Quantum Computing for Radar Remote Sensing Applications

S. Huber, K. Glatting, G. Krieger, A. Moreira

German Aerospace Center (DLR)
Microwaves and Radar Institute

25. November 2021

DLR - Microwaves and Radar Institute

- ► DLR has 10.000 employees at 30 locations in Germany
- Microwaves and Radar (HR) Institute known for its expertise in microwave remote sensing
- HR Institute active in quantum computing applications for radar remote sensing

Synthetic Aperture Radar (SAR)

Synthetic Aperture Radar (SAR)

Part I: Applications

TanDEM-X Interferograms with Different

 B_{eff} = 107.8 m, h_{amb} = 49.2 m

TanDEM-X DEMs with Different Baseline Lengths

 B_{eff} = 107.8 m, h_{amb} = 49.2 m

TanDEM-X DEMs with Different Baseline

SAR Image Classification

¹Source: Semantic segmentation of PolSAR image data using advanced deep learning model

SAR Image Classification

Sentinel-1 SAR image with sea ice features in the Greenland Sea representing areas of different concentrations¹

ice edge map automatically generated by deep learning algorithm²

SAR Image Classification

Quantum machine learning: enhanced classification and feature extraction by quantum sub-routines

Optimization of Reflector Antennas

Antennas with Electronic Beamforming

Part II: Examples

Adiabatic Quantum Computation

Idea: encode solution of a problem in the ground state of the Hamiltonian

$$H(t) = A(t)H_{i} + B(t)H_{p}.$$

Slowly change initial Hamiltonian H_i towards problem Hamiltonian H_p using control functions A and B.

To each instantaneous eigenenergy $e_{\mu}(t)$ belongs a corresponding eigenstate $|e_{\mu}(t)\rangle$

$$H(t) |e_{\mu}(t)\rangle = e_{\mu}(t) |e_{\mu}(t)\rangle$$

Runtime of the algorithm inversely proportional to energy gap of two lowest states

$$T \sim O(1/\Delta^3) \cdots O(1/\Delta^2)$$

Quantum Annealing implements a specific problem Hamiltonian

$$H_{\rm p} \sim \sum_i h_i x_i + \sum_{i,j>i} J_{ij} x_i x_j$$

Example I: Sparse Antenna Arrays

Formulation for Quantum Annealer

"Maximise field intensity at position X, selecting exactly *M* out of *N* elements:"

$$e_{\mu} = -\left|\sum_{i=1}^{N} x_i E_i\right|^2 + \gamma \left(\sum_{i=1}^{N} x_i - M\right)^2$$

Results on D-Wave 2000Q (Chimera)

Here, 5 out of 10 elements. Challenges: Heuristic choice of parameter γ . Larger problem sizes (>20 qubits) may need error correction & post processing.

Example II: Array Antenna Beamforming

Minimum Variance Distortionless Response (MVDR) beamforming: "Minimize noise power in receiver system, while maintaining unit signal power in a certain direction:"

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{ij} r_{ij} w_i w_j^* \;, \quad r_{ij}, w_i \in \mathbb{C} \;, \\ \\ \text{subject to} & \displaystyle \sum_i w_i E_i = 1 \;, \quad E_i \in \mathbb{C} \;. \end{array}$$

Formulation for Quantum Annealer

$$e_{\mu} = \sum_{ij} r_{ij} w_i w_j^* + \gamma \left| \sum_i w_i E_i - 1 \right|^2$$
, here: $r_{ij} = \delta_{ij}$.

A Model for Continuous Complex Variables

Complex coefficients w_i :

$$w_i = c \sum_{lm} i^m \left(2^k x_{ikm} - d\delta_{0k} \right) .$$

Heuristic choice of parameters c and d matching field E_i

$$c = \frac{\max\{|E_0'|, \dots, |E_{N_c-1}'|, |E_0''|, \dots, |E_{N_c-1}''|\}}{\left(2^{N_b} - 1 - d\right) \sum_i |E_i|^2},$$

$$d = \frac{1}{2} \left(2^{N_b} - 1\right).$$

Required number of qubits in this example:

$$N_{\rm c} \times N_{\rm b} \times 2 = 5 \times 4 \times 2 = 40$$
.

Results with D-Wave Advantage 4.1 (Pegasus)

Results look promising. Reasons for deviation:

- altered optimization problem
- low weight quantization (4 × 2) compared to floating point arithmetic of standard digital computers
- size and topology of the solutions space as well as quantum noise might prevent the quantum computer converging to the ground state solution

Goal: More Complicated Optimization

sidelobe control & cross-pol suppression for array-fed reflector

Optimal transmit patterns for wide-swath imaging (here for Sentinel-1 NG)

- patterns have been obtained using the Python CVXOPT package and damped least-squares method, respectively
- implement quantum optimizers outperforming classical algorithms such as particle swarm optimization, etc.

Summary

- radar remote sensing offers a wide variety of interesting & challenging applications for quantum computation ranging from radar system design to data processing and information retrieval
- first examples in array processing indicate potential of quantum computation for these particular kind of problems
- research questions to be addressed in the future: How many qubits can be effectively used? Error correction for quantum annealers in order to improve results? Etc.

