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Abstract: Many control design methods for underactuated systems require solving a partial
differential equation, which can be complex for systems with many degrees of freedom. In order
to reduce the complexity, it is proposed to decompose the dynamics into several subsystems.
The problem then reduces to the successive stabilization of the individual subsystems, i.e., each
step is a submanifold stabilization problem of reduced dimension. In this way, control methods
which are only practicable for lower dimensional systems can be applied to the overall complex
dynamical system. To ensure that the subsystems can be stabilized independently, the dynamics
are transformed by a change of coordinates to a form with block-diagonal inertia metric. For
the unactuated part kinetic symmetries can be utilized, whereas for the actuated part null
space projectors are employed to decouple the dynamics with respect to the inertia metric.
The subsystems are then stabilized by optimal control or PD-like feedback. In the stability
analysis semidefinite Lyapunov functions are employed. The procedure is demonstrated for a
manipulator on an elastic base and validated in simulation.

Keywords: Hamiltonian dynamics; Robotics; Nonlinear control

1. INTRODUCTION

Underactuated mechanical systems are typically charac-
terized by having fewer control inputs than degrees of
freedom (DOF) (see Spong (1994); Olfati-Saber (2001)).
Underactuated mechanical systems arise in various kinds
of fields, such as robotics, aerospace and naval systems.
Prominent examples in robotics are locomotion systems
and manipulators with elasticities or free floating base.
While fully actuated systems are (exact) feedback lineariz-
able (see, e.g., Isidori (1995)), the problem for underac-
tuated systems is more difficult. The major obstruction
stems from the fact that only one part of the mechanical
system can be directly accessed by the control input. It
is considered that the remaining part of the dynamics is
subject to a constraint, which is sometimes referred to
as a nonholonomic second-order or acceleration constraint
(Olfati-Saber (2001)). The dynamics of the system are
typically described by the Lagrange equations of motion

.. %
M(q)i+ Clq,q)q + ¢ = BT (1)
which are a very popular form of representation used in
robotics. The configuration ¢ € R™ is a coordinate of
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the configuration manifold Q. The positive definite in-
ertia matrix M(q) € R™ ™ is the coordinate expression
of the metric g of the mechanical system and V(q) de-
notes the potential energy. Moreover, the Coriolis matrix
C(q,4) € R™™ is chosen such that M(q) — 2C(q,q) is
skew symmetric. Furthermore, the vector 7 € R? denotes
the control input and B = [0 I]T € R4 is the input
matrix.

The remaining paper is structured as follows. In the two
subsequent subsections an overview on selected control
strategies is given and the contribution of this paper is
stated. Section 2 summarizes the preliminaries on stable
manifolds and the Hamilton-Jacobi equation from a sym-
plectic point of view. Moreover, the successive reduction
procedure is presented in subsection 2.2, which is then
applied in section 3 to control a d-link manipulator on a
flexible base with a single rotational DOF. Section 3 itself
presents the considered model and control goal, the suc-
cessive control design, stability analysis and a numerical
simulation. Finally, the work is concluded in section 4.

1.1 Related Work

The following list of methods makes no claim of complete-
ness and considers approaches which stabilize an equilib-
rium point. A widely applicable and very popular proce-
dure was proposed in Spong (1994) which is commonly
known as partial feedback linearization for underactuated
systems. The design process involves finding an output



function which is then controlled to be identically zero.
To guarantee that the output can be stabilized a common
approach is to choose the output such that it has a well
defined vector relative degree (see, e.g., Isidori (1995))
of two everywhere. The stability of the overall dynam-
ics is typically analyzed investigating the zero dynamics.
In Olfati-Saber (2001), these ideas are further developed
and changes of coordinates were proposed to transform the
equations of motion into the corresponding normal forms.
Depending on the structure of the normal form, differ-
ent kind of control strategies, for example backstepping
methods, are proposed. Another approach which allows to
handle underactuation is Immersion and Invariance, which
was proposed by Astolfi and Ortega (2003). Here, the input
affine control system is stabilized by rendering a manifold
asymptotically stable and invariant. On this lower dimen-
sional submanifold the system follows a desired target dy-
namics £ = (), which exhibits a globally asymptotically
stable equilibrium point £*. In order to realize the stabi-
lization of the manifold by control, the so-called immersion
condition must be satisfied. Finding a solution to this set
of partial differential equations (PDEs) is in general not
trivial and constitutes a key step in the control design.
The interconnection and damping assignment passivity
based control (IDA-PBC) framework is also applied to
underactuated mechanical systems in Ortega et al. (2002).
In order to comply with the second order nonholonomic
constraint, in the control design the so-called matching
conditions have to be satisfied. The matching conditions
constitute a PDE for the desired potential energy function
as well as the metric tensor of the closed-loop system.

A fundamentally different approach to control underactu-
ated mechanical systems is to design a controller, which
is optimal with respect to a certain cost function. For
quadratic costs, the optimal feedback control can be de-
rived from a solution of the Hamilton-Jacobi equation
(HJE), see for example Lee and Markus (1967). Finding
such a solution for the PDE given by the HJE can be chal-
lenging. A comprehensive overview of the problem can be
found in Guckenheimer and Vladimirsky (2004). The sta-
ble manifold method introduced in Sakamoto and van der
Schaft (2008) tackles the optimal control problem for input
affine control systems from a symplectic perspective and
proposes to utilize an approximation of the stable manifold
by convergent series. The approach is successfully applied
to the pendulum on a cart and the acrobot in Horibe
and Sakamoto (2016, 2018). However, especially for very
complex and high dimensional underactuated mechanical
systems, the numerical computation of the feedback law
gets very expensive.

1.2 Contribution

The control design for underactuated mechanical systems
typically involves solving a PDE, e.g. the matching or
immersion condition as well as the HJE, which for high
dimensional systems can be complex. In order to reduce
this complexity, the dynamics are split into several subsys-
tems. The control problem then reduces to the successive
stabilization of the individual subsystems, i.e. each step
is a submanifold stabilization problem of lower dimension.
Compared to existing approaches the proposed procedure
allows to break down the overall complex problem into

multiple nested subproblems that are simpler to address.
Additionally, in this way sophisticated control methods,
which are often only applicable to lower dimensional sys-
tems, can be employed to stabilize the overall complex
dynamical system. Another promising application could
be the embedding of so-called template models of reduced
order, see for example Poulakakis and Grizzle (2009);
Kurtz et al. (2019). To ensure that the subsystems can
be stabilized independently, the dynamics are transformed
by a change of coordinates to a form with block-diagonal
inertia metric. For the unactuated part, system properties,
as for example kinetic symmetries (Olfati-Saber (2001)),
can be used to achieve this. While for the actuated part,
null space projectors, which play a key role in hierarchical
impedance control (Ott et al. (2015)), can be employed to
(actively) decouple the dynamics with respect to the iner-
tia metric. The individual subsystems are then stabilized
by nonlinear optimal control or a PD-like feedback.

To demonstrate the feasibility and performance of the
proposed method, it is applied to control a manipulator
which is mounted on a flexible base. With the increased
demand for dexterous, mobile and lightweight robotic sys-
tems this problem became relevant in many robotic ap-
plications. Scenarios range from space mission, humanoid
robots, aircraft cleaning, hazardous remoted applications
like in nuclear and chemical plants or industrial cranes
(see, e.g. Lew and Moon (2001); George and Book (2003)).
Previous works typically require assumptions, such as sep-
aration of the base and end-effector motion in time-scale or
consider a translationally flexible base only as Beck et al.
(2019), or do not provide a proof of stability. In this work a
rotationally flexible base is considered which constitutes a
pertinent problem for the medical robot MIRO with seven
DOFs. Having eight DOFs in total, a direct application of
the stable manifold method or for example IDA-PBC is
nowadays computationally very demanding as it involves
solving a nonlinear PDE.

2. STABLE MANIFOLDS AND REDUCTION

In this section, we briefly review preliminaries and the
stable manifold method for designing optimal control in
nonlinear systems. Furthermore, the proposed successive
reduction procedure is presented in subsection 2.2.

To derive the optimal control law, the dynamical sys-
tem (1) is reformulated into first order ordinary differential
equations (ODEs) in form of a nonlinear affine system

&= f(x) + g(z)u, (2)
where © = (q,¢) € TQ. Furthermore, it is assumed that
there exists an input transformation 7 = u* + u, such that
for the desired configuration ¢*, the point z* = (¢*,0) is
an equilibrium point for v = 0. Define the quadratic cost
function as

1 o0

J=3 / 2'Qx +u'Rudt, (3)
0
where R € R™ ™ and @Q € R™ "™ are positive-definite
matrices. The optimal control is given by

u=—R""g(x)p, (4)

where p satisfies the well-known Hamilton-Jacobi equation
1 _ 1

H(z,p)=p'f(z)=5p"g(x) R g(2) P+ 52 ' Qu=0. (5)
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Fig. 1. The stable manifold method approximates p(x) by

p(x).

Let M be an m dimensional manifold with coordinates
2!, ..., 2™ In the following, the HJE is regarded as a first

order PDE of the form

H(xla"'vxmvplv"'vpm):07 (6)
where p' = 0V/dz*, i = 1,...,m with unknown function
V(z) and H is a C* function of 2m variables. The
cotangent bundle T*M with canonical symplectic form
w=>y j dxd A dp’ is a symplectic manifold. It is assumed
that the associated Hamiltonian system
0H OH
g o (7
dp ox
has an equilibrium at (z,p) = (0,0) and that the lin-
earization of the Hamiltonian system at the equilibrium is
hyperbolic, namely, no eigenvalue is on the imaginary axis.
The stable manifold S C T*M of an invariant submanifold
U C T*M is defined as

S={me T*M|tlim ' (m) € U},

(8)

where ®!(m) denotes the flow of a dynamical system which
passes through m at time ¢ = 0. It is clear from the
definition that the stable manifold itself is an invariant
manifold. For more details see for example Wiggins (1994).
Let S be the stable manifold of the desired equilibrium
in a neighborhood of (z,p) = (0,0), which is an n-
dimensional submanifold. Assume finally that on S, the
canonical projection (z,p) — z is locally surjective. Then,
there exists a function V(z) defined in a neighborhood of
x = 0 such that

H(zb, ..., 2", 0V/0z",...,0V/02™) = 0,

and S is represented as {(z,p)|p = 9IV/Oz} in the
neighborhood.

2.1 Stable Manifold Method

In the stable manifold method, instead of finding V' (z) for
(6) directly, one computes S numerically for (7) by using
an algorithm that converges to trajectories on S to get

{(z(t),p(t)) | satistying (7) and (x(t),p(t)) — 0 as t — oo}.

This data set gives an approximation p(x) for p(z) = OV /0x
which is necessary in the feedback law for optimal con-

trol, see Fig. 1. Locally at the equilibrium, the optimal

control (4) is linearly approximated by the solution P

of the algebraic Riccati equation. Therefore, it can be

regarded as the extension of the linear quadratic regulator

on larger neighborhood. This is how we compute optimal

control for regulator problems such as (2)-(3). See van der

Schaft (1991, 1992); Sakamoto and van der Schaft (2008);

Sakamoto (2013) for more details.

2.2 Successive Reduction

In the following, an overview of the proposed successive
reduction approach is given. The described steps are later
applied to a manipulator mounted on an elastic base in
section 3.

Choice of Unactuated Coordinates (Step 1)  Find coor-
dinates for T'Q such that the unactuated velocities are or-
thogonal to the actuated velocities with respect to metric
g. The metric expressed in those coordinates has a block
diagonal structure for the unactuated and actuated parts.

Initial Submanifold (Step 2)  Verify that the desired con-
figuration ¢* is an equilibrium of the unactuated dynamics
and, if necessary, perform an input transformation, 7 =
u* 4+ u, such that for u = 0 the system has an equilibrium
point at (¢*,0) € TQ. The set Sy = {((¢*,0),0)} C T*TQ
is now invariant and Sy is a symplectic submanifold of
T*TQ. For future use, 7 is set to one.

Reduction (Step 3) Let S;_1 be a stable manifold of a
subbundle B;_1 C T*TQ, on which solutions of a Hamil-
tonian system with H;_1(z;—1,pi—1), where (x;_1,p;i—1)
are the coordinates on B;_i, are invariant and exponen-
tially converge to the equilibrium as t — oo. We find
a submanifold S; of a subbundle B; with B,y C B;,
S;_1 C S; such that it is invariant under a Hamiltonian
system with H;(x;,p;) and the solutions exponentially
converge to S;_1. Writing x; = (2,-1,&), p; = (pi—1,7n) in
B;, such S; is constructed by solving a HJE H;(&,n) =0
with n = 9V;/9¢, which can be typically done using a
HJE defined by a suitable function H; as described in
subsection 2.1.

Successive Reduction (Step i+2) Repeat Step 3 with
increased i until dimS; = 2dimT'Q. In this case, S; is
a Lagrangian submanifold of T*T Q.

3. BASE VIBRATION CONTROL FOR
MANIPULATORS

3.1 Considered Model and Control Goal

In the following, the dynamics of an d-link manipulator !
attached to an unactuated elastic base with a single ro-
tational DOF are presented. The considered manipulator
has d rotational joints and the base elasticity exhibits a
nonlinear spring characteristics. The configuration mani-
fold Q is an n = d+1 dimensional torus T" = S* x - -- x S!
with coordinate charts of the form (U, ¢',. .., q"). Here, ¢*
corresponds to the base coordinate. The elastic potential
energy of the spring is Vi(¢) and the potential energy
due to gravity is denoted by V,(¢). In the equations of
motion (1), the potential energy is V(q) = Vi(q) + V4(q).
The goal of the control design is to find a control action
7 € R? such that a desired configuration ¢* is stabilized.
Consequently, the actuators of the manipulator should be
employed to steer the robot arm to ¢*, while additionally
ensuring that the base vibrations are damped. Since the
base is unactuated, the desired configuration ¢* of the
system must coincide with a corresponding natural equi-
librium of the base coordinate. For the control design it

1 The successive stabilization is relevant for d > 2.



is assumed, that the full state ¢ and ¢ are measured or
accuratly estimated by an observer.

3.2 Control Design

The derivation of the control law is split into four steps.
First the unactuated coordinates are selected. Thereupon,
the initial submanifold is determined. Finally, two reduc-
tion stages are performed.

Choice of Unactuated Coordinates In order to find co-
ordinates for T'Q such that the unactuated coordinates
are orthogonal with respect to metric g to the actuated
coordinates, a so-called kinetic symmetry is utilized Olfati-
Saber (2001). When the manipulator arm moves freely
(no potential forces), the kinetic energy T of the system
is independent of the base coordinate ¢'. Additionally,
the angular momentum [ of the system defined along the
base joint axis is an integral of motion in this case. When
potential forces are added, the angular momentum is not
constant anymore but the kinetic symmetry property is
conserved as it depends on the inertia tensor only. The
new coordinates of T'Q are obtained by replacing the base
velocity coordinate by the angular momentum [, induced
by the diffeomorphism Jy defined by

0= o) Jaal o] = n@ 1] @)

where a = (¢2,...,q") are the actuated joint velocities and
Joi(q) and Jy 4(q) are the corresponding block matrices.
Using (9) and its first derivative with respect to time, the
velocity dynamics can be expressed in the new coordinates,
which yield
A qi Ti(g,l,a) | |1 —|—5V_ 0

oA ARd e | M R R
The new right hand side is given by Jo(¢) " B7, in which
the first element is zero and the remaining elements are
denoted by 7p. The metric expressed in the new co-
ordinates is given by Jo(q)" M(q)Jo(q). Moreover, the
corresponding Coriolis matrix is Jo(q)" C(q,4)Jo(q) +
Jo(q) T M(q)Jo(q, 4). The special choice of .Jy is compatible
with the second order nonholonomic constraint induced by
the underactuation of the base, i.e. this implies that the
leading element on the right hand side of (10) is zero. The
second order dynamics (1) is now expressed in two first
order equations in form of (9) and (10). This originates
from the fact that the angular momentum is not integrable,

.e., there is no smooth function h; : @ — R such that
8]11/6(] q =1.

Initial Submanifold  The desired equilibrium is given
by the desired configuration ¢ = ¢* and | = 0 as well
as a = 0. As there is no input available in the first
equation of (10), the potential forces affecting the angular
momentum dynamics must vanish at the desired config-
uration and Bty = u* + Bu with v* = Jo(q)_T%—‘g(q*).
Therefore, the initial symplectic submanifold in stage 0 is
So ={((¢",0),0)} C T"TQ.

Reduction Stage 1 The configuration of the manipulator
is described by d independent variables ¢, ..., ¢". In order
to stabilize the angular momentum dynamics the configu-
ration manifold of the manipulator is decomposed into two

regular submanifolds of dimension 1 and d — 1, which are
represented by h, : @ — R and h, : Q — R4! as charts,
such that the product of both submanifolds is diffeomor-
phic to the configuration manifold of the manipulator. As
the charts represent the manipulator conﬁguratlon they
are mdependent of the base coordinate, i.e., dh, ( r)=0

and dh, (52 3,7) = 0. Considering local coordlnab‘ces7 it is

assumed that the charts are centered at the desired con-
figuration, i.e., h,(¢*) = 0 and h,(¢*) = 0. Basis for the
control design in this stage is that h.(¢) = 0 and that
the remaining velocity » = 0h,./0q ¢ is equal to zero.
For the coordinate h, a control action is designed, which
yields a four dimensional stable manifold S C T*TQ of
Sp- Inertial couplings between h, and h, complicate the
control design. This is due to the fact that a coupling
by the inertia matrix tightly interconnects the dynamics
of the two subsystems. A non-zero acceleration in one
subsystem results in an acceleration in the other subsys-
tem and vice versa. This also holds for the inputs to the
individual subsystems, which are mapped by the inverse
inertia matrix. Therefore, the null space projector concept
is utilized to define another coordinate transformation Jy

M N B Z(g)T Q(Q)’?a<q>+} m = J1(q) H , (11)

where @) = 0h,/0q Jy, corresponds to the matrix se-
lecting the remaining velocities r out of a and QW+
denotes the W weighted pseudo inverse of @) defined by
W=1QT(QWtQT)~!. Furthermore, Z(q)" is the null
space matrix of Q(q) satisfying Q(q)Z(¢q)T = 0 for all
g € Q and 0h,/0q JooZ " is the identity. More details on
the null space projector can be found in Ott et al. (2015).
The corresponding null space projector slightly differs from
the joint space decomposition by a normalization factor,
which was initially proposed by Park et al. (1999). The
zeros in the lower left corner of J; are compatible with the
second order nonholonomic constraint. The dynamics in
the new coordinates are given by

l
q=J(q) H ; (12)

Al(Q)l Fl(Qa la n, T) l ’YI(Q) 0
An(g)nn| + |Tnlg L, r) | 0|+ %(q)] = [Tn] , (13)
Ar(q)7 Lo(g L)) L] ()] L7

where J(q) = Jo(q)J1(q). Furthermore, v(q) = J(q)T%—‘g(q)

is partitioned into the corresponding sub blocks v;, v, and
. As before, the inertia matrix and the inputs trans-
form via the velocity mapping ( here J1 gq traightfor—
ward calculation reveals A gq Aa(q)™1Z(q) and
A (g) = (Q(q)Aq The off-diagonal terms
are given by Z(q )A (q)Q(q)A ( T and its transpose, which
are zero due to the property Q(q)Z(¢q)" = 0. Therefore,
the inertia matrix exhibits the envisioned block diagonal
structure. The input splits into 7, = Z(q)70 and 7, =

(Q(q)Aa(qH)TTO.

Under the assumption that h, and remaining velocities r
are zero, the velocity n is integrable, i.e., n = 0h,/dq ¢,
and the reduced dynamics is given by



(14)

0= 50 | 707 ] ME

i)+ (a0 ] + [ - 2] o

As (14) is subject to the constraint h, = 0 the configura-
tion ¢ is determined by ¢! and h,,. Using 21 = (¢, ho, [, 1)
as coordinates, the equations above are reformulated in
form of (2) with corresponding f;(z1) and ¢1(z1). The
cost is defined using (3) for appropriate Ry and ;. This
yields a HJE of the form H;(x1,p1) = 0. In order to verify
if a stable manifold exists it can be checked, whether the
Riccati equation obtained by the linearization of (5) has
a stabilizing solution. If this is not the case, then h, and
h, have to be altered. The stabilizing control law in form
of (4) yields

un, = —Ry 'g1(z1)p1 (1), (16)

where pi(x1) = g% and Vi(x1) is the solution to the
HJE from above. Here, p;(x1) is approximated by the
stable manifold method in section 2.1. To apply the control
to the manipulator the corresponding part of the input

transformation defined by u* is added, which yields
Tn = U + Up, (17)

where u} = 7, (q*) compensates for the potential forces at

the equilibrium.

Reduction Stage 2  To stabilize the dynamics related to
r independently of the other dynamics, two options for the
input w, are considered in the following.

The first option is

l

=T (q,l,n,7)|n
r

+7-(q) = Ar(q) Ry ' g3 Poxa,  (18)

where x9 = (h,,r) and P; is the solution to the Riccati
equation for the linear dynamics h, = w, with fa(zs) =
[r 0]T and go = [0 I]T and cost given by (3) with
appropriate matrices Ry and (2. Therefore, locally there
exists a stable manifold Sy C T*TQ of S;. The closed-
loop dynamics on S is given by the flow along the stable
manifold of S7 and solutions starting in So converge to Sy
for t — oco. The stability of the closed loop will be analyzed
in subsection 3.3.

The second option is to cancel the Coriolis couplings and
gravity terms and to apply PD-like control. The control
input is given by

l
7. =Tp(q,l,n,r) Dr — Kh,(q).

+ () — (19)

0

Here, K and D are positive definite matrices. In contrast

o (18), the impedance controller preserves the inertia of
the subsystem. In practice, this typically yields a lower
control effort and a greater robustness against model
uncertainties.

The resulting overall control which is applied to the
manipulator results in

0
T = J(Q)T [7711 )

Tr

(20)

where 7, is chosen as in (17) and 7, can be selected as
either (18) or (19).

8.8 Stability Analysis

The stability of the closed loop is analyzed in a two step
approach. First, it is shown that the system converges to
the submanifold given by h, = 0 and » = 0. In a second
step, the dynamics on the submanifold are analyzed and
the stability of the overall system is concluded. The proof
utilizes semidefinite Lyapunov functions with the following
theorem of Iggidr et al. (1996).

Theorem 3.1. (Theorem 2 of Iggidr et al. (1996)). Let xo
be an equilibrium point for the dynamical system x = f(x)
If there is a neighborhood U of x¢ and a Ct func-
tion V :U — R such that V(x) >0 and V(x) <0 for
all x €U and V(xo) =0 and xo is asymptotically sta-
ble on the largest positively invariant set contained in
{x € U:V(x) =0}, then yo is an asymptotically stable
equilibrium point for x = f(x).

Theorem 3.2. The closed-loop dynamics consisting of (12)
and (13) with control input (17) and (18) has an asymptot-
ically stable equilibrium point xg. At xo, the manipulator
has configuration ¢* and the base is at rest.

Proof of Theorem 3.2: The coordinates in a neighbor-
hood U C T*TQ of the desired equilibrium are partitioned

as #1 = (¢, hy,1,n) and @9 = (hy,7) as well as p; = g;/i

and ps = BVZ . The dynamics is given by
. OH
T = 1($17P1)+dz($17p173327p2), (21)
Op1
. OH
Pr=—a ——(z1,p1) + dp(1,p1, 22, P2), (22)
3x1
O0H,
Ty = —— 23
1) B ($27p2)7 ( )
O0H,
=2 24
D2 O (sz,p2)a ( )

where for ¢ = {1,2}, H; is the Hamiltionian function and
V; is the solution of the corresponding HJE presented in
the first and second reduction stage. The functions d,
and d, vanish for zo and ps equal to zero, i.e., on S;.
The generating function Va(w3) = x4 Pexs regarded as
function on T*T'Q is positive semidefinite. Using (23), the
derivative of V5 along the Hamiltonian flow yields
Vo(wa) = x5 (PyAs + Ay Py — 2Pyg2 Ry g Pa)xa,  (25)
= —5 (Q2 + P2g2R5 g5 P2)ws <0, (26)
where A = 0fs/0x9 and the latter equations follows from
P, being a solution to the algebraic Riccati equation. In
order to apply Theorem 3.1, it remains to show that xq
is asymptotically stable on the largest positively invariant
set contained in the preimage of {0} under V5. Within
the preimage one has xo = 0 and consequently ps = 0,
therefore one concludes that the system state is contained
in S7 if U is chosen sufficiently small. On S, the dynamics
is given by (21)-(22) with d, and d, being zero. The proof
is concluded by realizing that x; and p; converge to zero
on S1, i.e., xo is asymptotically stable.

Theorem 3.3. The closed-loop dynamics consisting of (12)
and (13) with control input (17) and (19) has an asymptot-



ically stable equilibrium point yo. At xg, the manipulator
has configuration ¢* and the base is at rest.

Proof of Theorem 3.3: Inserting (19) into (13) leads to
A, (Q)T + (Fr,r(q: l,n, 71) + D)T + Kh, (C]) =0, (27)

where I';. . is the corresponding subblock of I';. related to r.
Let V : TQ — R be the positive semidefinite function

1 1
Vg, q) = §TTAT(Q)T - §hr(q)TKhr(q) >0,

The time derivative of V| i.e., the Lie derivative along the
closed-loop flow, yields

(28)

. 1. .
V(Qa Q) = rT(frr,r((L lv n, T) - D + §Ar(% q))?" (29)
= —r'Dr<0. (30)

The second equality follows from A,.(q,¢) — 2, (g, ,n, )
being skew symmetric, which is commonly referred to as
the passivity property. Moreover, V(xq) = 0. As before,
Theorem 3.1 is applied by showing asymptotic stability
of x4 on the largest positively invariant set contained in
the preimage of {0} under V. Within the preimage one
has r = 0. Inserting this into (27) yields Kh,.(q) =0, i.e.,
h, = 0 as K > 0. By choosing U sufficiently small, one
can conclude that the system state is contained in S;. On
S1 the dynamics is given by &; = %’le (21, %(ml))v ie.,
Xo is asymptotically stable. This concludes the proof.

3.4 Simulation

In the following, the procedure is applied to the seven DOF
manipulator MIRO 2 on a single DOF rotationally flexible
base, see Fig. 2. The configuration of the base is described
as ¢! and the manipulator DOF correspond to ¢, ..., ¢%.
The elastic potential of the nonlinear elasticity is given by

Vila) = 3Ea(a)? + 5Falg")? (31)
where K7 = 100Nm/rad and Ky = 1000Nm/rad® are the stiff-
ness coefficients. The desired configuration ¢* corresponds
to an equilibrium of the base elasticity for the robot con-
figuration. In the reduction stage 1, the manipulator con-
figuration manifold is decomposed into two submanifolds
characterized by h, = ¢* and h, = (¢, ¢*,...,¢%). By this
choice the reduced dynamics for h, = 0 is given by a two
DOF mechanical system. The reduced dynamics can be
regarded as a single DOF manipulator mounted on an elas-
tic base with one rotational DOF, i.e., correspond to the
mechanical system depicted in Fig. 2. Here, the actuated
manipulator joint is given by ¢® and the unactuated base is
described by coordinate ¢'. In the base joint the elasticity
acts with potential energy Vi(q'). Intuitively speaking,
the control action given by w, constrains the manipulator
to the reduced system depicted in Fig.2. A numerical
simulation is performed to demonstrate the effectiveness
of the proposed controller. The remaining dynamics was
stabilized by (18). The control parameters are chosen as
Ql = diag(lOOIg,O.Hg), R1 = 0.05, QQ = diag(10016,16)
and, Ry = le°Ig. Here, diag denotes the block diagonal
matrix created by aligning its arguments on the diagonal
and I; is the identity matrix of dimension j. As is it can
seen in Fig. 3, the error for the fully actuated remaining
dynamics (solid lines) is converging uniformly to zero,

2 Please see Hagn et al. (2008) for more details.

Fig. 2. The MIRO arm (left) and the reduced system given
by a single DOF manipulator on elastic base (right).
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Fig. 3. Simulation of a MIRO manipulator on elastic base.

while for the underactuated reduced system the stable
manifold has a more complex geometry (dashed lines).

4. CONCLUDING REMARKS

In this work, a procedure to decompose underactuated
mechanical systems was presented. The decomposition can
be employed to reduce the overall high dimensional and
complex dynamics into multiple subsystems, which are
decoupled on the acceleration level. In each stage, the
control design is based on the condition that all dynamics
on superordinate stages are already converged. Therefore,
the dynamical system evolves along the respective sub-
bundle. On the latter, there exists a stable manifold of
the subordinate subbundle such that the overall dynamical
system is successively stabilized.

Future work may consider different choices of subbundles
which would enable to influence the transient behaviour.
In the control design of the flexible base manipulator
for example, a different choice of the reduced dynamics
could reduce the required joint torques or achieve a certain
desired end-effector response. Additionally, the presented
procedure should be extended to a more global approach
allowing for multiple charts. Besides a consistent transition
between overlapping charts, the control design should



also take topological obstructions into account. A more
global approach would also require modifications in the
stability analysis as well as the computation of the stable
manifold approximation, as both are currently only locally
applicable. Finally, the approach could be employed to
embed template models in underactuated systems, which
were already successfully applied in bipedal locomotion.
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