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Abstract

In the last two decades synthetic aperture radar (SAR) systems for Earth observation have undergone rapid evolution in
terms of mapping capability and system complexity. Numerous optimization and processing tasks are related to these
kind of systems or the evaluation of SAR data. Usually, these problems are solved with the aid of conventional digital
computers. However, with the emergence of quantum computers, many of these tasks may have the potential to be solved
faster, to be solved with higher precision or to be solvable at all on these machines. Here, we present the conceptual idea
of quantum annealing, a specific implementation of quantum computing and apply a real quantum annealer, developed
and operated by D-Wave Systems Inc., to two dedicated optimization problems in the field of synthetic aperture radar.

1 Introduction

In modern SAR system design and SAR signal processing
there are a wide variety of problems, which may only be
solved suboptimal on conventional digital computers. Ex-
amples are the optimization of the phase excitation coef-
ficients for the suppression of ambiguities in future SAR
systems [12, 13], the optimization of SAR antenna geome-
tries, the resolution of phase ambiguities in SAR interfer-
ometry (phase unwrapping), machine learning for feature
extraction in SAR imagery or the processing of SAR raw
data.
Recently, rapid progress in the field of quantum comput-
ing has been achieved. There are two major branches in
quantum computation: One are gate-based quantum com-
puters who, similar to classical computers, are constructed
from logical gates, so called quantum gates. These quan-
tum computing architectures, currently, implement in the
order of five to 50 fully entangled qubits. A second de-
velopment in quantum computers are so called quantum
annealers, which rest upon the quantum adiabatic theorem.
Adiabatic quantum computation is universal, as gate-based
quantum computation, but its specific implementation as
quantum annealer is especially powerful, when it comes to
all kinds of combinatoric optimizations problems.
Quantum computers will not in general replace classical
computers in the foreseeable future. In the coming years
quantum computers will be made accessible via cloud ser-
vices and eventually support computations locally by a
quantum processing unit (QPU), similar to co-processors
like graphical processing units (GPUs) in conventional
workstations. In order to be prepared for these highly dy-
namical developments in the field of quantum computing, a
first step in this paper shall be made to explore the potential
of existing and in the near-future available quantum com-
puters for SAR applications. Here, we present two simple
examples in the context of SAR [11, 13, 16], which demon-
strate the concepts of problem formulation and solution ca-
pabilities of a quantum annealing system, developed and

operated by D-Wave Systems Inc.

2 Quantum Annealing in a Nutshell

Quantum annealing is a specific implementation of quan-
tum computation. It relies on the quantum adiabatic theo-
rem [4], which states that if a physical system is initially
in a certain quantum state and changes sufficiently slowly
under a small perturbation, it will remain in this state, even
if the associated energies of the initial and final states are
different. This principle has first been exploited for clas-
sical combinatorial optimization problems [2]. The idea is
to encode the solution to a problem in the ground state of
a physical system - the quantum computer - represented by
its Hamiltonian H

H(t) = A(t)Hi +B(t)Hf , t ∈ [0,T ] , (1)

where A and B are scalar functions. H(t) governs the
dynamics of the system described by the time-dependent
Schrödinger equation

H(t) |Ψ(t)⟩= iℏ∂t |Ψ(t)⟩ , (2)

with ℏ the reduced Planck constant h/(2π) and |Ψ(t)⟩ an
arbitrary state of the system. The quantum computational
Hamiltonian is prepared in the ground state |e0(t = 0)⟩ at
the beginning of the annealing cycle, with its correspond-
ing initial Hamiltonian Hi and changed slowly towards its
final Hamiltonian Hf, representing the computational prob-
lem to be solved. In the simplest case the time dependent
functions A(t) and B(t) may describe linear control func-
tions such as A(t) = 1− t/T and B(t) = t/T [8], where T
is the annealing time or run time of the algorithm. How-
ever, in real quantum computers A(t) and B(t) are usually
non-linear as in D-Wave’s Quantum Annealer [7]. The in-
stantaneous eigenstates |eµ(t)⟩ and eigenenergies eµ(t) as
solution of

H(t) |eµ(t)⟩= eµ(t) |eµ(t)⟩ , (3)
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encode, at the end of the annealing cycle at t = T , the prob-
lem solution. The task of choosing the annealing time T is
not an easy one, since it depends on the energy difference
∆ of the two lowest eigenenergies

∆ = min
0≤t≤T

{e1(t)− e0(t)} . (4)

Clearly, this energy difference is not known a priori and
therefore has to be chosen heuristically, except maybe for
simple Hamiltonians. Typical run times are in the range [2]

T ∼ O(1/∆
3) · · ·O(1/∆

2) . (5)

At this point it should be mentioned that the question if
a quantum adiabatic algorithm offers a speedup over the
fastest classical solution, is not settled yet. Another way to
express the cost for the execution of an adiabatic algorithm
is the quantity [1]

T max
t
∥H(t)∥ , (6)

which could be equated with the number of gates of a stan-
dard gate-based quantum computer. Here, ∥.∥ denotes the
operator norm [2].
A specific class of Hamiltonians allows solving binary
quadratic optimization problems. In the so called Ising
Spin glass model the final Hamiltonian takes the form
[10, 5, 7]

Hf ∼ ∑
i

hiσ
(i)
z + ∑

i, j>i
Ji jσ

(i)
z σ

( j)
z , (7)

where (hi,Ji j) represent the problem parameters and σ
(i)
z

denote Pauli matrices acting on the ith qubit. In the fol-
lowing, for the mathematical treatment of the problem, it
is convenient to replace the notation with spin-states by bi-
nary variables σ

(i)
z 7→ xi ∈ [0,1].

In this work we look at the principal capability of a quan-
tum computer to solve problems in the field of array pro-
cessing. This means, we compare the solutions found by a
quantum computer with the optimal solution generated by
a classical computer, in case of small problem sizes. In a
second example, the quantum solution is compared to the
analytic solution.

3 Array Processing Problems

Array processing [18, 21] is a subject in the field of signal
processing. Obviously, as a consequence of technological
history, the signal processing methods and algorithms have
been developed for classical computers. Our goal here is
not to transform the array processing problem itself into
the language of quantum physics, but rather exploit quan-
tum computers to solve specific optimization problems. Up
to this date, several problems have been identified ade-
quate for quantum computers and in particular for adiabatic
quantum computation [15]. In the following we present
two array processing problems relevant for SAR remote
sensing, to be solved with the help of a quantum computer.
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· · ·x1
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Figure 1 Example for a sparse array: Here, the optimiza-
tion goal lies in the selection of a subset with a fixed num-
ber of antenna elements, such that the field is maximized
at a given point in space.

3.1 Sparse Arrays
Sparse arrays or thinned arrays [6, 18], as they are called,
are important for radar or communications applications,
but also for advanced concepts for distributed SAR sys-
tems [14, 20, 9, 19]. The goal is to select a subset of a
given set of antenna elements such that the gain in a cer-
tain direction (or multiple directions) is preserved, while
discarding all redundant elements. By this it is possible to
reduce the complexity and cost of an array system without
sacrificing too much performance. Here, our task shall be
to maximise the array gain at a certain location under the
constraint of selecting exactly M out of N elements. This is
a combinatorial optimization problem with

(N
M

)
solutions.

The strength of a quantum computer lies in its ability that
it can keep track of all 2N array configurations by means
of superposition. Such optimization problems quickly be-
come infeasible for brute force methods and require so-
phisticated solution algorithms.
In our simplified example (see Fig. 1) the elements shall
be represented by non-interacting point sources, with the
(co-polar) electric field component Ei in frequency domain,
according to

E =
N

∑
i=1

xiEi , Ei ∼ E0
e−i2πri/λ

ri
, xi ∈ {0,1} , (8)

where λ is the wavelength and ri is the distance between
the ith array element and the point of interest. Each array
element is associated with a quantum variable xi which can
either switch an element on or off. Then the energy func-
tional for this optimization problem can be cast in the form

eµ =−

∣∣∣∣∣ N

∑
i=1

xiEi

∣∣∣∣∣
2

+ γ

(
N

∑
i=1

xi −M

)2

, (9)

with µ as the decimal encoding of the binary string x ∈
{0,1}N , which labels the corresponding eigenstate. Here,
the first term on the right side denotes the objective while
the second term represents the constraint, weighted with
some parameter γ ∈ R+. Expanding this energy function



yields

eµ = ∑
i

(
γ(1−2M)−|Ei|2

)
xi

+∑
i

∑
j>i

2
(
γ −E ′

i E
′
j −E ′′

i E ′′
j
)

xix j + γM2 , (10)

where the electric field has been decomposed in its real and
imaginary part Ei = E ′

i + iE ′′
i .

In order to demonstrate the capabilities of the D-Wave
quantum annealer and to understand and interpret the re-
sults, a rather low number of array elements (N = 10,
M = 5) has been chosen. The simulation is set up such,
that these ten elements are uniformly distributed in a vol-
ume in units of λ of size ∆x×∆y×∆z = 10×10×2 with
a cartesian coordinate system at the center of the volume.
The point of interest, where the field shall be evaluated is
5λ away from the origin in z-direction.
In a first step it is worth visualizing the energy function eµ ,
as shown in Fig. 2. Here, the eigenenergies have been plot-
ted for each point of the N-dimensional state space (Hilbert
space). For example the number 370 is the decimal repre-
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Figure 2 Eigenenergies eµ for all possible array config-
urations encoded by decimal numbers. The parameter γ

controls the incorporation of the constraint (cf. equation
(9)).

sentation of state |0101110010⟩, where elements two, five,
six, seven and nine are active. Important to mention here is
that the energies should be regarded as normalized values,
which have been computed from equation (10), neglecting
the constant term. Figures 2a and 2b show two cases - in
the first one without constraint (γ = 0) and in the second
one with constraint taken into account (γ = 1). Clearly,

the choice of the parameter γ affects the solution topol-
ogy, where, in the first example, one deals with a ’few’
pronounced minima, while in the second case the problem
is transformed having many local minima close in energy
level. In theory, this would affect the annealing time, which
depends on the energy gap of the two lowest eigenstates ac-
cording to equation (4).
The solution using D-Wave’s 2000Q lower-noise system
has been computed with a fixed annealing time of T =
20 µs. This first generation quantum computer implements
their so called chimera topology [5] with 2048 qubits. The
problem has been submitted via a Python script to D-Wave.
Figure 3 on the left shows the results for the case γ = 0 and
on the right for γ = 1. The corresponding graphs shown

(a) Graph, γ = 0 (b) Graph, γ = 1

(c) Target QPU, γ = 0 (d) Target QPU, γ = 1

(e) Histogram, γ = 0 (f) Histogram, γ = 1

Figure 3 Upper row: graph representation of the opti-
mization problem. Yellow dots denote a quantum vari-
able in the state ’1’ while white dots mean state ’0’. Mid-
dle row: actual mapping of the problem on the quantum
computer hardware. Here, several physical qubits may
be combined to form a single logical qubit. Lower row:
Histogram of the measurement outcomes after 100 runs.
The bright blue bars are the occurrences of the global op-
timum.

in Figs. 3a and 3b visualize the quadratic optimization
problems, whereas Figs. 3c and 3d present the mapping
of the respective graphs to the chimera architecture. Fi-
nally, in Figs. 3e and 3f the histograms of the readout are
shown. As quantum computations are inherently proba-
bilistic, repeated annealing cycles yield different outcomes.
As expected, for γ = 0 the histogram is more concentrated
around two of the three main minima, while in the second
case the histogram is more spread out. The global optimum
for the case γ = 0 is |1101101001⟩ with an energy of -7.1
and for γ = 1 it is |0101101001⟩ with an energy of -31.9.



3.2 MVDR Beamforming
Minimum distortionless response (MVDR) beamforming
[21] is a technique, which has received much attention
for instance in spaceborne array-fed reflector SAR systems
[12, 13, 11, 16]. The array is operated in receive mode,
such that internal and external thermal noise as well as in-
terferences are minimized. At the same time all the array
element signals shall be combined such that the gain in a
certain direction is set to a specific value b - usually 1. Al-
though the MVDR beamforming problem is solvable on
any classical computer and even has an analytic solution,
it shall serve as entry example which can be extended to
more complicated optimization problems, containing for
instance inequality constraints. Those kind of optimization
problems may be hard to be solved for a global optimum
on classical computers in reasonable time.
The MVDR optimization problem may be cast in the form

minimize ∑
i j

ri jwiw∗
j , ri j,wi ∈ C , (11)

subject to ∑
i

wiEi = b , b ∈R , (12)

with (ri j) describing the noise channel covariance ma-
trix. In order to feed such a problem to a quantum an-
nealer, some adaption is required. First, in the interpre-
tation of minimizing energy functionals, the MVDR con-
straint needs to be cast in a quadratic form. Then, under the
simplifying assumption ri j = δi j, the optimization problem
writes

eµ = e′µ + γe′′µ =
Nc−1

∑
i=0

wiw∗
i + γ

∣∣∣∣∣Nc−1

∑
i=0

wiEi −b

∣∣∣∣∣
2

,

(13)

with Nc the number of array elements (or receive channels
for that matter). A second difficulty is associated with the
fact that a quantum annealer is a digital device and there-
fore cannot perform optimizations on a continuous Hilbert
space. This means the complex variables wi need to be
modelled using binary qubits. For the purpose of solving
linear systems of equations a real valued discrete variable
model has been proposed for instance in [17]. In this con-
text a discrete variable model could take the form

wi = c∑
km

im
(

2kxikm −dδ0k

)
,

where Nb would denote the number of bits per real and
imaginary part. The choice of the parameters b, c and d
follows a heuristic, whereby the quantization of the coef-
ficients wi shall be matched to the field Ei. With this in
mind, the following parameters have been utilized:

b = 1 , (14)

c =
max{|E ′

0|, . . . , |E ′
Nc−1|, |E ′′

0 |, . . . , |E ′′
Nc−1|}

(2Nb −1−d)∑i |Ei|2
, (15)

d =
1
2
(
2Nb −1

)
. (16)

After some calculation, the energy functions may be ex-
panded according to

e′µ = c2
∑

i jklmn
2k

δi jδmn

(
2l −2dδkl

)
xikmx jln

+2c2d2Nc (17)

and

e′′µ = c2
∑

i jklmn
2k+1

[
Ai j2l−1

δmn +Bi j2l
δ0mδ1n

−d

(
∑
j′

Ai j′ +(−1)m
∑
j′

Bi j′

)
δi jδklδmn

−b/c
(
E ′

i δ0m −E ′′
i δ1m

)
δi jδklδmn

]
xikmx jln

+2c2d2
∑
i j
(Ai j +Bi j)−2bcd ∑

i
(E ′′

i −E ′
i )+b2 ,

(18)

where Ai j = E ′
i E

′
j +E ′′

i E ′′
j and Bi j = E ′′

i E ′
j −E ′

i E
′′
j .

In this MVDR beamforming example we consider a lin-
ear array comprising five elements. The complex weights
wi have been quantized using two times four bits. This
amounts to 40 qubits, implying a solution Hilbert space
with 240 points. The regularization parameter γ has been
set to one. Here again D-Waves’ quantum annealer has
been utilized, however, now addressing the next gener-
ation pegasus architecture Advantage 4.1 [3], employing
5760 qubits. The graph mapping on the quantum computer
topology is shown in Fig. 4a. Here, already 201 physi-
cal qubits were required in order to construct the 40 logi-
cal qubits. Figure 4b presents a part of the histogram with

(a) Target QPU

(b) Histogram

Figure 4 Eigenenergies for the sensor combinations.

1000 runs and 20 µs annealing time, where each solution



has been found only once. This is clearly a consequence of
the size of the solution space and also of its topology with
many local minima not too far away, in terms of the energy
level, from the global optimum. The four best solutions,
found by the quantum computer, are presented in Fig. 5.
Here, the array gain patterns G(ϑ), with the main beam
steered to an angle of 10°, have been plotted versus the co-
ordinate ϑ . As reference for comparison, the analytic solu-
tion to the MVDR optimization problem is shown. The rea-

−40 −20 0 20 40
ϑ , ◦

−20

−10

0

10

20

G
,d

B

ref.
eν

eν+1
eν+2
eν+3

Figure 5 Array gain patterns versus angle ϑ . As refer-
ence the MVDR beam steered at 10° is shown. The solu-
tions generated by the quantum computer may lie close to
the global optimum e0.

son why the exact solution may have not been found could
be (at least) threefold: First, by introducing the absolute
squared in equation (13) the optimization problem has been
altered, having potentially different solutions as the origi-
nal problem (13). A second reason is that the quantization
of the weights wi uses a different model as for instance
the floating point arithmetic of standard digital computers.
And finally, as mentioned before, the size and topology of
the solutions space as well as quantum noise might pre-
vent the quantum computer converging to the ground state
solution. Nevertheless, this example demonstrates that op-
timization problems with continuous variables are in prin-
ciple solvable on a quantum computer.

4 Conclusion

We have presented two dedicated optimization problems
in array processing, which have been solved with the aid
of D-Waves’ quantum annealing system. The quantum na-
ture of such devices allows, in principle, solving very high-
dimensional problems. As a first example a sparse array
problem has been solved on a first-generation quantum an-
nealing system, showing promising results for a low num-
ber of qubits. As a second example the MVDR beamform-
ing problem has been translated to a binary quadratic opti-
mization problem and solved on a D-Waves’ newer quan-
tum computer architecture. It turns out that a limiting fac-
tor in the capability of finding a global optimum lies in
the solution topology itself. But also the current state-of-
the-art of quantum annealers have development potential,
regarding for instance the number of fully entangled and
error corrected qubits. Insofar the challenge of demon-
strating quantum supremacy over classical computers re-

mains not only in terms of algorithm execution speed but
also in terms of problem size and complexity. However,
the promising potential of quantum computation becomes
more and more visible and progress on the hardware side
as well as on the software side is just a question of time. In
view of the numerous applications such as array process-
ing, a leap forward in the utilization of quantum computers
can be expected.
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