0.017%, respectively. The NN model provides the
best recall parameter (0.9705) compared to the RF100 and RF50,
which perform 0.82% and 1% worse, respectively.

Numerically speaking, there is no clear “winner”, and all
depends on comparison metrics we are more interested into.
Given our problem (i.e., we are trying to develop a global near

FIGURE 3 | Anomalies/Positive signals identified by the Neural Network (NN) algorithm over the entire Italian territory. These points indicate areas where a change in
deformation larger than 10 mm/year has been detected during the observation period. Red boxes represent areas shown in Figure 4 (box A and B) and Figure 5 (box
C). The CSK ERS and Envisat data have been analyzed separately.

TABLE 4 | Results from the neural network experiment.

Inference speed (sample/sec) Accuracy Precision Recall F1 score

2.5 × 106 0.9951 0.9117 0.9705 0.9402

TABLE 5 | Results from different experiments using Random Forest Classifier and
ad hoc features.

#Trees Inference speed
(samples/s)

Accuracy Precision Recall F1 score

100 1 × 105 0.9924 0.8783 0.9413 0.9087
500 1.7 × 104 0.9925 0.8783 0.9431 0.9096

TABLE 6 | Results from different experiments using Random Forest Classifier
without engineered features.

#Trees Inference speed
(samples/s)

Accuracy Precision Recall F1 score

5 1.3 × 106 0.9937 0.8958 0.9524 0.9232
10 6.9 × 105 0.9948 0.9234 0.9482 0.9356
50 1.5 × 105 0.9952 0.9225 0.9601 0.9413
100 6.8 × 104 0.9953 0.9227 0.9623 0.9421

TABLE 7 | Most important features when using the whole time series as input to
the RFmodel without engineered features.

Persistent
scatterer
time-series
indx

97 100 96 98 93 90 91 95 94

imp 0.13 0.11 0.08 0.07 0.06 0.05 0.05 0.05 0.04
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real-time large-scale monitoring system for early detection of
“deformation anomalies”), inference time is important. The RF
five-tree model is the fastest one among the RF models, but
its accuracy is actually the worst if compared to the RF
models without engineered features. Moreover, the NN
model yields more false positives (lower precision) and
less false negatives (higher recall) compared to the best of
the RF models. Given the nature of the problem, a false
positive implies that after the classification, an expert
human operator will spend some extra time to assess the
true state of the signal (in this case, not a landslide predicted
as landslide). On the other hand, mistaking a true landslide as
a negative event could have catastrophic consequences
including the loss of human lives.

Neural Network as an Exploratory Tool
Our results show that signals can also be identified by all networks
in areas not characterized by landslide risk. As an example,
anomalies in time series of surface displacement were found
over urban areas and infrastructures. Figure 4 shows time series
of points located over infrastructures showing signs of distress
(Figures 4F, 5B,F,H) and displacement characterizing landslides
(Figures 4B–E). As can be noticed, the deformation patterns are
very similar highlighting how, despite the entire training set has

been based on time series representing accelerating landslides/no
landslides, the network is sensitive to additional physical
phenomena such as signs of distress characterizing
infrastructure. This feature is based on the intrinsic simplicity
of the proposed NN approach (i.e., not taking into consideration
land type or terrain properties). Because we trained the algorithm
with X-band data, it is also interesting to examine the results of
the network over an area covered by both X-Band (CSK) and
C-band (ERS, Envisat) time series of surface deformation
(Figure 5). The main differences between time series
generated using X and C band is related to the time span
covered by both time series, the accuracy of the final product,
and the different contributions of the noise to the phase signal. As
an example, unwrapping errors in a C-band (5.6 cm wavelength)
time series would show up as steps or “jumps” of 2.8 cm away or
towards the LOS vector whereas the same error would correspond
to a 1.5-cm phase “jump” in X-band (3 cm wavelength) time
series of surface deformation. Figure 5D shows an anomaly
detected by the NN algorithm in the C-Band Envisat dataset,
which is caused by an unwrapping error of the dataset presented
in Costantini et al. (2017). This example shows how the proposed
algorithm is sensitive to unwrapping errors at C-band even if it
has been trained with X-band data. This result is expected since
the time series in Figure 5D falls within the definition of

FIGURE 4 | Examples of multi-temporal time-series dataset over different rural and urban environments: (A)CSK dataset over Aosta Valley. Red polygons show the
location of the ground-based validated dataset from Di Martire et al. (2017) used as training dataset. In this specific case, the landslide polygon is covered by only few
measurement points. The ground-based procedure failed to identify the landslide area located southern close to lon 7.05 lat 45.7 coordinates whereas the proposed
neural network approach identifies the same area as signal. (B) Neural network signal prediction over Aosta Valley; letter E in panel (B) refers to a time-series point
shown in panel (E). (C) CSK dataset over the city of Venice. (D) Time series of anomalous points predicted as signals by the neural network approach presented in this
paper; letter F in panel (D) represents the location of the time series shown in panel (F). (E) Time series of displacement related to an area characterized by an accelerating
landslide shown in panel (B). (F) Anomalous time series related to an area located close to Venice port exit.
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anomalous point as described in Anomaly Detection Using an
Analytical Model. Another interesting result is related to the
amount of identified anomalous points for different wavelengths.
Eighty-five percent of the ERS/Envisat time series shown in
Figure 5A have been classified as anomalous, whereas only
20% of the CSK time series shown in Figure 5E has been
classified as an anomalous time series. Such result provides
insights into what is the most appropriate sensor that can be
used for an early warning system focused on a network of
infrastructure. Our results confirm literature studies (Milillo
et al., 2019; Macchiarulo et al., 2021) preferring CSK to ERS/
Envisat systems data due to a different set of factors including
higher resolution, increased sensitivity to the height of PS points,
and higher satellite acquisition frequency (Table 3).

CONCLUSION AND PERSPECTIVES

We have illustrated the results of a set of experiments based on
neural network and pattern recognition techniques toward the
creation of a full-automated low-latency system capable of
detecting “anomalies” in InSAR time series of surface
deformation. The proposed NN system optimizes speed,
accuracy (0.9951), and recall (0.9705) compared to the RF. In
terms of processing speed, the NN method would process full
ERS, ENVISAT, and CSK MapItaly datasets (170MLN time
series) in 68 s whereas the RF5 would take 2.2 min. As a
comparison, the slowest algorithm (RF500 with engineered
features) would take 2.8 h in order to process the entire
dataset without considering the processing time spent for

FIGURE 5 | Examples of multi-temporal time-series dataset as observed by different sensors: (A) Envisat dataset over the Rome airport. (B) Time series of an
anomalous point located over a building moving at –2 mm/year. (C) Envisat dataset Neural Network signals covering the period 2003–2009. Letters B and D represent
the location of the time series shown in panels (B) and (D). (D) Anomalous time series moving at an average rate of −4 mm/year. The red circles indicate points in the time
series potentially affected by unwrapping errors that in this case have been detected as anomalies. (E) CSK dataset over the Rome airport spanning the period
2011–2014. (F) Time series of an anomalous point located over the highway showing an anomalous behavior between May and July 2011. (G) Time series of anomalous
points of the CSK dataset predicted as signals by the neural network approach presented in this paper. Letters F and H represent the location of the time series shown in
panels (F) and (H). (H) Time series of displacement related to an area characterized by an anomalous deformation pattern (linear and seasonal) near the airport runaway.
Further details on the displacement fields characterizing this area can be found in Bianchini Ciampoli et al. (2020).

Frontiers in Earth Science | www.frontiersin.org February 2022 | Volume 9 | Article 72864310

Milillo et al. MT-InSAR Neural-Network Experiments

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


calculating the engineered features. Decreasing processing time
for large-scale monitoring can be fundamental for mitigating risk
and provide warnings within a reasonable time frame given the
large amount of SAR data available and the increasing number
of SAR sensors that are expected be operational in the near
feature. Nonetheless, the proposed experiments presented in
this paper can be considered an initial proof of concept of a
preliminary early warning system capable of detecting
anomalous points in InSAR time series of surface
displacement. In the rest of this section, we provide further
insights into drawbacks, limitations, and perspectives of the
proposed InSAR-based fully automated warning system. One of
the most important aspects to consider when considering an
InSAR-based detection system is the limitations intrinsic to the
InSAR technique itself.

A single time series of surface displacement does not provide a
full three-dimensional displacement model; hence, there can be a
certain percentage of points on the ground moving toward a
direction that the sensor is insensitive to. These points would still
be measurable by the sensor and would be classified as true
negative whereas deformation is still ongoing toward a direction
perpendicular to the LOS. These false negatives would be
additional points that not even the analytic algorithm adopted
in literature and presented in Anomaly Detection Using an
Analytical Model could detect. Di Martire et al. (2017) used
the same CSK dataset used in this study and showed that there is
a full coincidence between remotely sensed landslide and in situ
detected landslide only for 8.07% of in situ landslides, whereas
35.95% of the time, a partial coincidence was found (i.e., the
landslide was not fully covered by PS measurements); 44.91% of
the dataset showed no coincidence between remotely sensed
landslides and in situ landslide monitoring due to lack of
coverage or landslide motion perpendicular to the satellite
LOS. It should also be pointed out that 11.03% of the SAR
dataset showed the presence of new landslides not detected by in
situ measurements. The dataset spatial coverage characteristics
can be divided into two different satellite subset features: point
density and temporal coherence. Point density depends on the
satellite spatial resolution, which, in turn, depends on the
satellite wavelength (and antenna hardware constrains).
Literature studies (Sansosti et al., 2014; Milillo et al., 2015)
indicate that an improvement of the coherent pixel density over
urban areas (i.e., not affected by temporal decorrelation)
achieved by exploiting the high-resolution X-band of the
CSK SAR data results in an improvement of point
measurement density of 320% and 550% with respect to
RADARSAT-1 and ENVISAT data. Point density also
depends on the temporal coherence, which, in turn, depends
on the radar wavelength and the sampling repeat time. The
sampling frequency of a satellite constellation plays a
fundamental role in the detection of anomalous time series.
A denser acquisition rate is conducive to an increased sensitivity
of displacement acceleration and failure time forecast accuracy
(Moretto et al., 2017). A recent observational simulation
experiment run by Moretto et al. (2017) used ground-based
dataset of landslide failures acquired with sub-daily sampling
frequency to assess the percentage of predicted landslide failures

by under-sampling the sub-daily data to different satellite repeat
frequencies. The results showed that given the actual
constellations in orbit, only COSMO-SkyMed was able to
detect 47 landslides and predict 17 failures within a 5-day
error (39% accuracy) whereas the Sentinel constellation
accurately predicted only seven failures over 30 landslides
detected (23% accuracy). While using the proposed NN
approach and supposing the landslide failures are evenly
distributed among the satellite full, partial, and null
coincidences and considering a total of 100 landslide failures,
only 21.5 and 12.7 collapses would be correctly forecasted using
the CSK and Sentinel system, respectively, within 5 days of the
failure, leading to an NN accuracy of 0.214 and 0.123 for CSK
and Sentinel, respectively. These physical constraints are
imposed only by satellite data availability, LOS geometry
acquisition, and satellite acquisition frequency. Another
major constrain is represented by the InSAR time-series
processing time itself. As stated in Costantini et al. (2017),
the Map-Italy project CSK data time series (time series spanning
from 2011 to 2014) took 2 years to process, which is
incompatible with a near-real-time processing system. State-
of-the-art challenges in the field of InSAR time-series processing
are as follows: (1) the need of a time-series processor that does
not need to re-process the entire stack when a new image needs
to be added to the stack and (2) achieving large-scale cloud
processing capabilities over wide areas. Several attempts have
been reported in literature presenting state-of-the-art cloud-
based InSAR processing systems (Zinno et al., 2015 and 2018;
Ferretti et al., 2015; De Luca et al., 2015; Hua et al., 2016), but
current cost-effective time-series processing update times lie
within 3–6 months on a continental scale (Raspini et al., 2018;
Zinno et al., 2018). The proposed NN approach does not take
into consideration predisposing and triggering factors such as
land cover, terrain geomorphology, DEM slope, and aspect;
hence, the predicted anomalous points can also be located in
urban areas. A closer analysis of the results (Figures 3, 5) reveals
that the anomalous points localized in no-landslide areas
correspond to infrastructures showing signs of structural
distress or physical phenomena corresponding to increased
oil field extraction, aquifer use or volcanic activity
(Stramondo et al., 2007; Milillo et al., 2016; Chaussard et al.,
2017; Salzer et al., 2017, Macchiarulo et al., 2021).
Discriminating and linking time series of surface deformation
to the specific physical phenomena causing an acceleration in
the time series of displacement would require a more complex
network that could take into consideration the aforementioned
factors. A starting point for future studies would be the
development of a convolutional neural network capable of
analyzing spatial features depending on the physical
phenomena requested by the user needs (Ermini et al., 2005).

In this paper, we investigate the performances of neural
network pattern recognition algorithm toward the creation of
a full-automatic anomalies detection system using InSAR time
series of surface deformation. Our results indicate that the
proposed approach would make the anomaly identification
post-processing times negligible when compared to the InSAR
time-series processing. Through our experiments, we show how
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the proposed NN system can provide an accurate and temporally
feasible solution reducing the anomalous time-series detection
processing times by a factor of 2–147 compared to RF methods
and analytical models. Once the existing bottlenecks related to
InSAR time-series processing and low satellite data acquisition
frequency have been overcome within the next 10 years (Rosen
et al., 2019), the proposed approach could be considered a viable
solution to a near-real-time fully automatic system for detecting
anomalies in InSAR time series of surface deformation.
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