Quantifying nitrous oxide emissions in the U.S. Midwest – A top-down study

M. Eckl¹, A. Roiger¹, J. Kostinek¹, A. Fiehn¹, H. Huntrieser¹, C. Knote², Z. Barkley³, S. Ogle⁴, B. Baier^{5, 6}, C. Sweeney⁵, K. Davis³

¹Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

²Ludwig-Maximilians-University (LMU), Meteorological Institute, Munich, Germany

³Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA

⁴Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA

⁵Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder, Boulder, CO, USA

⁶NOAA Global Monitoring Laboratory, Boulder, CO, USA ⁷Earth and Environmental Systems Institute,

Pennsylvania State University, University Park, PA, USA

Eckl, M., A. Roiger, J. Kostinek, A. Fiehn, H. Huntrieser, C. Knote, Z. Barkley, S. Ogle, B. Baier, C. Sweeney, K. Davis; Quantifying nitrous oxide emissions in the U.S. Midwest - A topdown study using high resolution airborne in situ observations; submitted to Geophysical Research Letters on October 14, 2020.

- Carlos - Salar

SOAr | https://doi.org/10.1002/essoar.10505820.1 | Non-exclusive | First posted online: Mon, 18 Jan 2021 11:27:49 | This content has not been peer reviewed

Selecting ACT-America transects over the Midwest. ACT-America fall 2017 & summer 2019 C130 flight tracks: 10 Oct 2017 **Transects within** 18 Oct 2017 20 Oct 2017 the PBL over the 24 Oct 2017 **Midwest** required \square 20 Jun 2019 04 Jul 2019 Selected: 07 Jul 2019 08 Jul 2019 Four flights of October 2017 • 10 Jul 2019 11 Jul 2019 Six flights of June/July 2019 U.S. Midwest 1.5 Chart 6 DLR

Summary and Outlook	
Average Midwest N ₂ O emissions: • Oct 2017: 0.42 ± 0.28 nmol m ⁻² s ⁻¹ • Jun/Jul 2019: 1.06 ± 0.57 nmol m ⁻² s ⁻¹	
EDGAR fluxes underestimate U.S. Midwest N ₂ O emissions by factors up to 20	How much contributed the severe flooding event in 2019 to Midwest N ₂ O emissions in June/July?
Historical DayCent Midwest N ₂ O fluxes are closer to our top-down estimate than EDGAR but still too low	Study with DayCent simulations driven by these special conditions are planned
Chart 19	

ESSOAr | https://doi.org/10.1002/essoar.10505820.1 | Non-exclusive | First posted online: Mon, 18 Jan 2021 11:27:49 | This content has not been peer reviewed.

Summary and Outlook	Live overview/Q&A session:
Average Midwest N ₂ O emissions: • Oct 2017: 0.42 ± 0.28 nmol m ⁻² s ⁻¹ • Jun/Jul 2019: 1.06 ± 0.57 nmol m ⁻² s ⁻¹	Friday, 11 Dec 04:48 – 04:53 PST
EDGAR fluxes underestimate U.S. Midwest N ₂ O emissions by factors up to 20	How much contributed the severe flooding event in 2019 to Midwest N ₂ O emissions in June/July?
Historical DayCent Midwest N ₂ O fluxes are closer to our top-down estimate than EDGAR but still too low	Study with DayCent simulations driven by these special conditions are planned
Chart 20	

ESSOAr | https://doi.org/10.1002/essoar.10505820.1 | Non-exclusive | First posted online: Mon, 18 Jan 2021 11:27:49 | This content has not been peer reviewed.

References (1/4)

Baier, B. C., Sweeney, C., Choi, Y., Davis, K. J., DiGangi, J. P., Feng, S., . . . Weibring, P. (2020). Multispecies Assessment of Factors Influencing Regional CO₂ and CH₄ Enhancements During the Winter 2017 ACT-America Campaign. *Journal of Geophysical Research: Atmospheres, 125,* e2019JD031339. doi: 10.1029/2019JD031339

Barkley, Z. R., Lauvaux, T., Davis, K. J., Deng, A., Miles, N. L., Richardson, S. J., . . . Maasakkers, J. D. (2017). Quantifying methane emissions from natural gas production in north-eastern Pennsylvania. *Atmospheric Chemistry and Physics*, *17*(22), 13941-13966. doi: 10.5194/acp-17-13941-2017

Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls? *Philosophical Transactions of the Royal Society B: Biological Sciences*, *368*, 20130122. doi: 10.1098/rstb.2013.0122

Combined Nitrous Oxide data from the NOAA/ESRL Global Monitoring Division (2020). Retrieved from https://www.esrl.noaa.gov/gmd/hats/combined/N2O.html (last accessed: 20 Jul 2020)

Del Grosso, S. J., Parton, W. J., Mosier, A. R., Hartman, M. D., Brenner, J., Ojima, D. S., & Schimel, D. S. (2001). Simulated Interaction of Carbon Dynamics and Nitrogen Trace Gas Fluxes Using the DAYCENT Model. In M. Schaffer, L. Ma, & S. Hansen (Eds.), *Modeling Carbon and Nitrogen Dynamics for Soil Management* (pp. 303-332). Boca Raton, Florida, USA: CRC Press.

Del Grosso, S. J., Parton, W. J., Keough, C. A., & Reyes-Fox, M. (2011). Special features of the DayCent modeling package and additional procedures for parameterization, calibration, validation, and applications. In L. R. Ahuja & L. Ma (Eds.), *Methods of Introducing System Models into Agricultural Research* (pp. 155-176). Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. doi: 10.2134/advagricsystmodel2.c5

VDLR

References (2/4)

EDGAR. (2020). *Emission Database for Global Atmospheric Research*. Retrieved from https://edgar.jrc.ec.europa.eu/ (last accessed: 20 Jul 2020)

EDGAR4.3.2. (2017). *Emissions Database for Global Atmospheric Research, version 4.3.2.* European Comission. Retrieved from https://edgar.jrc.ec.europa.eu/overview.php?v=432 GHG doi: 10.2904/JRC-DATASET-EDGAR

EDGAR5.0. (2019). *Emissions Database for Global Atmospheric Research, version 5.0*. European Comission. Retrieved from https://edgar.jrc.ec.europa.eu/overview.php?v=50 GHG doi: 10.2904/JRC-DATASET-EDGAR

Fu, C., Lee, X., Griffis, T. J., Dlugokencky, E. J., & Andrews, A. E. (2017). Investigation of the N₂O emission strength in the U. S. Corn Belt. *Atmospheric Research*, *194*, 66-77. doi: 10.1016/j.atmosres.2017.04.027

Kanter, D. R., Ogle, S. M., & Winiwarter, W. (2020). Building on Paris: integrating nitrous oxide mitigation into future climate policy. *Current Opinion in Environmental Sustainability*, *47*, 1-6. doi: 10.1016/j.cosust.2020.04.005

Kostinek, J., Roiger, A., Davis, K. J., Sweeney, C., DiGangi, J. P., Choi, Y., . . . Butz, A. (2019). Adaptation and performance assessment of a quantum and interband cascade laser spectrometer for simultaneous airborne in situ observation of CH_4 , C_2H_6 , CO_2 , CO and N_2O . Atmospheric Measurement Techniques, 12(3), 1767-1783. doi: 10.5194/amt-12-1767-2019

MacFarling Meure, C. (2004). The natural and anthropogenic variations of carbon dioxide, methane and nitrous oxide during the Holocene from ice core analysis (Doctoral dissertation). University of Melbourne

MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds, R., van Ommen, T., . . . Elkins, J. (2006). Law Dome CO₂, CH₄ and N₂O ice core records extended to 2000 years BP. *Geophysical Research Letters*, *33*(14). doi: 10.1029/2006GL026152

Chart 22

D

DLR

References (3/4)

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., . . . Zhang, H. (2013). Anthropogenic and Natural Radiative Forcing. In T. F. Stocker et al. (Eds.), *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* (pp. 659-740). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press

NOAA. (2020). National Centers for Environmental Information, Climate at a Glance: Regional Rankings. Retrieved from https://www.ncdc.noaa.gov/cag/ (published June 2020, retrieved on July 20, 2020)

Parton, W. J., Hartman, M., Ojima, D., & Schimel, D. (1998). DAYCENT and its land surface submodel: description and testing. *Global and Planetary Change*, *19*(1), 35-48. doi: 10.1016/S0921-8181(98)00040-X

Prather, M. J., Hsu, J., DeLuca, N. M., Jackman, C. H., Oman, L. D., Douglass, A. R., . . . Funke, B. (2015). Measuring and modeling the lifetime of nitrous oxide including its variability. *Journal of Geophysical Research: Atmospheres*, *120*(11), 5693-5705. doi: 10.1002/2015jd023267

Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous Oxide (N₂O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. *Science*, *326*(5949), 123-125. doi: 10.1126/science.1176985

Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., . . . Tans, P. P. (2015). Seasonal climatology of CO2 across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. *Journal of Geophysical Research: Atmospheres, 120*(10), 5155-5190. doi: 10.1002/2014jd022591

References (4/4)

Sweeney, C., Baier, B. C., Miller, J. B., Lang, P., Miller, B. R., Lehman, S., . . . Yang, M. M. (2018). ACT-America: L2 In Situ Atmospheric Gas Concentrations from Flasks, Eastern USA. ORNL Distributed Active Archive Center. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds id=1575 doi: 10.3334/ORNLDAAC/1575

Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., . . . Canadell, J. G. (2019). Acceleration of global N_2O emissions seen from two decades of atmospheric inversion. *Nature Climate Change*, 9(12), 993-998. doi: 10.1038/s41558-019-0613-7

Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., . . . Yao, Y. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. *Nature*, *586*, 248-256. doi: 10.1038/s41586-020-2780-0

Summary and Outlook	Live overview/Q&A session:
Average Midwest N ₂ O emissions: • Oct 2017: 0.42 ± 0.28 nmol m ⁻² s ⁻¹ • Jun/Jul 2019: 1.06 ± 0.57 nmol m ⁻² s ⁻¹	Friday, 11 Dec 04:48 – 04:53 PST
EDGAR fluxes underestimate U.S. Midwest N ₂ O emissions by factors up to 20	How much contributed the severe flooding event in 2019 to Midwest N ₂ O emissions in June/July?
Historical DayCent Midwest N ₂ O fluxes are closer to our top-down estimate than EDGAR but still too low	Study with DayCent simulations driven by these special conditions are planned
Chart 25	

ESSOAr | https://doi.org/10.1002/essoar.10505820.1 | Non-exclusive | First posted online: Mon, 18 Jan 2021 11:27:49 | This content has not been peer reviewed.