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Abstract
The advantages of event-sensing over conventional
sensors (e.g., higher dynamic range, lower time la-
tency, and lower power consumption) have spurred
research into machine learning for event data. Un-
surprisingly, deep learning has emerged as a com-
petitive methodology for learning with event sen-
sors; in typical setups, discrete and asynchronous
events are first converted into frame-like tensors
on which standard deep networks can be applied.
However, over-fitting remains a challenge, partic-
ularly since event datasets remain small relative to
conventional datasets (e.g., ImageNet). In this pa-
per, we introduce EventDrop, a new method for
augmenting asynchronous event data to improve
the generalization of deep models. By dropping
events selected with various strategies, we are able
to increase the diversity of training data (e.g., to
simulate various levels of occlusion). From a prac-
tical perspective, EventDrop is simple to imple-
ment and computationally low-cost. Experiments
on two event datasets (N-Caltech101 and N-Cars)
demonstrate that EventDrop can significantly im-
prove the generalization performance across a vari-
ety of deep networks.

1 Introduction
Event sensors, such as DVS event cameras [Patrick et al.,
2008] and NeuTouch tactile sensor [Taunyazov et al., 2020],
are bio-inspired devices that mimic the efficient event-driven
communication mechanisms of the brain. Compared to con-
ventional sensors (e.g., RGB cameras), which synchronously
capture the scene at a fixed rate, event sensors asynchronously
report the changes (called events) of the scene. For example,
DVS cameras capture the changes in luminosity over time
for each pixel independently rather than intensity images as
RGB cameras do. Event sensors usually have the advan-
tages of higher dynamic range, higher temporal resolution,
lower time latency, and higher power efficiency [Gehrig et al.,
2019]. These advantages have stimulated research into ma-
chine learning for event data. Unsurprisingly, deep learning,
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Figure 1: An example of augmented events with EventDrop. For
better visualization, the event frame representation is used to visual-
ize the outcome of augmented events.

which performs extremely well on a variety of tasks, remains
a competitive method for learning with event sensors.

A challenging problem in deep learning is over-fitting,
which causes a model that exhibits excellent performance
on training data to degrade dramatically when validated
against new and unseen data. A simple solution to the over-
fitting problem is to significantly increase the amount of la-
beled data, which is theoretically feasible but may be cost-
prohibitive in practice. The over-fitting problem is more se-
vere in learning with event data since event datasets remain
small relative to conventional datasets (e.g., ImageNet).

Data augmentation is a way to increase both the amount
and diversity of data from existing data, which can improve
the generalization ability of deep learning models. For im-
ages, common augmentation techniques include Translation,
Rotating, Flipping, Cropping, Contrast, Sharpness, Shearing,
etc [Cubuk et al., 2019]. Event data are fundamentally differ-
ent from frame-like data (e.g., images), and hence we cannot
directly use these augmentation techniques that are originally
developed for frame-like data to augment asynchronous event
data.

In this paper, we present EventDrop, a novel method to
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augment event data by dropping events. This is motivated
by the observations that the number of events significantly
changes over time even for the same scene and that occlusion
often occurs in many vision tasks. To address these issues, we
propose three strategies to select certain events to be dropped,
including Random drop, Drop by time, and Drop by area. Fig-
ure 1 shows a specific example of augmented events with dif-
ferent operations of EventDrop. Through these augmentation
operations, we can enlarge both the amount of training data
as well as the data diversity, which will benefit deep learn-
ing models. To the best of our knowledge, EventDrop is the
first work to augment asynchronous event data by dropping
events.

The closely-related works to this study are Dropout [Sri-
vastava et al., 2014], Cutout [DeVries and Taylor, 2017], RE
[Zhong et al., 2020] and SpecAugment [Park et al., 2019], all
of which introduce some noise to improve the generalization
ability of deep learning models. However, Dropout drops the
units and their connections in the models that can be in the
intermediate layers, while our method only drops events in
the input space. EventDrop can be considered as an exten-
sion of Dropout in the input space. Compared to Cutout and
RE, both of which deal with images by considering occlu-
sion, EventDrop works with event data and deals with both
sensor noise and occlusion. SpecAugment works on audio,
while our method deals with event-based data.

In summary, our main contributions are as follows:

• We propose EventDrop, a novel method for augmenting
asynchronous event data, which is simple to implement,
computationally low-cost, and can be applied to various
event-based tasks.

• We evaluate the proposed method on two public event
datasets with different event representations. Experi-
mental results show that the proposed method signifi-
cantly improves the generalization performance across a
variety of deep networks.

2 Related Work
2.1 Event-based Learning
Event-based learning has been increasingly popular due to the
advantages of event sensors (e.g, low time latency, low power
consumption, and high dynamic range) [Gallego et al., 2020;
Lee et al., 2020]. Event-based learning algorithms can be
grouped into two major approaches. One approach is to
first convert asynchronous events into frame-like data, such
that frame-based learning methods can be applied directly
(e.g., state-of-the-art DNNs). Some representative works in-
clude event frame [Rebecq et al., 2017], Event Count Im-
age [Maqueda et al., 2018], Voxel Grid [Zhu et al., 2019],
and Event Spike Tensor (EST) [Gehrig et al., 2019]. While
such methods can make use of the powerful ability of mod-
ern DNNs through event conversion, they may discard some
useful information about the events (e.g., polarity, temporal
information, density).

The other approach is to directly use spiking neural net-
works (SNNs) on the asynchronous event data. The event-
driven property of SNNs makes them inherently suitable

for dealing with event data. Compared to standard DNNs,
SNNs are more biologically plausible and more energy effi-
cient when implemented on neuromorphic processors. Event-
based learning with SNNs has been used for object recogni-
tion [Gu et al., 2020], visual-tactile perception [Taunyazov et
al., 2020], etc. While SNNs are attractive for dealing with
event data, the spike function is not differentiable and hence
one cannot directly use backpropagation methods to train the
SNNs. Several solutions have been proposed to address this
issue, such as converting DNNs to SNNs and approximating
the derivative of the spike function [Wu et al., 2019]. How-
ever, the overall performance of SNNs is often inferior to
standard DNNs.

In this study, we focus on data augmentation for event-
based learning with DNNs, but the proposed method can be
also applied for SNN-based methods.

2.2 Regularization
Regularization is a key technique for mitigating over-fitting
in the training of deep learning models. Common regular-
ization strategies include weight decay, and Dropout [Good-
fellow et al., 2016]. The basic idea of weight decay is to
penalize the model weights by adding a term to the loss func-
tion. Popular forms of weight decay areL1 andL2 regulariza-
tion. Dropout is also a widely-used regularization technique,
which simulates sparsity for the layer it is applied to. In the
standard Dropout method [Srivastava et al., 2014], units and
their connections are randomly dropped out from the model
with a certain probability (e.g., 0.5) during training. Many
variants have been proposed to further improve the speed or
regularization effectiveness [Labach et al., 2019]. Compared
to Dropout, this study drops events in the input space rather
than drops the units and their connections in the models.

2.3 Data Augmentation
Data augmentation can be also regarded as a regularization
method that improves the generalization ability of deep learn-
ing models. It is widely accepted that deep learning models
over-fit, and benefit strongly from larger datasets. Data aug-
mentation is a practical technique to increase the amount of
training data as well as the data diversity. Many studies have
demonstrated that deep learning models can significantly im-
prove their generalization ability by applying some trans-
forms on the input images [Krizhevsky et al., 2012], such
as Translation, Rotation, Flipping, and Cropping. Recently,
A popular augmentation technique called SamplePair [Inoue,
2018] is proposed for image classification, which creates a
new sample from one image by overlaying another image that
is randomly selected from training data.

Different from existing works that deal with images, this
study works on the augmentation of event data, which re-
mains unexplored to the best of our knowledge. We focus
particularly on the object occlusion problem and noisy event
data. The closely-related works that also deal with occlu-
sion are Cutout [DeVries and Taylor, 2017], RE [Zhong et
al., 2020], and SpecAugment [Park et al., 2019]. Specifically,
Cutout applies a fixed-size zero mask to a random location of
each input image, while RE erases the pixels in the randomly
selected region with random values. Compared to Cutout and
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RE, which deal with images, our approach deals with event
data and considers both object occlusion and sensor noise.
SpecAugment is an augmentation method for audio, which
operates on the log mel spectrogram of the input audio. Both
SpecAugment and our method are inspired by Cutout. How-
ever, SpecAugment works on audio, while our method deals
with event data (which are asynchronous events).

3 Event Representation
State-of-the-art DNNs usually deal with frame-like data (e.g.,
images, videos) and cannot be directly used for event data
since event data are a stream of asynchronous events. An
individual event alone, contains little information about the
scene. To make use of event data, certain methods have been
proposed to learn useful frame-like representations that can
be exploited by DNNs. Popular event representations in-
clude Event Frame [Rebecq et al., 2017], Event Count Image
[Maqueda et al., 2018], Voxel Grid [Zhu et al., 2019], and
EST [Gehrig et al., 2019], which we will introduce in the fol-
lowing. Figure 2 shows the general framework of converting
asynchronous event data into popular event representations.

Let ε be a sequence of events, which encode the location,
time, polarity (sign) of the changes. It can be described as:

ε = {ei}Ii=1 = {xi, yi, ti, pi}Ii=1, (1)
where (xi, yi) is the coordinate of the pixel triggering the
event ei, ti is the timestamp when the event is generated, and
pi is the polarity of the event. The polarity takes two values:
1 and −1, representing positive and negative events, respec-
tively. I is the number of events.

Event Frame represents events using the histograms of
events for each pixel, which can be written as (denoted by
VEF ):

VEF (xl, ym) =
∑
ei∈ε

δ(xl − xi)δ(ym − yi), (2)

δ(a) =

{
1, if a = 0

0, otherwise,
(3)

where δ(·) is an indicator function. (xl, ym) is the pixel
coordinate in the Event Frame representation, and xl ∈
{0, 1, · · · ,W − 1}, ym ∈ {0, 1, · · · , H − 1}. The Event
Frame can be regarded as a 2D image with a resolution of
H ×W .

Event Count Image is similar to Event Frame, but it uses
separate histograms for positive events and negative events.
Event Count Image VEC is described as:

VEC(xl, ym,±) =
∑

ei∈ε±

δ(xl − xi)δ(ym − yi), (4)

where ε+ and ε− are event sequences with positive polarity
and negative polarity, respectively. The Event Count Image
can be regarded as a two-channel image with each channel
corresponding to one polarity.

Voxel Grid VV G considers the temporal information of the
events, which is not explicitly handled in Event Frame and
Event Count Image. It is written as

VV G(xl, ym, cn) =
∑

tn−1<ti≤tn

δ(xl−xi)δ(ym−yi)1ti , (5)

Figure 2: General framework of converting events into popular event
representations. The original asynchronous events can be trans-
formed into frame-like data through quantization or learning (e.g.,
neural networks).

tn = t1 + (cn + 1)∆T, (6)

where 1ti is an indicator function, which takes 1 when ti
is in the interval (tn−1, tn] and 0 otherwise. cn is the tem-
poral index of the Voxel Grid representation, and cn ∈
{0, 1, · · · , C − 1}. ∆T is temporal bin size.

Similar to Voxel Grid, EST is also a grid-based rep-
resentation that is learned end-to-end directly from asyn-
chronous event data through differentiable kernel convolution
and quantization. EST considers both temporal information
and polarity about events, which is described as:

VEST (xl, ym, cn,±)

=
∑

ei∈ε±

f±(xi, yi, ti)k(xl − xi, ym − yi, tn − ti), (7)

where f±(x, y, t) is the normalized timestamp, and
f±(x, y, t) = t−t1

∆T where t1 is the first timestamp, ∆T is
the bin size. k(x, y, t) is a trilinear kernel, which is written as

k(x, y, t) = δ(x, y)max(0, 1−
∣∣∣∣ t

∆T

∣∣∣∣). (8)

In addition to the above representations, there are other
event representations such as HOTS [Lagorce et al., 2016],
HATS [Sironi et al., 2018], and Matrix-LSTM [Cannici et
al., 2020]. In this study, we take the four representations as
representatives to analyze how EventDrop enhances the per-
formance of DNNs.

4 Proposed Method: Augmenting Event Data
by Dropping Events

4.1 Motivation
This work is motivated by two observations. The first obser-
vation is that the output of event cameras for the same scene
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Figure 3: Strategies used by EventDrop, where t indicates time
dimension, x denotes the pixel coordinate (only one dimension is
shown here for clarity). Dots represent original events, and × de-
notes the events to be dropped. Dashed lines represent threshold
borders. (a) Original events that are triggered asynchronously. (b)
Random drop strategy. (c) Drop by time strategy. (d) Drop by area
strategy.

under the same lighting condition may vary significantly over
time. This may be because event cameras are somehow noisy,
and events are usually triggered when the change about the
scene reaches or surpasses a threshold. By randomly drop-
ping a proportion of events, it is possible to improve the di-
versity of event data and hence increase the performance of
downstream applications.

The second observation is that occlusion often occurs in
many tasks such as object recognition and tracking. The
generalization ability of a machine learning model depends
highly on the diversity of training data, including various lev-
els of occlusion. However, the available training data usually
suffer from limited variance in the occlusion level. A ma-
chine learning model trained on the data with limited or no
(totally visible) occlusion variance may generalize poorly on
new samples that are partially occluded. By generating new
samples that simulate partially occluded cases, the model is
able to better recognize objects with partial occlusion.

4.2 Strategies of Dropping Events
To address the above issues, we propose three strategies of
dropping events to augment event data, namely Random drop,
Drop by time, and Drop by area. The first strategy is to pre-
pare the model for noisy event data. The other two strate-
gies are for simulating the occlusion problem. Figure 3 illus-
trates the idea of different dropping strategies. We describe
the three strategies in the following.

• Random drop. The basic idea of Random drop is to
randomly drop a proportion of events in the sequence.
This is to overcome the noise from the event sensors.

• Drop by time. Drop by time is to drop events triggered
within a random period of time. It tries to increase the
diversity of training data by stimulating the case that ob-
jects are partially occluded during certain time period.

• Drop by area. Drop by area is to drop events triggered
within a randomly selected pixel area. It also aims to
improve the data diversity by simulating various cases
that some parts of the objects are partially occluded.

Algorithm 1: Procedures of augmenting event data
with EventDrop

Input : A sequence of events
ε = {ei}Ii=1 = {xi, yi, ti, pi}Ii=1, pixel
resolution (W , H).

Output: Augmented event sequences ε∗.
1 Initialize the ε∗ to an empty set, namely ε∗ = {};
2 Operation← Random.choice(identity,
drop by time, drop by area, random drop);

3 if Operation == identity then
4 ε∗ ← ε;
5 end
6 if Operation == drop by time then
7 ρ← Rand(1, 10)/10;
8 Tmin ← Rand(t1, tI);
9 Tmax ← max(tI , Tmin + ρ ∗ (tI − t1));

10 for ei ∈ ε do
11 if (ti < Tmin)‖(ti > Tmax) then
12 Add ei into ε∗;
13 end
14 end
15 end
16 if Operation == drop by area then
17 ρ← Rand(1, 6)/20;
18 x0 ← Rand(0,W );
19 y0 ← Rand(0, H);
20 for ei ∈ ε do
21 if

(xi ∈ [x0, x0 +ρ∗W ])&(yi ∈ [y0, y0 +ρ∗H]
then

22 Do nothing;
23 end
24 else
25 Add ei into ε∗;
26 end
27 end
28 end
29 if Operation == random drop then
30 ρ← Rand(1, 10)/10;
31 ε∗ = Random.choices(ε, I ∗ (1− ρ))
32 end
33 return ε∗.

4.3 Implementation

In this section, we describe the implementation of Event-
Drop. Algorithm 1 gives the procedures of augmenting event
data with EventDrop. This algorithm takes as input a se-
quence of asynchronous events and corresponding image res-
olution (W,H). We first define four augmentation tech-
niques, namely Identity, Random drop, Drop by time, and
Drop by area, and conduct one augmentation technique that
is randomly selected on the event sequence. The random pol-
icy exploration in [Cubuk et al., 2020] is adopted in this study
due to its simplicity and excellent performance. The proba-
bility p of each of these augmentation operations being cho-
sen is set to equal (namely, p = 0.25). The magnitude of
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Random drop and Drop by time is discretized into 9 different
levels and that of Drop by area into 5 levels. Specifically,
when conducting the Drop by time operation, a magnitude is
first randomly selected and then a period of time is selected.
The events triggered within the selected time period would
be deleted from the event sequence, the remaining event se-
quence will be returned as the output of the algorithm. In the
Drop by area operation, a pixel region is first selected by a
random magnitude and a random location, and then the events
within the selected region would be dropped. In the Ran-
dom drop operation, a proportion of events are randomly se-
lected to be dropped. Overall, EventDrop is simple to imple-
ment and computationally low-cost. We have implemented
EventDrop in PyTorch and the source code is available at
https://github.com/fuqianggu/EventDrop.

5 Experiments and Results
5.1 Datasets
We evaluate the proposed EventDrop augmentation technique
using two public event datasets: N-Caltech101 [Orchard et
al., 2015] and N-Cars [Sironi et al., 2018]. N-Caltech101
(Neuromorphic-Caltech101) is the event version of the pop-
ular Caltech101 dataset [Fei-Fei et al., 2004]. To con-
vert the images to event sequences, an ATIS event camera
was installed on a motorized pan-tilt unit, and automatically
moved while pointing at images from the original dataset
(Caltech101) that were shown on a LCD monitor. N-Cars
(Neuromorphic-Cars) is a real-world event dataset for recog-
nizing whether a car is present in a scene. It was recorded us-
ing an ATIS camera that was mounted behind the windshield
of a car.

5.2 Experiment Setup
We evaluate the proposed method using four state-of-the-
art deep learning architectures, namely ResNet-34 architec-
ture [He et al., 2016], VGG-19 [Simonyan and Zisserman,
2014], MobileNet-V2 [Sandler et al., 2018], and Inception-
V3 [Szegedy et al., 2016]. All the networks are pretrained
on ImageNet [Russakovsky et al., 2015]. Since the number
of input channels and output classes for our case are different
from these pre-trained models, we adopt the approach used in
[Gehrig et al., 2019] and replace the first and last layer of the
pre-trained models with random weights, and then fine-tune
all the parameters on the task.

Since event data are a stream of asynchronous events and
cannot be directly applied to deep nets, we consider and im-
plement the four event representations introduced in Section
3. For the implementation of EST, we replace the neural net-
work with a trilinear kernel to convolve with the normalized
timestamps for computational efficiency. Note that the con-
sidered deep learning models take as input 2D images, while
some event representations we considered (e.g., Voxel Grid
and EST) are 3D or 4D tensor. To adapt to these pretrained
model, we concatenate the event representation along the po-
larity and/or temporal dimension as channels.

The Adam optimizer is used to train the model by minimiz-
ing the cross-entropy loss. The initial learning rate is set to
1× 10−4 until the iteration reaches up to 100, after which the

Model Representation Average Accuracy (Std)
Baseline EventDrop

ResNet-34

Event Frame 77.39 (0.78) 78.20 (0.15)
Event Count 77.75 (0.64) 78.30 (0.29)
Voxel Grid 82.47 (0.80) 82.57 (0.42)

EST 83.91 (0.44) 85.15 (0.36)

VGG-19

Event Frame 72.31 (1.38) 74.99 (0.67)
Event Count 73.02 (1.05) 75.01 (0.57)
Voxel Grid 76.63 (0.81) 77.28 (0.45)

EST 78.88 (0.79) 79.55 (1.25)

MobileNet-V2

Event Frame 79.08 (0.84) 82.19 (0.63)
Event Count 79.68 (1.09) 82.31 (0.72)
Voxel Grid 83.12 (0.55) 85.56 (0.79)

EST 84.76 (0.64) 87.14 (0.54)

Inception-V3

Event Frame 80.01 (0.81) 81.46 (0.55)
Event Count 80.15 (0.56) 81.01 (0.81)
Voxel Grid 82.68 (0.53) 84.54 (0.89)

EST 84.60 (0.76) 85.78 (0.63)

Table 1: Object recognition accuracy (%) of different deep nets with
varying representations on N-Caltech101.

learning rate is reduced by a factor of 0.5 every 10 iterations.
The total number of iterations is set to 200. We use a batch
size of 4 for both datasets. To conduct a robust evaluation,
we run the model on each dataset for multiple rounds with
different random seeds, and report the mean and standard de-
viation values. We perform early stopping on a validation set
using the splits provided by the EST [Gehrig et al., 2019] on
N-Caltech101 and 20% of the training data on N-Cars.

5.3 Results on N-Caltech101
We first analyze the results of EventDrop on the N-
Caltech101 dataset. The results from the same models with-
out data augmentation are considered as the baselines. Table
1 compares the performance of EventDrop and the baselines.
We can see that EventDrop improves the performance of all
the models used with different event representations. The ac-
curacy achieved with Voxel Grid and EST representations is
much higher than that with Event Frame and Event Count rep-
resentations. This is attributed to the fact that Voxel Grid and
EST contain temporal information about the events that is dis-
carded by Event Frame and Event Count. Since EST further
considers the polarity information about the events, it behaves
slightly better than Voxel Grid. The same trend can be found
when comparing Event Frame (without polarity information)
and Event Count (with polarity information). Among these
deep nets, MobileNet-V2 seems to perform slightly better
than ResNet-34 and Inception-V3, while VGG-19 performs
the worst, probably because it is relatively old.

5.4 Results on N-Cars
We then compare the results of EventDrop with the baselines
on N-Cars. As can be seen from Table 2, EventDrop out-
performs the baselines with different deep learning architec-
tures and event representations. The improvement on N-Cars
dataset is generally greater than that on N-Caltech101 dataset.
This might be because N-Cars is a real-world data dataset,
and EventDrop works better with real-world cases where sen-
sor noise and occlusion occur more likely than simulation
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Model Representation Average Accuracy (Std)
Baseline EventDrop

ResNet-34

Event Frame 91.83 (0.61) 94.04 (0.19)
Event Count 92.18 (0.34) 95.20 (0.38)
Voxel Grid 91.09 (0.46) 93.61 (0.82)

EST 91.03 (1.30) 95.50 (0.18)

VGG-19

Event Frame 91.61 (0.82) 92.74 (0.81)
Event Count 91.20 (0.53) 93.19 (1.00)
Voxel Grid 91.45 (0.88) 93.39 (0.86)

EST 91.72 (0.85) 93.12 (0.95)

MobileNet-V2

Event Frame 91.87 (0.54) 93.64 (0.50)
Event Count 92.70 (1.22) 95.19 (0.71)
Voxel Grid 91.18 (0.61) 94.05 (0.38)

EST 91.71 (0.29) 94.55 (0.45)

Inception-V3

Event Frame 91.21 (0.56) 92.22 (2.73)
Event Count 91.16 (0.74) 94.41 (0.99)
Voxel Grid 90.67 (0.96) 92.12 (1.68)

EST 90.91 (1.78) 94.44 (0.72)

Table 2: Object recognition accuracy (%) of different deep nets with
varying representations on N-Cars.

(i.e., where the event camera looks at a projected scene rather
than a real-world scene). The improvement of EventDrop
can reach up to about 4.5% (by ResNet-34 with EST repre-
sentation). The Event Count and EST representations, which
consider polarity information, perform better than the Event
Frame and Voxel Grid that do not take polarity into account.
The performance of the four deep nets is similar among the
baselines, while ResNet-34 and MobileNet-V2 achieve bet-
ter accuracy when the training data is augmented with Event-
Drop.

5.5 Comparison of Different Dropping Strategies
We also compare the performance of different dropping
strategies on both datasets. In the implementation of Drop by
time, Drop by area, and Random drop operations, the proba-
bility of each operation being conducted is set to 0.5, and the
corresponding magnitude is randomly selected from the value
set described in Section 4. For EventDrop, the three drop-
ping strategies and Identity operations are randomly selected
to conduct with equal probability. As demonstrated in Table
3, EventDrop that integrates different dropping strategies out-
performs the baselines on both datasets, and the improvement
of EventDrop over the baselines is bigger on N-Cars dataset
than on N-Caltech101 dataset.

Specifically, for N-Caltech101 dataset, EventDrop and
Drop by area operations have better performance than Drop
by time and Random drop operations in general. The Drop
by time operation seems not to improve the baselines when
using Voxel Grid and EST representations but it improves the
performance when using event frame and Event Count repre-
sentations. This might be explained by N-Caltech101 being
a simulated dataset in which the sensor noise and occlusion
in time are negligible, and hence discarding some events that
are selected randomly or triggered during a certain period of
time does not increase the diversity of data. By contrast, for
N-Cars dataset, all the dropping operations result in a better
accuracy than the baselines. This might be because the real-
world event dataset (N-Cars) suffers more from sensor noise

Representation Dropping Strategy Average Accuracy (Std)
N-Caltech101 N-Cars

Event Frame

Baseline 77.39 (0.78) 91.83 (0.61)
Drop by time 78.49 (0.70) 92.81 (1.27)
Drop by area 77.49 (0.71) 92.59 (0.71)
Random drop 77.19 (0.98) 92.23 (0.30)

EventDrop 78.20 (0.15) 94.04 (0.19)

Event Count

Baseline 77.75 (0.64) 92.18 (0.34)
Drop by time 78.12 (0.83) 93.91 (0.61)
Drop by area 77.24 (0.80) 93.81 (0.49)
Random drop 77.68 (0.54) 92.93 (0.87)

EventDrop 78.30 (0.29) 95.20 (0.38)

Voxel Grid

Baseline 82.47 (0.80) 91.09 (0.46)
Drop by time 80.80 (0.72) 92.97 (0.44)
Drop by area 83.84 (1.09) 92.04 (0.66)
Random drop 82.92 (1.00) 91.29 (0.79)

EventDrop 82.57 (0.42) 93.61 (0.82)

EST

Baseline 83.91 (0.44) 91.03 (1.30)
Drop by time 83.65 (0.59) 94.73 (0.38)
Drop by area 85.18 (0.83) 92.71 (1.03)
Random drop 84.07 (0.52) 93.84 (0.52)

EventDrop 85.15 (0.36) 95.50 (0.18)

Table 3: Accuracy (%) comparison of different dropping strategies
based on ResNet-34.

and various occlusions, and dropping operations can better
increase the data diversity.

(a) Event frame (b) Event Count

(c) Voxel Grid (d) EST

Figure 4: Object classification accuracy using different ratios of
training data on N-Cars with ResNet-34.

5.6 Effect of the Amount of Training Data
In this section, we analyze the effect of using different
amounts of training data. The ratio we considered ranges
from 0.1 to 1 where 0.1 represents only 10% training data
that are randomly selected are used to train the network. To
reduce the search space, we fix the random seed that is shared
by the baselines and EventDrop, and then compare their per-
formance. Figure 4 shows that EventDrop consistently im-
proves the baselines in general. It can achieve about 94% ac-
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curacy even with only 10% training data compared to about
91.5% by the baseline. Although the improvement of Event-
Drop over the baseline is marginal when it is trained with cer-
tain ratios of training data, such a problem would obviously
be reduced by averaging the results over more runs. It is also
clear that the improvement of EventDrop is stable when using
the more relatively robust EST representation.

6 Conclusion
In this paper, we propose a new augmentation method for
event-based learning, which we call EventDrop. It is easy to
implement, computationally low-cost, and does not involve
any parameter learning. We have demonstrated that by drop-
ping events selected with certain strategies, we can signifi-
cantly improve the object classification accuracy of different
deep networks on two event datasets. While we show the ap-
plication of our approach for event-based learning with deep
nets, our approach can be also applied to learning with SNNs.
For future work, we will apply our approach to other event-
based learning tasks, such as visual inertial odometry, place
recognition, traffic flow estimation, and simultaneous local-
ization and mapping.
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