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Abstract: Under certain conditions, the ionization of the E layer can dominate over that of the F2
layer. This phenomenon is called the E layer dominated ionosphere (ELDI) and occurs mainly in
the auroral regions. In the present work, we model the variation of the ELDI for the Northern
and Southern Hemispheres. Our proposed Neustrelitz ELDI Event Model (NEEM) is an empirical,
climatological model that describes ELDI characteristics by means of four submodels for selected
model observables, considering the dependencies on appropriate model drivers. The observables
include the occurrence probability of ELDI events and typical E layer parameters that are important
to describe the propagation medium for High Frequency (HF) radio waves. The model drivers are the
geomagnetic latitude, local time, day of year, solar activity and the convection electric field. During
our investigation, we found clear trends for the model observables depending on the drivers, which
can be well represented by parametric functions. In this regard, the submodel NEEM-N characterizes
the peak electron density NmE of the E layer, while the submodels NEEM-H and NEEM-W describe
the corresponding peak height hmE and the vertical width wvE of the E layer electron density
profile, respectively. Furthermore, the submodel NEEM-P specifies the ELDI occurrence probability
%ELDI. The dataset underlying our studies contains more than two million vertical electron density
profiles covering a period of almost 13 years. These profiles were derived from ionospheric GPS
radio occultation observations on board the six COSMIC/FORMOSAT-3 satellites (Constellation
Observing System for Meteorology, Ionosphere and Climate/Formosa Satellite Mission 3). We
divided the dataset into a modeling dataset for determining the model coefficients and a test dataset
for subsequent model validation. The normalized root mean square deviation (NRMS) between the
original and the predicted model observables yields similar values across both datasets and both
hemispheres. For NEEM-N, we obtain an NRMS varying between 36.1% and 47.1% and for NEEM-H,
between 6.1% and 6.3%. In the case of NEEM-W, the NRMS varies between 38.5% and 41.1%, while
it varies between 56.5% and 60.3% for NEEM-P. In summary, the proposed NEEM utilizes primary
relationships with geophysical and solar wind observables, which are useful for describing ELDI
occurrences and the associated changes of the E layer properties. In this manner, the NEEM paves the
way for future prediction of the ELDI and of its characteristics in technical applications, especially
from the fields of telecommunications and navigation.

Keywords: ionosphere modeling; E layer; polar ionosphere; radio science; GPS radio occultation;
space weather; particle precipitation

1. Introduction

At middle and low latitudes, where photoionization dominates, the electron density
of the F2 layer clearly exceeds that of the E layer, which is closely related to the solar zenith
angle at daytime [1]. However, at high latitudes, precipitating energetic particles from the
magnetosphere can produce strong enhancements in the electron density of the E layer, as
have been occasionally observed using different techniques [2]. E layer electron densities
clearly exceeding the peak density of the F2 layer were systematically studied for the first
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time by Mayer and Jakowski [3]. They characterized such events as E layer dominated
ionosphere (ELDI), showing the peak electron density at a height range between about 90
and 150 km. ELDI events may occur either due to increased E layer ionization caused by
energetic particle precipitation, or due to strong depletion of the F2 layer ionization. Such
a depletion may arise, for example, inside the polar hole [4,5] or inside the mid-latitude
trough region [6,7]. However, previous studies revealed a strong relationship of ELDI
events recorded using ionospheric radio occultation (IRO) techniques with the auroral
zone and not with the polar cap or the mid-latitude trough region [3,8,9]. Therefore, in
this work, we interpret ELDI events as occurring due to enhanced particle precipitation,
which is capable of producing electron densities in the order of more than 105 cm−3. The
duration of ELDI events can reach up to 5 hours, as Cai et al. [10] found when analyzing
EISCAT observations between 2009 and 2011. The ELDI phenomenon is quite different
from sporadic E layer events, which are characterized by very thin layers of extremely
enhanced electron density occurring preferably at mid-latitudes in summer [11–13].

By analyzing vertical electron density profiles obtained from IRO observations on-
board the COSMIC (Constellation Observing System for Meteorology, Ionosphere and
Climate/Formosa Satellite Mission 3) satellite mission [14–16] and the CHAMP (CHAl-
lenging Minisatellite Payload) mission [17], Mayer and Jakowski [3] found that the location
of the ELDI events in the Northern Hemisphere can be described by an ellipse having
one focal point at the geomagnetic pole. They observed that the semi-major axis of the
ellipse and the spread of ELDI events relative to the ellipse increased during enhanced
geomagnetic activity, while the number of ELDI events increased for low solar activity
and during local night. By evaluating electron density profiles retrieved from incoherent
scatter radar observations carried out during low solar activity conditions for the period
from 2009 to 2011 at the European Incoherent Scatter Radar (EISCAT) and at the EISCAT
Svalbard Radar (ESR), Cai et al. [10] found that at both radar sites, the number of ELDI
events increased during winter and spring. Moreover, during both seasons, the number of
ELDI events increased around local night at the EISCAT site. Mannucci et al. [18] analyzed
COSMIC IRO electron density profiles at high latitudes during geomagnetic storms that
were induced by two high-speed streams in April 2011 and May 2012 and by two coronal
mass ejections in July and November 2012. They found that the number of ELDI events
increased during the main phases of the storms, whereas their distribution shifted equa-
torward. Kamal et al. [8] investigated ELDI occurrences for the Northern and Southern
Hemispheres using CHAMP IRO data from 2001 to 2008 and COSMIC data from 2006
to 2018. They found that in both hemispheres, the ELDI events were distributed along
an ellipse located around the geomagnetic pole. Furthermore, they confirmed that more
ELDI events occurred during winter and local night as well as during low solar activity
and during geomagnetic storms. As a preliminary step for a possible ELDI model, Kamal
et al. [9] described the elliptical ELDI event distribution by three spatial parameters and
one temporal parameter. They investigated the variations of these parameters as a function
of season, solar activity, geomagnetic activity, interplanetary magnetic field, convection
electric field and solar wind energy using COSMIC IRO data covering the period from 2006
to 2018. The authors found clear dependencies between the selected geophysical quantities
and the considered ELDI parameters. In addition to the variation in the occurrence rate of
ELDI events with maxima in winter and at low solar activity, the authors also observed
an increase in their number, as well as a shift in their distribution toward the equator for
rising solar wind parameters and related geomagnetic activity indices.

While previous studies on the ELDI have dealt explicitly with its observations, the
primary objective of the present work is to develop an empirical model describing main
features of ELDI events. In this context, we use a modeling approach similar to other
ionospheric parameter models previously developed at the German Aerospace Center
(DLR) in Neustrelitz. Space-based single frequency navigation systems require a correction
for the signal delay caused by the ionosphere, which depends on the total electron content
(TEC) along the ray path. For predicting the vertical TEC, Jakowski et al. [19] developed
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the global Neustrelitz TEC Model (NTCM) based on TEC data generated by the Center
for Orbit Determination in Europe at the Astronomical Institute of the University of Bern.
Since the F2 layer exhibits the highest ionization of all the ionospheric layers, it has the
largest influence on trans-ionospheric radio wave propagation. Considering this, Hoque
and Jakowski [20] developed the Neustrelitz Peak Density Model (NPDM) for describing
the peak ionization NmF2 of the F2 layer. The model is based on a large dataset of
vertical sounding data from ionosonde stations and radio occultation observations from
the CHAMP, GRACE and COSMIC missions. By using the same datasets, Hoque and
Jakowski [21] also developed the Neustrelitz Peak Height Model (NPHM) for describing
the peak ionization height hmF2 of the F2 layer. Each of the aforementioned models
follows a nonlinear multiplicative approach and is implemented by a parametric function.
These functions consist of several nonlinear terms, which are linked to each other in
a multiplicative manner and depend on one model driver each. Overall, this leads to
relatively compact models for the key observables with a small number of coefficients (up
to 13 in the case of the aforementioned models).

The proposed Neustrelitz ELDI Event Model (NEEM) is composed of four submodels,
whose respective model observables describe one aspect of the ELDI each. In this context,
the submodel NEEM-P specifies the ELDI occurrence probability (%ELDI). While this
observable indicates a change in the E layer’s propagation characteristics, the associated E
layer observables indicate how these characteristics change in the case of an ELDI event
occurring. In this regard, we represent the observables peak ionization (NmE), peak height
(hmE) and vertical profile width (wvE) by the submodels NEEM-N, NEEM-H and NEEM-
W, respectively. Based on our previous studies, we select the geomagnetic latitude, local
time, day of year, solar activity and the solar wind related convection electric field as user
friendly and viable model drivers. Even though we give initial physical explanations for
the dependencies found between the model observables and the model drivers, the focus
of the present paper is mainly on the modeling of these dependencies. In this work, we
use vertical electron density profiles derived from IRO observations onboard the COSMIC
satellites. Since the satellites have an orbital inclination of 72◦, these observations cover
a large area of the Earth’s surface, including the auroral zones. Our database consists of
approximately 2.3 million profiles covering a period of more than one solar cycle from
April 2006 to December 2018. The presence of an enhanced E layer ionization during ELDI
occurrences may affect the propagation of HF radio waves and, therefore, has an effect
on telecommunication and navigation applications. The use of an ELDI model in such
applications could help predict signal propagation perturbations and their extent.

2. Data

We used vertical electron density profiles derived from IRO observations onboard the
COSMIC satellites. The profile files contained in our dataset cover a period from April
2006 to December 2018 and were obtained from the COSMIC Data Analysis and Archive
Center [22]. First, we filtered out all those profile files that could either not be opened or
whose contents were corrupted. For each profile, we then performed the computations
listed in the following paragraph. The information derived through this process was later
used for the computation of the model coefficients and of the model observable trends.

To obtain the ELDI state ELDIst of a profile, which indicates whether the profile
represents an ELDI event or not, and to obtain the three E layer observables, we proceeded
similarly as described in [8]. In this regard, we first divided the height range of the profile
into an E layer segment extending from 90 to 150 km and an F2 layer segment located above
150 km. Thereafter, we determined the maximum electron density NmF2 and the associated
height hmF2 within the F2 layer segment. Fitting a Chapman layer function to the F2 layer
topside electron density and extrapolating it into the bottomside ionosphere yielded the F2
layer contribution to the profile. Next, we subtracted the F2 layer contribution from the
observed profile in order to extract the E layer. Subsequently, we fit a Gaussian function
to the E layer. Profiles for which any of these fitting steps failed were ignored from here
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on. The magnitude, position and full width at half maximum (FWHM) of the Gaussian
resulted in the E layer observables NmE, hmE and wvE, respectively. Via a comparison
of NmE with NmF2 and additional filter steps outlined in [8], we determined the ELDI
state of the profile. The day of year DOY, which represents seasonal variation, and the
local time LT were taken from the profile’s timestamp information. The observational data
for the solar radio flux index F10.7, which we used as a measure for solar activity, were
downloaded from the Space Physics Data Facility (SPDF) website of the Goddard Space
Flight Center [23]. Following other ionosphere models previously developed in Neustrelitz,
as presented in Jakowski et al. [19] and Hoque and Jakowski [20,21], we computed the
geomagnetic latitude MLAT of the profile from its geographic latitude and longitude by
means of the dipole magnetic field model based on a formula described in Davies [1].
Furthermore, we computed the convection electric field magnitude EConv as discussed in
Kamal et al. [9] according to a formula given in Kelley [24] from observational solar wind
speed data (vsw) and interplanetary magnetic field data (Bsw) downloaded from the SPDF
website. Overall, performing the aforementioned processing steps resulted in the following
information for each profile: ELDIst, NmE, hmE, wvE, MLAT, LT, DOY, F10.7 and EConv.
The flowchart in Figure 1 summarizes the steps involved in the data pre-processing.

Figure 1. Flowchart of the data pre-processing steps.

After completion of the data pre-processing, our resulting final dataset contains the
information about the ELDI state, the E layer observables and the model drivers for about
2.3 million profiles in total. To compute the model coefficients and to validate the model, we
randomly split the dataset into a modeling dataset and a test dataset. In order to increase
the quality of the model coefficients, the modeling dataset contains 90% of the total data,
whereas the test dataset contains 10% of it.
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3. Modeling Approach

As indicated in the introduction, our ELDI model consists of four submodels, each
representing a particular model observable. Every submodel is expressed by a separate
equation identical for both hemispheres. However, the equation coefficients differ between
the Northern and Southern Hemispheres. In the next section, we describe how the equation
for a single model observable is put together and how we computed its coefficients.

3.1. Model Structure

Since we have had good experience using the multiplicative approach in previous
modeling studies with respect to its robustness, small number of coefficients and real-time
capability [19–21], we follow the same modeling approach in the present work as well. For
a model observable F, the associated equation F(x1, . . . , xn) depends on a specific set of
model drivers x1, . . . , xn. Each dependency of the model observable on a single model
driver is given by a separate model term F1(x1), . . . , Fn(xn). Since the model equation
follows the multiplicative approach, it can be computed as the product of all model terms
as shown in Equation (1).

F(x1, . . . , xn) = F1(x1)·F2(x2)· . . . ·Fn(xn) (1)

Each model term contains one or more base functions, which were chosen from
trend analysis of the model observable with respect to the driver in such a way that
they approximate the trend sufficiently well. Furthermore, each term includes internal
coefficients located inside of the base functions and external coefficients located outside
of them, all of which were determined numerically by means of nonlinear fitting. As an
example, in Equation (2), we show a reduced version of the NmE model equation, which is
given fully in Section 4.1. The first term models the dependency on the driver MLAT using
a Gaussian as a base function, which contains the phase shift MLAT0 and the standard
deviation σMLAT as internal coefficients. The second term models the dependency on the
driver LT using two cosine functions. They represent the diurnal and the semidiurnal
variations and contain the phase shifts LTD and LTSD as internal coefficients, respectively.
The external coefficients are given by the amplitudes a1, a2 and a3, and the bias a4.

NmE(MLAT, LT) =(
a1· exp

(
− (MLAT−MLAT0)

2

2·σMLAT
2

)
+ 1

)
(

a2· cos
(

2π· 1
24 ·(LT − LTD)

)
+ a3· cos

(
2π· 2

24 ·(LT − LTSD)
)
+ a4

) (2)

3.2. Model Coefficient Computation

Below, we explain how we computed the internal and external model coefficients.
Their computation differs for the E layer observables and the ELDI occurrence probability.

3.2.1. E Layer Observable Model Coefficients

For a considered E layer observable, such as NmE, hmE or wvE, we computed the
model coefficients based on all those profiles of the modeling dataset that correspond
to an ELDI event. To improve the quality of the computed coefficients, we first reduced
the number of outliers of the E layer observable. Such outliers may arise, for example,
during the derivation of the observable values from the original profiles. Therefore, as
part of a percentile pre-filtering, we set up a histogram of the used observable values and
then excluded those profiles whose observable value fell in the lower or upper 10% of
the histogram.

To compute the internal coefficients, we considered each model term as independent
from all the other terms by analogy with Jakowski et al. [19] and Hoque and Jakowski [20,21].
Regarding this, we set up a cumulative histogram of the used values of the corresponding
model driver and divided it into 20 bins in such a way that each bin contained approxi-
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mately the same number of profiles. Next, we computed the median of the driver values
and the median of the observable values for every bin. Subsequently, we fit the considered
model term to the resulting 20 data points by means of nonlinear least squares fitting in
order to estimate all its coefficients. From this step, we kept only the internal coefficient
values as fixed results.

To determine the external coefficients of the full model equation, we directly fit the
equation to the model observable–model driver combinations of the pre-filtered ELDI
profiles, without performing any additional binning beforehand.

3.2.2. ELDI Occurrence Probability Model Coefficients

As a basis for computing the coefficients of the %ELDI model equation, we used the
full modeling dataset of profiles without any form of prior outlier filtering.

To estimate the internal coefficients, we proceeded analogously to their computation
for the E layer observables. In this manner, we first set up a cumulative histogram of the
used model driver values, subsequently dividing it into 20 bins and then computing the
median of the driver values for each bin. Unlike for the E layer observables, for each bin
we computed a %ELDI value by relating the number of ELDI profiles to the total number
of profiles. Subsequently, we fit the model term to the resulting 20 datapoints.

To compute the external coefficients, we first divided the value range of each model
driver into intervals containing approximately the same number of profiles. We refer to a
particular combination of these intervals as an interval key. Thereafter, we assigned each
profile to such a key, depending on the intervals into which its associated model driver
values fell. Below, we give a simple example to demonstrate the assignment of profiles to
interval keys. Here, we consider only the three model drivers LT, DOY and F10.7, whose
value ranges have been divided into two, three and three intervals, respectively (Table 1).

Table 1. Example interval division for the model drivers LT, DOY and F10.7.

Interval Index LT DOY F10.7

1 [0.0–12.0) [1–122] [60–90)
2 [12.0–24.0) [123–244] [90–160)
3 [245–366] [160–250]

Assuming that, for a given profile, the model drivers have an associated value as-
signment of LT = 15.3, DOY = 250 and F10.7 = 85.0, the profile will be assigned to the
interval key “2-3-1” based on the indices of the matching intervals.

After assigning the profiles to the interval keys, we computed the %ELDI value for
each key as the ratio of the ELDI profile number to the total profile number and also the
median value for each driver. Subsequently, we fit the entire equation to the %ELDI–
model driver combinations of the keys, while keeping the internal coefficients fixed to
the previously determined values. This process resulted in all the external coefficients of
the submodel.

4. Modeling Results

In the following sections, for each model observable, we show the associated sub-
model consisting of the model equation and its coefficients. Next, we show the trends
for the original and the predicted observable values depending on the model drivers.
Subsequently, we report estimates for the root mean square deviation between observation
and prediction. Thereafter, we estimate which model driver used in the submodel has the
greatest impact on the variation of the observed model observable values.

4.1. NEEM-N: Model for the E Layer Peak Ionization

Equation (3) is the model equation for the peak ionization NmE of the E layer. The
model term accounting for the geomagnetic latitude is based on a Gaussian function.
The terms representing the local time and day of year dependencies are given by two
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superposed cosine functions each, while the dependencies on the solar activity and on
the convection electric field magnitude are given by linear functions. Table 2 shows the
associated internal and external coefficients for both hemispheres computed as described
in Section 3.2.

Table 2. Coefficients of the E layer peak electron density (NmE) model for the Northern and Southern Hemispheres.

NmE Model Coefficients North NmE Model Coefficients South

Internal External Internal External

MLAT0 = 67.49◦ c1 = 1.07 × 10−1 MLAT0 = −69.03◦ c1 = 6.00 × 101

σMLAT = 3.39◦ c2 = −8.01 × 10−2 σMLAT = 377.96◦ c2 = 1.63 × 10−2

LTD = 2.94 h c3 = 6.58 × 10−2 LTD = 6.36 h c3 = 5.80 × 10−2

LTSD = −2.36 h c4 = 1.92 × 10−1 LTSD = −1.09 h c4 = −2.50 × 10−1

DOYA = 165.58 d c5 = −6.08 × 10−3 DOYA = 166.77 d c5 = 2.45 × 10−2

DOYSA = −113.12 d c6 = 7.83 × 10−3 DOYSA = −70.53 d c6 = −1.07 × 103

c7 = 3.80 × 100 c7 = −7.84 × 10−7

c8 = 8.20 × 104 c8 = −2.19 × 10−2

The internal coefficients are given by the phase shift MLAT0 and the standard devia-
tion σMLAT for the geomagnetic latitude, by the phase shifts LTD and LTSD for the diurnal
and semidiurnal variations, and by the phase shifts DOYA and DOYSA for the annual and
semiannual variations. The external coefficients of the equation consist of the amplitudes
c1, ..., c7 and the bias c8.

NmE(MLAT, LT, DOY, F10.7, EConv) =(
c1· exp

(
− (MLAT−MLAT0)

2

2·σMLAT
2

)
+ 1

)
(

c2· cos
(

2π· 1
24 ·(LT − LTD)

)
+ c3· cos

(
2π· 2

24 ·(LT − LTSD)
)
+ 1

)
(

c4· cos
(

2π· 1
365.25 ·(DOY − DOYA)

)
+ c5· cos

(
2π· 2

365.25 ·(DOY − DOYSA)
)
+ 1

)
(c6·F10.7 + 1)

(c7·EConv + c8)

(3)

In Figure 2, we plot two trends for each hemisphere and each dependency of NmE on
one of the model drivers. One of these trends results from binning the originally observed
NmE values (red), whereas the other is based on binning the NmE values predicted by our
model (black). To highlight the symmetry between the observed trends for the Northern
and Southern Hemispheres, in the case of MLAT, we generally plot them depending on
the absolute value of the geomagnetic latitude. All the trends are supplemented by error
bars indicating the standard deviations of the underlying NmE values within each bin.
In the last row of the figure, we report the root mean square deviation (RMS) between
the observed and the predicted NmE values, averaged for all the dependencies of the
respective hemisphere. The normalized root mean square deviation (NRMS) describes the
RMS normalized by the mean of the originally observed NmE values. To estimate which
model driver causes the largest variation of the observed NmE, we computed the range of
each observed NmE trend and then determined the model driver that corresponds to the
largest range. In this regard, the range of a considered trend was computed as the absolute
value of the difference between its maximum and minimum NmE values.
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Figure 2. Observed (red) and predicted (black) NmE trends for the modeling dataset. Left column: Northern Hemisphere.
Right column: Southern Hemisphere. Last row: root mean square deviation (RMS) and normalized RMS (NRMS) between
observation and prediction.

As can be seen in the plots of Figure 2, NmE shows its maximum between 65◦ and
70◦ MLAT, which is in the main region of the auroral precipitation zone. Furthermore, in
local summer and for increased solar activity, the enhanced solar EUV irradiance causes an
increased ionization of the entire ionosphere and, thus, also of the E layer. The dependency
on LT shows basically a semidiurnal variation. For an enhanced convection electric field,
we observe an increase in the peak ionization of the E layer. This observation could be
explained by the fact that the convection electric field magnitude is a measure for the
degree of magnetosphere–ionosphere coupling. Its increase indicates an enhanced particle
precipitation and, therefore, increased NmE. For both hemispheres, the range of the
observed NmE is largest depending on DOY (north: 81,000 cm−3, south: 66,400 cm−3).
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Since NmE determines the critical frequency of the ionosphere in the case of an ELDI
event, this quantity is relevant for terrestrial radio wave propagation at high latitudes. As
we see in the results, the modelled values of NmE may reach up to about 2 × 105 cm−3 at
both hemispheres, which corresponds to a critical frequency of about 4 MHz. Considering
the derived RMS values, the critical frequency may reach 6 MHz during an ELDI event
within this variability range.

4.2. NEEM-H: Model for the E Layer Peak Height

The propagation of HF radio waves also depends on the height of the reflecting layer.
In this regard, below, we show the model equation (Equation (4)) and its corresponding
coefficients (Table 3) for the peak height hmE of the E layer. Figure 3 shows the related
trends and the RMS values for the peak height. Since we found only a negligible variation
of hmE depending on the convection electric field magnitude in the initial trend analysis,
this quantity is not considered as a driver in the model equation.

hmE(MLAT, LT, DOY, F10.7) =

(c1· exp
(
− (MLAT−MLAT0)

2

2·σMLAT
2

)
+ 1)(

c2· cos
(

2π· 1
24 ·(LT − LTD)

)
+ c3· cos

(
2π· 2

24 ·(LT − LTSD)
)
+ 1

)
(

c4· cos
(

2π· 1
365.25 ·(DOY − DOYA)

)
+ c5· cos

(
2π· 2

365.25 ·(DOY − DOYSA)
)
+ 1

)
(c6·F10.7 + c7)

(4)

Table 3. Coefficients of the E layer peak height (hmE) model for the Northern and Southern Hemispheres.

hmE Model Coefficients North hmE Model Coefficients South

Internal External Internal External

MLAT0 = 69.15◦ c1 = 1.16 × 10−1 MLAT0 = −69.41◦ c1 = −1.01 × 100

σMLAT = 10.82◦ c2 = 2.73 × 10−2 σMLAT = 569.19◦ c2 = 2.12 × 10−2

LTD = −3.71 h c3 = −7.94 × 10−3 LTD = −1.12 h c3 = 2.08 × 10−3

LTSD = −1.79 h c4 = −7.22 × 10−3 LTSD = −2.27 h c4 = −1.78 × 10−4

DOYA = −171.11 d c5 = 4.33 × 10−3 DOYA = −175.39 d c5 = 5.07 × 10−3

DOYSA = −110.35 d c6 = 3.25 × 10−2 DOYSA = −90.90 d c6 = −3.33 × 100

c7 = 9.71 × 101 c7 = −1.41 × 104

As expected, the height hmE of the E layer is rather stable, varying between about
105 and 112 km for both hemispheres, with the RMS values being extended by about
7 km. These observations fit well with those of Cai et al. [10]. They found that at the
EISCAT site (69.9◦N), which is located inside the auroral oval for most of the time, hmE
was about 114 km for the majority of ELDI events. At the ESR site (78◦N), which is mostly
located outside the auroral oval, this value was around 108 km. The plots presenting the
dependencies of hmE on MLAT show a maximum hmE in the latitude range between 65◦

and 70◦, indicating the location of the auroral zone. Regarding the dependency on the local
time, a minimum hmE can be found around 8:00 to 12:00 LT. In contrast, the dependency on
DOY shows only a minor semiannual variation. Furthermore, we find that hmE increases
slightly for increasing F10.7. This effect could be explained by the higher amount of EUV
irradiance and enhanced heating for increasing F10.7, which causes an expansion of the
upper atmospheric layers in general. For both hemispheres, the range of the observed hmE
is largest depending on LT (north: 7.9 km, south: 6.4 km).
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Figure 3. Observed (red) and predicted (black) hmE trends for the modeling dataset. Left column: Northern Hemisphere.
Right column: Southern Hemisphere. Last row: RMS and NRMS deviation between observation and prediction.

4.3. NEEM-W: Model for the E Layer Vertical Profile Width

As follows, we introduce the model equation (Equation (5)) and its related coefficients
(Table 4) for the vertical profile width wvE of the E layer. The corresponding trends and
the RMS are given in Figure 4.
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wvE(MLAT, LT, DOY, F10.7) =

(c1· exp
(
− (MLAT−MLAT0)

2

2·σMLAT
2

)
+ 1)(

c2· cos
(

2π· 1
24 ·(LT − LTD)

)
+ c3· cos

(
2π· 2

24 ·(LT − LTSD)
)
+ 1

)
(

c4· cos
(

2π· 1
365.25 ·(DOY − DOYA)

)
+ c5· cos

(
2π· 2

365.25 ·(DOY − DOYSA)
)
+ 1

)
(c6·F10.7 + c7)

(5)

Table 4. Coefficients of the E layer vertical profile width (wvE) model for the Northern and Southern Hemispheres.

wvE Model Coefficients North wvE Model Coefficients South

Internal External Internal External

MLAT0 = 58.03◦ c1 = 2.84 × 10−1 MLAT0 = −57.66◦ c1 = 2.27 × 10−1

σMLAT = 4.55◦ c2 = 1.03 × 10−1 σMLAT = 2.53◦ c2 = 8.57 × 10−2

LTD = 11.70 h c3 = −2.68 × 10−2 LTD = −11.15 h c3 = 4.39 × 10−3

LTSD = 4.87 h c4 = 7.44 × 10−3 LTSD = −6.24 h c4 = −2.96 × 10−4

DOYA = −107.25 d c5 = 1.36 × 10−2 DOYA = 177.46 d c5 = 3.41 × 10−2

DOYSA = −81.82 d c6 = 4.02 × 10−2 DOYSA = −80.45 d c6 = 3.36 × 10−2

c7 = 1.45 × 101 c7 = 1.49 × 101

As we can see from the plots, the average width of the E layer generally varies between
about 15 and 21 km for both hemispheres. This value range is also in the order of magnitude
of the E layer thickness observed by Cai et al. [10], who defined this parameter in a similar
way to our E layer profile width. They found that at the ESR site, the E layer thickness
was about 17 km for most of the ELDI events, while it was about 23 km at the EISCAT site.
These observed magnitude ranges are quite different from the sporadic E layer thickness of
up to 2 km at mid-latitudes [11–13]. It is interesting to note that the trends show a decrease
in wvE for increasing geomagnetic latitudes. Furthermore, we see a slight enhancement of
wvE around local noon and with increasing solar activity. The DOY dependency shows
a minor semidiurnal variation. For both hemispheres, the range of the observed wvE is
largest depending on MLAT (north: 5.4 km, south: 4.6 km).
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Figure 4. Observed (red) and predicted (black) wvE trends for the modeling dataset. Left column: Northern Hemisphere.
Right column: Southern Hemisphere. Last row: RMS and NRMS deviation between observation and prediction.

4.4. NEEM-P: Model for the ELDI Occurrence Probability %ELDI

As explained in Section 3.2.2, we divided the value ranges of the model drivers into
intervals to compute the external %ELDI model coefficients. On the one hand, the number
of intervals of a considered driver and, thus, of the resulting data points must be high
enough to adequately represent the curve formed by the base functions included in the
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associated model term. On the other hand, this number is limited to ensure that each
interval key is assigned a sufficiently large amount of profiles to obtain a good %ELDI
resolution. Our initial trend analysis showed that for describing the MLAT dependency,
a single Gaussian function is suitable. For describing the LT and DOY dependencies, the
superposition of two cosine functions is appropriate in each case. All the listed function
terms can be sufficiently approximated by six points each. In comparison, the basically
linear F10.7 and EConv dependencies can be described by three points each. This results in
the following interval numbers for the model drivers: MLAT: 6, LT: 6, DOY: 6, F10.7: 3,
EConv: 3. For the modeling dataset, we want to ensure a minimum %ELDI resolution of 1%
for fitting the model equation to the %ELDI–model driver combinations of the keys. Hence,
we set the threshold for the minimum number of assigned profiles required by a valid key
to 100. Table 5 shows statistical information about the keys generated for both hemispheres.
Thereafter, we give the %ELDI model equation (Equation (6)) and its coefficients (Table 6).

%ELDI(MLAT, LT, DOY, F10.7, EConv) =

(c1· exp
(
− (MLAT−MLAT0)

2

2·σMLAT
2

)
+ 1)(

c2· cos
(

2π· 1
24 ·(LT − LTD)

)
+ c3· cos

(
2π· 2

24 ·(LT − LTSD)
)
+ 1

)
(

c4· cos
(

2π· 1
365.25 ·(DOY − DOYA)

)
+ c5· cos

(
2π· 2

365.25 ·(DOY − DOYSA)
)
+ 1

)
(c6·F10.7 + 1)

(c7·EConv + c8)

(6)

Table 5. Statistical information about the interval keys of the modeling dataset for the Northern and
Southern Hemispheres.

Quantity North South

Mathematically possible number of keys 1944 1944
Number of keys with less than 100 profiles 257 264

Number of keys used for fitting 1687 1680
Minimum number of profiles per key 100 100
Maximum number of profiles per key 468 437

Table 6. Coefficients of the ELDI occurrence probability (%ELDI) model for the Northern and Southern Hemispheres.

%ELDI Model Coefficients North %ELDI Model Coefficients South

Internal External Internal External

MLAT0 = 68.25◦ c1 = 8.38 × 100 MLAT0 = −70.33◦ c1 = −3.79 × 100

σMLAT = 5.35◦ c2 = 9.78 × 10−1 σMLAT = 10.50◦ c2 = 8.23 × 10−1

LTD = 1.77 h c3 = 2.96 × 10−2 LTD = 1.66 h c3 = 3.40 × 10−2

LTSD = 2.21 h c4 = −5.51 × 10−1 LTSD = 2.81 h c4 = 7.82 × 10−1

DOYA = 169.43 d c5 = 4.10 × 10−2 DOYA = 171.54 d c5 = −6.13 × 10−2

DOYSA = −75.93 d c6 = −6.42 × 10−3 DOYSA = −86.53 d c6 = −5.29 × 10−3

c7 = 9.64 × 10−4 c7 = −2.22 × 10−3

c8 = 1.53 × 100 c8 = −4.89 × 100

Figure 5 shows the corresponding trends and RMS values for the %ELDI model.
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Figure 5. Observed (red) and predicted (black) %ELDI trends for the modeling dataset. (Left) North-
ern Hemisphere. (Right) Southern Hemisphere. Last row: RMS and NRMS deviation between
observation and prediction.

Considering the trends for both hemispheres, we see that the largest %ELDI value is
about 12%. Similar to NmE, %ELDI also shows a maximum between 65◦ and 70◦ MLAT,
which fits well with the findings of Kamal et al. [8,9]. In the case of a reduced solar zenith
angle, as for example around local noon or in local summer, %ELDI is decreased, which
matches the observations of Cai et al. [10] and Kamal et al. [8,9]. A decrease in %ELDI is
also visible for increased solar activity, which was likewise found previously by Kamal
et al. [8,9]. These dependencies could be explained by the fact that both a small solar zenith
angle and a high solar activity are associated with an increased amount of solar irradiance.
This causes an enhanced ionization of the upper ionospheric layers, especially of the F2
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layer, thereby hiding the ionization of the E layer produced by particle precipitation. In this
way, the number of occurring ELDI events decreases. For an increasing convection electric
field magnitude, we also see an increase in %ELDI, which is in line with the findings for
NmE and was also observed by Kamal et al. [9]. For both hemispheres, the range of the
observed %ELDI is largest depending on LT (north: 9.1 %, south: 13.0 %).

5. Model Validation

In this section, we give the results of validating our models with the test dataset. In
this regard, we again show trends for the original model observable values (red) and for
those as predicted by our models (black). Furthermore, we show the resulting RMS and
NRMS values and compare them with the corresponding values presented in Section 4 for
the modeling dataset.

Figure 6 shows the results of validating our NmE model NEEM-N with the test dataset.

Figure 6. Observed (red) and predicted (black) NmE trends for the test dataset. (Left) Northern Hemi-
sphere. (Right) Southern Hemisphere. Last row: RMS and NRMS deviation between observation
and prediction.
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For the Northern Hemisphere, we find an NRMS of 36.1% for the modeling dataset,
while this value is slightly increased to 36.3% for the test dataset. For the Southern
Hemisphere, the NRMS for the test dataset is 46.9%. This value is slightly lower than
the NRMS for the modeling data set, which is 47.1%.

Figure 7 shows the results of validating our hmE model NEEM-H with the test dataset.

Figure 7. Observed (red) and predicted (black) hmE trends for the test dataset. (Left) Northern Hemi-
sphere. (Right) Southern Hemisphere. Last row: RMS and NRMS deviation between observation
and prediction.

When comparing the Northern Hemisphere NRMS results for the modeling dataset
with those for the test dataset, we find that the NRMS is 6.1 and 6.2%, respectively. For the
Southern Hemisphere, we have the same NRMS of 6.3% for both datasets.

Figure 8 shows the validation results for the wvE model NEEM-W after applying it to
the test dataset.
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Figure 8. Observed (red) and predicted (black) wvE trends for the test dataset. (Left) Northern Hemi-
sphere. (Right) Southern Hemisphere. Last row: RMS and NRMS deviation between observation
and prediction.

By comparing the NRMS results, we see that for the Northern Hemisphere, we have a
value of 38.6% for the modeling dataset, while this value is slightly decreased to 38.5% for
the test dataset. In the case of the Southern Hemisphere, the NRMS for the two datasets is
41.0 and 41.1%, respectively.

With a share of only 1/10th of the full electron density profile dataset, the test dataset
is much smaller than the modeling dataset. Consequently, for the qualitative validation
of the %ELDI model, it was necessary to adjust the interval key formation in such a way
that a sufficiently large number of valid keys remain. Therefore, we reduced the threshold
for the minimum number of assigned profiles required by each valid key to 50, resulting
in a %ELDI resolution of 2%. In addition, we reduced the number of intervals to four
for the model drivers MLAT, LT and DOY. Table 7 shows the corresponding statistical
information about the interval keys generated for both hemispheres.
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Table 7. Statistical information about the interval keys of the test dataset for the Northern and
Southern Hemispheres.

Quantity North South

Mathematically possible number of keys 576 576
Number of keys with less than 50 profiles 118 120

Number of keys used for fitting 458 456
Minimum number of profiles per key 50 50
Maximum number of profiles per key 131 130

In Figure 9, we show the results of validating our %ELDI model NEEM-P with the
test dataset.

Figure 9. Observed (red) and predicted (black) %ELDI trends for the test dataset. (Left) North-
ern Hemisphere. (Right) Southern Hemisphere. Last row: RMS and NRMS deviation between
observation and prediction.
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Regarding the NRMS for the Northern Hemisphere, we see a minor increase from
56.5% for the modeling dataset to 57.4% for the test dataset. For the Southern Hemisphere,
we observe an increase from 58.7 to 60.3%.

It is interesting to note that for both the modeling dataset (Section 4) and the test
dataset (Section 5), the Southern Hemisphere always shows a higher RMS deviation
between the observation and the prediction than the Northern Hemisphere. Since we have
chosen identical model equations for both hemispheres in all the cases, this effect could be
due to a hemispherical asymmetry, which includes many aspects [25,26]. Consequently,
further investigations are necessary to find out the exact causes of this effect.

6. Conclusions

In this paper, for the first time, we present the empirical Neustrelitz ELDI Event
Model (NEEM), which climatologically describes the variation of the E layer dominated
ionosphere (ELDI) for the high latitude regions of both hemispheres. NEEM depends on
key model drivers. These are the geomagnetic latitude, day of year, local time, solar activity
and convection electric field. The model is based on more than two million vertical electron
density profiles covering more than one solar cycle from April 2006 to December 2018. The
profiles were obtained from ionospheric GPS radio occultation observations on board the
COSMIC/FORMOSAT-3 mission. NEEM consists of four submodels. Each submodel is
defined by a parametric function equation, which is multiplicatively composed of several
terms, one for each driver. The individual submodels NEEM-N, NEEM-H, NEEM-W
and NEEM-P describe the peak density, the corresponding height and the width of the
vertical E layer electron density profile, as well as the occurrence probability of the ELDI,
respectively. The normalized root mean square deviation (NRMS) between the original
and the predicted model observables yields similar values across both datasets and both
hemispheres. For NEEM-N, we obtain an NRMS varying between 36.1 and 47.1%, and
for NEEM-H between 6.1 and 6.3%. In the case of NEEM-W, the NRMS varies between
38.5 and 41.1%, whereas it varies between 56.5 and 60.3% for NEEM-P. In summary, the
proposed NEEM represents a promising initial modeling approach for describing the
occurrence probability of ELDI events, as well as the associated impact on the E-layer. As
such, it paves the way for future prediction of the ELDI and its properties in applications,
especially from the fields of terrestrial and space-based telecommunications and navigation.
Nevertheless, several possibilities exist to improve NEEM. For example, increasing the
size of the modeling dataset could lead to better statistics of the model observables and,
thereby, increase the quality of the estimated coefficients. As with other models previously
developed in Neustrelitz, the conversion of geographic into geomagnetic coordinates is
based on the dipole magnetic field model. An alternative conversion using the IGRF
model instead would cause more precise geomagnetic coordinates and, thus, improve
the observed dependencies, especially on the geomagnetic latitude. Furthermore, by
increasing the number of base functions contained in the individual model terms, the
submodels would have more degrees of freedom available to adequately approximate the
observed dependencies. Since NEEM is a climatological model that describes the averaged
response of the ELDI to the drivers, the reliability to estimate the occurrence of individual
ELDI events, often closely related to perturbation induced particle precipitation, is limited.
Consequently, the results could certainly be further improved when considering the time
delay between the observed solar wind parameters used as model drivers in this study and
the magnetospheric–ionospheric–thermospheric response. This is a challenging task that
will be addressed in future work.
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