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Aviation has I mpacts on climate through i1its emission
properties of the atmosphere, contributing to climate warming and climate change. (IPCC, 1999)

The share of aviation amongst all anthropogenic climate impact is about 3-5%.

Considering the projected growth of air traffic for
climate impact is expected to increase further. (Lee et al., 2021)

Consequently, intergovernmental organizations, aircraft manufacturers and operators, and the research
community are focusing on technological, operational and regulatory options for climate impact mitigation.

Impact of non-CO, effects need to be understood and quantified in order to develop sustainable aviation.
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ClimOP 1 CLimate assessment of Innovative Mitigation strategies towards OPerational improvements in aviation

ldentify, evaluate and support the implementation of mitigation strategies to initiate and foster
operational improvements which reduce the climate impact of the aviation sector.

Addresses both the non-CO2 and CO2 impacts simultaneously

Define actions and recommendations for policymakers
by proposing a set of most promising and
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cCurrent status

Identified the 11 most promising Operational
| mprovements (Ol 6s)

The Ols covers 4 key areas:

A Ground operations

A Terminal Maneuvering Area (TMA) operations
A Network and in-flight operations

A Operations at a regulatory level

Short term implementation, long term benefits

Each Ol has different pros and cons, evaluation
IS important

diver
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1 Network / in-flight

2 Network / TMA
3 Network/in-flight

4 Network/in-flight
S Network/in-flight

6 Network/Trajectory

7 Network/Trajectory

8 Ground

9 Regulatory

10 Ground/Airports

11 Ground/Airports
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Flying low and slow

Continuous climb/descent operations
Free routing in high-complexity environment / flexible waypoints

Climate-optimised flight planning

Wind/weather-optimal dynamical flight planning

Strategic planning: merge/separate flights; optimal hub-spokes/point-
to-point operations

Climate-optimised intermediate stop-over

Single engine taxiing / E-taxi (tow truck or tug wheel) and hybrid taxi

Promote “climate-friendly” flights

Electrification of ground vehicles and operations

Upgrade of the existing airport infrastructure for the reduction of
environmental impacts
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ClimOP aims to define a common air traffic scenario to assess the
climate impact of each action under the same operational and
technological conditions.

Model development is completed this year, mature results are planned
for mid-2022

Ols will be refined via several validation activities

At the end of its lifespan, ClimOP will deliver a set of mitigations
strategies to reduce the climate impact of aviation.
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Modelling contrall climate
Impact on Lagrangian

trajectories
(ClimOP Ol: CLIM (Climate optimized trajectories)
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Global Aviation Effective Radiative Forcing (ERF) Terms
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(Climate forcing terms from global aviation, Lee et al. 2021)
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A Contrail-cirrus provides the largest
contribution (~57mWm-2?)
to global aviation effective radiative
forcing (Lee et al. 2021)

A Potential contrail coverage and
CCFs calculated with a Lagrangian
approach vary with weather
patterns (Fromming et al. 2021)

A Large remaining uncertainties in
magnitude in part due to
incomplete representation of key
processes
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(Potential contrail coverage (top) and climate change functions
(bottom) for different weather situations, Frémming et al. 2021)
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Investigate formation and life cycle of contrails on Lagrangian trajectories and gquantify climate impact
for different emission locations (so called time-regions)

Evaluation of physical processes controlling the climate impact of contrails.
A Analysis on Lagrangian trajectories
» Dependences on geographical location, altitude and time
» Impact of the actual meteorological situation
»  Microphysics (formation process, lifecycle, particle loss, melting time)
» Parametrization of radiative properties (short wave, longwave)
»  Model representation (resolution, accuracy ,functionalities)

Comparison of key variables with observational data (comprising temperature and humidity)
Adjust or expand parametrization developed for Lagrangian trajectories
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Potential Contrail Coverage 2014-03-26 00:00 at 250hPa
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Figure: Potential Contrail Coverage for 26 March 2014, 250 hPa
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A Numerical simulation are performed with the global climate
model EMAC which offers a modular approach for specific
functionalities

A Setup: ECHAMS with T42L41 (2.8&2.8A 41 vertical layer)
A Modules: ATTI LA, LGTMI X, LGGP, R;

A Potential Contrail Coverage for 250 hPa considering the
Schmidt-Appleman criterion and saturation vapour pressure
(ice)
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Figure: Potential Contrail Coverage for 26 March 2014, 250 hPa
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A Numerical simulation are performed with the global climate
model EMAC which offers a modular approach for specific
functionalities

A Setup: ECHAMS with T42L41 (2.8&2.8A 41 vertical layer)
A Modules: ATTI LA, LGTMI X, LGGP, R;

A Potential Contrail Coverage for 250 hPa considering the
Schmidt-Appleman criterion and saturation vapour pressure
(ice)
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Base model: ECHAMS with L41
Each Simulation: 32 time-region-grid points
Lagrangian Transport Module ATTILA

Water vapor pulse emissions are released
on the start point of each trajectories

Life cycle of contrails is investigated
on Lagrangian trajectories (50)

Microphysics are calculated in the
air parcels transported on these
trajectories

Figure: Potential contrail coverage for 26 March 2014 at 250 hPa (blue), Location of time-region grid points
| (red) and examples for lagrangian trajectories (orange)
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