
Journal of Machine Learning Research 22 (2021) 1-8 Submitted 12/20; Revised 10/21; Published 11/21

Stable-Baselines3: Reliable Reinforcement Learning
Implementations

Antonin Raffin1 antonin.raffin@dlr.de
Ashley Hill2 ashley.hill@cea.fr
Adam Gleave3 gleave@berkeley.edu
Anssi Kanervisto4 anssk@cs.uef.fi
Maximilian Ernestus5 maximilian@ernestus.com
Noah Dormann1 noah.dormann@dlr.de

1 Robotics and Mechatronics Center (RMC), German Aerospace Center (DLR), Weßling, Germany
2 Interactive Robotics Laboratory, University Paris-Saclay, CEA, Palaiseau, France
3 Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
4 School of Computing, University of Eastern Finland, Joensuu, Finland
5 Kiteswarms GmbH, Freiburg, Germany

Editor: Andreas Mueller

Abstract

Stable-Baselines3 provides open-source implementations of deep reinforcement learning
(RL) algorithms in Python. The implementations have been benchmarked against reference
codebases, and automated unit tests cover 95% of the code. The algorithms follow a
consistent interface and are accompanied by extensive documentation, making it simple to
train and compare different RL algorithms. Our documentation, examples, and source-code
are available at https://github.com/DLR-RM/stable-baselines3.

Keywords: Reinforcement Learning, Baselines, Software, Open-Source, Python, PyTorch

1. Introduction

Deep reinforcement learning (RL) research has grown rapidly in recent years, yet results
are often difficult to reproduce (Henderson et al., 2018). A major challenge is that small
implementation details can have a substantial effect on performance – often greater than
the difference between algorithms (Engstrom et al., 2020). It is particularly important that
implementations used as experimental baselines are reliable; otherwise, novel algorithms
compared to weak baselines lead to inflated estimates of performance improvements.

To address this challenge, we propose Stable-Baselines3 (SB3), an open-source
framework implementing seven commonly used model-free deep RL algorithms (see Sec-
tion 2). We take great care to adhere to software engineering best practices to achieve high-
quality implementations that match prior results. Each algorithm has been benchmarked
on common environments (Raffin and Stulp, 2020) and compared to prior implementations.
Our test suite covers 95% of the code and, together with our active user base1 scrutinizing
changes, ensures that any implementation errors are minimized.

1. At the time of writing, SB3 had 800+ stars on GitHub, 100+ closed issues and 80+ merged pull requests

©2021 Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus and Noah Dormann.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/20-1364.html.

https://github.com/DLR-RM/stable-baselines3
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-1364.html

Raffin, Hill, Gleave, Kanervisto, Ernestus, Dormann

import gym

from stable_baselines3 import SAC

Train an agent using Soft Actor-Critic on Pendulum-v0

env = gym.make("Pendulum-v0")

model = SAC("MlpPolicy", env).learn(total_timesteps=20000)

Save the model

model.save("sac_pendulum")

Load the trained model

model = SAC.load("sac_pendulum")

Start a new episode

obs = env.reset()

What action to take in state `obs`?

action, _ = model.predict(obs, deterministic=True)

Figure 1: Using Stable-Baselines3 to train, save, load, and infer an action from a policy.

Stable-Baselines3 builds on the experience gained from maintaining our previous im-
plementation, Stable-Baselines2 (SB2; Hill et al., 2018)2, that was forked from OpenAI
Baselines (Dhariwal et al., 2017) and uses TensorFlow (Abadi et al., 2016). SB3 is a com-
plete rewrite of the codebase implemented in PyTorch (Paszke et al., 2019), the framework
preferred by a majority of our users in a survey (Raffin, 2020a). SB3 maintains a similar
API, allowing a seamless upgrade pathway from SB2.3

Our main goal is to provide a user-friendly and reliable RL library. To keep SB3 simple
to use and maintain, we focus on model-free, single-agent RL algorithms, and rely on exter-
nal projects to extend the scope to imitation (Wang et al., 2020) and offline learning (Seno,
2020). We prioritize maintaining stable implementations over adding new features or al-
gorithms, and avoid making breaking changes. We provide a consistent, clean and fully
documented API, inspired by the scikit-learn API (Pedregosa et al., 2011). Our code is
easily modifiable by users as we favour readability and simplicity over modularity, although
we make use of object-oriented programming to reduce code duplication.

2. Features

Simple API. Figure 1 shows that training agents in Stable-Baselines3 takes just a few
lines of code, after which the agent can be queried for actions. This allows researchers to
easily use the baseline algorithms and components in their experiments (e.g. Klink et al.
(2020); Nair et al. (2019); Gleave et al. (2020)), as well as apply RL to novel tasks and
environments, like continual learning when attacking WiFi networks (Margaritelli, 2020) or
dampening bridge vibrations (Berkowitz, 2019).

Documentation. SB3 comes with extensive documentation of the code API.4 We
also include a user guide, covering both basic and more advanced usage with a collection
of concrete examples. Moreover, we have developed a Colab notebook based RL tutorial,5

enabling users to demo the library directly in the browser. Additionally, we include common

2. SB2 has 650+ closed issues, 220+ merged pull requests and 200+ citations on Google Scholar.
3. Upgrade guide: https://stable-baselines3.readthedocs.io/en/master/guide/migration.html.
4. https://stable-baselines3.readthedocs.io/en/master/
5. https://github.com/araffin/rl-tutorial-jnrr19

2

https://stable-baselines3.readthedocs.io/en/master/guide/migration.html
https://stable-baselines3.readthedocs.io/en/master/
https://github.com/araffin/rl-tutorial-jnrr19

Stable-Baselines3: Reliable Reinforcement Learning Implementations

tips for running RL experiments and a developer guide. We also pay close attention to
questions and uncertainties from SB3 users, updating the documentation to address these.

High-Quality Implementations. Algorithms are verified against published results
by comparing the agent learning curves6. Moreover, all functions are typed (parameter and
return types) and documented with a consistent style, and most functions are covered by
unit tests. Continuous integration checks that all changes pass unit tests and type check,
as well as validating the code style and documentation.

Comprehensive. Stable-Baselines3 contains the following state-of-the-art on- and
off-policy algorithms, commonly used as experimental baselines: A2C (Mnih et al., 2016),
PPO (Schulman et al., 2017), DDPG (Lillicrap et al., 2016), SAC (Haarnoja et al., 2018),
TD3 (Fujimoto et al., 2018), HER (Andrychowicz et al., 2017) and DQN (Mnih et al., 2015).

Moreover, SB3 provides various algorithm-independent features. We support logging
to CSV files and TensorBoard. Users can log custom metrics and modify training via
user-provided callbacks. To speed up training, we support parallel (or “vectorized”) envi-
ronments. To simplify training, we implement common environment wrappers, like prepro-
cessing Atari observations to match the original DQN experiments (Mnih et al., 2015).

Experimental Framework. RL Baselines Zoo (Raffin, 2018, 2020b) provides scripts
to train and evaluate agents, tune hyperparameters, record videos, store experiment setup
and visualize results. We also include a collection of pre-trained reinforcement learning
agents together with tuned hyperparameters for simple control tasks, PyBullet environ-
ments (Coumans and Bai, 2016–2019) and Atari games, optimized using Optuna (Akiba
et al., 2019). We follow best practices for training and evaluation (Henderson et al., 2018),
such as evaluating in a separate environment, using deterministic evaluation where required
(SAC) and storing all hyperparameters necessary to replicate the experiment.

Stable-Baselines3 Contrib. We implement experimental features in a separate con-
trib repository (Raffin et al., 2020). This allows SB3 to maintain a stable and compact
core, while still providing the latest features, like Truncated Quantile Critics (Kuznetsov
et al., 2020). Implementations in contrib need not be tightly integrated with the main SB3
codebase, but we maintain the same stringent review requirements to ensure users can trust
the contrib implementations. Implementations from contrib that have stood the test of time
may be integrated into the main repository.

3. Comparison to Related Software

Most libraries are targeted at experienced RL researchers, requiring expert knowledge to
use (Weng et al., 2020; Hoffman et al., 2020; Fujita et al., 2021; Castro et al., 2018; Guadar-
rama et al., 2018; Gauci et al., 2018; Stooke and Abbeel, 2019; Kolesnikov, 2018). Only
a few RL libraries offer more than a brief API documentation (garage contributors, 2019;
Liang et al., 2018; Kuhnle et al., 2017; Guadarrama et al., 2018), and some are notoriously
hard to understand.7 By contrast, Stable-Baselines3 is designed to be easy to use and
comes with extensive documentation and tutorials.

6. For example, issue #48 or issue #49.
7. OpenAI Baselines (Dhariwal et al., 2017), see https://www.reddit.com/r/MachineLearning/comments/

95ft1j/. This was a major starting point for Stable-Baselines2 (Hill et al., 2018)

3

https://github.com/DLR-RM/stable-baselines3/issues/48
https://github.com/DLR-RM/stable-baselines3/issues/49
https://www.reddit.com/r/MachineLearning/comments/95ft1j/
https://www.reddit.com/r/MachineLearning/comments/95ft1j/

Raffin, Hill, Gleave, Kanervisto, Ernestus, Dormann

The previous version of Stable-Baselines3, Stable-Baselines2, was created as a
fork of OpenAI Baselines (Dhariwal et al., 2017) but the two codebases quickly diverged (see
PR #481). SB3 is a complete rewrite of Stable-Baselines2 in PyTorch that keeps the
major improvements and new algorithms from SB2 while going even further into improv-
ing code quality (e.g. cleaner codebase, better test coverage, type hints). More precisely,
compared to Baselines, SB3 is fully documented, commented, tested, has 4 additional
algorithms (SAC, TD3, QR-DQN, TQC8) and many additional features (e.g. dictionary ob-
servation support, callbacks, evaluation with multiple environments, environment checker).
The only legacy features of OpenAI Baselines are the code structure (one folder per al-
gorithm), the use of code-level optimizations and the environment tools which are greatly
improved9 (additional features, bug fixes, comments, documentation and more testing).

Many libraries have a modular design (Caspi et al., 2017; Keng and Graesser, 2017;
Hoffman et al., 2020; garage contributors, 2019). This allows them to quickly combine ad-
vances from different papers, but forces new users to understand the full code structure
before being able to tweak the library. On the other extreme, educational implementa-
tions like Spinning Up (Achiam, 2018) are self-contained but hard to maintain due to code
duplication. SB3 strives to strike a balance: factoring out widely used components like
replay buffers, but minimizing the amount of code that needs to be understood to modify
an algorithm.

As an exhaustive comparison to all RL libraries is not possible, in Table 1 we compare
SB3 to a subset of other active or popular libraries, with a focus on quality of implemen-
tation and openness to new users.

RLlib (Liang et al., 2018) scores highly in the table, but is targeted at a different use-case
from SB3. Whereas SB3 focuses on simplicity and reliability, RLlib (Liang et al., 2018)
prioritizes scalability and support for distributed training. Additionally, RLlib includes
both a PyTorch and TensorFlow backend, and includes support for multi-agent training.
This versatility comes at a cost of a larger and more complex codebase.

Overall, we find SB3 compares favourably to other libraries in terms of documentation,
testing and activity.

SB3 OAI Baselines PFRL RLlib Tianshou Acme Tensorforce

Backend PyTorch TF PyTorch PyTorch/TF PyTorch Jax/TF TF

User Guide / Tutorials 3/ 3 7/ / 3 3/ 3 / 3 / 3 3/

API Documentation 3 7 3 3 3 7 3

Benchmark 3 3 3 3

Pretrained models 3 7 3 7 7 7 7

Test Coverage 95% 49% ? ? 94% 74% 81%

Type Checking 3 7 7 3 3 3 7

Issue / PR Template 3 7 7 3 3 7 7

Last Commit (age) < 1 week > 6 months < 1 month < 1 week < 1 month < 1 week < 1 month

Approved PRs (6 mo.) 75 0 13 222 85 5 7

Table 1: Comparison of SB3 to a representative subset of active or popular RL libraries. Key: means
that the feature is only partially present; OAI: OpenAI; TF: TensorFlow; PR: Pull Request.

8. QR-DQN and TQC are in the contrib repo.
9. As an example, one can compare “VecNormalize” in OAI Baselines vs SB3.

4

https://github.com/openai/baselines/pull/481
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/vec_normalize.py
https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common/vec_env/vec_normalize.py

Stable-Baselines3: Reliable Reinforcement Learning Implementations

Acknowledgments

The work described in this paper was partially funded by the project “Reduced Complex-
ity Models” from the “Helmholtz-Gemeinschaft Deutscher Forschungszentren” and by the
EU H2020 project “VERtical Innovation in the Domain of Robotics Enabled by Artificial
intelligence Methods”.

References

Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: A system for large-scale machine learning. In USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’16, page 265–283, 2016.

Joshua Achiam. Spinning up in deep reinforcement learning. https://github.com/

openai/spinningup, 2018.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
Optuna: A next-generation hyperparameter optimization framework. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2019.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welin-
der, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experi-
ence replay. In Neural Information Processing Systems, pages 5048–5058, 2017.

Jack Berkowitz. WaveRL. https://github.com/jaberkow/WaveRL, 2019.

Itai Caspi, Gal Leibovich, Gal Novik, and Shadi Endrawis. Reinforcement learning Coach.
https://doi.org/10.5281/zenodo.1134899, December 2017.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G.
Bellemare. Dopamine: A research framework for deep reinforcement learning. arXiv:
1812.06110v1 [cs.LG], 2018.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for
games, robotics and machine learning. http://pybullet.org, 2016–2019.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. OpenAI Base-
lines. https://github.com/openai/baselines, 2017.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep rl: A case study on
ppo and trpo. In International Conference on Learning Representations, 2020.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International Conference on Machine Learning, volume 80,
pages 1587–1596, 2018.

5

https://github.com/openai/spinningup
https://github.com/openai/spinningup
https://github.com/jaberkow/WaveRL
https://doi.org/10.5281/zenodo.1134899
http://pybullet.org
https://github.com/openai/baselines

Raffin, Hill, Gleave, Kanervisto, Ernestus, Dormann

Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, and Takahiro Ishikawa. Chainerrl:
A deep reinforcement learning library. Journal of Machine Learning Research, 22(77):
1–14, 2021. URL http://jmlr.org/papers/v22/20-376.html.

The garage contributors. Garage: A toolkit for reproducible reinforcement learning research.
https://github.com/rlworkgroup/garage, 2019.

Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Zhengxing Chen, Yuchen
He, Zachary Kaden, Vivek Narayanan, and Xiaohui Ye. Horizon: Facebook’s open source
applied reinforcement learning platform. arXiv:1811.00260v5 [cs.LG], 2018.

Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart Russell.
Adversarial policies: Attacking deep reinforcement learning. In International Conference
on Learning Representations, 2020.

Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Castro, Ethan Holly, Sam
Fishman, Ke Wang, Ekaterina Gonina, Neal Wu, Efi Kokiopoulou, Luciano Sbaiz,
Jamie Smith, Gábor Bartók, Jesse Berent, Chris Harris, Vincent Vanhoucke, and Eu-
gene Brevdo. TF-Agents: A library for reinforcement learning in tensorflow. https:

//github.com/tensorflow/agents, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In Inter-
national Conference on Machine Learning, pages 1861–1870, July 2018.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In The AAAI Conference on Artificial
Intelligence, pages 3207–3214, 2018.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-
pert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable Baselines.
https://github.com/hill-a/stable-baselines, 2018.

Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani,
Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah
Henderson, Alex Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Caglar Gulcehre,
Tom Le Paine, Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando de Freitas. Acme: A
research framework for distributed reinforcement learning. arXiv: 2006.00979v1 [cs.LG],
2020.

Wah Loon Keng and Laura Graesser. SLM lab. https://github.com/kengz/SLM-Lab,
2017.

Pascal Klink, Hany Abdulsamad, Boris Belousov, and Jan Peters. Self-paced contextual
reinforcement learning. In Conference on Robot Learning, pages 513–529, 2020.

Sergey Kolesnikov. Accelerated rl. https://github.com/catalyst-team/catalyst-rl,
2018.

6

http://jmlr.org/papers/v22/20-376.html
https://github.com/rlworkgroup/garage
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/hill-a/stable-baselines
https://github.com/kengz/SLM-Lab
https://github.com/catalyst-team/catalyst-rl

Stable-Baselines3: Reliable Reinforcement Learning Implementations

Alexander Kuhnle, Michael Schaarschmidt, and Kai Fricke. Tensorforce: a Tensor-
Flow library for applied reinforcement learning. https://github.com/tensorforce/

tensorforce, 2017.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling
overestimation bias with truncated mixture of continuous distributional quantile critics.
In International Conference on Machine Learning, 2020.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg,
Joseph E. Gonzalez, Michael I. Jordan, and Ion Stoica. RLlib: Abstractions for dis-
tributed reinforcement learning. In International Conference on Machine Learning, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. In International Conference on Learning Representations, 2016.

Simone Margaritelli. Pwnagotchi. https://github.com/evilsocket/pwnagotchi, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533,
2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lill-
icrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for
deep reinforcement learning. In International Conference on Machine Learning, pages
1928–1937, 2016.

Suraj Nair, Yuke Zhu, Silvio Savarese, and Fei-Fei Li. Causal induction from visual obser-
vations for goal directed tasks. arXiv:1910.01751v1 [cs.LG], 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
imperative style, high-performance deep learning library. In Neural Information Process-
ing Systems, pages 8024–8035, 2019.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Antonin Raffin. RL Baselines Zoo. https://github.com/araffin/rl-baselines-zoo,
2018.

Antonin Raffin. Ml framework poll for Stable-Baselines3. https://twitter.com/

araffin2/status/1223310856471138306, 2020a.

7

https://github.com/tensorforce/tensorforce
https://github.com/tensorforce/tensorforce
https://github.com/evilsocket/pwnagotchi
https://github.com/araffin/rl-baselines-zoo
https://twitter.com/araffin2/status/1223310856471138306
https://twitter.com/araffin2/status/1223310856471138306

Raffin, Hill, Gleave, Kanervisto, Ernestus, Dormann

Antonin Raffin. RL Baselines3 Zoo. https://github.com/DLR-RM/rl-baselines3-zoo,
2020b.

Antonin Raffin and Freek Stulp. Generalized state-dependent exploration for deep rein-
forcement learning in robotics. arXiv: 2005.05719v1 [cs.LG], 2020.

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kan-
ervisto, and Noah Dormann. Stable Baselines3 contrib. https://github.com/

Stable-Baselines-Team/stable-baselines3-contrib, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv:1707.06347v2 [cs.LG], 2017.

Takuma Seno. d3rlpy: A data-driven deep reinforcement learning library as an out-of-the-
box tool. https://github.com/takuseno/d3rlpy, 2020.

Adam Stooke and Pieter Abbeel. rlpyt: A research code base for deep reinforcement learning
in pytorch. arXiv: 1909.01500v2 [cs.LG], 2019.

Steven Wang, Sam Toyer, Adam Gleave, and Scott Emmons. The imitation li-
brary for imitation learning and inverse reinforcement learning. https://github.com/

HumanCompatibleAI/imitation, 2020.

Jiayi Weng, Minghao Zhang, Alexis Duburcq, Kaichao You, Dong Yan, Hang Su, and Jun
Zhu. Tianshou. https://github.com/thu-ml/tianshou, 2020.

8

https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
https://github.com/takuseno/d3rlpy
https://github.com/HumanCompatibleAI/imitation
https://github.com/HumanCompatibleAI/imitation
https://github.com/thu-ml/tianshou

	Introduction
	Features
	Comparison to Related Software

