The Aeolus Data Innovation and Science Cluster (DISC)

Isabell Krisch¹

Oliver Reitebuch¹, Jonas von Bismarck², Tommaso Parrinello², Michael Rennie³, Fabian Weiler¹, Dorit Huber⁴, Jos de Kloe⁵, Alain Dabas⁶, Anne Grete Straume-Lindner⁷, Saleh Abdalla³, Stefano Aprile², Sebastian Bley⁸, Fabio Bracci⁹, Simone Bucci¹⁰, Massimo Cardaci¹⁰, Werner Damman¹¹, Dave Donovan⁵, Frithjof Ehlers⁷, Frederic Fabre¹², Peggy Fischer², Thomas Flament⁶, Alexander Geiß¹³, Phil McGoldrick¹², Giacomo Gostinicchi¹⁰, Lars Isaksen³, Sebastian Jupin-Langlois¹⁴, Thomas Kanitz⁷, Adrien Lacour⁶, Marta De Laurentis², Christian Lemmerz¹, Oliver Lux¹, Uwe Marksteiner¹, Gert-Jan Marseille⁵, Nafiseh Masoumzadeh¹, Markus Meringer⁹, Sander Niemeijer¹¹, Ines Nikolaus¹⁵, Gaetan Perron¹⁴, Bas Pijnacker-Hordijk¹¹, Katja Reissig¹⁶, Matic Savli⁶, Karsten Schmidt⁹, Ad Stoffelen⁵, Dimitri Trapon⁶, Michael Vaughan¹⁷, Marcella Veneziani¹¹, Cristiano De Vincenti¹⁰, Benjamin Witschas¹

¹DLR, Institute of Atmospheric Physics ²ESA-ESRIN ³ECMWF ⁴DoRIT ⁵KNMI ⁶Météo-France ⁷ESA-ESTEC ⁸TROPOS

DLR ISOUSSELS 2021

⁹DLR, Remote Sensing Technology Institute ¹⁰Serco ¹¹s[&]t ¹²Les Myriades ¹³LMU ¹⁴ABB ¹⁵Physics Solutions ¹⁶IB Reissig ¹⁷OLA

Knowledge for Tomorrow

The Aeolus Data Innovation and Science Cluster (DISC)

venlus

O-B: Difference between Aeolus observation and ECMWF forecasted HLOS wind

Operational monitoring of Aeolus near-real-time data at ECMWF

- Aeolus is the first satellite mission to implement operational monitoring at ECMWF directly after launch.
 Figures by M. Rennie (ECMWF).
 This operational monitoring is a very strong tool and helped to identify several before launch unexpected error sources.
- After launch, the systematic errors (bias) for both Mie and Rayleigh winds (several m/s) showed strong slow drifts, orbital variations, differences for ascending and descending orbits, and stronger biases in single range-gates.
 - Since 20 April 2020 global mean bias for both channels is around 0 m/s

≫DTSC

• The Aeolus random error is currently in the order of 6 m/s for Rayleigh winds and 3.5 m/s for Mie winds

DLR.de • Chart 4 • IGARSS 2021 • 13 July 2021

What causes systematic errors?

Combination of several unexpected error sources with different temporal characteristics

- Higher dark current rates for some "hot pixels"
 - ⇒ affects specific range gates; currently 54 pixels on Mie ACCD and 24 pixels on Rayleigh ACCD

All figures adapted from

Weiler et al., AMT 2021

What causes systematic errors?

Combination of several unexpected error sources with different temporal characteristics

- Thermal variations of the M1 telescope mirror
 - ⇒ Corrected with Baseline 09 (20 April 2020)

≫DISC

enlus

O-B bias strongly depends on thermal variations of M1 telescope mirror

© Aeolus DISC. All rights reserved.

What drives the random errors? ^{26/07/2019}

✤ Laser emit energy

- \Rightarrow Lower than expected (factor 1-2)
- ⇒ Negative trend
- Optical signal throughput in receive path for atmospheric signal
 - \Rightarrow Lower than expected (factor 2-3)
 - ⇒ Negative trend
- Solar background noise

onluc

- ⇒ Impact higher than expected due to lower atmospheric signal
- Seasonal variation of solar background by factor 18: Rayleigh random errors of 7-8 m/s were obtained in summer months for polar regions

≫DTSC

ALADIN atmospheric and internal path signal evolution for laser B

laser energy increase in March and December 2020

Figure by O. Lux (DLR).

Seasonal variation of Rayleigh solar background noise

© Aeolus DISC. All rights reserved.

Aeolus processor evolution

- New processor versions from DISC and baseline update for NRT . and reprocessing every 6 months with improvements in data quality for all products.
- **Current focus** is the further development of the **L2A processor** • and products. Baseline 12 products (since May 2021) e.g. include lidar ratios and a scene heterogeneity index.
- Additionally, a new feature mask (based on EarthCare . algorithms) is available since baseline 12 (beta version!) and a new optimal estimation retrieval for backscatter and extinction will be added with baseline 13 (autumn 2021).
- Recently, a new correction for the Mie-cloudy winds was • introduced, which significantly reduced the Mie systematic and random errors.
- We are currently working on a Rayleigh-clear "altitude" . dependent" bias correction for the L2B wind products.

Calibration

Processors

L2A Aeroso

Processor

L2B Wind

Processor

Figure by G-J. v. Zadelhoff (KNMI).

Figure by M. Rennie (ECMWF).

L2B processor by J. de Kloe (KNMI) ACMF calibration processors by ABB+S&T

End-to-End

Simulator E2S

Reprocessing of Aeolus data

- 1st reprocessing from June to December 2019 with baseline 10 product quality finished and available since October 2020.
- **2nd re-processing campaign is on-going** using baseline 11 processor versions (L1B 7.09, L2A 3.11, L2B 3.40) for period **June 2019 to October 2020**
 - fill gap in bias correction from Jan-May 2020 and consistent processing for 15 months of data
 - calibration of L2A product with varying ${\rm K}_{\rm ray}\,$ and ${\rm K}_{\rm mie}\,$ along the orbit
 - small improvements in bias correction for hot-pixel and M1
 - relaxed ground detection thresholds -> more ground returns available
- Plans for **2022**:
 - Reprocessing of laser-A data with baseline 13
 - **Reprocessing of complete Aeolus** mission with baseline 14

DTSC

Summary and Conclusion

- The Aeolus DISC consortium is responsible for instrument monitoring, calibration, processor evolution, product quality, user support and impact studies.
- Aeolus wind data is monitored at ECMWF since launch.
- This concept allowed a fast detection and correction of multiple systematic biases. Since 20 April 2020 global mean bias for both channels (Rayleigh & Mie) is around 0 m/s.
- The random error is larger than expected before launch and currently in the order of 6 m/s for Rayleigh winds and 3.5 m/s for Mie winds.
- New processor versions from DISC and baseline update for NRT and reprocessing are provided every 6 months with improvements in data quality for all products.
- First re-processed data (June December 2019) available since Oct. 2020. More to come in autumn 2021.

DTSC

Aeolus data quality is constantly monitored at ECMWF

Several systematic errors have been corrected since launch

© Aeolus DISC.

All rights reserved.

Isabell.Krisch@dlr.de