2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

September 27 - October 1, 2021. Prague, Czech Republic

A Photorealistic Terrain Simulation Pipeline for
Unstructured Outdoor Environments

M. G. Miiller':2*, M. Durner!, A. Gawel?, W. Stiirzl', R. Triebel!, R. Siegwart2

Abstract— Suitable datasets are an integral part of robotics
research, especially for training neural networks in robot
perception. However, in many domains, suitable real-world data
are scarce and cannot be easily obtained. This problem is
especially prevalent for unstructured outdoor environments, in
particular, planetary ones. Recent advances in photorealistic
simulations help researchers to simulate close-to-real data in
many domains. Yet, there exists no high-quality synthetic data
for planetary exploration tasks. Also, existing simulators lack
the fidelity required for generating planetary data, which is
inherently less structured than human environments. Synthetic
planetary data requires careful modeling and annotation of
many different terrain aspect and details, such as textures
and distributions of rocks, to become a valuable test-bed
for robotics. To fill this gap, we present a novel simulator
specifically designed for the needs of planetary robotics visual
tasks, but also applicable for other outdoor environments. Our
simulator is capable of generating large varieties of (planetary)
outdoor scenes with rich generation of meta data, such as multi-
level semantic and instance annotations. To demonstrate the
wide applicability of this new simulator, we evaluate its perfor-
mance on typical robotics applications, i.e. semantic segmenta-
tion, instance segmentation, and visual SLAM. Our simulator is
accessible under https://github.com/DLR-RM/oaisys.

[. INTRODUCTION

Modern robotic systems heavily rely on the availability
of rich training data to achieve an advanced level of func-
tionality for autonomous operation. This is particularly true
when using neural networks for robotic vision tasks. While
many general computer vision applications can leverage a
large range of established datasets of the past decade [1]—
[4], there are fewer examples in robotic research, the most
prominent ones being autonomous driving and indoor service
robotics [5], [6]. This is mostly attributed to the circumstance
that manual labeling of data is time-consuming, especially
where rich annotations are required, such as for pixel-wise
scene segmentation. Furthermore, some applications even
lack larger amounts of suitable and accessible raw data,
e.g. planetary exploration, where data are limited to past
successful missions [7].

Photorealistic simulations have received a considerable
attraction over the recent years [8], [9]. Not only is it possible
to produce vast amounts of labeled data, but also complete
software-in-the loop simulations can be performed, including
realistic physics [10]. Rapid advances are made in the major
areas of robotics research [10]-[12]. However, since most
current simulators focus on the applications of autonomous
driving and indoor service robotics, they mainly provide

Lnstitute of Robotics and Mechatronics, German Aerospace Center
(DLR), Germany

2 Autonomous Systems Lab, Swiss Federal Institute of Technology (ETH
Ziirich), Switzerland

*Corresponding author: marcus.mueller@dlr.de

978-1-6654-1714-3/21/$31.00 ©2021 IEEE

Fig. 1: Example image from the simulator OAISYS. Left, RGB image and
on the right side the corresponding semantic image.

structured environments. Even though other landscapes can
be used in these simulators, the environments have to be
modeled manually. Creating a large variety of environments,
as is needed for training, is very resource intensive and
requires expert knowledge. Furthermore, the fidelity of cur-
rent simulators is limited as they typically build on simula-
tion engines not specifically designed for robotics research.
Hence, while these simulators produce photorealistic data,
they fall short in the creation of crucial meta-data, such as
multi-level semantic and instance segmentation. One special
case is the texturing of individual elements such as ground
planes. Here, entire elements are often assigned a single
label. Yet, especially in outdoor environments, a distinction
within different regions of the surface may be required.

This paper addresses the specific use-case of planetary
robotics, but is not restricted to it. Currently, there exists
neither sufficient real data nor any suitable simulators. Plan-
etary environments are characterized by different soil types
and distributions of natural objects. Since these environments
lack vegetation and human artifacts, which other simulators
focus on, additional tools are required to realistically model
the natural features of these environments. Nevertheless, we
are interested in a simulator that combines existing and new
features to be applicable to additional use cases.

Therefore, we present OAISYS (QOutdoor Artificial
Intelligent SYstems Simulator), a simulator for unstructured
outdoor environments that specifically considers the require-
ments of planetary robotics. OAISYS is built upon the
open source engine Blender [13], without requiring expert
knowledge in rendering pipelines. Besides highest rendering
qualities, key novelties of the simulator include a parametric
creation of new environments and the generation of high-
fidelity meta-data by providing multiple material channels
instead of a single channel with object identification num-

9742

bers (ObjectID channel). This enables merging of multiple
textures to form surface elements while retaining individual
annotations, and even assigning multiple labels to the same
elements. Furthermore, a parametric set-up allows for a
massive generation of novel and diverse data, including
random deformation of the base mesh, mixing and merging
of surface textures, scattering large amounts of objects, and
providing many different lighting conditions.

To demonstrate the capabilities of the OAISYS, we eval-
uate it on three common use-cases in planetary robotics.
First, we employ visual odometries used for navigation of
(autonomous) mobile robots. Then, we consider semantic
terrain segmentation, which is required for mobile robots to
identify traversable regions. Finally, instance segmentation
of stones is shown, which is important for robotic sampling.

Thus, our main contributions are:

o A simulator for unstructured outdoor environments

e A novel method to auto-generate planetary environ-
ments

e Multi-level semantic labels based on material instead of
ObjectID

o A fast method to scatter objects on a base mesh

e An evaluation of the simulated data on three robotic
tasks

II. RELATED WORK

The last decade brought a variety of datasets for robotic
vision tasks, specifically semantically annotated data [1], [4],
[14]-[18]. These are further divided into indoor datasets [4],
outdoor datasets in human environments [1], [19], datasets
in unstructured outdoor environments [16]-[18], and combi-
nations of it [15]. Most relevant for our work are datasets
in unstructured environments similar to planetary bodies.
Xue et al. [16] present a small-scale dataset, suitable for
terrain classification with top-down views. Valada et al. [17]
and Wigness et al. [18], on the other hand, provide larger
amounts of data from varied perspectives. However, the
recorded data contain mostly vegetation and landscaped
environments, which do not much resemble planetary bodies.
Meyer et al. [20] and Wagstaff et al. [7] present planetary(-
like) robotic image data. However, these either contain no
semantic annotations [20] or unsuitable classes for terrain
classification [7].

Possibilities to overcome the gap in available data in-
clude the creation of synthesized image, e.g., by combining
backgrounds and objects from different data [14], [21], and
(photorealistic) simulations [10]-[12], [22]-[25]. While the
fusion of different data is a promising avenue to generate
relevant data from limited amounts of real data, current sets
focus on urban driving scenarios [14], [21]. Hence, simulated
data are an attractive choice to generate rich annotated data
of arbitrary environments. Furthermore, Johnson-Roberson et
al. [23] and Ros et al. [24] show that semantic segmentation
models trained on these synthetic data can generalize well
to real environments. However, like most real datasets, no
current simulator features environments and fidelity needed
for planetary robotics.

While generic simulators allow creation or inclusion of
such environments [10]-[12] and also output of semantically

annotated images, these simulators lack the granularity to
easily produce rich meta-data, such as multi-layered semantic
annotations and instance segmentations. In addition, the
creation of a new and natural environment through the
realistic distribution of objects is typically a manual process
where individual objects and textures need to be placed
in an environment. The simulator presented in [25] offers
higher granularity. However, it focuses on indoor scenes, and
does not offer added features for automatic planetary surface
generation and multi-level labels. PANGU [26], [27] and
SurRender [28] are simulators which can randomly generate
environments and scatter rocks on them. However, they do
not provide any semantic annotations.

The most popular simulation frameworks for visual data
are based on game engines (Unreal [8] and Unity [9]) or
3D creation suites like Blender [13]. Game engines have
the great advantage that they can render data in real-time,
which also enables hardware-in-the-loop simulations. The
advantage of 3D creation suites are integrated rendering
engines that tend to produce outputs of higher visual quality.
In contrast to game engines that typically allow for only a
single semantic output (e.g., either semantic segmentation or
instance segmentation), 3D creation suites enable multiple
outputs.

Our approach is based on Blender [13], and overcomes the
drawbacks of existing datasets and simulators with respect
to planetary data. It enables generation of the highest quality
planetary visual data with rich annotations. Additional mod-
ules further allow automatic generation of realistic object dis-
tributions, such as rocks, and parametric creation of ground
surfaces and textures. Although designed for planetary tasks,
it can also be used for any other unstructured outdoor
environments and can be easily extended.

III. OUTDOOR ARTIFICIAL INTELLIGENT SYTEMS
SIMULATOR (OAISYS)

The basic idea of the simulator is to use a main mesh as
the ground surface, which is called the stage. This stage is
modified in geometry, texture, and arbitrarily added assets
to create a large number of different environments. These
can then be rendered from different perspectives and under
different lighting conditions.

After loading the main mesh into the simulator, it is
deformed by a modifier using random noise as deformation

Fig. 2: Example of a PBR material. In this case, 4 texture channels (diffuse,
normal, reflection, displacement) are used to create the material on the right
side, which is applied to a sphere. Note that height displacement modifies
the underlying geometry of the mesh.

9743

OPrepare And Place Assets

I
deform I

mesh

I

|

create |

: {I&EI" - |
I I

J I I

\(Il |

I I

| LL__ _, i l
=l ‘ |

s i B |

i |

I

I OSet And Update Camera and Light

o S @

T = I

|nstance I set set
selector I camera light

Al
|Olnstance Label Passes Il

load |
inst. pass

more more
batches? samples?

N

render
|mage

|
|
|
I)
|
i
|

a =

next I
-
label?

OSemantlc Label Passes ||ORGB and Depth Pass

I
T I
I
I

load render I
label pass image I
I

\

} I

render
image

|

|

|

|

|

|

load :
RGB pass |
¥ [

|

|

|

Fig. 3: Basic Flow Diagram of OAISYS. First, the main stage mesh is loaded and deformed @. Afterwards, the terrain materials are created randomly
and mesh assets are picked randomly @. In O, the camera and light are set up. In ©, the RGB pass of all assets is loaded and rendered. Afterwards,

the semantic labels are loaded and rendered ©. This procedure is repeated on as many semantic levels as desired. In

the instance labels are loaded

and rendered. Afterwards, either more samples of the sample asset configuration are processed or a new batch ends. The process is completed when the

number of desired batches is reached.

parameters. With that, the simulator already provides auto-
generated modifications for the displayed terrain. Afterwards,
the simulator loads a list of terrain textures, which each
belongs to one terrain class. To achieve photorealistic results,
OAISYS uses Physically Based Rendering (PBR) textures
[29], see Fig. 2. These textures are randomly merged via
a noise shader to create mixtures of different terrains,
see Fig. 4. The created materials are then applied to the
stage. Since each texture has its own semantic label IDs,
the semantic information is not lost when the textures are
merged. For adding other objects on the stage, e.g. rocks,
grass, or trees, OAISYS can rapidly scatter objects on the
terrain surface. For the scattering process, different kinds
of noise maps are available as asset density maps, like
uniform noise or Worley noise [30]. For realistic light,
the simulator can either use a list of High dynamic range
(HDR) images, which are then randomly picked, or Blender’s
internal sky simulation, which creates skies based on the
Nishita model [31]. Random camera angles are chosen to
render the scene from different perspectives. Outputs of this
simulation pipeline are RGB images, corresponding semantic
segmentation images, instance images, and depth images.
One can choose how many different terrain batches are
rendered, and how many samples are taken from one batch.
For every batch iteration, the values for the stage deformation
and material, as well as the asset distribution on them, are
adapted. Light settings and camera position can be changed
after each sample. Fig. 3 gives an overview of the simulator.
All of the parameters of the simulator are read in a single
configuration (cfg) file. Listing 1 shows a section of an

example cfg. We provide several example cfgs files and
detailed explanation for each parameter with our simulation.
The simulator can, in principle, be extended with custom
modules. In the following sections, we present the different
core modules of the simulation.

Listing 1: Example section of main simulation setup cfg. numBatches defines
how many terrains are generated. The value of numSamplesPerBatch defines
how many image samples are taken from one terrain. numMixTerrains
defines how many terrain textures are maximally merged together. The flag
renderLabelsActive defines if semantic labels are rendered and renderLa-
belDepth defines how any semantic levels. Activation flags are also available
for depth renderDepthActive, and instance pass renderInstanceLabelsActive.

"simulationSetup": {
"numBatches":100,
"numSamplesPerBatch":30,
"numMixTerrains":5,
"renderLabelsActive":true,

"renderLabelDepth":2,
"renderInstanceLabelsActive":true,
"renderDepthActive": true}

A. Stage Simulation Module

The stage is the fundamental object mesh of the sim-
ulation. It can be deformed, objects can be placed on it
and its material can be changed. The mesh can be loaded
from any Blender file. Although the stage can be any kind
of mesh, the simulator was designed for planar meshes,
which resemble most common base terrains. We provide a
selection of such meshes with our simulator. When using
the stage as the ground of an outdoor scene, one would like
to apply randomizations to the structure of the flat plane.

9744

Therefore, OAISYS gives the ability to deform the chosen
mesh. For that, our simulator uses a noise texture, which
values determine how the mesh is deformed. For the noise
texture, we choose a multifractal noise, which comes with
Blender and uses Perlin noise [32] as the base function and
is used often for deformation tasks. However, in principle,
any noise map could be used. One can choose the settings
for the deformation procedure and its values. The parameters
are adapted after every batch iteration. Since the noise can
lead to harsh surface deformation, we apply a smoothing
afterwards. Additionally, we apply an adaptive subsurface
modifier, which subdivides the mesh further based on camera
proximity to realize fine detail structures.

B. Asset Simulation Module

Once the basic stage is set up, assets can be applied
to it. Assets are the objects and terrain textures in our
simulation. The terrain textures are combined to a single
terrain material, which is then applied to the stage. For each
batch iteration, the material, with its textures, is swapped
with a new one. Object meshes can be loaded from any other
Blender file and placed on the stage or in a specific location
anywhere in simulation space. When placing an object, one
can place single object instances or apply a function to
automatically add multiple copies of it in different locations,
sizes, and orientations. The user can arbitrarily place many
objects. In contrast to other simulators, this method enables
us to simulate thousands of objects randomly placed on the
surface. Each asset, texture and object can have multiple
semantic labels. Hence, we can render multiple different
semantic labels depending on the user’s task. Additionally,
each object can have its own instance label, which will be
kept within one batch. Since it is kept over all frames of a
batch, the simulator can also produce ground-truth data for
object tracking tasks. In the following section, the two asset
types, as well as how semantic information is set up with
them, are explained in more depth.

1) Terrain Material: Terrain materials are configured via
the cfg file from pure terrain textures, i.e. textures, which are
attributed by a single semantic class for each semantic depth
level. As an example of terrain classification, a texture might
be dried mud, and another one gravel, see Fig. 4. The textures
are then merged into one texture, based on a noise texture,
and the parameters are randomly chosen and adapted in every
batch iteration. For the merging process, OAISYS uses Perlin
noise of value « € [0, 1] for each pixel, as illustrated by @
in the illustration. The noise value determines the opacity
value for both terrains, i.e. « is the opacity for texture %q,
and 1—« for texture t5. As a result, the newly created texture
t3, which consists of a set of the two pure textures, is given
by

t3=0’~t1+(1—0’)'t2 @))

This new texture can then be merged with another pure
texture, which results once again in a new texture. The max-
imum number of merging steps is a configurable parameter.
The merging is done smoothly to create a realistic appearance
and to avoid boundary artifacts, which, for instance, would
appear when merging two textures with considerably differ-
ent displacement maps. However, such a smoothing effect

@ texture 1

texture 2

S

@ merging noiseﬁ

smooth label pass final label pass

Fig. 4: Merging of two terrain textures. The basic textures with semantic
label @ are merged according to the values of the merging noise @ .0
depicts the result of the merging. In order to get sharp labels, the smoothed
labels are processed with a threshold .

would corrupt the semantic labels. Therefore, a threshold is
applied for the semantic channel to get clear borders. An
example section of a terrain asset cfg is shown in Listing 2.

Listing 2: Example cfg for two terrain textures and some of their parameters.
With labelIDVec, the semantic class for each semantic image level is defined.
With size, one can adjust the texture size. The parameter normalStrength
defines the strength of the displacment.

"terrains": [

{
"path":"/path/to/texturel/folder/",
"normalStrength":1.0,
"labelIDVec": [10,20,5,2],
"size": 25.0

oA
"path":"/path/to/texture2/folder/",
"normalStrength":0.5,
"labelIDVec": [5,20,7,42],
"size": 60.0}]

2) Individual Meshes: Object assets are meshes, which
are defined in the form of Blender files. One can place single
or multiple objects scattered on the stage. Single objects
can be further defined by providing a csv-file. In case of
multiple objects, a specified number of objects are placed on
the surface of the stage. In order to increase variation of the
objects, each copy varies randomly in size and orientation. To
scatter a large amount of objects, we use the particle system
supplied by Blender. Particle systems emit many copies of an
object from an emitter object. Each emitted object can vary in
a set of parameters, like size and orientation. In our case, the
emitter is the stage mesh. We are using hair particles, which
place the created copies of objects on the surface. With the
hair particle system, it is also possible to enforce certain
orientations, such as along the normal orientation of the
emitter mesh, and to scatter objects with specific orientations,
such as trees. Other methods use physics calculations to
place the objects on a main plane. In that approach, the

9745

Fig. 5: Example of scenes with four passes. @ is the RGB pass. @ is the first semantic level pass. © is the second semantic level pass. Note the differences
in the two semantic passes. @ is the semantic instance pass.

falling of the objects on the plane is physically simulated,
which is computationally heavy. While this yields a more
accurate result, the particle method is by far faster since
no physical calculations are necessary. Therefore, it is also
possible to place large amount of objects on the stage in
the order of thousands. For our training images, we use
environments with 30000+ stones on the terrain. As a result,
the particle method is more applicable for outdoor scenes.
To get more realistic object distributions, one can adjust the
distribution pattern for the objects. This is done by defining
a noise pattern as density map for the stage. For example, in
a planetary case, the rocks are usually more clustered instead
of spread uniformly over the ground. We simulate this with
the Worley noise [30]. An example section of an object asset
cfg can be seen in Listing 3.

Listing 3: Example cfg for object asset. For some parameters, min and max
ranges can be defined, like for numberInstances in this case. Depending on
the value of instanceLabelActive, the asset will output an instance label.
When the flag useDensityMap is enabled, a density distribtion map is used
for the particles. The value of defaultSize defines the default value.

"meshes": [

{
"path":"/path/to/mesh/",
"numberInstances": [3000,200007,
"labelIDVec": [42,200,0,200],
"instancelLabelActive": true,
"useDensityMap": true,
"defaultSize": 3.0}]

3) Rendering Labels: Blender cannot directly output se-
mantic and instance labels. Therefore, most other works use
the ObjectID render pass as semantic output, which most

render engines provide. The output is an image, where each
object in the scene has its own ID. While this can be directly
used for instance labeling, it has its drawbacks when it
comes to semantic labels. Although objects may have an
individual object ID, they can share the same semantic label.
Furthermore, one object might have several different parts,
which have their own semantic label, e.g. the terrain stage
can have several different terrains. Lastly, objects may have
multiple semantic labels. To address these shortcomings of
just rendering the object ID pass, we render the diffuse
channel, which outputs the pure material color applied to
an object without any physical based rendering applied. As
a result, the object can have different labels for different
parts of the object, depending on the material. Therefore,
this approach can also be used to give the terrains applied
on the same object different semantic labels. We go even
a step further and allow not just a single semantic label
material, but as many as the user specifies, which can be
easily done within an array in the cfg-file using parameter
labellDVec as shown in Listing 3. However, the problem with
this approach is that the rendered image is in the RGB-value
space. Therefore, it is necessary to encode the semantic label
into RGB values. This can be easily done for the red, green,
blue channel R, GG, B as follows:

IDiaper
re |2 o

G- {IDlabel(mOd#Cz)J As 2
#c
B = L(IDlabel(mod#CQ))(mod#c)J - As

9746

Fig. 6: Same scene with different light settings and atmosphere properties.

where #c is the number of step values assigned for each
individual channel and As is the label step size. IDjgpe is
the semantic class label. The same method is used for the
instance class labels. Here, IDyqper is replaced by IDgpject. In
the case of particles, this is the particle ID.

C. Light Simulation Module

OAISYS can simulate different light setups to produce
varied conditions. The user can either choose HDR images as
illumination background or Blender’s internal "Sky Texture".
The Sky Texture comes with a variety of sun parameters,
like its size, elevation, intensity, and altitude. Furthermore,
it is possible to change the atmosphere value with the three
values: air, dust, and ozone. All of these parameters can be
randomly picked by the OAISYS by defining their minimum
and maximum values. Fig. 6 illustrates the same scene
rendered with different light and atmosphere settings.

D. Camera Simulation Module

Our simulator provides two options to simulate the camera.
The first option is to specify precise camera motions as se-
quence poses with a csv file. The second option is to sample
random values for the camera poses. For the second option,
we use a target object faced by the camera to guarantee
that the camera is focusing on a particular section of the
simulation space. The user can choose separate constraining

Fig. 7: Example of COCO annotation for rocks.

TABLE I: RMS ATE of two simulated datasets.

sequence 1 sequence 2 sequence 3
DSO 0.208729 0.217106 0.136558
ORB-SLAM3 | 17.615447 (abort) 0.376687 0.140577

values for the random movement of the target position. For
instance, the target object might be in the same area, where
the stage is present. As a result, the camera is always facing
the terrain. One can also specify the target object position
relative to the camera position, e.g. to focus the camera to
very close or far areas. The target object is invisible to the
rendering engine. Although our simulator ships by default
with one camera sensor type, it can be easily extended by
custom sensors and sensor noise models. It is also possible to
arbitrarily simulate many different sensors at the same time
(e.g. simulating a stereo camera rig).

E. Post-Processing Module

We also provide a post-processing script for additional
label filtering (e.g. instance labels within a certain distance or
size). The script decodes the semantic labels, gives threshold
options for instance labels, and provides two widely used
data formats, COCO and hdf5. An example of a generated
COCO file is shown in Fig. 7.

IV. EXPERIMENTS

As testbed for the presented simulator, we evaluate it on
three common use-cases found in planetary robotic missions.
Firstly, we test the feasibility of the data to evaluate ego-
motion estimation, as required for autonomous mobile agents
on planetary missions [33], [34]. Secondly, we synthesize
a varied dataset of planetary scenes and train a semantic
segmentation network with it, to test its ability to correctly
segment previously unseen real world data from a planetary
analogue site. Thirdly, we study the applicability of the syn-
thetically generated data to perform instance segmentation of
rocks that are of particular interest during planetary missions
for sample collection or scene understanding purposes.

A. Ego-Motion Estimation Task

For evaluation of ego-motion estimation on the synthet-
ically generated data, we generate 3 trajectories on a sim-
ulated planetary surface, which we read into our simulator
with the csv camera option. The trajectories simulate a flight
of an MAV over a planetary surface. We run two state-of-
the-art visual odometries on the synthesized dataset: a direct
method, DSO [35], and an indirect method, ORB-Slam3 [36].
Fig. 8 shows the three trajectories and Fig. 9 an example
image of DSO in action when run on our dataset. The
resulting absolute RMS errors are presented in Tab. I. DSO
performs well throughout all sequences. ORB-Slam performs
well on the sequences 2 and 3, while producing a critical
tracking failure on sequence 1. This failure is attributed to
fast rotational motions. With these results, we show that we
can successfully use the simulator to test and tune robot
motions in planetary environments towards their performance
in visual odometry. This step is relevant to avoid critical
operation failures and investigate corner cases of operation
when planning robotic missions where human intervention
is limited or impossible.

9747

Fig. 8: The three trajectories from top view (black curve: ground-truth; blue
curve: estimated by DSO).

B. Semantic Segmentation

Semantic information about the environment can be a
crucial input for future planetary robotic missions. It can
support the traversability analysis of terrain in order to plan
safe robotic paths, or can help to discover scientifically
interesting spots. Currently, there exists no publicly avail-
able planetary dataset with sufficient semantic annotation of
the environment. Therefore, our simulator can serve as a
dataset generator for training machine learning methods. In
this experiment, we simulate environments consisting of 5
common planetary landscape classes, i.e. rock, sand, dried
mud, gravel, and sky. In total, we rendered 8.345 image
samples in this environment, using only 7 textures in total,
ie. 3 sand textures, 1 dried mud texture, and 3 gravel
textures. Furthermore, we scattered 16 different rock assets
over the auto generated terrains. For each rock, we used
a sample size between 0 and 13000 instances. Example
dataset images are illustrated in Fig. 10. We fine-tuned the
popular semantic segmentation network DeepLabv3 [37] on
this dataset, which was pre-trained on the COCO dataset.
To evaluate the trained network, we manually annotated 18
images of the MADMAX dataset [20]. Example predictions
are depicted in Fig. 11. We achieve the following IoU for
the following classes: 81,39 (sand), 81.38 (gravel), 41.17
(dried mud), 90.66 (sky), 73.35 (rock). We note that the
performance is generally high, which confirms previous
findings of the suitability of training semantic segmentation
tasks on synthetic data [23]. Note that the dried mud class
has a relatively low IoU. In most failure cases, the network
predicted gravel instead of dried mud. We attribute this to
the nature of the used data. Test data labelled as dried
mud typically contained scattered gravel and was hence
misclassified as such. A more fine-grained texture for the
dried mud texture would most likely increase performance
in this case.

Incorrect estimations also happened for distant areas,
where gravel often was mistakenly predicted as sand. Since
far away gravel is difficult to visually distinguish from nearby
sand, inclusion of a depth channel in training and inference
could potentially alleviate this failure case.

Fig. 9: DSO running on a dataset generated by OAISYS.

Fig. 10: Training data examples for the semantic segmentation task.

C. Instance Segmentation

Besides semantic segmentation, segmenting individual ob-
jects (e.g. rocks) is an important task in order to manip-
ulate and navigate a robot’s surrounding. To demonstrate
the feasibility of OAISYS for the generation of instance-
labelled data, we train the instance segmentation network
Mask R-CNN [38] on synthetic data. Specifically, we use the
implementation of Wu et al. [39] and fine-tune the network
for 15 epochs with 11205 rendered training images, which
only employed 7 rock assets. The evaluation is done on real
data recorded during a scouting mission on Mount Etna. On
the test data consisting of three manually annotated scenes
resulting in a total of 47 samples, we achieved a mean IoU
of 53.68. Although, the value indicates a low performance,
qualitative results as shown in Fig. 12 show an opposite
impression. It can be noticed, that so-called floating rocks are
often well segmented, while smaller rock formations result in
no detection. We believe that a larger variety of rock samples

Fig. 11: Left: RGB image from the MADMAX dataset. Middle: Corre-
sponding manually labeled ground truth. Right: Prediction of fine trained
network on synthetic data. Classes are: sand (red), gravel (green), dried mud
(dark red), sky (blue), and dark green (rock)

Il

9748

Fig. 12: Examples of the instance segmentation predictions.

in the simulation can potentially achieve higher performance.
Multi-view can also help the network to further improve on
this challenging test data.

V. CONCLUSION

In this paper, we presented a novel simulator for outdoor
environments with the focus on planetary landscapes. We
introduced a method for generating arbitrarily many different
kinds of terrains, which can be used to create large datasets.
Furthermore, we demonstrated a novel method on how to
create multiple layers of semantics, which is important for
a variety of robotic and scientific tasks. To demonstrate our
simulator, we evaluated it with three common robotic scenar-
ios. We were able to show that the simulator can synthesize
datasets, which can be used to train neural networks and
apply real world data to them. In this paper, we also showed
that navigation algorithms can be tested with our simulation.
In order to give anyone the possibility to create their own
datasets and to extend the simulator by custom modules, we
release the code of the Outdoor Artificial Intelligent Systems
Simulator.

ACKNOWLEDGMENT

We thank Martin Wudenka and Wout Boerdijk for
their help with the experiments. This work was sup-
ported by the Helmholtz Association, project ARCHES

(www.arches-projekt.de/en/, contract number ZT-

0033).

REFERENCES

[1] M. Cordts, M. Omran et al., “The Cityscapes dataset for semantic
urban scene understanding,” in Conf. on Computer Vision and Pattern
Recog., 2016.

[2] J. Deng, W. Dong et al., “Imagenet: A large-scale hierarchical image
database,” in Conf. on Computer Vision and Pattern Recog., 2009.

[3] B. Zhou, A. Lapedriza et al., “Places: A 10 million image database
for scene recognition,” Trans. on Pattern Analysis and Machine
Intelligence, 2017.

[4] N. Silberman, D. Hoiem et al., “Indoor segmentation and support
inference from RGBD images,” in Europ. Conf. on Computer Vision,
2012.

[51 A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in Conf. on Computer
Vision and Pattern Recog., 2012.

[6] J. Sturm, N. Engelhard et al., “A benchmark for the evaluation of
RGB-D SLAM systems,” in Int. Conf. on Intelligent Robot Systems,
2012.

[71

[8]
[9]
[10]
(11]
[12]
[13]

[14]

[15]
[16]

[17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]
[26]

[27])

[28]
(291
(30]
[31]

[32]
(33]

(34]
[35]
[36]

(371
[38]

[39]

9749

K. Wagstaff, Y. Lu et al., “Deep Mars: CNN classification of mars
imagery for the PDS imaging atlas,” in Conf. on Artificial Intelligence,
2018.

Epic Games, “Unreal Engine,” https://www.unrealengine.com.

Unity, “Unity Engine,” https://unity.com.

S. Shah, D. Dey et al., “AirSim: High-fidelity visual and physical
simulation for autonomous vehicles,” in Field and Service Robotics,
2018.

A. Dosovitskiy, G. Ros et al., “CARLA: An open urban driving
simulator,” in /st Annual Conference on Robot Learning, 2017.

Y. Song, S. Naji et al., “Flightmare: A flexible quadrotor simulator,”
in Conf. on Robot Learning, 2020.

B. O. Community, Blender - a 3D modelling and rendering package,
2018.

H. Alhaija, S. Mustikovela et al., “Augmented reality meets computer
vision: Efficient data generation for urban driving scenes,” Int. Journal
of Computer Vision, 2018.

T.-Y. Lin, M. Maire et al., “Microsoft COCO: Common objects in
context,” in Europ. Conf. on Computer Vision, 2014.

J. Xue, H. Zhang et al., “Differential angular imaging for material
recognition,” Conf. on Computer Vision and Pattern Recog., 2017.
A. Valada, G. Oliveira et al., “Deep multispectral semantic scene
understanding of forested environments using multimodal fusion,” in
Int. Symp. on Experimental Robotics, 2016.

M. Wigness, S. Eum et al., “A RUGD dataset for autonomous nav-
igation and visual perception in unstructured outdoor environments,”
in Int. Conf. on Intelligent Robots and Systems, 2019.

G. Neuhold, T. Ollmann et al., “The mapillary vistas dataset for
semantic understanding of street scenes,” in Int. Conf. on Computer
Vision, 2017.

L. Meyer, M. SmiSek et al., “The MADMAX dataset for visual-inertial
rover navigation on Mars,” Journal of Field Robotics, 2021, in press.
H. Blum, P-E. Sarlin er al., “Fishyscapes: A benchmark for safe
semantic segmentation in autonomous driving,” in /ICCV Workshops,
2019.
NVIDIA,
isaac-sim.
M. Johnson-Roberson, C. Barto et al., “Driving in the matrix: Can
virtual worlds replace human-generated annotations for real world
tasks?” in Int. Conf. on Robotics and Automation, 2017.

G. Ros, L. Sellart et al., “The SYNTHIA dataset: A large collection
of synthetic images for semantic segmentation of urban scenes,” in
Conf. on Computer Vision and Pattern Recognition, 2016.

M. Denninger, M. Sundermeyer et al., “BlenderProc,”
arXiv:1911.01911, 2019.

S. Parkes, I. Martin et al., “Planet surface simulation with PANGU,”
in Int. Conf. on Space Operations, 2004.

S. Parkes, M. Dunstan et al., “Planet surface simulation for testing
vision-based, autonomous planetary landers,” in Int. Astronautical
Congress, 2006.

R. Brochard, J. Lebreton et al., “Scientific image rendering for space
scenes with the SurRender software,” arXiv:1810.01423, 2018.

B. Burley, “Physically-based shading at Disney,” in ACM SIGGRAPH,
2012.

S. Worley, “A cellular texture basis function,” in ACM SIGGRAPH,
1996.

T. Nishita, T. Sirai e al., “Display of the earth taking into account
atmospheric scattering,” Computer Graphics, 1996.

K. Perlin, “Improving noise,” in ACM SIGGRAPH, 2002.

D. S. Bayard, D. T. Conway et al., “Vision-based navigation for the
nasa mars helicopter,” in AIAA SciTech Forum, 2019.

P. Lutz, M. G. Miiller et al., “ARDEA - an MAV with skills for future
planetary missions,” Journal of Field Robotics, 2020.

J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” Trans.
on Pattern Analysis and Machine Intelligence, 2018.

C. Campos, R. Elvira et al., “ORB-SLAM3: An accurate open-
source library for visual, visual-inertial and multi-map SLAM,”
arXiv:2007.11898, 2020.

L. Chen, G. Papandreou et al., “Rethinking atrous convolution for
semantic image segmentation,” CoRR, 2017.

K. He, G. Gkioxari et al., “Mask R-CNN,” in Int. Conf. on Computer
Vision, 2017.

Y. Wu, A. Kirillov et al.,
facebookresearch/detectron2, 2019.

“Isaac Sim Software,” https://developer.nvidia.com/

“Detectron2,” https://github.com/

