
Bachelorarbeit

zur Erlangung des akademischen Grades
Bachelor of Science (B. Sc.)
im Studiengang Informatik

Implementation of a vectorized

Quicksort using AVX-512 intrinsics

eingereicht von Frank Thiemicke
geb. am 28.07.2000 in Weimar

Betreuer: Mark Blacher
Zweitgutachter: Dr. Lars Kühne

Friedrich-Schiller-Universität Jena

Fakultät für Mathematik und Informatik

Jena, den 2. August 2021

Zusammenfassung

Jahrzehntelang wurden Verbesserungen der Rechengeschwindigkeit erreicht,
indem die Taktfrequenz der CPU erhöht wurde. Im Laufe der letzten Jahre
wurde dieser Mechanismus durch physikalische Einflüsse gebremst. Daher
müssen moderne Single-Thread-Anwendungen stärker CPU-Funktionen aus-
nutzen, um von den Fortschritten neuer Prozessorgenerationen zu profitie-
ren.

Eine dieser Funktionen ist die Vektorverarbeitung, um mehrere Datenele-
mente gleichzeitig zu verarbeiten. Diese Arbeit untersucht die Verwendung
von AVX-512-Befehlen zur Sortierung von primitiven Typen der Länge 32 bit.
Die Nutzung von Vektorinstruktionen für die Sortierung ist eine Herausfor-
derung, da Sortieralgorithmen erst vektorisierungsfreundlich umgestaltet
werden müssen. Glücklicherweise hat Mark Blacher einen effizienten vek-
torisierten Sortieralgorithmus auf Basis von Sortiernetzwerken und einem
nichtquadratischen Quicksort entwickelt.

In dieser Arbeit wird Blachers AVX2-basierte vektorisierte Implementierung
auf den moderneren AVX-512-Befehlssatz portiert. Im Geschwindigkeits-
vergleich schlägt Blachers AVX2-Version die in dieser Arbeit entwickelte
AVX-512-Implementierung. Diese ist jedoch in der Lage, den bisherigen AVX-
512-Sortieralgorithmus von Bramas zu übertreffen.

Abstract

For decades, improvements in computation speed have been achieved by
increasing the CPU’s clock speed. Over the course of the last years, this
mechanism has been curbed by physical influences. Therefore, modern single-
threaded applications need to leverage modern CPU features to benefit from
the advances of recent processor generations.

One of these features is vector processing – using vector instructions to
process multiple data items simultaneously. This thesis explores the use of
AVX-512 vector instructions for sorting arrays of 32 bit primitive types. Using
vector instructions for this task is a challenging endeavor, because sorting
algorithms have to be adapted to vectorization. Fortunately, Mark Blacher
has developed an efficient vectorized sorting algorithm based on vectorized
sorting networks and a non-quadratic vectorized Quicksort.

This thesis ports Blacher’s AVX2-based vectorized implementation to the
more modern AVX-512 instructions. In benchmarks, his AVX2 implementa-
tion compares favorably to the dedicated AVX-512 implementation described
in this thesis. Nevertheless, the AVX-512 port is able to beat Bramas’ AVX-512
sorting algorithm.

Contents

1 Introduction 7

2 Vectorization on modern hardware 9
2.1 Vector processing and SIMD 9
2.2 Vector instructions and intrinsics 11
2.3 Advances of AVX-512 instructions 17

3 Efficient sorting 21
3.1 Properties of sorting algorithms 21
3.2 Sorting networks . 22
3.3 Quicksort and Quickselect 26
3.4 Relevant hybrid sorting algorithms 29

4 Related work 31

5 Porting AVX2 sort to AVX-512 33
5.1 Choice of language and tooling 33
5.2 Pivot calculation and introduction 35
5.3 Enlargening sorting networks 40

5.3.1 Sorting two vectors 40
5.3.2 Merging sorted columns 45

5.4 Updating partitioning . 50
5.5 Assembling Quicksort’s recursion 52

6 Experiments and benchmarks 55
6.1 Benchmarking methodology 55
6.2 Benchmarks against relevant sorting algorithms 57
6.3 Assessing the implementation’s efficiency 61

7 Conclusion 65

Bibliography 67

Appendix 79
A.1 Using the FFI bindings from C++ 79
A.2 Supplementary code examples 81
A.3 Raw benchmarking results 86

5

1 Introduction

Sorting is one of the most well-known problems in computer science. Sorting
algorithms are applied to solve a variety of problems. Ranging from ordering
search results in online stores to sorting indices for databases, sorting is
inherent to many problems on vastly different levels of development.

A major use case for sorting is the minimization of effort spent on tasks
that benefit from strict ordering. Binary search is a prime example for that:
searching an item after sorting a large array may be significantly faster
than executing a search routine on the unsorted array. Sorting may thus be
considered an important subproblem of many more complex problems.

While sorting is commonly used in introductory courses to illustrate different
aspects of algorithmics, it is far from being trivial. The field of sorting is still
advancing, especially in terms of optimizing implementation speed. Modern
implementations nearly ubiquitously feature hybrid algorithms switching
from one algorithm for sorting large datasets to even faster algorithms for
smaller ranges or arrays.

One goal of optimizing these implementations is the better utilization of
hardware resources. For CPU-bound tasks like (in-cache) sorting on modern
processors, it is of great interest to stay up to date with recent CPU features
and instructions. Vectorization is one approach to reach this aim by exploiting
data-level parallelism. Its application to sorting is subject to active research.

For years, consumer hardware has provided vector instructions. Primar-
ily used by multimedia applications at first, vector instructions speed up
many algorithms today, from cryptography to linear algebra. In high perfor-
mance computing environments that are still based on the x86 instruction
set architecture, the AVX-512 vector extensions have gained market share.
Although they are not the default for implementing compute-intensive pro-
cesses yet, they may gain more traction by Intel integrating AVX-512 into
recent consumer CPUs, for desktop computing as well as laptops.

In 2018, Mark Blacher implemented a vectorized Quicksort using AVX2, five
years after AVX-512’s introduction. This thesis aims to port his ideas from

7

AVX2 to AVX-512 using the advanced capabilities of AVX-512 and determine
the speedup of this algorithm over the AVX2 implementation on processors
with AVX-512 feature set. Algorithmically, this revolves around Blacher’s
hybrid algorithm of Quicksort and sorting networks.

After a short introduction to vector processing and AVX intrinsics in chap-
ter 2, relevant sorting algorithms and sorting networks will be discussed in
chapter 3. Previous approaches to the vectorization of sorting algorithms
in general and Quicksort in particular are presented in chapter 4. Chap-
ter 5 highlights the differences of an AVX-512 implementation compared
to Blacher’s AVX2 implementation. In chapter 6 the resulting implementa-
tion’s benchmarking results are discussed and its performance is compared
to common well performing sorting implementations.

I am grateful to my supervisor Mark Blacher for enlightening discussions
and technical insight. Thanks also go to Dr. Lars Kühne for introducing me
to the topic of algorithm engineering and offering the topic of this thesis
to me. I appreciate the feedback and proofreading by Paulo Roberto Massa
Cereda and Christoph Wernike.

Code examples and accompanying code

Throughout this thesis, code examples will aid the textual explanations.
Unless otherwise stated, they are written in the Rust programming language.
Some of them may not be executable on their own and most of them require
compilation on a machine with AVX-512 support. Please note that all these
code examples are prepared for typesetting, which includes the use of coding
ligatures.

The repository at https://git.uni-jena.de/li73jeh/bachelor-thesis
provides the executable code accompanying this thesis. That is, the AVX-512
sorting implementation, unit and fuzz tests, benchmarking code as well as the
LATEX code for this thesis may be found there. Some sections link to relevant
source files indicating the relative path within the repository.

8

https://git.uni-jena.de/li73jeh/bachelor-thesis

2 Vectorization on modern hardware

2.1 Vector processing and SIMD

This thesis aims to implement a vectorized Quicksort. To define vectorization
it is useful to step back and introduce the term “vector”. MacKenzie describes
vector processing in the following way:

“
”

Vector processing means hardware and software pro-
vision for a single instruction to be executed on all
the members of an ordered set of data items. [45,
p. 103]

Based on this, the term vector will be used to describe an ordered set of
data items. For the sake of simplicity, vectors will be seen as registers which
are used as contiguous storage of several elements of the same length. For
example, a register of a length of 512 bit is a vector of 8 elements for 64-bit-
integers.

The idea of vector processing is more than 50 years old. The first successful
vector computer was the Cray I from 1976. Many principles of this kind of
processing date back to the 1950s when Daniel Slotnick explored the field of
processor arrays to perform the same bit-serial operation on multiple words
(although his first attempts used a word size of 1 bit). Back then, computing
pioneer John von Neumann dismissed Slotnick’s ideas as requiring “too many
tubes” [45, p. 103 ff.].

Flynn devised a classification of computing systems in 1972. Slotnick’s ap-
proach is Flynn’s prime example for the SIMD, single instruction multiple
data, principle [18]. SIMD processing is one way to achieve data-level paral-
lelism.

On modern systems, SIMD instructions are ubiquitous. The following ex-
planations will concentrate on computers using the x86 instruction set ar-

9

Figure 2.1: Addition using a vector instruction and a scalar instruction on
registers with the same content.

1010 1010 1010 1010 1010 1010 1010 1010

1000 1000 1000 1000 1000 1000 1000 1000

0010 0010 0010 0010 0011 0011 0011 0010

+

=

+

=

+

=

+

=

+

=

vector instruction scalar instruction

chitecture. There, SIMD instructions are commonly referred to as vector
extensions of an instruction set. Common vector extensions include MMX
(Multi Media Extension, 64 bit registers), SSE (Streaming SIMD Extensions,
128 bit registers), AVX, AVX2 (Advanced Vector Extensions, 256 bit registers
each) and AVX-512 (512 bit registers).

A vector instruction operates on one or more vectors providing a semantic
abstraction from the register’s bit level to the vector’s element level. Vec-
torized addition, for instance, will add two vectors element-wise. Vector
instructions are contrasted to scalar instructions where adding two registers
would simply add the numbers in the registers without considering them to
be multiple elements.

To exemplify vectorized and scalar operations, fig. 2.1 depicts both a vec-
torized and a scalar addition. These additions are performed on a machine
with a register size of 16 bit and vector instructions that use one register as
a vector of 4 elements. Note that the content of the source registers is the
same in both the scalar and the vectorized case but there is a difference in
the output/destination register.1

This leads to the process of turning code of scalar instructions into code
maximizing the use of vector instructions, viz. vectorization [36]. There

1This difference is achieved by computing an addition with overflow. On this contrived
architecture integer overflow is silently ignored.

10

are different approaches to vectorization. Many developers rely on auto-
vectorization as performed by the compiler, affecting simple loops with
independent iterations and similar constructs. However, in many cases code
has to be rewritten to be vectorized effectively.

As chapters 5 and 6 will concentrate on Rust code, it is important to note that
the Rust compiler enables auto-vectorization by default. Rust delegates this
task to LLVM, which has two major vectorizers: a loop vectorizer that unrolls
and vectorizes loops and a “superword-level parallelism” (SLP) vectorizer
combining multiple similar instructions into one vector instruction [43].

2.2 Vector instructions and intrinsics

In the previous section, vector instructions have been introduced as instruc-
tions operating on vector registers. As this thesis will focus on Intel’s AVX-512
instructions, there are three relevant types of vector registers: SSE registers
(xmm0 to xmm15, width: 128 bit), AVX/AVX2 registers (ymm0 to ymm15, width:
256 bit) and AVX-512 registers (zmm0 to zmm31, width: 512 bit).

It is important to note that these registers are not independent of each other.
For all AVX registers their lower half constitutes the SSE registers and equally
AVX registers constitute the lower half of AVX-512 registers [50]. Due to the
latter there are more AVX and SSE registers available on AVX-512 hardware
than on AVX2-only hardware [12]. This configuration of the registers is
shown in fig. 2.2.

The AVX-512 vector extensions complement the x86_64 instruction set ar-
chitecture to utilize the respective 512 bit registers. Initially developed by
Intel, the x86 instruction set gained 64 bit additions by AMD back in 2003 [9,
p. 269]. Albeit introduced in 2013, the AVX-512 vector extensions are one of
the latest major additions to the instruction set [50].

One of these new vector instructions is vpminsd, which computes the (element-
wise) minimum of signed 32 bit integers in 512 bit vector registers. A call to
this instruction could look like

Asmvpminsd zmm0, zmm1, zmm2

which assigns the element-wise minimum of zmm1 and zmm2 to zmm0.

Vector instructions like vpminsd are called in the same way as scalar instruc-
tions. The main difference with respect to their assembly code is the ability

11

Figure 2.2: AVX-512 registers on the x86_64 architecture.

AVX-512 AVX/AVX2 SSE

zmm0 ymm0 xmm0

zmm1 ymm1 xmm1

zmm2 ymm2 xmm2

⋮ ⋮ ⋮

zmm15 ymm15 xmm15

zmm16 ymm16 xmm16

zmm17 ymm17 xmm17

⋮ ⋮ ⋮

zmm31 ymm31 xmm31

128 bit
256 bit

512 bit

to use vector registers. As the AVX registers use the lower half of AVX-512
registers many vector instructions like vpminsd may be used with zmm type
as well as ymm type registers.

When displaying instructions or assembly code, this thesis makes use of the
Intel ASM syntax [44] where calls follow the order instruction, destination,
source. Some of the assembly output is generated with the help of Compiler
Explorer [21].

In theory, assembly code as shown would be sufficient to make use of vector
instructions in higher-level languages. The following Rust example illustrates
the use of these assembly vector instructions.

Rust1 #!)[feature(asm)]

2 #!)[feature(stdsimd)]

3 use std::)arch::)x86_64::)*;

12

4 fn min(a: __m512i, b: __m512i) ->- __m512i {

5 let c: __m512i;

6 unsafe {

7 asm!(

8 "vpminsd {0}, {1}, {2}",

9 out(zmm_reg) c,

10 in(zmm_reg) a,

11 in(zmm_reg) b,

12);

13 }

14 c

15 }

Writing such a function has multiple disadvantages. One of the most sig-
nificant is the increase in code complexity and decrease in maintainability.
Furthermore, it is hard to reason about the correctness of certain optimiza-
tions, even for compilers. Thus, including assembly calls in a way similar to
the one above might result in less optimal code generation.

The most important alternative to assembly calls are intrinsic functions
(intrinsics). These are functions whose implementation is not provided by a
language’s libraries but on compiler or runtime level. For instance, Rust’s
toolchain is based on the LLVM compiler infrastructure and the Rust compiler
generates LLVM intermediate representation code. Rust’s standard library
provides the following function interface corresponding to the interface
described by Intel [34, 51]

Rust1 pub unsafe fn _mm512_min_epi32(a: __m512i, b: __m512i) ->- __m512i {

2 transmute(vpminsd(a.as_i32x16(), b.as_i32x16()))

3 }

where vpminsd is treated as a regular Rust function. This vpminsd function is
declared in the samemodule by using an external C declaration corresponding
to the C interface of a LLVM intrinsic [53]:

Rust1 #[)allow(improper_ctypes)]

2 extern "C" {

3 //) …

4 #[)link_name = "llvm.x86.avx512.mask.pmins.d.512"]

5 fn vpminsd(a: i32x16, b: i32x16) ->- i32x16;

6 //) …

7 }

13

This LLVM intrinsic in turn compiles to the vpminsd instruction described
earlier.2

The following explanations will concentrate on the intrinsics as defined by
the Intel Intrinsics Guide [34], i.e. the level of _mm512_min_epi32. When
dealing with these abstractions, it is important to clarify a caveat of that level:
these intrinsics do not always translate into exactly one vector instruction.

Essential instructions like _mm512_set_epi32 (setting an AVX-512 register
by using the integers that the vector will hold) are of type “sequence”, i.e.
they will generate more than one instruction. Intel poses a performance
warning on these instructions.

“
”

This intrinsic generates a sequence of instructions,
which may perform worse than a native instruc-
tion. Consider the performance impact of this in-
trinsic. [34]

Indeed, the Rust source code for simply inserting 16 integers into an AVX-512
register results in two instructions being issued.

Rust1 #!)[feature(stdsimd)]

2 use std::)arch::)x86_64::)*;

3

4 pub unsafe fn set_vec() ->- __m512i {

5 _mm512_set_epi32(

6 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

7)

8 }

The resulting assembly shows two vmovaps instructions responsible for load-
ing the values from LCPI0_0 into the corresponding registers.

Asm1 .LCPI0_0:

2 .long 16

3 .long 15

4 .long 14

5 .long 13

2Actually, it is a resolution process starting with LLVM’s auto-upgrade mechanism which
maps it to the smin intrinsic that is subject to further translations. It is not useful to
follow the path here. In the end it resolves to the corresponding instruction.

14

6 .long 12

7 .long 11

8 .long 10

9 .long 9

10 .long 8

11 .long 7

12 .long 6

13 .long 5

14 .long 4

15 .long 3

16 .long 2

17 .long 1

18 example::set_vec:

19 mov rax, rdi

20 vmovaps zmm0, zmmword ptr [rip + .LCPI0_0]

21 vmovaps zmmword ptr [rdi], zmm0

22 vzeroupper

23 ret

As the second vmovaps relies on the availability of the output of the first
vmovaps, the two instructions have to be executed sequentially. To assess the
impact of a specific order of vector instructions on the performance, there
are two important metrics: latency and throughput.

The latency of an instruction describes the number of clock cycles until the
result of that instruction is available to other instructions [9, p. 501]. Take
the line

Asmvmovaps zmm0, zmmword ptr [rip + .LCPI0_0]

from above. vmovaps has a latency of 1. Hence, the result will be available to
the next vmovaps instruction after 1 clock cycle has completed. In turn, the
result of the second vmovaps instruction needs another clock cycle to be made
available. Thus, the whole _mm512_set_epi32 is compiled into instructions
that need 2 clock cycles to return the result, or assign it to a variable for that
matter.

Another important measure is throughput.3 It describes the number of
clock cycles it takes until the next instruction of the same type may be
executed on the same execution unit. As an example, consider the instruc-

3Throughput follows Intel’s terminology as presented in the Intrinsics Guide. Bryant and
O’Hallaron call the same measure “issue time” [9, p. 501].

15

tion vpcompressd, which has a latency of 11 and a throughput of 2. This
instruction is wrapped by _mm512_mask_compressstoreu_epi32.

C++1 _mm512_mask_compressstoreu_epi32(base_addr, 0xA0A0, v);

2 _mm512_mask_compressstoreu_epi32(base_addr + 16, 0xA0A0, v);

3 _mm512_mask_compressstoreu_epi32(base_addr + 32, 0xA0A0, v);

In the preceding code snippet, the computations are independent of each
other. That is, the second compressing store may start after 2 clock cycles as
the throughput of the previous instruction is 2, it uses the same execution
unit and does not depend on the result of the first instruction. Similarly for
the third instruction. For the execution unit, all computations are considered
finished after 6 clock cycles. However, due to the latency of 11 the results
will only be available after a total of 11 + 2 + 2 = 15 clock cycles.

nb: Scalar instructions and vector instructions may have the same latency and
throughput. The example from fig. 2.1 on page 10 is a prime example: adding
usually needs 1 clock cycle to provide its result regardless of being scalar or
vectorized. This is the foundation for the performance improvements gained
by vectorization.

To reduce latency, some operations artificially narrow the register width
by simultaneously operating on lanes instead of the whole vector register
at once. A lane groups multiple contiguous elements. AVX2 features two
128 bit lanes, AVX-512 four. A recurring example in this thesis will be the
use of shuffling with latency 1 vs. permuting with latency 3, where both may
reorder elements within a vector. Shuffling is constrained to only reorder
items within lanes, whereas permuting may cross lane boundaries while
reordering.

Figure 2.3 shows an example of shuffling vs. permuting with respect to
lanes in AVX2. For ①, it is sufficient to shuffle because all elements are
reordered within lane boundaries. The seemingly harmless swap of 8 and
1 in ②, however, crosses lane boundaries and has to be performed on the
whole register, i.e. by permuting. Permutations are performed by providing
a mapping between target indices and source indices. Shuffles are defined by
an immediate value, immediate for short, representing the transformation
for one lane.

Immediates are compile-time constants [9, p. 169] which do not require
access to registers or memory. The immediate argument for shuffling is a
sequence of four numbers in binary representation ranging from 0 (00) to
3 (11). Groups of two binary digits each are read from right to left. The

16

Figure 2.3: Shuffling vs. permuting on AVX2.

1 2 3 4 5 6 7 8

4 3 2 1 8 7 6 5

8 2 3 4 5 6 7 1

①

②

128 bit lane
0b00011011

128 bit lane
0b00011011

256 bit register

7, 1, 2, 3, 4, 5, 6, 0

specification 0b00011011 for reversing a lane as used in the figure thus reads
as the sequence of indices 3, 2, 1, 0, i.e. “last element of the lane first, third
second, second third and first last”.

2.3 Advances of AVX-512 instructions

In contrast to AVX and AVX2, AVX-512 describes multiple vector exten-
sions. The most important subset is AVX512F (foundation), including 512 bit
equivalents of AVX2 extensions as well as additional instructions like the
compress or masked instructions. Every AVX-512 compatible CPU must
implement AVX512F, which is why this thesis will focus on the AVX512F
vector extensions.

Besides AVX512F, most architectures apart from the discontinued Xeon Phi
architecture implement AVX512CD, which provides collision detection in-
structions. The Skylake processors provide three additional vector extensions,
AVX512BW (byte and word, i.e. support for additional 8 bit and 16 bit op-
erations), AVX512DQ (double and quad word, i.e. support for additional
32 bit and 64 bit operations) and most importantly AVX512VL (vector length,
allowing to use AVX-512 instructions on ymm and xmm registers) [49, 60].

AVX-512 also introduces improvements in the details. One of these details
is that unlike “SSE and AVX that cannot be mixed without performance
penalties, the mixing of AVX and Intel AVX-512 instructions is supported
without penalty” [50], which in turn allows the re-use of code optimized for

17

AVX in AVX-512 programs. That is, for larger software projects a migration
may happen steadily instead of all at once without losing performance.4

To exemplify some of the new instructions: Gueron and Krasnov as well as
Blacher developed Quicksort’s partitioning based on AVX2 instructions and
both used pre-computed permutation masks to implement partitioning [6,
24].5 For Blacher’s Quicksort this results in the following code to partition a
single AVX2 vector into memory.

Rust1 //) which elements are larger than the pivot

2 let compared = _mm256_cmpgt_epi32(current_vec, pivot_vec);

3 //) extract highest bit from each integer of the vector

4 let mm = _mm256_movemask_ps(

5 *(&compared as *const __m256i as *const __m256)

6);

7 //) permute elements greater than the pivot to the right and those

8 //) less than the pivot to the left

9 current_vec = _mm256_permutevar8x32_epi32(

10 current_vec,

11 AVX2_PERMUTATION_MASKS[mm as usize],

12);

13 _mm256_storeu_si256(

14 left_store as *mut i32 as *mut __m256i,

15 current_vec

16);

In this example, AVX2_PERMUTATION_MASKS contains pre-computed permuta-
tion masks that help permuting the current vector into a partitioned state
given the position of the elements greater than the pivot element.

An AVX-512 implementation of the same partitioning of one vector6 looks
like the following snippet.

Rust1 //) mask of elements are larger than the pivot

2 let compared = _mm512_cmpgt_epi32_mask(current_vec, pivot_vec);

4Downs clarifies that there are situations where mixing in light AVX2 instructions may
impose a performance penalty [15]. However, this penalty affects both AVX2 and AVX-
512 on AVX-512 chips, so it does not change the conclusion.

5Partitioning is the problem to transform a vector in a way that all elements with values
less than a given pivot are positioned to its left and all elements greater than it to its
right.

6Actually, the implementations differ as the AVX-512 version will partition 16 elements at
once. Still, it is sufficiently similar to introduce the concept.

18

3 //) count ones (every 1 is an element greater than the pivot)

4 let amount_gt_pivot = compared.count_ones() as usize;

5 //) store elements smaller than the pivot to the left and the ones

6 //) larger than the pivot to the right

7 _mm512_mask_compressstoreu_epi32(left_store, !compared, current_vec);

8 _mm512_mask_compressstoreu_epi32(

9 right_store.sub(amount_gt_pivot),

10 compared,

11 current_vec

12);

There are a few differences. Most notably, the vpcompressd instruction intro-
duced in the last section is used instead of permuting and storing separately.
This instruction contiguously stores those 32 bit integers in current_vec

whose respective bit is set in the writemask compared to the memory loca-
tion defined by the provided pointer.

As surfaced by the name of the intrinsic function wrapping vpcompressd,
_mm512_mask_compressstoreu_epi32, this instruction belongs to the family
of masked load/store instructions. But even unrelated to memory access
AVX-512 introduces a significant amount of masked instructions, many of
which without equivalent in the AVX2 instruction set.

Among others, most arithmetic operations gained mask support. For instance,
vpaddd (adding integer double words) takes one mask argument that allows
to control which element’s addition results will actually be stored. There are
masked compare operations, masked convert operations, masked permute
operations and many more.

Returning to masked store instructions and the introductory example, one
question remains: is there any benefit from using these instructions compared
to the alternative? A first observation in the AVX2 code is the absence of
pipelining opportunities due to each statement using the previous statement’s
result. Disregarding array access to the permutation masks, this results in
adding up the latencies of the instructions, in order that is 1 + 2 + 3 + 5 =
11 clock cycles.

On the other hand, the AVX-512 example canmake use of pipelining. The first
three statements are sequentially executed and the fourth statement starts
after the throughput of the first vpcompressd has been exceeded, i.e. two
clock cycles after the third statement. This adds up to 3+1+2+11 = 17 clock
cycles, 6 cycles longer than the AVX2 version.

19

Now, there are two important considerations why the AVX-512 instructions
are still of use. First and foremost, they partition 16 elements at once, which
would require two partitions of 8 elements each and one additional merge on
AVX2. Second, the high-latency AVX-512 instructions benefit from pipelining,
which allows for optimizations like manual loop unrolling to result in major
speedups.

However, there is one significant caveat to the use of AVX-512. Processors
may reduce clock frequency for thermal reasons (throttling) or because of
license-based downclocking7 [55]. They do this for AVX2 instructions as
well but the performance drop is about half as severe as for AVX-512. During
frequency transitions themselves the processor might be significantly slower
than usual [15].

For some applications, throttling is not even measurable [40]. But theoret-
ically AVX-512 code, which triggers a high license and thermal throttling,
may still become slower than AVX2 code. Among others, this affects code
that primarily consists of multiple “heavy” instructions like those operat-
ing on the floating point unit. Whether a program is subject to significant
downclocking has to be tested by performing benchmarks on real hardware.
Lemire provides some hints on what to take into consideration [41].

It is important to note that more recent generations of processors, Intel’s
Rocket Lake for example, are not affected by large license differences when
performing license-based downclocking. The distinction between light and
heavy is nearly inexistent for these CPUs, with the only real source of heavy
downclocking on these recent CPUs being throttling [16].

7Licenses are categories for the frequencies a processor may run on. The choice of license
depends on the instructions, some of which like those fromAVX-512 need a higher license
and therefore always cause a decrease in clock speed. License-based downclocking does
not include thermal throttling. [17].

20

3 Efficient sorting

3.1 Properties of sorting algorithms

Sorting is the process of reordering a collection of comparable elements in a
way that afterwards the collection is ordered by some (total) ordering. This
thesis will focus on sorting 32 bit integers, i.e. the total ordering is defined by
the known comparison operations on ℤ. Integers may be used as sort keys
to sort more complex data structures [27, p. 55].

Focusing on 32 bit integers is a very weak restriction. As detailed by Blacher,
there are simple transformations between floating point numbers and integers
for sorting. Even more complex objects might be represented as integers
or at least re-ordered in their bit representation to effectively use a sorting
key. If all that is infeasible there are multiple alternatives like using pairs of
indices and keys, or repeating every operation on an array of keys on the
array of values [6, cf. pp. 67 ff.].

Most general-purpose sorting algorithms like Quicksort or Mergesort are
comparison-based sorting algorithms. That is, they are based on an abstract
comparison operator applicable to any two items to be sorted which deter-
mines the order in which they appear in the sorted list. There is a proven
lower bound for the number of comparisons such an algorithm has to perform,
Ω(𝑛 log(𝑛)) [27, pp. 87 ff.].

Multiple algorithms achieve this best-case complexity, among themQuicksort
and Mergesort. While Mergesort will never perform worse than 𝒪(𝑛 log(𝑛)),
traditional Quicksort has a worst-case complexity of 𝒪(𝑛2). Quicksort is still
a very good choice because this worst-case can be eliminated or at least be
made exceedingly rare, cf. section 3.3.

Apart from complexity analysis, a comparison between multiple algorithms
of the same complexity is determined by the implementations and target
architectures. A typical Mergesort is implemented as an out-of-place algo-
rithm, i.e. it requires an auxiliary data storage, while Quicksort is usually
implemented as an in-place algorithm. Depending on the storage access

21

times this might have significant impact on the constant terms and factors
neglected by complexity analysis.

In general, comparison-based sorting algorithms do not take more specific
properties of the problem into account. These properties may include a small
range of values, a certain distribution, or simply a very small amount of
elements. Non-comparison-based sorting algorithms exploit these properties
at the cost of being rather inefficient on data of unknown distribution, range
etc.

Among the non-comparison-based algorithms are Bucket sort, Radix sort or
Counting sort. Counting sort achieves aworst-case time and space complexity
of 𝒪(𝑛 + 𝑘) with the number of possible values 𝑘 in an array of length 𝑛. In
contrast to Quicksort, which is usually implemented as an unstable sorting
algorithm due to space implications of stability, Counting sort is inherently
stable, i.e. two equal elements do not change their order in the sorted array
compared to their order in the unsorted array.

3.2 Sorting networks

Sorting networks are comparison-based sorting algorithms whose only oper-
ations are comparison elements.8 A comparison element receives two inputs
and compares them with each other [5, p. 23]. The basic principle is depicted
in fig. 3.1. This thesis will stay consistent with the order presented in the
figure, the minimum of both inputs will be relayed to the upper output and
the maximum to the lower output.

Comparison elements may be implemented in hardware or software. Sorting
networks are composed of comparison elements by using the output of
previous comparison elements as input of later ones. Comparisons without
mutual dependencies may be executed in parallel if the chosen realization
supports parallelization. A vectorized implementation of sorting networks
requires parallel execution, which is provided by the hardware facilities of
the vector processor.

Sorting networks are oblivious. Any input to a sorting network, even a sorted
sequence, leads to the execution of all minimum and maximum operations
constituting the comparison elements. Sorting networksmay be implemented

8Blacher calls comparison elements “compare-exchange modules”. Especially in code
examples, this thesis uses the compare exchange terminology as well.

22

Figure 3.1: Graphical representation of a comparison element sorting the
numbers 3 and 7.

(a) Block diagram.

min

max

7

3

3

7

(b) Simplification.

7 3

3 7

in a stable way by only comparing adjacent channels [25, p. 26]. The sorting
networks presented subsequently will be unstable.

A simple software implementation may look like

Rust1 fn comparison_element(a: i32, b: i32) ->- (i32, i32) {

2 (a.min(b), a.max(b))

3 }

which may be extended to a vectorized version performing (roughly9) the
equivalent of

Rust1 fn comparison_element<'a, I>(a: I, b: I) ->- Vec<(i32, i32)>

2 where

3 I: Iterator<Item = &'a i32>,

4 {

5 a.zip(b).map(|(&a, &b)| (a.min(b), a.max(b))).collect()

6 }

by using vector types and instructions.

Rust1 fn co_ex(&mut a: __m512i, &mut b: __m512i) {

2 let vec_tmp = *a;

3 *a = _mm512_min_epi32(*)a, *b);

4 *b = _mm512_max_epi32(vec_tmp, *b);

5 }

9To be semantically identical the iterators must contain 16 elements each and the vector
implementation needs to allocate contiguous aligned memory to be castable into a vector
type. This code example is kept as simple as possible.

23

Batcher proposed two types of sorting networks in 1968: Odd-even mergesort
and Bitonic sort [5]. Both are algorithmically constructible making them
useful for generating larger scale sorting networks. Figure 3.2 shows both
networks for 32 elements. Blacher discusses both kinds of sorting networks
in depth and evaluates their use in vectorized sorting [6].

Knuth demonstrates how Batcher’s strategies, which are designed to generate
sorting networks for inputs with a length which is a power of two, may be
applied to inputs of arbitrary length [37, pp. 223–225, 230–232]. As illustrated
in the figure, both networks follow a repetitive pattern which spans multiple
parallel steps. The networks first sort groups of size 2 (step 1), then groups
of size 4 (steps 2–3), groups of size 8 (steps 4–6), and so on.

For sorting input of arbitrary length with Odd-even mergesort, one may
sort the first 𝑚 and the second 𝑛 elements separately and then apply a (𝑚, 𝑛)-
merging network. This merging network is constructed inductively by adding
comparison elements for the odd and even sequences and then the last
compare exchange steps [37, p. 224].

The asymptotic number of comparison elements in Batcher’s networks is
𝒪(𝑛 log2 𝑛),10 which is worse than the 𝒪(𝑛 log 𝑛) comparisons worst-case
complexity of comparison-based sorting algorithms like Mergesort. However,
due to the efficiency of implementation and use of parallelization the actual
runtime may still outperform other sorting algorithms.

Table 3.1 lists the sizes of the known most optimal sorting networks. If there
is only a single number it is proven that the known sorting network is optimal.
Otherwise, the first number indicates the known upper bound and the second
number the known lower bound of comparison elements or parallel steps
respectively. Batcher’s Odd-even mergesort networks only achieve optimal
characteristics for 𝑛 ≤ 8 [37, p. 226].

There are sorting networks of size 𝒪(𝑛 log 𝑛) like the ones described by Ajtai,
Komlós, and Szemerédi [1]. However, these networks usually have large
constant terms making them unsuitable for efficient implementations [63,
p. 40]. Chapter 5 will detail how vectorization speeds up sorting networks in
a non-asymptotic but practical way.

10Odd-evenmergesort is more performant with only (𝑝2−𝑝+4)2𝑝−2−1 comparison elements
compared to Bitonic mergesort’s (𝑝2 + 𝑝)2𝑝−2 for 2𝑝 elements. Both use 𝑝(𝑝+1)

2
parallel

steps for sorting.

24

Figure 3.2: Batcher’s sorting networks for 32 elements.

(a) Bitonic sorting network with 240 comparison elements and 15 parallel steps [6,
Abb. A.2].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) Odd-even sorting network with 191 comparison elements and 15 parallel steps [6,
Abb. A.3].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

25

Table 3.1: Characteristics of known most optimal sorting networks for 𝑛 ≤
20 with parallel steps 𝑝(𝑛) and number of comparison elements
𝑐(𝑛) [11, tab. 1].

𝑛 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

𝑐(𝑛) 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60 71 78 86 92
33 37 41 45 49 53 58 63 68 73

𝑝(𝑛) 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9 10 11 11 11
10 10 10

3.3 Quicksort and Quickselect

In 1959, Charles Antony Richard Hoare described Quicksort [29, 31], a parti-
tioning-based sorting algorithm. For the sake of completeness the following
listing will show an implementation of Quicksort using Hoare’s partitioning
scheme [28]. The comments will explain Quicksort’s steps as a substitute for
further introduction to the algorithm.

Rust1 ///)) Sort the array v using Quicksort.

2 fn quicksort(v: &mut [i32]) {

3 let len = v.len();

4 //) Arrays of length 1 are considered sorted. Arrays with at least

5 //) two elements will be split at a pivot within the range of values

6 //) of the array.

7 if len > 1 {

8 //) Determine the index of the pivot element by partitioning the

9 //) array so that all elements less than the pivot element are

10 //) on its left side and elements greater than the pivot element

11 //) on its right side.

12 let pivot_index = partition(v);

13 //) Sort the part of the array where all elements are less than

14 //) the pivot value.

15 quicksort(&mut v[0..)pivot_index]);

16 //) Sort the part of the array where all elements are greater

17 //) than the pivot value.

18 quicksort(&mut v[pivot_index + 1..)len]);

19 }

20 }

21

26

22 ///)) Partition the array v and return the index of the pivot element

23 ///)) determined by Hoare's partition scheme.

24 fn partition(v: &mut [i32]) ->- usize {

25 let len = v.len();

26 //) Use the element in the middle of the array as pivot element.

27 //) (Hoare used a random number between 0 and len.)

28 let pivot = v[len / 2];

29

30 //) Initialize running indices for partitioning. These will point

31 //) to elements that are allowed to be swapped with other elements

32 //) to ensure consistency with the partitioning condition.

33 let mut i = 0;

34 let mut j = len - 1;

35

36 loop {

37 //) Increment i so that it points to the next element that is on

38 //) the pivot's left side but should be on its right side.

39 while v[i] < pivot {

40 i += 1;

41 }

42

43 //) Decrement j so that it points to the next element that is on

44 //) the pivot's right side but should be on its left side.

45 while v[j] > pivot {

46 j -= 1;

47 }

48

49 //) If the next swap would actually destroy the order again,

50 //) return the index of j as the pivot's index.

51 if i >=) j {

52 break j;

53 }

54

55 //) If the swap is consistent perform it and start over again.

56 v.swap(i, j);

57 }

58 }

This basic Quicksort has been subject to a plethora of further research. Among
the most significant contributions are Sedgewick’s PhD thesis [56] – analyz-
ing many common techniques for speeding up Quicksort – and Samplesort –

27

a method to split the array into multiple buckets instead of two which eases
parallelization – as described by Frazer and McKellar [19].

Sedgewick includes an analysis of Quicksort’s worst case based on his im-
plementation. Using the smallest or largest element as the pivot element
is the easiest way always to trigger worst-case behavior. Randomizing the
pivot element is highlighted as one important resolution strategy. Trying to
destroy patterns and bad partitions by randomization or at least shuffling
is adapted by hybrid algorithms as well (like pattern-defeating Quicksort
introduced in the next section).

A guaranteed mitigation of the quadratic worst case has been implemented
by Daoud, Abdel-jaber, and Ababneh. They use two pivot computations, one
based on median-of-three and the other based on an adapted Radix sort to
guarantee a worst-case complexity of 2 ⋅ 𝒪(32 ⋅ 𝑛) for 32 bit integers [14]. One
notable aspect of this partitioning is the use of values that do not appear in
the array as pivot elements. As a consequence the pivot element does not
necessarily appear in the partitioned array. This mitigation technique has
been adapted by Blacher [6].

It is important to note that an efficient implementation of Quicksort inherently
means that the partitioning is implemented efficiently, which leads to a fast
algorithm for the problem of selection.11 This algorithm based on Quicksort’s
partitioning has been introduced as Quickselect [30]. An implementation
based on the Quicksort code example’s partitioning implementation could be
the following.

Rust1 ///)) Get the k th smallest element in v using quickselect.

2 fn quickselect(v: &mut [i32], k: usize) ->- i32 {

3 let len = v.len();

4 //) Arrays of length 1 are considered sorted. Arrays with at least

5 //) two elements will be split at a pivot within the range of values

6 //) of the array.

7 return if len ==) 1 {

8 //) For arrays of length 1 the only selectable element is the

9 //) first one.

10 assert_eq!(0, k);

11 v[k]

11A selection algorithm determines the 𝑘th smallest element in some array of elements.
When solved using in-place Quickselect at least the 𝑘th element in the modified array is
at the position where it would be in a sorted array. This highlights the relationship to
Quicksort.

28

12 } else {

13 //) Determine the index of the pivot element by partitioning the

14 //) array so that all elements less than the pivot element are

15 //) on its left side and elements greater than the pivot element

16 //) on its right side.

17 let pivot_index = partition(v);

18

19 if k ==) pivot_index {

20 //) We have found the k th element at the pivot position.

21 v[pivot_index]

22 } else if k < pivot_index {

23 //) k is less than the pivot's index. Then we restart our

24 //) search to the left of the pivot because at least the k

25 //) smallest elements will be in that partition.

26 quickselect(&mut v[..)pivot_index], k)

27 } else {

28 //) k is greater than the pivot's index. Then we restart our

29 //) search to the right of the pivot because all elements

30 //) including the pivot are less than the k th smallest element

31 //) would be. It is important to note that we need to change k

32 //) to account for the shortening of the array.

33 quickselect(&mut v[pivot_index + 1..)], k - pivot_index - 1)

34 }

35 };

36 }

3.4 Relevant hybrid sorting algorithms

A hybrid sorting algorithm combines multiple sorting algorithms usually
starting with a particularly fast algorithm on large data sets and switching to
another algorithm for small problem sizes. In the previous section, the worst
case of Quicksort in 𝒪(𝑛2) has been discussed. This worst case is eliminated
in most production-grade implementations of Quicksort by using another
fast algorithm for certain distributions or small arrays.

Themost notable hybrid sorting algorithm based onQuicksort is Introsort [46]
from 1997. In fact, Introsort is used in std::)sort from the C++ standard
template library [20]. Introsort applies Quicksort until a certain recursion
depth boundary has been reached (usually logarithmic in the length of the

29

array) and then switches to Heapsort to break the quadratic worst case of
Quicksort. Sorting is finished by using insertion sort on very small arrays.

In 2015, Peters published the pattern-defeating Quicksort [47] as an extension
of Introsort. It applies multiple techniques to detect patterns in the input data.
Among others it applies an insertion sort that is bounded by a maximum
number of swaps to seemingly balanced arrays. Additionally, shuffling during
the pivot selection reorders some elements deterministically to break up
patterns. Pattern-defeating Quicksort is the default algorithm for unstable
sorting in the Rust standard library (std::)slice::)sort_unstable) [52].

Apart from the original implementations and those in the standard libraries
there are recent efforts to provide formally verified implementations such as
the ones provided by Lammich [39]. Due to the availability of the standard
libraries the implementations of the C++ standard template library and the
Rust standard library will be used for further evaluation of the respective
algorithms’ speed.

All of the aforementioned implementations are scalar in that they are not vec-
torized by design. Vectorized hybrid algorithms include those by Gueron and
Krasnov [24] (Quicksort and insertion sort), the one by Blacher, Giesen, and
Kühne [7] (Quicksort and sorting networks) as well as the one by Bramas [8].
These vectorized approaches will be discussed in the next chapter.

30

4 Related work

As early as in 1977, Siegel examined a SIMD implementation of Batcher’s
Bitonic sorting networks [58]. Stone implemented a vectorized Quicksort
and an adapted version of Batcher’s sorting networks on the vector computer
CDC STAR only one year later [59]. He did not implement a hybrid algorithm
combining both of his vectorized implementations.

A hybrid algorithm using Quicksort and a sorting network on a vector com-
puter has been implemented by Levin in 1990 [42]. His implementation used a
vectorized odd-even transposition sort as sorting network, not to be confused
with Batcher’s more efficient odd-even mergesort. Levin, like Stone, used
compression instructions, which have been lacking from the x86 instruction
set until the advent of the AVX-512 vector extensions.

On more modern architectures, Inoue et al. implemented a hybrid vectorized
merge-based sorting algorithm using IBM’s vector media extensions (VMX)
in 2007 [32]. One year later, Chhugani et al. used SSE to implement a hybrid
vectorized merge-based sorting algorithm as well but introduced a sorting
strategy based on vertical sorting and transposition [10].

Satish et al. investigated differences between SIMD-based sorting on CPUs
and GPUs in the context of sorting large database keys in 2010 [54]. They
concluded from comparing Mergesort with Radix sort that in the future the
performance gap between the two will close and a SIMD-friendly bandwidth-
oblivious Mergesort will be the sorting algorithm of choice.

Similarly, Polychroniou and Ross devised SIMD sorting algorithms based on
Radix sort as well as range partitioning and focused on executing on non-
uniform memory access (NUMA) architectures in 2014 [48]. They concluded
that their Radix sort implementations are most performant in general but
their comparison-based sort is better for balancing loads. This conclusion
agrees with the findings of Satish et al.

In 2015, Hayes et al. assessed the potential of multiple vectorized sorting
algorithms including Quicksort and, like Levin, combined it with odd-even
transposition sort [26]. They concluded that the vectorization of Radix sort

31

is the most promising approach in terms of speedup and devised a cache-
friendly sorting algorithm based on Radix sort. For that, they also proposed
new vector instructions and their potential implementation in hardware.
Their conclusion is contrary to the results of Satish et al. and Polychroniou
and Ross.

Gueron and Krasnov vectorized the partitioning function of Quicksort using
AVX2 in 2016 [24]. Their stable hybrid implementation of Quicksort needed
additional memory and used scalar insertion sort for small partitions. Due
to the shortcomings of AVX2 they used a lookup table for shuffle masks to
simulate compressing instructions.

Another vectorized hybrid algorithm combining Quicksort with a branchless
Bitonic mergesort has been implemented by Bramas in 2017 [8]. He used
AVX-512 and its compressing instructions to avoid the inclusion of lookup
tables as used by Gueron and Krasnov. By saving the outermost vectors, his
partitioning implementation does not need additional memory.

Blacher implemented a hybrid vectorized sorting algorithm consisting of
Quicksort, transposition-based sorting as introduced by Chhugani et al.,
and multiple sorting networks using AVX2 intrinsics. His partitioning is
based on Bramas’ approach to avoid using additional memory and Gueron
and Krasnov’s approach to simulate compressing store instructions using
AVX2.

In 2019, Yin et al. presented a multi-threaded merge-based sorting algo-
rithm making use of vectorized bitonic sorting and load-balanced merges.
They used AVX-512 on the Xeon Phi architecture. While designed for multi-
threaded use, it outperforms common sorting algorithms in single-threaded
mode [65].

Watkins implemented a vectorized Mergesort on AVX-512 without the help
of sorting networks to avoid unnecessary operations on presorted data. He
focused on branch avoidance and achieved a speedup of 2 compared to IPP
Radix sort [64]. Unfortunately, the code for his implementation is unavailable,
as is the code for the implementation of Yin et al.

32

5 Porting AVX2 sort to AVX-512

5.1 Choice of language and tooling

The reference implementation of the followingAVX-512 sort is written in Rust,
a system language designed by Mozilla to achieve maximum performance
while providing memory safety by default. A comprehensive summary of
Rust’s solutions to common problems in system-level development has been
published by Jung et al. [35].

While the language itself is young compared to C and C++, the prevalent
languages of the field, Rust implementations are highly competitive in terms
of performance and the consistent tooling helps increasing development
productivity. The extensible build tool cargo eases the integration of unit
and fuzz tests as well as providing executable examples and benchmarks.

There are some unresolved issues with respect to intrinsics handling though.
The most important one is the lack of certain intrinsics in Rust’s standard
library12 [13]. Amanieu d’Antras explains ibidem that especially the masked
load and store operations cannot be implemented currently due to represen-
tation differences between Rust types and the arguments of the respective
LLVM intrinsics.

However, this does not restrict the use of Rust. First-class C FFI support is
characteristic for that language. A foreign function interface (FFI) allows a
language to call functions written in another language, in this case calling C
from Rust. Because C and C++ share many characteristics, it is easy to link
the missing intrinsics into the Rust program by using code like the following
excerpt from a C++ glue code header.

C++1 void ffi_mm512_mask_compressstoreu_epi32(int32_t* base_addr,

2 uint16_t k, const int32_t* a) {

3 _mm512_mask_compressstoreu_epi32((void*))base_addr, k,

12Rust’s standard library includes stdarch, which is developed in a separate repository.
stdarch provides architecture-dependent intrinsics such as the AVX intrinsics.

33

4 *((const __m512i*))a));

5 }

The Rust counterpart to complete the FFI bindings is shown in the following
snippet. Using these bindings, Rust code may use this missing intrinsic
function as if it was native to Rust’s stdarch library.

Rust1 #[)cxx::)bridge(namespace = "avx512_bridge")]

2 mod ffi_internal {

3 unsafe extern "C++)" {

4 include!("avx-sort/include/avx512_bridge.h");

5

6 pub unsafe fn ffi_mm512_mask_compressstoreu_epi32(

7 base_addr: *mut i32, k: u16, a: *const i32,

8);

9 }

10 }

11

12 pub unsafe fn _mm512_mask_compressstoreu_epi32(

13 base_addr: *mut i32, k: __mmask16, a: __m512i,

14) {

15 ffi_internal::)ffi_mm512_mask_compressstoreu_epi32(

16 base_addr, k as u16, &a as *const _ as *const i32,

17);

18 }

C FFI may not only be used to include missing intrinsics. The benchmarking
application presented in chapter 6 makes extensive use of C FFI to include
the other benchmarked algorithms written in C++. For C++ interaction in
general David Tolnay’s cxx crate13 is used as a build dependency.

The same crate allows to specify a C interface for the Rust side. The AVX-512
sorting crate exposes a C++ interface as header. Building a dynamic library
in addition to Rust’s library format allows linking it into C++ programs. The
following listing shows the functions exposed in the C++ header. They are
exported into a common namespace and correspond to Rust functions from
several places in the crate’s module structure.

C++1 bool arch_optimal_quickselect_c(int32_t *ptr, size_t n, size_t k);

2 void arch_optimal_quicksort_c(int32_t *ptr, size_t n);

13A crate is Rust’s equivalent of a library. The inclusion of crates into projects is managed
by cargo.

34

3 bool avx2_quickselect_c(int32_t *ptr, size_t n, size_t k);

4 bool avx512_quickselect_c(int32_t *ptr, size_t n, size_t k);

5 void avx2_quicksort_c(int32_t *ptr, size_t n);

6 void avx512_quicksort_c(int32_t *ptr, size_t n);

These functions address the most common operations of the crate by using
either the provided methods directly or the runtime-based check to decide in
favor of the most optimal Quickselect or Quicksort implementation available.
An example of how to use these from the C++ side is included in the project’s
repository, the most important files of the CMake project may be found in
appendix A.1 on page 79.

To get a reasonable baseline for comparisons, Mark Blacher’s AVX2-based
sorting algorithm has been translated from C++ to Rust. In the course of
this translation and writing corresponding unit tests, a bug has been found
and corrected.14 The Rust library provides an interface to use his C++ im-
plementation. The benchmarks in chapter 6 provide evidence that there
is only an insignificant performance gain in using the C++ over the Rust
implementation, although the Rust implementation deliberately uses more
high-level code.

Apart from slightly different levels of abstraction, the Rust implementation
differs by providing a test suite with more than 80% code coverage.15 Ad-
ditionally, fuzz tests are provided to help guaranteeing the correctness of
the implementation. At least 50 hours of fuzzing have been invested into
validating the AVX2 implementation. Due to linker workflow issues, the fuzz
tests are not usable to validate the AVX-512 implementation.

5.2 Pivot calculation and introduction

Relevant source file:
avx-sort/src/avx512/pivot/mod.rs

In contrast to other changes, the pivot calculation has not been subject to
major changes. The Xoroshiro128+ implementation has been extended to
work on __m512i vectors, in consequence doubling the number of generated
random numbers per iteration.

14See https://github.com/simd-sorting/fast-and-robust/commit/1bc8cc0964f7c01
53c39292d6c6ec36b39b0ef7d for details.

15This is a conservative estimate for the coverage when compiled with AVX-512 support.
As the code makes extensive use of inlining, the coverage tool is unable to trace all the
tested code back to their sources so that it reports less coverage than actually present.

35

https://git.rz.uni-jena.de/li73jeh/bachelor-thesis/-/blob/main/avx-sort/src/avx512/pivot/mod.rs
https://github.com/simd-sorting/fast-and-robust/commit/1bc8cc0964f7c0153c39292d6c6ec36b39b0ef7d
https://github.com/simd-sorting/fast-and-robust/commit/1bc8cc0964f7c0153c39292d6c6ec36b39b0ef7d

Figure 5.1: An optimal sorting network for 5 elements with 9 comparison
elements reduced to an optimal median network with 10 mini-
mum/maximum operations [57, 61].

(a) Sorting network.

1 2 3 4 5 6

(b) Median network.

1 2 3 4 5

Median

Apart from that, the pivot calculation uses a sparse array of 5 instead of
9 random vectors of elements gathered from the input. In AVX2, Blacher
operates on 72 elements, this approach uses 80 elements in AVX-512. The
high-level implementation of the pivot calculation may be found in listing A.3
on page 81.

Because there are only 5 vectors, a smaller median network is used to de-
termine the vector of medians, as depicted in fig. 5.1, along with the sorting
network it has been deduced from. Sorting networks may be reduced to
median networks by eliminating redundant comparisons, i.e. minimum/max-
imum operations. Hence, fig. 5.1b contains directed edges where only the
respective operation is performed, e.g. only the maximum operation for edges
pointing downwards.

In general, compilers are able to perform this optimization on their own.
Given the full sorting network in

Rust1 #[)inline(always)]

2 fn swap(i: &mut f32, j: &mut f32) {

3 if j > i { std::)mem::)swap(i, j); }

4 }

5

6 pub fn median_of_5 (mut a0: f32, mut a1: f32, mut a2: f32,

7 mut a3: f32, mut a4: f32) ->- f32 {

8 swap(&mut a0, &mut a2);

9 swap(&mut a3, &mut a4);

10 swap(&mut a0, &mut a3);

11 swap(&mut a2, &mut a4);

12 swap(&mut a2, &mut a3);

13 swap(&mut a1, &mut a2);

36

14 swap(&mut a0, &mut a1);

15 swap(&mut a2, &mut a3);

16 swap(&mut a3, &mut a4);

17 a2

18 }

the compiler produces the following assembly which is optimal.16

Asm1 example::median_of_5:

2 vminss xmm5, xmm0, xmm2

3 vmaxss xmm0, xmm2, xmm0

4 vminss xmm2, xmm3, xmm4

5 vmaxss xmm2, xmm2, xmm5

6 vmaxss xmm3, xmm4, xmm3

7 vminss xmm0, xmm0, xmm3

8 vminss xmm3, xmm2, xmm0

9 vmaxss xmm0, xmm0, xmm2

10 vminss xmm0, xmm1, xmm0

11 vmaxss xmm0, xmm3, xmm0

12 ret

Micro-benchmarking has shown that the AVX2 pivot calculation is still faster
with only 16 ns, where the AVX-512 version takes 25 ns.17 Reducing the
number of random vectors has a major influence on the runtime of the pivot
selection because it is dominated by _mm512_i32gather_epi32with a latency
of 30 (compared to approx. 20 on AVX2) with throughput of approx. 10.

Micro-optimizing the runtime of the pivot selection does not have a major
influence on the whole partitioning. Benchmarks showed only marginal
impact, which may well be measuring inaccuracy, when using faster vec-
torized approaches with more locality of memory accesses. One of these
very latency-efficient approaches uses loading of whole vectors from random
positions instead of gathering elements from random positions in the array.

However, all other tested methods did not guarantee as much randomness
and distribution of the selected elements while providing nearly no gain
in speed for the selection part of the algorithm, i.e. partitioning and pivot
selection. Therefore, Blacher’s approach has been kept.

16This code uses floats instead of integers to present the simplest assembly output. Similar
code for integers is compiled into the optimal 10 minimum/maximum operations as well.

17With 9 random vectors as in the AVX2 version, an AVX-512 implementation would take
45 ns. This is nearly twice the runtime compared to using only 5 random vectors.

37

Figure 5.2: Bitonic sorting network for 16 elements.

1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

After using the median network to determine the vector of medians, the
median of elements in this vector is determined by sorting the 16 elements.
Therefore, a Bitonic sorting network of that size has been implemented as
shown below.18

Rust1 //) fn sort_16(vec: &mut __m512i) {

2 //) groups of 2

3 coex_shuffle::<1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14>(vec);

4 //) groups of 4

5 coex_shuffle::<3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12>(vec);

6 coex_shuffle::<1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14>(vec);

7 //) groups of 8

8 coex_permute::<7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8>(vec);

9 coex_shuffle::<2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13>(vec);

10 coex_shuffle::<1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14>(vec);

11 //) group of 16

12 coex_permute::<15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0>(vec);

13 coex_permute::<4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11>(vec);

14 coex_shuffle::<2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13>(vec);

15 coex_shuffle::<1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14>(vec);

16 //) }

In fig. 5.2, there are three dashed lines separating the four 128 bit lanes.

18This implementation corresponds to the illustration in fig. 5.2.

38

Wherever no comparison element crosses lane boundaries in a parallel step,
shuffle operations are applied. Otherwise, permute operations will perform
the exchanges. Shuffles have a latency of 1 compared to the latency of 3
for permutes. This is especially important in a function like this, where
the results of each line depend on the result of the previous line so that no
pipelining could improve the runtime by itself.

The indices in the figure correspond to the indices as used by the code
snippet. Elements are indexed like vectors starting at 0. For example, the
index sequence

Text<15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0>

for step 7 represents a comparison element between 0 and 15, 1 and 14 and so
on. Because they correspond to comparison elements, the indices will always
be symmetric, i.e. if the index at position 0 is 15, the one at position 15 will
be 0.

For the sake of completeness, the definition for the permutation will be shown
below.

Rust1 //) unsafe fn coex_permute<const a: i32, …>(vec: &mut __m512i) {

2 let permute_mask = _mm512_setr_epi32(

3 a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p

4);

5 let permuted = _mm512_permutexvar_epi32(permute_mask, *vec);

6 let min = _mm512_min_epi32(permuted, *vec);

7 let max = _mm512_max_epi32(permuted, *vec);

8 *vec = _mm512_mask_blend_epi32(

9 build_mask_16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p),

10 min,

11 max,

12);

13 //) }

Each permute operation starts with setting a permute mask. The important
step is permuting in line 5. This results in the vector permuted being exactly
the same as vec with all elements of the comparison elements swapped, i.e.
if there is a comparison element between 0 and 1 the vector permuted will
have the element with index 1 at position 0 and vice versa. Afterwards, it is
possible to perform a compare-exchange operation by utilizing element-wise
minimum and maximum. Element-wise minima and maxima are blended

39

into the result to provide the output of the parallel execution of multiple
comparison elements.

For shuffling, the permuted vector is replaced by a shuffled vector like the
following. Because it only operates on 128 bit lanes the permute mask is
replaced by a shuffle mask made up of the first 4 indices.

Rust1 let shuffled: __m512i = _mm512_shuffle_epi32(

2 *vec,

3 _MM_SHUFFLE(d as u32, c as u32, b as u32, a as u32),

4);

5.3 Enlargening sorting networks

Relevant source file:
avx-sort/src/avx512/networks/mod.rs

5.3.1 Sorting two vectors

As previously shown, the pivot calculation uses a Bitonic sorting network for
16 elements. Based on this, one could define a strategy to sort 32 elements by
sorting 16 elements twice and then applying the merge steps of both sorted
sequences like below. This is the strategy employed by Bramas [8].

Rust1 //) unsafe fn sort_32(vecs: &mut CoExI32x16) {

2 //) assert!(vecs.len() ==) 2);

3 sort_16(&mut vecs[0]);

4 sort_16(&mut vecs[1]);

5

6 coex_permute::<15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0>(

7 &mut vecs[0]);

8 vecs.co_ex(0, 1);

9

10 coex_permute::<8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7>(

11 &mut vecs[0]);

12 coex_permute::<8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7>(

13 &mut vecs[1]);

14 vecs.co_ex(0, 1);

15

16 coex_permute::<4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11>(

40

https://git.rz.uni-jena.de/li73jeh/bachelor-thesis/-/blob/main/avx-sort/src/avx512/networks/mod.rs

17 &mut vecs[0]);

18 coex_permute::<4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11>(

19 &mut vecs[1]);

20 vecs.co_ex(0, 1);

21

22 coex_shuffle::<2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13>(

23 &mut vecs[0]);

24 coex_shuffle::<2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13>(

25 &mut vecs[1]);

26 vecs.co_ex(0, 1);

27

28 coex_shuffle::<1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14>(

29 &mut vecs[0]);

30 coex_shuffle::<1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14>(

31 &mut vecs[1]);

32 vecs.co_ex(0, 1);

33 //) }

While it seems to be efficient – the merge operation may even utilize pipelin-
ing – it is a wasteful use of vector registers. The permute and shuffle opera-
tions introduced in section 5.2 always allocate four vector registers, one for
the mask, one for the shuffled/permuted vector, and one each for minimum
and maximum, in addition to the vector register already allocated for the vec-
tor itself. And of the minimum and maximum vectors only half the elements
are even accessed or needed.

To address this concern, Blacher implemented a strategy for merging two vec-
tors by shuffling and performing compare-exchange operations [6, pp. 32 ff.].
His approach, extended to sort two vectors of 16 elements each, is depicted
in fig. 5.3. It follows the Bitonic sorting network introduced in fig. 3.2 on
page 25. The circled numbers correspond to the parallel steps of the Bitonic
network.

In the figure, the registers contain the indices of the numbers to be sorted,
i.e. consider the horizontal lines in fig. 3.2 numbered from 0 to 31 and use
these indices as a representation of the actual numbers to be sorted. The
starting point is arbitrary; to ease the first parallel step, the even indices are
assigned to the values in the first register and the odd indices to the values
in the lower register.

The aim of Blacher’s transformation is the increase of simultaneous compar-
isons. Where the previously shown naïve approach performs a multitude of
allocations and mutually dependent operations, Blacher uses a vectorized

41

Figure 5.3: Sort two vectors at once using a Bitonic sorting network. Indices
above and below register entries indicate the position after per-
forming the compare-exchange operation.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
3 1 7 5 11 9 15 13 19 17 23 21 27 25 31 29

1

2

5

6

9

10

13

14

17

18

21

22

25

26

29

30

0 4 3 7 8 12 11 15 16 20 19 23 24 28 27 31
1 5 2 6 9 13 10 14 17 21 18 22 25 29 26 30

2

3

6

7

10

11

14

15

18

19

22

23

26

27

30

31

0 4 2 6 8 12 10 14 16 20 18 22 24 28 26 30
7 3 5 1 15 11 13 9 23 19 21 17 31 27 29 25

3

4

1

6

11

12

9

14

19

20

17

22

27

28

25

30

0 3 7 4 8 11 15 12 16 19 23 20 24 27 31 28
2 1 5 6 10 9 13 14 18 17 21 22 26 25 29 30

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

0 5 2 7 8 13 10 15 16 21 18 23 24 29 26 31
1 4 3 6 9 12 11 14 17 20 19 22 25 28 27 30

4

5

6

7

12

13

14

15

20

21

22

23

28

29

30

31

0 4 2 6 8 12 10 14 16 20 18 22 24 28 26 30
15 11 13 9 7 3 5 1 31 27 29 25 23 19 21 17

7

8

3

12

5

10

1

14

23

24

19

28

21

26

17

30

0 2 15 13 7 5 8 10 16 18 31 29 23 21 24 26
4 6 11 9 3 1 12 14 20 22 27 25 19 17 28 30

11

15

9

13

3

7

1

5

27

31

25

29

19

23

17

21

0 11 4 15 3 8 7 12 16 27 20 31 19 24 23 28
2 9 6 13 1 10 5 14 18 25 22 29 17 26 21 30

9

11

13

15

1

3

5

7

25

27

29

31

17

19

21

23

①

②

③

④

⑤

⑥

⑦

⑧

⑨

shuffle second

shuffle across
vectors

shuffle second

shuffle across
vectors

shuffle across
vectors

permute second

shuffle across
vectors

shuffle across
vectors

42

Figure 5.3: Sort two vectors at once using a Bitonic sorting network. Indices
above and below register entries indicate the position after per-
forming the compare-exchange operation. (continued)

0 9 4 13 1 8 5 12 16 25 20 29 17 24 21 28
2 11 6 15 3 10 7 14 18 27 22 31 19 26 23 30

0 9 4 13 16 25 20 29 2 11 6 15 18 27 22 31
1 8 5 12 17 24 21 28 3 10 7 14 19 26 23 30

8

9

12

13

24

25

28

29

10

11

14

15

26

27

30

31

0 8 4 12 16 24 20 28 2 10 6 14 18 26 22 30
31 23 27 19 15 7 11 3 29 21 25 17 13 5 9 1

15

16

7

24

11

20

3

28

13

18

5

26

9

22

1

30

0 4 31 27 15 11 16 20 2 6 29 25 13 9 18 22
8 12 23 19 7 3 24 28 10 14 21 17 5 1 26 30

23

31

19

27

7

15

3

11

21

29

17

25

5

13

1

9

0 23 8 31 7 16 15 24 2 21 10 29 5 18 13 26
4 19 12 27 3 20 11 28 6 17 14 25 1 22 9 30

19

23

27

31

3

7

11

15

17

21

25

29

1

5

9

13

0 19 8 27 3 16 11 24 4 23 12 31 7 20 15 28
2 17 10 25 1 18 9 26 6 21 14 29 5 22 13 30

17

19

25

27

1

3

9

11

21

23

29

31

5

7

13

15

0 17 8 25 4 21 12 29 2 19 10 27 6 23 14 31
1 16 9 24 5 20 13 28 3 18 11 26 7 22 15 30

16

17

24

25

20

21

28

29

18

19

26

27

22

23

30

31

0 8 1 9 4 12 5 13 2 10 3 11 6 14 7 15
16 24 17 26 20 28 21 29 18 26 19 27 22 30 23 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

⑩

⑪

⑫

⑬

⑭

⑮

shuffle lanes
across vectors

permute second

shuffle across
vectors

shuffle across
vectors

shuffle lanes
across vectors

shuffle lanes
across vectors

shuffle across
vectors

permute both

43

compare-exchange operation by operating on whole registers. That is, in
a parallel step of a Bitonic each element is connected to another element.
Each of these compare-exchange operations in the network is realized by
having the indices of the compared elements at the same position in both
registers.

This method of sorting involves four basic operations:

• compare-exchange steps, indicated by the vertical double-ended arrow
in the figure and performed at the end of each parallel step,

• shuffle and permute within a vector to get the correct opposing posi-
tions for the compare-exchange step,

• shuffling across vectors using _mm512_shuffle_ps to adapt to differing
compare-exchange patterns requiring intra-lane inter-register changes
(e.g. interleaving the lanes of both registers), and

• shuffling of lanes across vectors using _mm512_shuffle_i32x4 to avoid
permuting before or after performing an intra-lane inter-register shuffle
which would be the alternative.

Reasoning about the respective latencies for both implementations gives a
vague idea of the possible speedup of this kind of vectorization. The non-
optimized implementation has a latency of

2 ⋅ sort_16 + 5 ⋅ coex_permute + 4 ⋅ coex_shuffle + 5 ⋅ co_ex = 119 ,
whereas the optimized implementation has a latency of only

15 ⋅ co_ex + 2 ⋅ _mm512_shuffle_epi32 + 2 ⋅ single permute
+ 1 ⋅ double permute (with pipelining) + 8 ⋅ double shuffle_2_vecs
+ 3 ⋅ double _mm512_shuffle_i32x4 = 72 .

This latency calculation is not meant to be precise. Register transfers and es-
pecially temporary variables have been omitted for the sake of simplicity. Still,
the expected speedup is approximately 119/72 ≈ 1.65. Micro-benchmarking
real implementations results in runtimes of 30 ns for the non-optimized ver-
sion and 18 ns for the optimized version, which is 30/18 ≈ 1.66, even more
than expected.

Explicit vectorization like this is a useful step for optimizing the overall
runtime due to frequent calls to the function. As there is no proven optimal
sorting network for 32 elements [11], the implementation is based on a
Bitonic sorting network. However, for this kind of vectorization the number
of parallel steps is decisive, so that a network with less parallel steps might
improve the overall performance. This is left for further evaluation.

44

Furthermore, this implementation uses shuffling across vectors and shuffling
of lanes across vectors. While the former has low latency, the shuffling of
lanes across vectors needs to be pipelined to be efficient. Interleaving two
vectors by means of unpacking instructions like _mm512_unpackhi_epi32

might be worth exploring and is left for further evaluation as well.

5.3.2 Merging sorted columns

For sorting larger arrays using sorting networks, the construction of a net-
work like the one previously shown is infeasible. Therefore, Blacher devised
the following basic algorithm (numbers adapted for AVX-512):

1. Pad the array to a multiple of twice the vector length using the integer
maximum for padding.19 In this case, the array is padded to a multiple
of 32 because the vector length is 16 elements. Doubling the vector
length is necessary because groups of two vectors are the minimal
expected input for sorting.

2. Sort chunks of 32 vectors column-wise. This exploits data-level par-
allelism and is easy to construct using algorithmic sorting networks
with a low number of comparison elements like Batcher’s Odd-even
mergesort. In contrast to sorting two vectors at once, this needs to be
optimized for comparison elements instead of parallel steps because
the comparisons are executed sequentially.

3. Merge the sorted columns of 32 elements. Details on this will follow.
4. Perform a Bitonic merge on the whole padded array. This finishes the

sorting. Afterwards, the padding will be cut off and the input array is
sorted.

Of these steps, the first and last are trivial and the second is explained in the
previous section. The remaing, third, step is interesting as it includes sorting
16 ⋅ 32 = 512 elements at once. A sorting network of size 512 is rather large,
so a simple approach to merging the sorted columns uses transposition. This
is the approach used by Chhugani et al. [10].

In contrast to their implementation, the 16 by 32 array is not a square but
rectangular matrix. Hence, a useful transposition consists of transposing
both 16 by 16 blocks separately and then swapping rows so that the rows
of one column form a contiguous region in memory. Afterwards, the same

19The choice of the padded value is arbitrary as long as the elements are easy to remove
after sorting. Using the integer maximum allows cutting off the padding after sorting.

45

Bitonic merge applicable to the fourth step may be used to merge the vectors,
starting from the assumption that 32 elements each are already sorted (i.e.
perform the Bitonic steps for groups of 64 up to groups of 512 elements).

The following code snippet implements the transposition-based approach.
This high-level function makes use of an AVX-512-based transposition [62]
and a Bitonic merge method following closely what Blacher implemented
for AVX2 in his bitonic_merge_16 function. A visualization of this code
snippet using indices is presented in fig. 5.4.

Rust1 #[)inline]

2 unsafe fn merge_16_columns_with_32_elements(vecs: &mut CoExI32x16) {

3 //) sort blocks

4 transpose_16_by_16(&mut vecs[0..)16]);

5 transpose_16_by_16(&mut vecs[16..)32]);

6

7 //) perform swaps

8 vecs.swap(1, 16);

9 vecs.swap(3, 18);

10 vecs.swap(5, 20);

11 vecs.swap(7, 22);

12 vecs.swap(9, 24);

13 vecs.swap(11, 26);

14 vecs.swap(13, 28);

15 vecs.swap(15, 30);

16

17 //) two vectors each are sorted, merge them

18 bitonic_merge_32(vecs);

19 }

As can be seen from the structure of the code snippet, the transposition-based
approach has multiple stages: transposing, swapping, and merging. However,
swapping could as well be replaced by element-wise (vectorized) comparison
elements and the Bitonic merge may already start from the matrix of sorted
columns. Hence, the remaining part of this section will outline an approach
without transposition.

Consider the first two columns of step ① in fig. 5.4: both are sorted and should
be merged. In a Bitonic sorting network, the first step contains comparison
elements between 0 and 63, 1 and 62, 2 and 61, and so on until 31 and 32 are
compared. Swapping the first and second column in the lower square matrix,
it is obvious that element-wise comparison elements may be applied to the

46

Figure 5.4: Merging sorted columns by applying transposition. In step ②,
vertical connections indicate rows to be swapped in order to create
contiguously stored sorted sequences of 32 elements.

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481

2 34 66 98 130 162 194 226 258 290 322 354 386 418 450 482

3 35 67 99 131 163 195 227 259 291 323 355 387 419 451 483

4 36 68 100 132 164 196 228 260 292 324 356 388 420 452 484

5 37 69 101 133 165 197 229 261 293 325 357 389 421 453 485

6 38 70 102 134 166 198 230 262 294 326 358 390 422 454 486

7 39 71 103 135 167 199 231 263 295 327 359 391 423 455 487

8 40 72 104 136 168 200 232 264 296 328 360 392 424 456 488

9 41 73 105 137 169 201 233 265 297 329 361 393 425 457 489

10 42 74 106 138 170 202 234 266 298 330 362 394 426 458 490

11 43 75 107 139 171 203 235 267 299 331 363 395 427 459 491

12 44 76 108 140 172 204 236 268 300 332 364 396 428 460 492

13 45 77 109 141 173 205 237 269 301 333 365 397 429 461 493

14 46 78 110 142 174 206 238 270 302 334 366 398 430 462 494

15 47 79 111 143 175 207 239 271 303 335 367 399 431 463 495

16 48 80 112 144 176 208 240 272 304 336 368 400 432 464 496

17 49 81 113 145 177 209 241 273 305 337 369 401 433 465 497

18 50 82 114 146 178 210 242 274 306 338 370 402 434 466 498

19 51 83 115 147 179 211 243 275 307 339 371 403 435 467 499

20 52 84 116 148 180 212 244 276 308 340 372 404 436 468 500

21 53 85 117 149 181 213 245 277 309 341 373 405 437 469 501

22 54 86 118 150 182 214 246 278 310 342 374 406 438 470 502

23 55 87 119 151 183 215 247 279 311 343 375 407 439 471 503

24 56 88 120 152 184 216 248 280 312 344 376 408 440 472 504

25 57 89 121 153 185 217 249 281 313 345 377 409 441 473 505

26 58 90 122 154 186 218 250 282 314 346 378 410 442 474 506

27 59 91 123 155 187 219 251 283 315 347 379 411 443 475 507

28 60 92 124 156 188 220 252 284 316 348 380 412 444 476 508

29 61 93 125 157 189 221 253 285 317 349 381 413 445 477 509

30 62 94 126 158 190 222 254 286 318 350 382 414 446 478 510

31 63 95 127 159 191 223 255 287 319 351 383 415 447 479 511

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

transpose 16 × 16 matrix

transpose 16 × 16 matrix

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

…

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

…

perform swaps

bitonic merge

① ②

③ ④

47

vectors, from comparing the outer-most vectors to comparing the inner-most
vectors.

After the first group of Bitonic merging, 64 elements are sorted, i.e. two
columns, after another merge process 128 elements, i.e. four columns, and
so on until all 512 elements have been sorted. The primary operations are
shuffle and permute operations and element-wise comparison elements on
registers. Only for the last steps of the respective Bitonic merging, in-register
comparison elements have to be applied (the functions coex_permute and
coex_shuffle as already introduced).

For a more visual description, consider the smaller example in fig. 5.5. It
shows the merge of 4 columns with 4 elements each. Steps ② to ⑤ perform a
Bitonic merge operation on two vectors, so that 8 elements each are sorted
afterwards. In contrast to the implemented merging strategy for 512 elements,
this example only ever swaps within lanes, which allows for the use of shuffle
operations in addition to element-wise comparison elements.

Starting from step ⑥, the final merge of the two sorted halves is performed so
that the whole array is sorted in step ⑪. With each time the size is doubled
the number of slow in-register comparison elements increases by one (step ⑨
and ⑩ vs. step ⑤).

In the AVX-512 implementation of sorting an array of 16 ⋅ 32 = 512 elements,
this results in 4 in-register comparison elements per vector, i.e. 128 in-register
comparison elements compared to only 80 permutes and 80 element-wise
comparison elements. That is, the merge of two sorted halves of 256 elements
is already dominated by in-register comparison elements, which shows that
the process of constructing transpositionless merge networks does not scale
indefinitely.

Returning to the performance evaluation, there is a measurable gain in ef-
ficiency when using the transpositionless approach over the transposition-
based one. The latter implementation needs 492 ns, whereas the former one
only needs 332 ns to complete the merge of 16 sorted columns. This is a
speedup of 485/335 ≈ 1.48.

Experiments with manual loop unrolling – as used by Blacher in his C++
implementation of a transpositionless merge – and other simple optimization
techniques did not result in further speedup. Using a merging algorithm

48

Figure 5.5: Merging sorted columns without transposition using vectors of
length 4 and lanes of 2 elements each [6, p. 38]. The strategy is
based on the Bitonic sorting network from fig. 5.2, parts of which
are depicted where relevant.

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

0 4 8 12
1 5 9 13
6 2 14 10
7 3 15 11

reverse
lanes

reverse
lanes

0
1
2
3
4
5
6
7

0 3 8 11
1 2 9 10
6 5 14 13
7 4 15 12

coex

0 3 8 11
2 1 10 9
6 5 14 13
4 7 12 15

reverse
lanes

reverse
lanes

0
1
2
3
4
5
6
7

0 1 8 9
2 3 10 11
4 5 12 13
6 7 14 15
coex coex

coex

coex
0
1
2
3
4
5
6
7

0 1 8 9
2 3 10 11
13 12 5 4
15 14 7 6

reverse
vector

reverse
vector

0 1 7 6
2 3 5 4
13 12 10 11
15 14 8 9

coex

0 1 7 6
4 5 3 2
13 12 10 11
9 8 14 15

reverse
vector

reverse
vector

0
1
2
3
4
5
6
7

0 1 3 2
4 5 7 6
9 8 10 11
13 12 14 15

coex
coex

coex

coex

0
1
2
3
4
5
6
7

0 1 3 2
4 5 7 6
9 8 10 11
13 12 14 15
coex coex

0
1
2
3
4
5
6
7

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

① columns sorted

② ③ ④

⑤⑥⑦

⑧ ⑨ ⑩ ⑪ sorted

49

with less comparison elements like odd-even mergesort20 instead of Bitonic
merging could be beneficial to the overall performance but has not been
explored and is left for further research.

5.4 Updating partitioning

Relevant source file:
avx-sort/src/avx512/partition/mod.rs

The changes to the partitioning function for a single vector have been the
introductory example in section 2.3 on page 17. Compared to the major
change in instructions for partitioning a single vector, the changes to the
partitioning of larger arrays have been insignificant.

Figure 5.6 visualizes the basic principle of partitioning an array using vectors
of size 4 on an array of 20 elements as devised by Blacher [6, p. 53]. Elements
are stored from l_store or r_store onwards. left and right (exclusive)
are running indices to determine which elements remain to be processed.

In contrast to Blacher’s version of storing the entire vector of 4 elements to the
store points due to the restrictions of AVX2, AVX-512 provides compressed
store instructions, which are used to avoid writing duplicates. Thus, r_store
is the inclusive right bound where to store the elements greater than the
pivot as opposed to the start of the vector to be stored in the source figure.

Micro-benchmarking has proven this change to be very effective. Without
compressing store instructions, partitioning a vector takes 11 ns where it
takes only 5 ns using compressing stores. That is, a speedup of 11/5 = 2.2
could be achieved.

Actually, partition_vec does not partition a single vector but directly stores
the elements at their partitioned location as described in section 2.3. It uses
the bitmasks computed by performing

Rust_mm512_cmpgt_epi32_mask(current_vec, pivot_vec)

and stores elements with corresponding mask entry 0 to the left and those
with a corresponding mask entry 1 to the right.

20The problem of merging the 16 sorted columns of 32 elements eachwithout transposition is
dominated by many element-wise comparison elements, i.e. the same type of comparison
elements used when sorting the columns. Hence, the same reasoning applies here.

50

https://git.rz.uni-jena.de/li73jeh/bachelor-thesis/-/blob/main/avx-sort/src/avx512/partition/mod.rs

Figure 5.6: Partitioning of an array arr using a pivot value of 49 and Blacher’s
approach [6, Abb. 6.1]. Already partitioned values are highlighted
with gray background.

84 22 8 38 2 79 25 49 91 67 59 22 99 69 17 15 92 9 37 48

84 22 8 38 vec_left 92 9 37 48vec_right

2 79 25 49 curr_vec

0 1 0 0 > pivot

2 25 49 38 2 79 25 49 91 67 59 22 99 69 17 15 92 9 37 79

99 69 17 15 curr_vec

1 1 0 0 > pivot

2 25 49 17 15 79 25 49 91 67 59 22 99 69 17 15 92 99 69 79

91 67 59 22 curr_vec

1 1 1 0 > pivot

2 25 49 17 15 22 25 49 91 67 59 22 99 69 91 67 59 99 69 79

84 22 8 38 curr_vec = vec_left

1 0 0 0 > pivot

2 25 49 17 15 22 22 8 38 67 59 22 99 84 91 67 59 99 69 79

92 9 37 48curr_vec = vec_right

1 0 0 0> pivot

2 25 49 17 15 22 22 8 38 9 37 48 92 84 91 67 59 99 69 79

arr

①

arr

②

arr

③

arr

④

arr

⑤

arr

⑥

l_store left right r_store

l_store left r_storeright

l_store left right r_store

l_store left ==) right r_store

l_store r_store

l_store

51

Blacher’s partitioning implementation is based on Bramas’ approach to in-
place partitioning [8]. It starts off by saving the outer-most elements in
vectors ① and then moving towards the middle. While moving, elements are
loaded in groups into curr_vec ②. partition_vec is applied to the current
vector, which stores those elements less than the pivot contiguously at the
left boundary and those greater than the pivot starting at the right boundary.
The vector curr_vec is either taken from the left as in ② or from the right as
in ③ if more elements have been partitioned on the left than on the right.

As soon as the last elements from the middle are processed in ④ the only ele-
ments left for partitioning are those which have been saved in the beginning.
Their partitioning is carried out last (⑤ and ⑥). When finished, l_store
marks the partition boundary pointing to the first elements greater than the
pivot. Afterwards, the whole array arr is partitioned.

In contrast to Blacher, this whole process uses a simulated register width of
128 instead of 64 elements to iterate through the array. Simulating wide vector
registers helps reducing the average latency, especially by pipelining high-
latency instructions like load and store. Furthermore, performing multiple
contiguous loads at once improves caching behavior.

An important detail of Blacher’s partitioning implementation is the bookkeep-
ing of the smallest and largest values. This is used later on to determine if the
array has already been sorted and to ensure the deterministic nature of Quick-
sort. The implementation in listing A.4 on page 83 shows the partitioning of
an array without simulated registers.

5.5 Assembling Quicksort’s recursion

Relevant source file:
avx-sort/src/avx512/mod.rs

The previous sections discussed the components of the vectorized Quicksort
implementation and how they differ from Blacher’s AVX2 version. With
these modifications in place, the following implementation for Quicksort’s
recursion may be assembled.

Rust1 ///)) Recursion for quicksort

2 #[)inline]

3 unsafe fn quicksort_core(

4 arr: &mut [i32], mut choose_avg: bool, avg: i32

52

https://git.rz.uni-jena.de/li73jeh/bachelor-thesis/-/blob/main/avx-sort/src/avx512/mod.rs

5) {

6 if arr.len() < 2049 {

7 //) sorting networks for small sub-slices

8 let mut buffer = [_mm512_setzero_si512(); 65];

9 let buff: &mut [i32] = &mut *(&mut buffer as *mut [__m512i]

10 as *mut [i32]);

11 sort_int_sorting_network(arr, buff);

12 return;

13 }

14

15 //) avg is average of largest and smallest value in array

16 let pivot = if choose_avg { avg } else { get_pivot(arr) };

17

18 let PartitionResult {

19 partition_boundary: bound,

20 //) smallest value after partitioning

21 smallest,

22 //) largest value after partitioning

23 biggest,

24 } = partition_vectorized_128(arr, pivot);

25

26 //) ratio of smaller partition in array

27 let ratio = (arr.len() - bound).min(bound) as f64 / arr.len() as f64;

28 //) if unbalanced sub-slices, change pivot strategy

29 choose_avg ^=) ratio < 0.2;

30

31 if pivot !=) smallest {

32 //) different values in left sub-slice

33 quicksort_core(&mut arr[..)bound], choose_avg,

34 average(smallest, pivot));

35 }

36 if pivot + 1 !=) biggest {

37 //) different values in right sub-slice

38 quicksort_core(&mut arr[bound..)], choose_avg,

39 average(biggest, pivot));

40 }

41 }

Following the previous discussion, there are two components that are only
conditionally executed. The first one consists of the sorting networks dis-
cussed in section 5.3, which are used to sort small arrays. Their implemen-

53

tation is hidden behind the high-level function sort_int_sorting_network

responsible for dividing the elements into pieces that may be sorted by the
given sorting networks. This is a translation of the AVX2 version without
major adjustments.

One important question in a hybrid algorithm is the choice of thresholds of
when to switch from one algorithm to the other. In this case, the threshold of
2049 elements for the transition to sorting networks instead of Quicksort’s
recursion has been determined by experiments. Lower values like 1024
resulted in nearly twice the runtime, larger values like 3000 or 4000 elements
did not improve the situation and even larger values resulted in a decrease of
performance again.

The second component whose call is guarded is the pivot calculation as
introduced in section 5.2. If the smaller of the two partitions after partitioning
contains less than 20% of the array’s elements, the next step will choose the
pivot element by using the average of the current pivot and the smallest or
largest value respectively. This follows the pivot selection as described by
Daoud, Abdel-jaber, and Ababneh [14].

Ibidem, it is described how this pivot selection influences the termination
behavior on arrays with equal values. Due to the fact that the non-quadratic
Quicksort uses pivot elements that may not be present in the array and based
on that cannot position the pivot element to its sorted position in the array,
the checks guarding the recursive calls are required to ensure termination
on such arrays.

Based on this implementation of Quicksort, an implementation of Quickselect
is achieved by replacing the sorting networks by a selection algorithm. In
this case, Rust’s standard library will be used.

Rust1 ///)) Recursion for quickselect

2 #[)inline]

3 unsafe fn quickselect_core(

4 arr: &mut [i32], k: usize, mut choose_avg: bool, avg: i32

5) {

6 if arr.len() < 1025 {

7 //) use standard library for few elements

8 arr.select_nth_unstable(k);

9 return;

10 }

11 //) … as in the Quicksort implementation above …

12 }

54

6 Experiments and benchmarks

6.1 Benchmarking methodology

All benchmarks have been performed on an Intel Core i9-10980XE processor
with 18 cores. This processor clocks with a base frequency of 3GHz and
reaches 4.8 GHz in Intel’s Turbo Boost mode [33]. It provides the AVX-512
vector instruction set extensions and two AVX-512 FMA units. 128GB RAM
have been available.

The host operating system has been Ubuntu 20.04 LTS (Linux kernel 5.4)
compiling using the target triple x86_64-unknown-linux-gnu. As the im-
plementation requires Rust’s nightly toolchain, the Rust toolchain version
1.55.0-nightly (2021-07-02) has been used. More recent versions of Rust
introduce breaking changes to some of the nightly features, thus using a
specific version is important for nightly Rust.21 The Rust compilation uses
the RUSTFLAGS for native compilation (-C target-cpu=native).

A dedicated benchmarking application has been written to conduct the bench-
marks in the following section. It creates arrays of a certain length using
given generation functions/distributions. For each array length and distri-
bution each sorting algorithm will be applied to the same array. Such an
execution of the sorting algorithm includes multiple warmup runs followed
by multiple benchmarking runs.

There is one exception to the aforementioned rule of running on the same
array: the sorting algorithm IPS²Ra operates on unsigned instead of signed
integers. To guarantee that it actually operates on the same distribution
of numbers instead of on the same bits, this algorithm will be applied to a
different array.

Getting exact measures is difficult. A very common measure for single-
threaded program performance is IPC – instructions per cycle. The IPC count

21Using Rust’s toolchain manager rustup, the required toolchain may be installed by exe-
cuting rustup toolchain install nightly-2021-07-02.

55

benefits from pipelining, i.e. instructions with low throughput but possibly
higher latency. Sometimes its inverse, CPI – cycles per instruction – is used.
Alameldeen and Wood elaborate on common pitfalls of IPC measurement,
focusing on multi-processor workloads but describing common architectural
influences on IPC, like including idle loops, as well [2].

A different approach to measure similar aspects are CPE – cycles per element.
In contrast to IPC this measure may be used to extrapolate performance on a
certain input size. There is one major difference to IPC: as instructions are
irrelevant for this measure, ignoring idle loops and similar situations where
no actual work is done is not a flaw per se. CPE can be seen as a normalized
wall time.

Wall time itself is a common measure for micro-benchmarking applications.
The time elapsed for the user is commonly referred to as wall time. This
is usually measured by reading the CPU’s clock. Another approach when
thinking about runtime is the concept of a task clock only counting the time
the processor actually works on the task at hand. The latter has its caveats,
most importantly being rather small for I/O-heavy applications doing a lot
of waiting, which has a large influence on the evaluation of results.

To reduce outliers in performance measurements, benchmarks are usually
executed multiple times, 25 times in all following benchmarks. Before per-
forming the benchmark iterations, 5 warmup runs are executed on the same
input as the following benchmarking iterations. Usually, only one warmup
run is necessary but in this case, the warmup runs assert the correctness of
the result and reproducibility. This saves time during the real benchmark, in
which it is only validated that the result is sorted, ignoring possible alterations
of the array’s content.

The goal of the AVX-512 implementation of a vectorized Quicksort is the maxi-
mization of core utilization. Hence, the benchmarking application will export
the following measures for each benchmark (100 benchmarking runs):

• median and mean of the execution’s wall time,
• the maximum deviation from the median of the execution’s wall time,
• the IPC and CPE count,
• the clock frequency during the run in GHz,
• the number of branch misses (BM),
• the number of cache misses (CM), and
• whether the algorithm actually sorted successfully.

The clock frequency is calculated using cycles/task clock in this case. Hence, it
allows to determine unreasonably high system activity because cycles would

56

outnumber the task-bound clock ticks in that case. AVX-512 requires to
consider the clock frequency as most CPUs reduce their clock frequency
when executing an AVX-512-heavy program for thermal reasons as explained
in section 2.3 on page 17.

Most of the aforementioned measurements are conducted using the Linux
kernel’s perf_event_open API. Hence, the benchmarking application will
only run on systems running a Linux kernel.

6.2 Benchmarks against relevant sorting algorithms

To follow up on Blacher, Giesen, and Kühne [7], the main objective in this
section will be to assess the speedup over the std::)sort implementation in
C++’s standard library. Figure 6.1 depicts this speedup for several algorithms
and distributions. Absolute values for the respective benchmarking runs is
available in tabular form in appendix A.3 on page 86.

The algorithms under test include:

• cxxstd and rsstd, the standard libraries of C++ and Rust, i.e. Introsort
and pattern-defeating Quicksort as detailed in section 3.4. While the
former is the baseline for the speedup calculations, the latter generally
performs better and demonstrates a more robust handling of the tested
distributions.

• cxxavx and rsavx, the C++ and Rust implementations of Blacher’s
AVX2 sort implementation [7]. Due to sharing many implementation
details they perform very similar, with the C++ version outperforming
the Rust version by a small margin. They will be treated as one sorting
algorithm and only the C++ version will be considered in the following
analysis.

• ips4o and ips2ra, the IPS⁴o [4] and IPS²Ra [3] algorithms as described
by Axtmann et al. They implement a scalar Samplesort (cf. section 3.3)
and Radix sort respectively, and perform very well on a wide variety
of distributions.

• avx512, the AVX-512 sorting algorithm by Bramas [8], which defines
the baseline for AVX-512-based sorting algorithms in this section be-
cause it is the only AVX-512-based sorting algorithm under considera-
tion with public source code that can be used for evaluation.

• rsavx512, the vectorized Quicksort implementation as described in
this thesis.

57

They have been tested on the following distributions:

• asc, ascending numbers from 0 to 𝑛 − 1 where 𝑛 represents the array
size. This is a special kind of sorted number distribution.

• equ, where all elements have been set to 1, another kind of sorted
number distribution.

• alm, where ⌊12 ⋅ 2lg 𝑛⌋ numbers are misplaced. This is generated by
creating an array of ascending numbers and then providing local mod-
ifications that destroy the order.

• pip, a pipe-organ distribution where the first half of the array con-
sists of ascending numbers and the second half consists of descending
numbers.

• gau, a Gaussian random number distribution (𝜇 = 0, 𝜎 = 100) created
by rounding random floating point numbers to the nearest integer.

• uni, a uniform random number distribution over the whole range of
i32, i.e. [−231, 231 − 1], or u32, i.e. [0, 232 − 1], respectively.

Before turning to the results, it is to be mentioned that benchmarking all
algorithms takes exceedingly long when Bramas’ sorting algorithm avx512

is taken into account on more than 106 samples. Not only does it require
increasing the stack size, most probably due to the recursion depth, but
sometimes it even overflows the stack and is reproducibly at least one order
of magnitude slower than the other sorting algorithms on large arrays and
certain distributions. As it is the main competitor in the field of sorting on
AVX-512,22 the evaluation will concentrate on results up to 106 elements.

Of the results in fig. 6.1, some confirm the expected outcome. asc, for instance,
is handled well by most algorithms, including the C++ standard library.
IPS²Ra and pattern-defeating Quicksort stand out for being significantly
faster because of their distinctive features as Radix sort or pattern-defeating
respectively. avx512 performs bad on distributions with many duplicate keys
like equ as highlighted by Blacher, Giesen, and Kühne [7].

The most interesting cases, however, are those with random elements, i.e. gau
and uni, because real data usually does not adhere to specific distributions.
In summary, the AVX-512 implementation performs very well early on with
its peak performance at 104 elements. The performance gap to the AVX2
implementations increases with more elements to the point that the AVX-512
implementation achieves only a stable third place on these distributions.
Hence, the cases 104 and 106 elements have been picked for more detailed
analysis.

22The code for [64, 65] is not freely available for reproduction and could not be included.

58

Figure 6.1: Speedup of the respective algorithms over cxxstd for the chosen
distributions.

0

5

10

15

20
alm pip

0

10

20

30

40
asc equ

101 102 103 104 105 106
0

5

10

15

20
uni

101 102 103 104 105 106

gau

cxxstd rsstd ips2ra ips4o

avx512 cxxavx rsavx rsavx512

59

Table 6.1: Performance indicators from a run of all algorithms on uni with
104 elements.

Algorithm Median [ns] CPE IPC GHz BM

rsavx512 117 292 12.34 2.22 1.16 97
rsavx 112 035 11.57 3.05 1.14 41
cxxavx 105 125 10.54 3.14 1.12 33
rsstd 700 135 87.74 1.78 1.27 21 120
ips2ra 683 166 85.33 1.19 1.27 12 727
ips4o 842 842 107.67 1.88 1.29 11 733
avx512 127 280 13.63 1.66 1.17 617
cxxstd 934 240 182.59 0.63 1.97 58 631

In table 6.1 detailed performance indicators are presented for sorting arrays of
104 elements. In this case, rsavx512 relies on sorting networks with only few
layers of partitioning, as does cxxavx. As a consequence, the oblivious part
of the hybrid sort dominates where the distribution is of less importance.

rsavx512 uses the second least cycles per elements, beating avx512 and
staying close behind cxxavx. One reason for this is the effective use of whole
vector registers in Blacher’s approach, e.g. when merging two vectors. This
kind of optimization is not exploited by Bramas.

The othermeasures are competitive as well. While rsavx512 is slightly slower
than cxxavx in terms of wall time, it has only few branch misses and better
IPC than all except the AVX2 implementations. It is interesting to note that
rsstd is not explicitly vectorized but achieves a rather high IPC, comparable
to ips4o, merely through compiler optimization and auto-vectorization.

The heavy use of AVX-512 instructions does not seem to cause significant
throttling as the clock frequency is in the same range as for the AVX2-based
sorting algorithms and slightly less than for those which are not explicitly
vectorized. This is probably caused by license-based downclocking. However,
due to the very small task of sorting 104 elements, this may as well be statistic
noise due to the measurement of the frequency only covering a small time
frame.

Table 6.2 covers detailed results for 106 elements. One of the first things to
note there is the lower base frequency as well. Both rsavx512 and avx512

are clocking slower than the other algorithms, which is evidently caused
by license-based downclocking. In section 6.3, it will be discussed how to
compensate the impact of this lower frequency on the other measures.

60

Table 6.2: Performance indicators from a run of all algorithms on uni with
106 elements.

Algorithm Median [ns] CPE IPC GHz BM CM

rsavx512 6 282 035 24.98 2.16 3.98 28 292 5
rsavx 4 107 068 18.76 2.97 4.57 42 546 21
cxxavx 3 721 175 17.00 3.04 4.58 50 781 8
rsstd 23 731 565 108.77 2.04 4.59 2 283 345 9
ips2ra 17 632 010 80.67 1.30 4.58 1 286 574 59
ips4o 27 228 984 124.49 2.12 4.57 1 189 386 62
avx512 6 367 628 25.30 1.37 3.98 241 660 32
cxxstd 58 099 660 265.69 0.61 4.57 8 625 367 12

For 106 elements, it still applies that the IPC of rsavx512 is between the
AVX2 implementations and the other sorting algorithms, though ips4o is
closing up. In terms of CPE and wall-time rsavx512 is roughly on par with
avx512. The only measures where rsavx512 shines is the very low number
of branch and cache misses.

The most probable reason for staying behind the AVX2-based sorting imple-
mentations is rsavx512’s inefficiency in partitioning. The AVX-512-based
Quickselect performs far worse on all sizes of arrays suggesting that the
partitioning function is particularly slow. Profiling the partitioning did not
identify a single bottleneck, the distribution of runtime turns out to be very
similar to the one of rsavx.

In conclusion, it can be stated that the pure translation of Blacher’s approach
to AVX-512 did not yield a superior sorting implementationwith its bottleneck
being the partitioning. On the other hand, that means that improving the
partitioning will be of big influence on the overall performance and might
turn rsavx512 into an even more competitive algorithm. This is left for
further research.

6.3 Assessing the implementation’s efficiency

The last section concentrated on typical user-facing benchmarks, making wall
time one of the deciding factors. On the other hand, many other performance
indicators are important. To follow up Blacher, Giesen, and Kühne and
their performance indicators [7], this section will concentrate on finding

61

reasonable heuristics to assess how efficient the respective implementations
are for sorting numbers.

Regardless of sorting on high-performance devices or low-end laptops, one
important aspect of an optimal implementation is low power consumption.
This becomes even more important with the advent of green computing as
one of the design goals of high-performance algorithms.

nb: While many papers on green computing describe larger issues like
processor power management or data center cooling influencing overall
power consumption of whole data centers [22, 38], application-level efficiency
contributes to the goal of reducing power consumption, especially when
affecting common tasks like sorting. Guermouche and Orgerie discuss why
AVX-512’s influence on power consumption is beneficial [23].

Considering these aspects of efficiency, a first estimate of “optimal” could be
the following:

• few cycles per element to finish quickly
• with high IPC to make sure cycles are used as efficiently as possible.

Let 𝒫1 describe this measure as in 𝒫1 = IPC/CPE (cycles cancel out, instruc-
tions per element remain). This is particularly useful for comparisons because
it will be in the range (0, 1] for all useful samples. The aim is to maximize 𝒫1
for a given algorithm. Specific values based on the results from table 6.2 for
𝒫1 as well as the measures to follow are shown in table 6.3.

One deficiency of 𝒫1 is the non-consideration of clock ticks and with that the
omission of the frequency. On the one hand, this is useful for the assessment
of user-facing efficiency. From another perspective, the CPU’s frequency
is a hardware restriction, i.e. it might improve in future iterations of the
architecture and should be corrected in the measures. Hence, let𝒫2 = 𝒫1/GHz
to address this.

These are basic efficiency measures. Given the specific problem at hand, it
might be useful to penalize certain properties of the implementation. One,
admittedly controversial, example of this are branch mispredictions.23 To
avoid overweighting these when including them into an efficiency measure,
only the order of magnitude is considered, i.e. 𝒫3 = 𝒫2/lg(branch misses).

23Branch misses do not always indicate bad performance or optimization, but large numbers
of branch misses are typically a sign of subpar branch predictability, which may harm
performance stability across input distributions and platforms.

62

Table 6.3: Different calculations of implementations’ efficiency applied to the
performance indicators from a run of all algorithms on uni with
106 elements (cf. table 6.2). Results for all measures except 𝒫1 are
scaled to ease comparisons.

Algorithm 𝒫1 10 ⋅ 𝒫2 100 ⋅ 𝒫3 100 ⋅ 𝒫4

rsavx512 0.0865 0.2173 0.4880 0.0976
rsavx 0.1583 0.3464 0.7484 0.0356
cxxavx 0.1788 0.3904 0.8297 0.1037
rsstd 0.0188 0.0409 0.0643 0.0071
ips2ra 0.0161 0.0352 0.0576 0.0010
ips4o 0.0170 0.0373 0.0613 0.0010
avx512 0.0564 0.1417 0.2631 0.0082
cxxstd 0.0023 0.0050 0.0072 0.0006

In contrast to branch misses, cache misses are actively harming program
performance, especially on large arrays that cannot be handled in cache. A
large number of cache misses usually describes a poor access pattern to the
main memory. Hence, let the last measure 𝒫4 = 𝒫3/cache misses.

As illustrated in table 6.2, the most efficient sorting algorithms after consider-
ing all these additional influences are the ones based on Blacher’s approach.
All other approaches are at least one order of magnitude less efficient with
the most efficient being rsstd, i.e. pattern-defeating Quicksort.

On the other hand, without considering cache misses, Bramas’ avx512 algo-
rithm actually performs similarly well to the ones based on Blacher’s strategy.
Apart from stack usage and recursion depth, cache misses are avx512’s weak
points.

The branch misses themselves do not have a large influence on the evaluation.
𝒫2 and 𝒫3 show the same trends. The frequency correction which initiated
this discussion shows the most significant impact as the 𝒫2 values for avx512
and rsavx512 show, contrasted to the 𝒫1 values.

63

7 Conclusion

Vector processing is ubiquitous in modern instruction sets. Apart from auto-
vectorization, few implementations of sorting algorithms explicitly rely on
modern AVX-512 instructions. This thesis ported Blacher’s Quicksort for
32 bit integers from AVX2 to AVX-512 to provide an implementation to fill
the gap.

On AVX-512, Blacher’s design decisions for his unstable Quicksort without
need for additional memory have proven to be very efficient on their own.
Vectorized sorting networks efficiently sort small arrays by treating them as
matrices and using a combination of element-wise vectorized comparison
elements to sort columns and a transpositionless Bitonic merge of these
sorted columns.

For larger arrays, Quicksort requires partitioning. As it turned out, partition-
ing on AVX-512 is more performance-sensitive. Balancing the cutoff between
efficient sorting networks for small and partitioning-based Quicksort for large
arrays has been one of the major challenges without satisfactory solution.

While being on par with Blacher’s AVX2-based sort for small arrays, the
weak partitioning performance lets the AVX-512 implementation stay behind
his implementation on large arrays. The performance is still competitive
with high-performance sorting algorithms like IPS²Ra though, achieving a
speedup of about 10 over std::)sort and approx. 3 over the Radix sort IPS²Ra
and Samplesort IPS⁴o on random numbers.

A Quickselect based on the same AVX-512 core implementation is not com-
petitive, Blacher’s AVX2-based Quickselect remains the better choice. As
with Blacher’s implementation, the Quicksort may be used to sort other 32 bit
types than signed integers by applying pre- and post-processing.

Further work could explore more efficient sorting networks by reducing the
number of comparison elements as well as the number of parallel steps in
the appropriate places. In addition, a detailed analysis of the shortcomings
in partitioning and corresponding improvements could lift the AVX-512
implementation to the top of the benchmarks.

65

Bibliography

[1] M. Ajtai, J. Komlós, and E. Szemerédi. “An 𝒪(𝑛 log 𝑛) Sorting Network.” In:
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing.
STOC ’83. New York, NY, USA: Association for Computing Machinery, 1983,
pp. 1–9. isbn: 0897910990. doi: 10.1145/800061.808726.

[2] A. R. Alameldeen and D. A. Wood. “IPC Considered Harmful for Multipro-
cessor Workloads.” In: IEEE Micro 26.4 (2006), pp. 8–17. doi: 10.1109/MM.20
06.73.

[3] Michael Axtmann et al. Engineering In-place (Shared-memory) Sorting Algo-
rithms. Computing Research Repository (CoRR). Sept. 2020. arXiv: 2009.135
69.

[4] Michael Axtmann et al. “In-Place Parallel Super Scalar Samplesort (IPSSSSo).”
In: 25th Annual European Symposium on Algorithms (ESA 2017). Ed. by Kirk
Pruhs and Christian Sohler. Vol. 87. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2017, 9:1–9:14. isbn: 978-3-95977-049-1. doi: 10.4230/LIPIc
s.ESA.2017.9. url: http://drops.dagstuhl.de/opus/volltexte/2017/7
854.

[5] K. E. Batcher. “Sorting Networks and Their Applications.” In: Proceedings
of the April 30–May 2, 1968, Spring Joint Computer Conference. AFIPS ’68
(Spring). Atlantic City, New Jersey: Association for Computing Machinery,
1968, pp. 307–314. isbn: 9781450378970. doi: 10.1145/1468075.1468121.

[6] Mark Blacher. “Entwurf und Implementierung vektorisierter Sortieralgorith-
men.” Master’s thesis. Friedrich-Schiller-Universität Jena, Nov. 1, 2018. url:
https://ci.inf-i2.uni-jena.de/qa74rag/avx2_sort/-/blob/mast

er/Masterarbeit_vektorisierte_Sortieralgorithmen.pdf (visited on
2021-05-04).

[7] Mark Blacher, Joachim Giesen, and Lars Kühne. “Fast and Robust Vectorized
In-Place Sorting of Primitive Types.” In: 19th International Symposium on
Experimental Algorithms (SEA 2021). Ed. by David Coudert and Emanuele
Natale. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,

67

https://doi.org/10.1145/800061.808726
https://doi.org/10.1109/MM.2006.73
https://doi.org/10.1109/MM.2006.73
https://arxiv.org/abs/2009.13569
https://arxiv.org/abs/2009.13569
https://doi.org/10.4230/LIPIcs.ESA.2017.9
https://doi.org/10.4230/LIPIcs.ESA.2017.9
http://drops.dagstuhl.de/opus/volltexte/2017/7854
http://drops.dagstuhl.de/opus/volltexte/2017/7854
https://doi.org/10.1145/1468075.1468121
https://ci.inf-i2.uni-jena.de/qa74rag/avx2_sort/-/blob/master/Masterarbeit_vektorisierte_Sortieralgorithmen.pdf
https://ci.inf-i2.uni-jena.de/qa74rag/avx2_sort/-/blob/master/Masterarbeit_vektorisierte_Sortieralgorithmen.pdf

Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021, 3:1–3:16.
doi: 10.4230/LIPIcs.SEA.2021.3.

[8] Bérenger Bramas. “A Novel Hybrid Quicksort Algorithm Vectorized using
AVX-512 on Intel Skylake.” In: International Journal of Advanced Computer
Science and Applications 8 (Nov. 2017). doi: 10.14569/IJACSA.2017.081044.

[9] Randal E. Bryant and David R. O’Hallaron. Computer Systems: A Program-
mer’s Perspective. 2nd. USA: Addison-Wesley Publishing Company, 2010. isbn:
0136108040.

[10] Jatin Chhugani et al. “Efficient Implementation of Sorting on Multi-Core
SIMD CPU Architecture.” In: Proc. VLDB Endow. 1.2 (Aug. 2008), pp. 1313–
1324. issn: 2150-8097. doi: 10.14778/1454159.1454171.

[11] Michael Codish et al. “Sorting networks: To the end and back again.” In:
Journal of Computer and System Sciences 104 (2019). Language and Automata
Theory and Applications - LATA 2015, pp. 184–201. issn: 0022-0000. doi:
10.1016/j.jcss.2016.04.004. url: https://www.sciencedirect.com/sc
ience/article/pii/S0022000016300162.

[12] Peter Cordes. Can AVX2-compiled program still use 32 registers of an AVX-512
capable CPU? Oct. 20, 2020. url: https://stackoverflow.com/a/48893734
(visited on 2021-05-03).

[13] Alex Crichton, Amanieu d’Antras, et al. Implement AVX-512 intrinsics. url: htt
ps://github.com/rust-lang/stdarch/issues/310 (visited on 2021-04-24).

[14] Amjad M. Daoud, Hussein Abdel-jaber, and Jafar Ababneh. “Efficient Non-
Quadratic Quick Sort (NQQuickSort).” In: Digital Enterprise and Information
Systems. Ed. by Ezendu Ariwa and Eyas El-Qawasmeh. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 667–675. isbn: 978-3-642-22603-8.

[15] Travis Downs. Gathering Intel on Intel AVX-512 Transitions. Jan. 17, 2020. url:
https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html

(visited on 2021-06-07).

[16] Travis Downs. Ice Lake AVX-512 Downclocking. Aug. 19, 2020. url: https:
//travisdowns.github.io/blog/2020/08/19/icl-avx512-freq.html

(visited on 2021-06-07).

[17] Travis Downs. SIMD instructions lowering CPU frequency. July 3, 2019. url:
https://stackoverflow.com/a/56861355 (visited on 2021-06-07).

[18] Michael J. Flynn. “Some Computer Organizations and Their Effectiveness.”
In: IEEE Transactions on Computers C-21.9 (Sept. 1972), pp. 948–960. issn:
1557-9956. doi: 10.1109/TC.1972.5009071.

68

https://doi.org/10.4230/LIPIcs.SEA.2021.3
https://doi.org/10.14569/IJACSA.2017.081044
https://doi.org/10.14778/1454159.1454171
https://doi.org/10.1016/j.jcss.2016.04.004
https://www.sciencedirect.com/science/article/pii/S0022000016300162
https://www.sciencedirect.com/science/article/pii/S0022000016300162
https://stackoverflow.com/a/48893734
https://github.com/rust-lang/stdarch/issues/310
https://github.com/rust-lang/stdarch/issues/310
https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html
https://travisdowns.github.io/blog/2020/08/19/icl-avx512-freq.html
https://travisdowns.github.io/blog/2020/08/19/icl-avx512-freq.html
https://stackoverflow.com/a/56861355
https://doi.org/10.1109/TC.1972.5009071

[19] W. D. Frazer and A. C. McKellar. “Samplesort: A Sampling Approach to
Minimal Storage Tree Sorting.” In: J. ACM 17.3 (July 1970), pp. 496–507. issn:
0004-5411. doi: 10.1145/321592.321600.

[20] Free Software Foundation. __sort. url: https://github.com/gcc-mirror
/gcc/blob/d9375e490072d1aae73a93949aa158fcd2a27018/libstdc++-v3

/include/bits/stl_algo.h#L1950 (visited on 2021-04-17).

[21] Matt Godbolt et al. Compiler Explorer. url: https://github.com/compiler-
explorer/compiler-explorer (visited on 2021-05-03).

[22] Gregory Goth. “Chipping Away at Greenhouse Gases.” In: Commun. ACM
54.2 (Feb. 2011), pp. 13–15. issn: 0001-0782. doi: 10.1145/1897816.1897823.

[23] Amina Guermouche and Anne-Cécile Orgerie. Experimental analysis of vec-
torized instructions impact on energy and power consumption under thermal
design power constraints. June 2019. url: https://hal.archives-ouvertes
.fr/hal-02167083v2/file/report.pdf (visited on 2021-06-28).

[24] S. Gueron and V. Krasnov. “Fast Quicksort Implementation Using AVX In-
structions.” In: The Computer Journal 59.1 (2016), pp. 83–90. doi: 10.1093/co
mjnl/bxv063.

[25] Tobias Haslop. “Minimal Depth Sorting Networks.” Bachelor’s thesis. Univer-
sity of Bremen, Mar. 10, 2020. url: https://www.szi.uni-bremen.de/wp-co
ntent/uploads/2020/03/thesis_compressed.pdf (visited on 2021-05-04).

[26] Timothy Hayes et al. “VSR sort: A novel vectorised sorting algorithm &
architecture extensions for future microprocessors.” In: Proceedings of High-
Performance Computer Architecture (HPCA). 2015, pp. 26–38. doi: 10.1109
/HPCA.2015.7056019.

[27] George T. Heineman, Gary Pollice, and Stanley Selkow. Algorithms in a
Nutshell: A Practical Guide. 2nd. O’Reilly Media, Inc., 2016. isbn: 1491948922.

[28] C. A. R. Hoare. “Algorithm 63: Partition.” In: Commun. ACM 4.7 (July 1961),
p. 321. issn: 0001-0782. doi: 10.1145/366622.366642.

[29] C. A. R. Hoare. “Algorithm 64: Quicksort.” In: Commun. ACM 4.7 (July 1961),
p. 321. issn: 0001-0782. doi: 10.1145/366622.366644.

[30] C. A. R. Hoare. “Algorithm 65: Find.” In: Commun. ACM 4.7 (July 1961),
pp. 321–322. issn: 0001-0782. doi: 10.1145/366622.366647.

[31] C. A. R. Hoare. “Quicksort.” In: The Computer Journal 5.1 (Jan. 1962), pp. 10–
16. issn: 0010-4620. doi: 10.1093/comjnl/5.1.10.

69

https://doi.org/10.1145/321592.321600
https://github.com/gcc-mirror/gcc/blob/d9375e490072d1aae73a93949aa158fcd2a27018/libstdc++-v3/include/bits/stl_algo.h#L1950
https://github.com/gcc-mirror/gcc/blob/d9375e490072d1aae73a93949aa158fcd2a27018/libstdc++-v3/include/bits/stl_algo.h#L1950
https://github.com/gcc-mirror/gcc/blob/d9375e490072d1aae73a93949aa158fcd2a27018/libstdc++-v3/include/bits/stl_algo.h#L1950
https://github.com/compiler-explorer/compiler-explorer
https://github.com/compiler-explorer/compiler-explorer
https://doi.org/10.1145/1897816.1897823
https://hal.archives-ouvertes.fr/hal-02167083v2/file/report.pdf
https://hal.archives-ouvertes.fr/hal-02167083v2/file/report.pdf
https://doi.org/10.1093/comjnl/bxv063
https://doi.org/10.1093/comjnl/bxv063
https://www.szi.uni-bremen.de/wp-content/uploads/2020/03/thesis_compressed.pdf
https://www.szi.uni-bremen.de/wp-content/uploads/2020/03/thesis_compressed.pdf
https://doi.org/10.1109/HPCA.2015.7056019
https://doi.org/10.1109/HPCA.2015.7056019
https://doi.org/10.1145/366622.366642
https://doi.org/10.1145/366622.366644
https://doi.org/10.1145/366622.366647
https://doi.org/10.1093/comjnl/5.1.10

[32] Hiroshi Inoue et al. “AA-Sort: A New Parallel Sorting Algorithm for Multi-
Core SIMD Processors.” In: Proceedings of the 16th International Conference
on Parallel Architecture and Compilation Techniques. PACT ’07. USA: IEEE
Computer Society, 2007, pp. 189–198. isbn: 0769529445.

[33] Intel Corporation. Intel® Core™ i9-10980XE Extreme Edition Processor. url:
https://ark.intel.com/content/www/us/en/ark/products/198017/int

el-core-i9-10980xe-extreme-edition-processor-24-75m-cache-3-00-

ghz.html (visited on 2021-05-06).

[34] Intel Corporation. Intel® Intrinsics Guide. url: https://software.intel.co
m/sites/landingpage/IntrinsicsGuide/ (visited on 2021-04-28).

[35] Ralf Jung et al. “Safe Systems Programming in Rust.” In: Commun. ACM 64.4
(Mar. 2021), pp. 144–152. issn: 0001-0782. doi: 10.1145/3418295.

[36] Evgueny Khartchenko. Vectorization: A Key Tool To Improve Performance On
Modern CPUs. Jan. 25, 2018. url: https://software.intel.com/content/w
ww/us/en/develop/articles/vectorization-a-key-tool-to-improve-p

erformance-on-modern-cpus.html (visited on 2021-07-01).

[37] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting and
Searching. 2nd. USA: Addison Wesley Longman Publishing Co., Inc., 1998.
isbn: 0201896850.

[38] Patrick Kurp. “Green Computing.” In: Commun. ACM 51.10 (Oct. 2008), pp. 11–
13. issn: 0001-0782. doi: 10.1145/1400181.1400186.

[39] Peter Lammich. “Efficient Verified Implementation of Introsort and Pdq-
sort.” In: Automated Reasoning. Ed. by Nicolas Peltier and Viorica Sofronie-
Stokkermans. Cham: Springer International Publishing, 2020, pp. 307–323.
isbn: 978-3-030-51054-1.

[40] Daniel Lemire. AVX-512 throttling: heavy instructions are maybe not so dan-
gerous. url: https://lemire.me/blog/2018/08/25/avx-512-thrott
ling-heavy-instructions-are-maybe-not-so-dangerous/ (visited on
2021-06-07).

[41] Daniel Lemire. AVX-512: when and how to use these new instructions. url:
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-t

hese-new-instructions/ (visited on 2021-06-07).

[42] Stewart A. Levin. “A fully vectorized quicksort.” In: Parallel Computing 16.2
(1990), pp. 369–373. issn: 0167-8191. doi: 10.1016/0167-8191(90)90074-J.
url: https://www.sciencedirect.com/science/article/pii/016781919
090074J.

70

https://ark.intel.com/content/www/us/en/ark/products/198017/intel-core-i9-10980xe-extreme-edition-processor-24-75m-cache-3-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/198017/intel-core-i9-10980xe-extreme-edition-processor-24-75m-cache-3-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/198017/intel-core-i9-10980xe-extreme-edition-processor-24-75m-cache-3-00-ghz.html
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://doi.org/10.1145/3418295
https://software.intel.com/content/www/us/en/develop/articles/vectorization-a-key-tool-to-improve-performance-on-modern-cpus.html
https://software.intel.com/content/www/us/en/develop/articles/vectorization-a-key-tool-to-improve-performance-on-modern-cpus.html
https://software.intel.com/content/www/us/en/develop/articles/vectorization-a-key-tool-to-improve-performance-on-modern-cpus.html
https://doi.org/10.1145/1400181.1400186
https://lemire.me/blog/2018/08/25/avx-512-throttling-heavy-instructions-are-maybe-not-so-dangerous/
https://lemire.me/blog/2018/08/25/avx-512-throttling-heavy-instructions-are-maybe-not-so-dangerous/
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/
https://doi.org/10.1016/0167-8191(90)90074-J
https://www.sciencedirect.com/science/article/pii/016781919090074J
https://www.sciencedirect.com/science/article/pii/016781919090074J

[43] LLVM Project. Auto-Vectorization in LLVM. url: https://llvm.org/docs
/Vectorizers.html (visited on 2021-05-01).

[44] Chris Lomont. Introduction to x64 Assembly. Mar. 19, 2012. url: https://sof
tware.intel.com/content/www/us/en/develop/articles/introduction

-to-x64-assembly.html (visited on 2021-05-03).

[45] Donald A. MacKenzie. Knowing Machines. Essays on Technical Change. MIT
Press Cambridge, Mass, 1996. 338 pp. isbn: 0262133156.

[46] David R. Musser. “Introspective Sorting and Selection Algorithms.” In: Soft-
ware: Practice and Experience 27.8 (1997), pp. 983–993. doi: https://doi.or
g/10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-

#.

[47] Orson Peters. pdqsort. url: https : / / github . com / orlp / pdqsort / blo
b/b1ef26a55cdb60d236a5cb199c4234c704f46726/readme.md (visited on
2021-04-17).

[48] Orestis Polychroniou and Kenneth A. Ross. “A Comprehensive Study of Main-
Memory Partitioning and Its Application to Large-Scale Comparison- and
Radix-Sort.” In: Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’14. Snowbird, Utah, USA: Association for
Computing Machinery, 2014, pp. 755–766. isbn: 9781450323765. doi: 10.114
5/2588555.2610522.

[49] James Reinders. Additional Intel® AVX-512 instructions. July 18, 2014. url:
https://software.intel.com/content/www/us/en/develop/articles/a

dditional-intel-avx-512-instructions.html (visited on 2021-05-04).

[50] James Reinders. Intel® AVX-512 Instructions. June 20, 2017. url: https://sof
tware.intel.com/content/www/us/en/develop/articles/intel-avx-51

2-instructions.html (visited on 2021-04-27).

[51] Rust Project. _mm512_min_epi32. url: https://github.com/rust-lang/st
darch/blob/bc5c33cce1d2ff8f39cff2514be1a4ddd90d6d7d/crates/core

_arch/src/x86/avx512f.rs#L2239-2247 (visited on 2021-05-01).

[52] Rust Project. sort_unstable. url: https://github.com/rust-lang/rust
/blob/57e28ef86fdf528d1e348312f5b2775d9de2cbd0/library/core/src

/slice/mod.rs#L2277 (visited on 2021-04-17).

[53] Rust Project. vpminsd. url: https://github.com/rust-lang/stdarch/blo
b/bc5c33cce1d2ff8f39cff2514be1a4ddd90d6d7d/crates/core_arch/src

/x86/avx512f.rs#L35920-35921 (visited on 2021-05-01).

71

https://llvm.org/docs/Vectorizers.html
https://llvm.org/docs/Vectorizers.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-x64-assembly.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-x64-assembly.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-x64-assembly.html
https://doi.org/https://doi.org/10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-
https://doi.org/https://doi.org/10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-
https://doi.org/https://doi.org/10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-
https://github.com/orlp/pdqsort/blob/b1ef26a55cdb60d236a5cb199c4234c704f46726/readme.md
https://github.com/orlp/pdqsort/blob/b1ef26a55cdb60d236a5cb199c4234c704f46726/readme.md
https://doi.org/10.1145/2588555.2610522
https://doi.org/10.1145/2588555.2610522
https://software.intel.com/content/www/us/en/develop/articles/additional-intel-avx-512-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/additional-intel-avx-512-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-avx-512-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-avx-512-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-avx-512-instructions.html
https://github.com/rust-lang/stdarch/blob/bc5c33cce1d2ff8f39cff2514be1a4ddd90d6d7d/crates/core_arch/src/x86/avx512f.rs#L2239-2247
https://github.com/rust-lang/stdarch/blob/bc5c33cce1d2ff8f39cff2514be1a4ddd90d6d7d/crates/core_arch/src/x86/avx512f.rs#L2239-2247
https://github.com/rust-lang/stdarch/blob/bc5c33cce1d2ff8f39cff2514be1a4ddd90d6d7d/crates/core_arch/src/x86/avx512f.rs#L2239-2247
https://github.com/rust-lang/rust/blob/57e28ef86fdf528d1e348312f5b2775d9de2cbd0/library/core/src/slice/mod.rs#L2277
https://github.com/rust-lang/rust/blob/57e28ef86fdf528d1e348312f5b2775d9de2cbd0/library/core/src/slice/mod.rs#L2277
https://github.com/rust-lang/rust/blob/57e28ef86fdf528d1e348312f5b2775d9de2cbd0/library/core/src/slice/mod.rs#L2277
https://github.com/rust-lang/stdarch/blob/bc5c33cce1d2ff8f39cff2514be1a4ddd90d6d7d/crates/core_arch/src/x86/avx512f.rs#L35920-35921
https://github.com/rust-lang/stdarch/blob/bc5c33cce1d2ff8f39cff2514be1a4ddd90d6d7d/crates/core_arch/src/x86/avx512f.rs#L35920-35921
https://github.com/rust-lang/stdarch/blob/bc5c33cce1d2ff8f39cff2514be1a4ddd90d6d7d/crates/core_arch/src/x86/avx512f.rs#L35920-35921

[54] Nadathur Satish et al. “Fast Sort on CPUs and GPUs: A Case for Bandwidth
Oblivious SIMD Sort.” In: Proceedings of the 2010 ACM SIGMOD Interna-
tional Conference on Management of Data. SIGMOD ’10. Indianapolis, Indi-
ana, USA: Association for Computing Machinery, 2010, pp. 351–362. isbn:
9781450300322. doi: 10.1145/1807167.1807207.

[55] Robert Schöne et al. “Energy Efficiency Features of the Intel Skylake-SP
Processor and Their Impact on Performance.” In: 2019 International Conference
on High Performance Computing Simulation (HPCS). July 2019, pp. 399–406.
doi: 10.1109/HPCS48598.2019.9188239.

[56] Robert Sedgewick. Quicksort. Outstanding Dissertations in the Computer
Sciences. Garland Publishing, New York, 1975. isbn: 0-8240-4417-7.

[57] Lukáš Sekanina. “Evolutionary Design Space Exploration for Median Cir-
cuits.” In: Applications of Evolutionary Computing. Ed. by Günther R. Raidl
et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 240–249. isbn:
978-3-540-24653-4.

[58] Howard Jay Siegel. “The Universality of Various Types of SIMD Machine
Interconnection Networks.” In: SIGARCHComput. Archit. News 5.7 (Mar. 1977),
pp. 70–79. issn: 0163-5964. doi: 10.1145/633615.810655.

[59] H. S. Stone. “Sorting on STAR.” In: IEEE Trans. Softw. Eng. 4.2 (Mar. 1978),
pp. 138–146. issn: 0098-5589. doi: 10.1109/TSE.1978.231484.

[60] User: InstLatx64. The 19 + 1 levels of AVX512 in Intel processors according to
the 37th Intel ISA-ER. Aug. 30, 2019. url: https://github.com/InstLatx6
4/InstLatx64/blob/5bcd12f2301f3095f2e050fd9e2ada2b7c838786/Venn

Diagrams/Venn_AVX512_v141.png (visited on 2021-05-04).

[61] User: njuffa. Standard sorting networks for small values of n. Aug. 28, 2018.
url: https://stackoverflow.com/a/46854885 (visited on 2021-07-07).

[62] User: Z boson. How to transpose a 16x16 matrix using SIMD instructions?
May 23, 2017. url: https://stackoverflow.com/a/41262731 (visited on
2021-06-17).

[63] Berthold Vöcking et al., eds. Taschenbuch der Algorithmen. eXamen.press.
Springer, 2008. isbn: 978-3-540-76393-2.

[64] Alex Watkins. “A Fast and Simple Approach to Merge Sorting using AVX-
512.” Undergraduate Research Thesis. Georgia Institute of Technology, 2017.
url: https :/ / smartech . gatech . edu/ bitstream / handle / 1853 / 6135
9/WATKINS-UNDERGRADUATERESEARCHOPTIONTHESIS-2018.pdf (visited on
2021-07-02).

72

https://doi.org/10.1145/1807167.1807207
https://doi.org/10.1109/HPCS48598.2019.9188239
https://doi.org/10.1145/633615.810655
https://doi.org/10.1109/TSE.1978.231484
https://github.com/InstLatx64/InstLatx64/blob/5bcd12f2301f3095f2e050fd9e2ada2b7c838786/VennDiagrams/Venn_AVX512_v141.png
https://github.com/InstLatx64/InstLatx64/blob/5bcd12f2301f3095f2e050fd9e2ada2b7c838786/VennDiagrams/Venn_AVX512_v141.png
https://github.com/InstLatx64/InstLatx64/blob/5bcd12f2301f3095f2e050fd9e2ada2b7c838786/VennDiagrams/Venn_AVX512_v141.png
https://stackoverflow.com/a/46854885
https://stackoverflow.com/a/41262731
https://smartech.gatech.edu/bitstream/handle/1853/61359/WATKINS-UNDERGRADUATERESEARCHOPTIONTHESIS-2018.pdf
https://smartech.gatech.edu/bitstream/handle/1853/61359/WATKINS-UNDERGRADUATERESEARCHOPTIONTHESIS-2018.pdf

[65] Z. Yin et al. “Efficient Parallel Sort on AVX-512-Based Multi-Core and Many-
Core Architectures.” In: 2019 IEEE 21st International Conference on High Per-
formance Computing and Communications; IEEE 17th International Conference
on Smart City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). 2019, pp. 168–176. doi: 10.1109/HPCC/SmartCity
/DSS.2019.00038.

73

https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00038
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00038

List of Tables

3.1 Characteristics of known most optimal sorting networks for 𝑛 ≤
20 with parallel steps 𝑝(𝑛) and number of comparison elements
𝑐(𝑛) [11, tab. 1]. 26

6.1 Performance indicators from a run of all algorithms on uni with
104 elements. 60

6.2 Performance indicators from a run of all algorithms on uni with
106 elements. 61

6.3 Different calculations of implementations’ efficiency applied to the
performance indicators from a run of all algorithms on uni with
106 elements (cf. table 6.2). Results for all measures except 𝒫1 are
scaled to ease comparisons. 63

75

List of Figures

2.1 Addition using a vector instruction and a scalar instruction on
registers with the same content. 10

2.2 AVX-512 registers on the x86_64 architecture. 12
2.3 Shuffling vs. permuting on AVX2. 17

3.1 Graphical representation of a comparison element sorting the
numbers 3 and 7. 23

3.2 Batcher’s sorting networks for 32 elements. 25

5.1 An optimal sorting network for 5 elements with 9 comparison
elements reduced to an optimal median network with 10 mini-
mum/maximum operations [57, 61]. 36

5.2 Bitonic sorting network for 16 elements. 38
5.3 Sort two vectors at once using a Bitonic sorting network. 42
5.4 Merging sorted columns by applying transposition. 47
5.5 Merging sorted columns without transposition. 49
5.6 Partitioning of an array arr using a pivot value of 49 and Blacher’s

approach [6, Abb. 6.1]. 51

6.1 Speedup of the respective algorithms over cxxstd for the chosen
distributions. 59

77

Appendix

A.1 Using the FFI bindings from C++

Listing A.1: CMakeLists.txt for using the Rust library from C++

Cmake1 # adapted from the Rust FFI book by Michael F. Bryan

2 # see https://))github.com/Michael-F-Bryan/rust-ffi-guide/blo ⌋

b/bb1d0cd108d929d0a551e5a85f4d2198d9a057b8/CMakeLists.txt↪

3 # (originally licensed CC0 1.0 Universal;

4 # these adaptions follow the crate's license)

5

6 cmake_minimum_required(VERSION 3.7)

7 project(sorting-example)

8

9 if (CMAKE_BUILD_TYPE STREQUAL "Debug")

10 set(CARGO_RELEASE_FLAG "" CACHE INTERNAL "")

11 set(TARGET_DIR "debug" CACHE INTERNAL "")

12 else ()

13 set(CARGO_RELEASE_FLAG "--)release" CACHE INTERNAL "")

14 set(TARGET_DIR "release" CACHE INTERNAL "")

15 endif ()

16

17 # adjust this variable to change the path to the Rust source

18 # of the avx-sort crate

19 set(project_dir ${CMAKE_CURRENT_SOURCE_DIR}/..))

20

21 # the following values are derived from the project_dir and

22 # the structure of the avx-sort crate

23 set(cargo_library_output

${CMAKE_CURRENT_BINARY_DIR}/${TARGET_DIR}/libavx_sort.so)↪

24 set(cargo_header_output_directory ${CMAKE_CURRENT_BINARY_DIR})

25 file(GLOB sources ${project_dir}/src/**/*.rs)

26

79

27 set(compile_message "Compiling ${target_name}")

28 if(CARGO_RELEASE_FLAG STREQUAL "--)release")

29 set(compile_message "${compile_message} in release mode")

30 endif()

31

32 add_custom_target(avx_sort ALL

33 COMMENT ${compile_message}

34 # due to the `CARGO_TARGET_DIR` setting, cargo will create its

35 # debug/release folder in the `CMAKE_CURRENT_BINARY_DIR`;

36 # due to the setup of avx_sort, the corresponding header with

37 # the C bindings will be generated there as well

38 COMMAND env CARGO_TARGET_DIR=${CMAKE_CURRENT_BINARY_DIR} cargo build

${CARGO_RELEASE_FLAG}↪

39 WORKING_DIRECTORY ${project_dir})

40

41 # although not strictly needed, add a test target for the avx-sort

42 # crate; this does not test any C++) code from main.cpp

43 add_test(NAME avx_sort_test

44 COMMAND env CARGO_TARGET_DIR=${CMAKE_CURRENT_BINARY_DIR} cargo test

${CARGO_RELEASE_FLAG}↪

45 WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})

46

47 # add the actual executable, linked against the compiled library

48 # (`avx_sort` target) and including the generated glue code header

49 # so that the `main.cpp` file is actually able to

50 # `#include "avx_sort.hpp"`

51 add_executable(sorting_example main.cpp)

52 add_dependencies(sorting_example avx_sort)

53 target_include_directories(sorting_example PRIVATE

${cargo_header_output_directory})↪

54 target_link_libraries(sorting_example ${cargo_library_output})

Listing A.2: C++ program using the FFI

C++1 #include <algorithm>

2 #include <iostream>

3 #include <vector>

4

5 #include "avx_sort.hpp"

6

7 int main() {

80

8 std::)vector<int32_t> to_sort{8, 7, 6, 5, 4, 3, 2, 1};

9 avx_sort::)arch_optimal_quicksort_c(to_sort.data(), to_sort.size());

10

11 int return_value = 0;

12

13 std::)cout <<) "The given vector has ";

14 if (!std::)is_sorted(to_sort.begin(), to_sort.end())) {

15 std::)cout <<) "not ";

16 return_value = 1;

17 }

18 std::)cout <<) "been sorted." <<) std::)endl;

19

20 return return_value;

21 }

A.2 Supplementary code examples

Listing A.3: Calculate new pivot element

Rust1 ///)) Determine a pivot element for `arr`; not necessarily part

2 ///)) of the collection.

3 #[)inline]

4 unsafe fn get_pivot(arr: &[i32]) ->- i32 {

5 let bound = _mm512_set1_epi32(arr.len() as i32);

6

7 //) seeds for vectorized RNG

8 let mut s0 = _mm512_setr_epi64(

9 3_443_930_009_025_137_051,

10 4_731_979_008_551_603_254,

11 8_794_064_498_923_322_450,

12 4_874_270_468_522_057_061,

13 5_897_544_235_680_999_164,

14 8_266_299_549_366_754_966,

15 3_541_782_707_195_610_314,

16 2_832_473_711_643_591_904,

17);

18 let mut s1 = _mm512_setr_epi64(

19 3_645_099_076_540_354_483,

20 5_458_105_273_946_890_124,

81

21 7_010_914_221_407_653_385,

22 2_651_990_308_724_075_580,

23 4_232_083_816_489_385_122,

24 6_295_913_260_703_919_690,

25 7_795_133_987_285_071_557,

26 4_008_619_371_956_439_200,

27);

28 s1 = _mm512_sub_epi64(s1, _mm512_set1_epi64((arr.len() - 1) as i64));

29

30 //) sparse array for median of medians

31 let mut v: [__m512i; 5] = collect_into_array_unchecked(

32 //) fill sparse array

33 &mut (0..)5).map(|_| {

34 //) get a vector of 4 random uint64_t

35 let mut result = vnext(&mut s0, &mut s1);

36 //) ZZ between 0 and bound - 1

37 result = rnd_epu32(result, &bound);

38 //) indices for arr

39 _mm512_i32gather_epi32(

40 result,

41 arr.get_unchecked(0) as *const i32 as *const u8,

42 size_of::<i32>() as i32,

43)

44 }),

45);

46 let v = &mut v as &mut CoExI32x16;

47

48 //) use a median network for 5 vectors

49 v.median_of_five();

50

51 //) sort the 16 medians in the middle

52 sort_16(&mut v[2]);

53

54 //) get the pivot element;

55 //) AVX-512 does not provide a way to efficiently get an element

56 //) from a vector so this is achieved by viewing the memory as

57 //) contiguous i32s

58 let int_view = &*(v as *const [__m512i] as *const [i32]);

59 //) the element v[2] we sorted previously is at 16 * 2 = 32;

60 //) now we want to get integers 7 and 8 from it (those around

82

61 //) the middle to compute the median of medians)

62 let elem_7 = *int_view.get_unchecked(39);

63 let elem_8 = *int_view.get_unchecked(40);

64 average(elem_7, elem_8)

65 }

Listing A.4: Partitioning multiple vectors

Rust1 ///)) Partition array using AVX512 vectors.

2 #[)inline]

3 unsafe fn partition_vectorized(arr: &mut [i32], pivot: i32) ->-

PartitionResult<i32> {↪

4 //) shorten array to multiple of 16

5 let (smallest, biggest, mut left, mut right) =

shorten_array_mod16(arr, pivot);↪

6

7 if left ==) right {

8 //) less than 16 elements in array

9 return PartitionResult {

10 partition_boundary: left,

11 smallest,

12 biggest,

13 };

14 }

15

16 //) vectors for pivot, smallest and biggest

17 let pivot_vec = _mm512_set1_epi32(pivot);

18 let mut sv = _mm512_set1_epi32(smallest);

19 let mut bv = _mm512_set1_epi32(biggest);

20

21 if right - left ==) 16 {

22 let v = load_vec(arr.get_unchecked(left..)left + 16));

23 let amount_gt_pivot = partition_vec(

24 v,

25 &pivot_vec,

26 &mut sv,

27 &mut bv,

28 arr.as_mut_ptr().add(left),

29 arr.as_mut_ptr().add(left + 16),

30);

31 return PartitionResult {

83

32 partition_boundary: left + 16 - amount_gt_pivot,

33 smallest: _mm512_reduce_min_epi32(sv),

34 biggest: _mm512_reduce_max_epi32(bv),

35 };

36 }

37

38 //) the first and last 16 values are partitioned last

39 let vec_left = load_vec(arr.get_unchecked(left..)left + 16));

40 let vec_right = load_vec(arr.get_unchecked(right - 16..)right));

41

42 //) positions where the vectors are stored

43 //) right position to save to

44 let mut r_store = right - 16;

45 //) left position to save to

46 let mut l_store = left;

47

48 //) positions to load the vectors to

49 //) increase and decrease because first and last 8 elements are

50 //) buffered (see above)

51 left += 16;

52 right -= 16;

53

54 //) parition 16 elements per iteration

55 while right - left !=) 0 {

56 //) if less elements are stored on the right side then use

57 //) the next vector from the right, else from left

58 let curr_vec = if (r_store + 16) - right < left - l_store {

59 right -= 16;

60 load_vec(arr.get_unchecked(right..)right + 16))

61 } else {

62 left += 16;

63 load_vec(arr.get_unchecked(left - 16..)left))

64 };

65

66 //) partition current vector and store on both sides

67 let amount_gt_pivot = partition_vec(

68 curr_vec,

69 &pivot_vec,

70 &mut sv,

71 &mut bv,

84

72 arr.as_mut_ptr().add(l_store),

73 arr.as_mut_ptr().add(r_store + 16),

74);

75

76 //) update positions where vectors are saved to,

77 //) ensuring that left and right positions are

78 //) updated by 16 in total

79 r_store -= amount_gt_pivot;

80 l_store += 16 - amount_gt_pivot;

81 }

82

83 //) partition left vector and store it

84 let amount_gt_pivot = partition_vec(

85 vec_left,

86 &pivot_vec,

87 &mut sv,

88 &mut bv,

89 arr.as_mut_ptr().add(l_store),

90 arr.as_mut_ptr().add(r_store + 16),

91);

92 l_store += 16 - amount_gt_pivot;

93

94 //) partition right vector and store it

95 let amount_gt_pivot = partition_vec(

96 vec_right,

97 &pivot_vec,

98 &mut sv,

99 &mut bv,

100 arr.as_mut_ptr().add(l_store),

101 arr.as_mut_ptr().add(l_store + 16),

102);

103 l_store += 16 - amount_gt_pivot;

104

105 //) store smallest and largest value in vector

106 PartitionResult {

107 partition_boundary: l_store,

108 smallest: _mm512_reduce_min_epi32(sv),

109 biggest: _mm512_reduce_max_epi32(bv),

110 }

111 }

85

A.3 Raw benchmarking results

Apart from results for the distributions introduced in section 6.2 on page 57,
the subsequent table includes the following additional distributions on arrays
of size 𝑛: dsc, descending numbers from 𝑛 − 1 to 0, u16, the respective
remainders of the ascending numbers from 0 to 𝑛 − 1 modulo 16, shuffled
randomly, pft, ascending numbers from 1 to 𝑛 − 1 followed by 0, and pmi,
ascending numbers from 0 to 𝑛 − 1 without ⌊𝑛2⌋, which is appended as the
last element.

𝒟 Sort Samples 𝑟 [ns] CPE IPC GHz

equ rsavx512 101 2.49×104 48.30 0.50 0.04
rsavx 101 2.47×104 36.20 0.60 0.03
cxxavx 101 2.50×104 28.20 1.10 0.02
rsstd 101 2.34×104 33.10 0.41 0.03
ips2ra 101 2.48×104 17.50 1.31 0.01
ips4o 101 2.24×104 12.90 1.26 0.01
bramas 101 2.24×104 26.40 0.73 0.02
cxxstd 101 2.47×104 18.30 1.24 0.01

asc rsavx512 101 2.43×104 70.50 0.34 0.05
rsavx 101 2.24×104 35.60 0.61 0.03
cxxavx 101 2.49×104 28.30 1.09 0.02
rsstd 101 2.48×104 12.10 1.12 0.01
ips2ra 101 2.47×104 17.50 1.31 0.01
ips4o 101 2.45×104 13.00 1.25 0.01
bramas 101 2.25×104 26.10 0.74 0.02
cxxstd 101 2.26×104 18.90 1.20 0.02

dsc rsavx512 101 2.50×104 51.40 0.47 0.04
rsavx 101 2.39×104 56.20 0.38 0.04
cxxavx 101 2.27×104 28.20 1.10 0.02
rsstd 101 2.33×104 43.00 1.17 0.03
ips2ra 101 2.42×104 62.90 0.78 0.05
ips4o 101 2.23×104 14.40 1.38 0.01
bramas 101 2.36×104 47.90 0.41 0.04
cxxstd 101 2.41×104 31.60 1.26 0.02

uni rsavx512 101 2.36×104 65.30 0.37 0.05
rsavx 101 2.46×104 28.00 0.77 0.02

continued on next page

86

𝒟 Sort Samples 𝑟 [ns] CPE IPC GHz

cxxavx 101 2.43×104 45.80 0.67 0.03
rsstd 101 2.26×104 16.90 1.89 0.01
ips2ra 101 2.30×104 29.90 1.62 0.02
ips4o 101 2.28×104 31.30 1.32 0.03
bramas 101 2.48×104 23.80 0.82 0.02
cxxstd 101 2.47×104 23.80 1.52 0.02

u16 rsavx512 101 2.35×104 63.20 0.38 0.05
rsavx 101 2.40×104 48.90 0.44 0.04
cxxavx 101 2.27×104 25.30 1.22 0.02
rsstd 101 2.23×104 16.70 1.77 0.01
ips2ra 101 2.49×104 26.80 1.57 0.02
ips4o 101 2.42×104 50.50 0.88 0.04
bramas 101 2.23×104 22.90 0.85 0.02
cxxstd 101 2.40×104 42.50 0.73 0.03

pip rsavx512 101 2.27×104 45.00 0.54 0.04
rsavx 101 2.45×104 28.10 0.77 0.02
cxxavx 101 2.48×104 24.80 1.25 0.02
rsstd 101 2.30×104 15.30 1.84 0.01
ips2ra 101 2.46×104 20.90 1.69 0.02
ips4o 101 2.25×104 24.70 1.65 0.02
bramas 101 2.26×104 22.90 0.85 0.02
cxxstd 101 2.47×104 22.60 1.45 0.02

gau rsavx512 101 2.26×104 44.40 0.55 0.04
rsavx 101 2.34×104 48.60 0.44 0.04
cxxavx 101 2.46×104 24.70 1.25 0.02
rsstd 101 2.43×104 36.70 0.72 0.03
ips2ra 101 2.27×104 25.50 1.67 0.02
ips4o 101 2.34×104 49.00 0.90 0.04
bramas 101 2.48×104 22.90 0.85 0.02
cxxstd 101 2.48×104 22.20 1.53 0.02

alm rsavx512 101 2.27×104 43.20 0.56 0.04
rsavx 101 2.46×104 27.60 0.78 0.02
cxxavx 101 2.26×104 25.00 1.24 0.02
rsstd 101 2.41×104 32.90 0.44 0.03
ips2ra 101 2.46×104 17.70 1.36 0.01

continued on next page

87

𝒟 Sort Samples 𝑟 [ns] CPE IPC GHz

ips4o 101 2.41×104 40.60 0.69 0.03
bramas 101 2.24×104 22.90 0.85 0.02
cxxstd 101 2.33×104 39.60 0.59 0.03

pfr rsavx512 101 2.51×104 44.90 0.54 0.03
rsavx 101 2.27×104 27.80 0.78 0.02
cxxavx 101 2.27×104 24.90 1.24 0.02
rsstd 101 2.47×104 14.10 1.48 0.01
ips2ra 101 2.46×104 26.30 1.06 0.02
ips4o 101 2.23×104 22.10 1.34 0.02
bramas 101 2.27×104 23.80 0.82 0.02
cxxstd 101 2.47×104 23.40 1.05 0.02

pmi rsavx512 101 2.44×104 64.30 0.38 0.05
rsavx 101 2.27×104 28.50 0.76 0.02
cxxavx 101 2.34×104 45.70 0.68 0.04
rsstd 101 2.46×104 13.00 1.33 0.01
ips2ra 101 2.40×104 38.80 0.67 0.03
ips4o 101 2.26×104 21.80 1.54 0.02
bramas 101 2.32×104 43.70 0.44 0.03
cxxstd 101 2.48×104 19.30 1.31 0.01

equ rsavx512 102 2.33×104 9.89 1.27 0.08
rsavx 102 2.48×104 9.15 2.35 0.07
cxxavx 102 2.49×104 10.23 2.02 0.07
rsstd 102 2.26×104 3.76 2.38 0.03
ips2ra 102 2.55×104 13.61 1.81 0.10
ips4o 102 2.47×104 3.19 2.49 0.02
bramas 102 2.54×104 7.85 1.26 0.06
cxxstd 102 2.37×104 16.49 2.33 0.12

asc rsavx512 102 2.53×104 9.54 1.32 0.07
rsavx 102 2.46×104 10.98 1.96 0.08
cxxavx 102 2.38×104 8.32 2.48 0.06
rsstd 102 2.49×104 3.71 2.41 0.03
ips2ra 102 2.56×104 21.11 1.88 0.14
ips4o 102 2.34×104 4.88 1.63 0.04
bramas 102 2.44×104 9.89 1.00 0.07
cxxstd 102 2.45×104 20.07 2.27 0.14

continued on next page

88

𝒟 Sort Samples 𝑟 [ns] CPE IPC GHz

dsc rsavx512 102 2.52×104 9.48 1.33 0.07
rsavx 102 2.53×104 9.05 2.37 0.07
cxxavx 102 2.30×104 8.20 2.52 0.06
rsstd 102 2.29×104 4.61 2.64 0.04
ips2ra 102 2.65×104 20.89 2.24 0.14
ips4o 102 2.30×104 4.75 2.31 0.04
bramas 102 2.52×104 7.80 1.27 0.06
cxxstd 102 2.62×104 16.96 2.39 0.12

uni rsavx512 102 2.33×104 9.12 1.38 0.07
rsavx 102 2.39×104 11.06 1.94 0.09
cxxavx 102 2.52×104 8.25 2.50 0.06
rsstd 102 2.52×104 25.55 3.47 0.16
ips2ra 102 2.72×104 43.39 2.06 0.26
ips4o 102 2.89×104 52.68 3.64 0.30
bramas 102 2.47×104 9.89 1.00 0.07
cxxstd 102 2.67×104 23.24 2.55 0.15

u16 rsavx512 102 2.38×104 9.87 1.27 0.07
rsavx 102 2.46×104 9.08 2.37 0.07
cxxavx 102 2.37×104 8.36 2.47 0.06
rsstd 102 2.60×104 22.57 3.35 0.15
ips2ra 102 2.76×104 36.24 2.23 0.22
ips4o 102 2.87×104 57.00 3.66 0.32
bramas 102 2.38×104 7.81 1.27 0.06
cxxstd 102 2.66×104 22.72 2.36 0.15

pip rsavx512 102 2.30×104 9.66 1.30 0.08
rsavx 102 2.31×104 9.14 2.35 0.07
cxxavx 102 2.53×104 8.24 2.51 0.06
rsstd 102 2.67×104 23.36 3.33 0.15
ips2ra 102 4.78×104 338.94 1.82 0.90
ips4o 102 2.88×104 52.37 3.61 0.30
bramas 102 2.45×104 7.82 1.27 0.06
cxxstd 102 2.64×104 26.99 2.55 0.17

gau rsavx512 102 2.40×104 9.59 1.31 0.07
rsavx 102 2.45×104 9.16 2.35 0.07
cxxavx 102 2.37×104 8.22 2.51 0.06

continued on next page

89

𝒟 Sort Samples 𝑟 [ns] CPE IPC GHz

rsstd 102 2.41×104 24.96 3.40 0.18
ips2ra 102 2.67×104 27.26 2.03 0.18
ips4o 102 2.63×104 36.77 3.72 0.23
bramas 102 2.54×104 7.83 1.27 0.06
cxxstd 102 2.64×104 21.66 2.70 0.14

alm rsavx512 102 2.34×104 9.52 1.32 0.07
rsavx 102 2.53×104 9.03 2.38 0.07
cxxavx 102 2.40×104 8.29 2.49 0.06
rsstd 102 2.32×104 3.38 2.87 0.03
ips2ra 102 2.61×104 19.38 2.06 0.14
ips4o 102 2.53×104 5.59 3.20 0.04
bramas 102 2.51×104 7.87 1.26 0.06
cxxstd 102 2.46×104 19.12 2.39 0.13

pfr rsavx512 102 2.22×104 9.69 1.30 0.08
rsavx 102 2.51×104 9.10 2.36 0.07
cxxavx 102 2.29×104 8.29 2.49 0.07
rsstd 102 2.32×104 6.12 2.80 0.05
ips2ra 102 2.45×104 22.29 2.03 0.16
ips4o 102 2.52×104 7.95 2.64 0.06
bramas 102 2.38×104 7.81 1.27 0.06
cxxstd 102 3.08×104 74.37 2.47 0.39

pmi rsavx512 102 2.30×104 9.39 1.34 0.07
rsavx 102 2.31×104 9.09 2.36 0.07
cxxavx 102 2.46×104 8.19 2.52 0.06
rsstd 102 2.33×104 4.93 2.67 0.04
ips2ra 102 2.50×104 20.60 2.06 0.15
ips4o 102 2.52×104 8.02 3.28 0.06
bramas 102 2.48×104 7.83 1.27 0.06
cxxstd 102 2.55×104 27.45 2.33 0.19

equ rsavx512 103 2.97×104 6.42 2.01 0.34
rsavx 103 2.47×104 1.49 2.62 0.11
cxxavx 103 2.57×104 1.27 2.55 0.09
rsstd 103 2.56×104 1.69 4.25 0.12
ips2ra 103 3.14×104 7.08 2.24 0.37
ips4o 103 2.34×104 1.45 4.88 0.11

continued on next page

90

𝒟 Sort Samples 𝑟 [ns] CPE IPC GHz

bramas 103 2.42×105 283.72 2.56 1.23
cxxstd 103 4.03×104 21.93 2.71 0.73

asc rsavx512 103 2.82×104 6.42 2.01 0.37
rsavx 103 3.25×104 8.93 2.76 0.43
cxxavx 103 2.93×104 8.11 2.91 0.43
rsstd 103 2.41×104 1.69 4.25 0.12
ips2ra 103 6.57×104 54.46 1.62 0.98
ips4o 103 2.60×104 1.46 4.86 0.10
bramas 103 3.16×104 9.20 1.80 0.44
cxxstd 103 4.27×104 25.09 2.69 0.78

dsc rsavx512 103 3.02×104 6.37 2.02 0.34
rsavx 103 3.14×104 8.60 2.82 0.42
cxxavx 103 2.91×104 8.06 2.91 0.43
rsstd 103 2.50×104 2.72 3.75 0.19
ips2ra 103 6.51×104 55.37 1.60 1.02
ips4o 103 2.68×104 2.58 3.91 0.17
bramas 103 3.53×104 14.58 2.03 0.57
cxxstd 103 3.87×104 19.62 2.82 0.70

uni rsavx512 103 2.85×104 6.42 2.01 0.37
rsavx 103 3.11×104 8.73 2.77 0.42
cxxavx 103 2.97×104 8.16 2.84 0.40
rsstd 103 4.83×104 33.67 3.69 0.88
ips2ra 103 7.43×104 66.47 0.89 1.04
ips4o 103 1.04×105 102.35 1.75 1.09
bramas 103 3.16×104 8.49 1.73 0.42
cxxstd 103 9.01×104 87.24 0.94 1.11

u16 rsavx512 103 3.08×104 6.40 2.02 0.36
rsavx 103 2.99×104 8.58 2.71 0.45
cxxavx 103 2.98×104 8.06 2.80 0.43
rsstd 103 3.53×104 16.34 3.48 0.66
ips2ra 103 4.92×104 31.91 1.25 0.83
ips4o 103 5.10×104 31.65 2.45 0.80
bramas 103 2.99×104 8.25 1.77 0.41
cxxstd 103 5.75×104 43.83 1.57 0.94

pip rsavx512 103 2.97×104 6.40 2.02 0.34

continued on next page

91

𝒟 Sort Samples 𝑟 [ns] CPE IPC GHz

rsavx 103 2.99×104 8.32 2.83 0.41
cxxavx 103 2.83×104 7.71 2.97 0.42
rsstd 103 4.75×104 30.61 3.73 0.81
ips2ra 103 6.49×104 51.54 1.42 0.95
ips4o 103 9.15×104 87.57 2.12 1.09
bramas 103 3.70×104 16.98 2.04 0.65
cxxstd 103 9.06×104 87.54 2.12 1.10

gau rsavx512 103 2.84×104 6.40 2.02 0.37
rsavx 103 2.90×104 8.68 2.78 0.46
cxxavx 103 3.20×104 7.94 2.89 0.40
rsstd 103 4.89×104 31.45 3.71 0.81
ips2ra 103 5.42×104 39.41 1.54 0.89
ips4o 103 7.29×104 63.13 1.98 1.02
bramas 103 3.00×104 9.55 1.68 0.49
cxxstd 103 8.79×104 84.73 0.98 1.10

alm rsavx512 103 2.86×104 6.46 1.99 0.37
rsavx 103 3.16×104 8.68 2.84 0.42
cxxavx 103 2.98×104 8.06 2.93 0.42
rsstd 103 2.49×104 1.93 3.81 0.14
ips2ra 103 6.63×104 55.54 1.58 0.98
ips4o 103 5.27×104 39.03 2.31 0.93
bramas 103 3.08×104 9.24 1.79 0.44
cxxstd 103 4.27×104 24.90 2.71 0.77

pfr rsavx512 103 2.99×104 6.44 2.00 0.35
rsavx 103 2.87×104 9.01 2.82 0.47
cxxavx 103 2.87×104 8.23 2.96 0.44
rsstd 103 2.44×104 3.98 3.82 0.27
ips2ra 103 6.25×104 51.47 1.75 0.99
ips4o 103 5.59×104 38.00 2.32 0.85
bramas 103 4.41×104 26.47 2.38 0.79
cxxstd 103 1.82×105 207.21 1.61 1.21

pmi rsavx512 103 2.86×104 6.40 2.01 0.36
rsavx 103 3.13×104 9.90 2.57 0.48
cxxavx 103 3.05×104 9.26 2.63 0.44
rsstd 103 2.69×104 2.77 4.05 0.18

continued on next page

92

𝒟 Sort Samples 𝑟 [ns] CPE IPC GHz

ips2ra 103 6.31×104 51.28 1.76 0.99
ips4o 103 5.45×104 39.69 2.43 0.90
bramas 103 3.31×104 12.02 2.10 0.55
cxxstd 103 9.06×104 88.21 2.12 1.11

equ rsavx512 104 3.69×104 1.85 2.19 0.70
rsavx 104 3.05×104 0.94 3.36 0.47
cxxavx 104 2.84×104 0.97 2.90 0.49
rsstd 104 3.53×104 1.54 4.55 0.62
ips2ra 104 5.13×104 3.56 3.51 0.89
ips4o 104 3.36×104 1.27 5.50 0.57
bramas 104 8.07×106 3183.44 2.36 3.95
cxxstd 104 2.88×105 34.31 2.67 1.24

asc rsavx512 104 1.14×105 12.08 2.25 1.16
rsavx 104 1.15×105 11.95 2.90 1.14
cxxavx 104 1.12×105 11.47 2.92 1.14
rsstd 104 3.55×104 1.52 4.61 0.63
ips2ra 104 2.88×105 34.35 2.55 1.24
ips4o 104 3.34×104 1.27 5.50 0.57
bramas 104 4.89×105 60.48 2.46 1.26
cxxstd 104 3.11×105 37.25 2.76 1.24

dsc rsavx512 104 1.15×105 12.24 2.22 1.16
rsavx 104 1.10×105 11.25 3.10 1.14
cxxavx 104 1.03×105 10.23 3.19 1.12
rsstd 104 4.31×104 2.59 3.86 0.80
ips2ra 104 2.92×105 35.08 2.49 1.24
ips4o 104 4.33×104 2.58 3.88 0.80
bramas 104 2.35×105 27.53 2.15 1.23
cxxstd 104 2.46×105 28.82 2.76 1.23

uni rsavx512 104 1.17×105 12.34 2.22 1.16
rsavx 104 1.12×105 11.57 3.05 1.14
cxxavx 104 1.05×105 10.54 3.14 1.12
rsstd 104 7.00×105 87.74 1.78 1.27
ips2ra 104 6.83×105 85.33 1.19 1.27
ips4o 104 8.43×105 107.67 1.88 1.29
bramas 104 1.27×105 13.63 1.66 1.17

continued on next page

93

𝒟 Sort Samples 𝑟 [ns] CPE IPC GHz

cxxstd 104 9.34×105 182.59 0.63 1.97

u16 rsavx512 104 1.16×105 12.20 2.21 1.16
rsavx 104 5.79×104 4.51 3.26 0.96
cxxavx 104 5.35×104 3.94 3.33 0.92
rsstd 104 1.25×105 13.19 3.53 1.16
ips2ra 104 1.35×105 14.46 3.30 1.17
ips4o 104 1.87×105 20.60 3.35 1.16
bramas 104 8.62×105 164.63 2.54 1.93
cxxstd 104 6.62×105 82.77 1.14 1.27

pip rsavx512 104 1.14×105 12.09 2.21 1.16
rsavx 104 1.11×105 11.43 3.08 1.14
cxxavx 104 1.04×105 10.52 3.16 1.12
rsstd 104 5.85×105 72.54 1.99 1.27
ips2ra 104 3.28×105 39.49 1.85 1.25
ips4o 104 7.28×105 92.18 2.24 1.29
bramas 104 2.81×105 33.49 1.96 1.24
cxxstd 104 1.11×106 217.86 1.52 1.98

gau rsavx512 104 1.17×105 12.37 2.20 1.16
rsavx 104 1.15×105 11.89 3.02 1.14
cxxavx 104 1.07×105 10.74 3.12 1.12
rsstd 104 3.97×105 48.31 2.21 1.25
ips2ra 104 2.19×105 25.53 2.52 1.23
ips4o 104 3.40×105 40.89 2.55 1.25
bramas 104 1.19×105 12.46 1.70 1.15
cxxstd 104 1.03×106 150.46 0.64 1.48

alm rsavx512 104 1.15×105 12.09 2.25 1.16
rsavx 104 1.16×105 11.94 2.90 1.14
cxxavx 104 1.12×105 11.48 2.91 1.14
rsstd 104 5.43×104 3.91 4.03 0.91
ips2ra 104 2.91×105 34.67 2.53 1.24
ips4o 104 4.57×105 57.34 2.50 1.29
bramas 104 4.89×105 60.47 2.46 1.26
cxxstd 104 3.10×105 37.15 2.77 1.24

pfr rsavx512 104 1.16×105 12.18 2.25 1.16
rsavx 104 1.15×105 11.93 3.00 1.15

continued on next page

94

𝒟 Sort Samples 𝑟 [ns] CPE IPC GHz

cxxavx 104 1.03×105 10.23 3.20 1.12
rsstd 104 5.21×104 3.55 4.23 0.86
ips2ra 104 2.88×105 34.48 2.54 1.24
ips4o 104 4.75×105 59.10 2.42 1.27
bramas 104 1.11×106 218.40 2.49 1.98
cxxstd 104 1.27×106 249.31 1.79 1.98

pmi rsavx512 104 1.17×105 12.28 2.26 1.16
rsavx 104 1.17×105 12.05 2.90 1.14
cxxavx 104 1.13×105 11.52 2.91 1.14
rsstd 104 4.34×104 2.53 4.35 0.79
ips2ra 104 2.90×105 34.60 2.53 1.24
ips4o 104 4.80×105 59.19 2.54 1.26
bramas 104 6.73×105 84.67 2.53 1.28
cxxstd 104 1.10×106 142.45 1.87 1.31

equ rsavx512 105 9.25×104 1.74 2.31 2.02
rsavx 105 9.07×104 0.86 3.56 1.09
cxxavx 105 8.13×104 0.75 3.70 1.07
rsstd 105 1.41×105 1.50 4.65 1.17
ips2ra 105 2.60×105 3.08 3.91 1.24
ips4o 105 1.22×105 1.26 5.54 1.15
bramas 105 1.03×109 40 998.75 1.83 3.97
cxxstd 105 1.36×106 40.31 2.80 2.98

asc rsavx512 105 9.75×105 18.20 2.24 1.88
rsavx 105 7.53×105 14.71 3.10 1.98
cxxavx 105 9.28×105 13.20 3.22 1.44
rsstd 105 1.40×105 1.50 4.66 1.17
ips2ra 105 1.35×106 36.20 2.93 2.69
ips4o 105 1.23×105 1.29 5.41 1.15
bramas 105 1.33×107 527.13 2.23 3.98
cxxstd 105 1.20×106 41.30 3.03 3.47

dsc rsavx512 105 1.15×106 18.10 2.24 1.59
rsavx 105 1.08×106 14.75 3.08 1.38
cxxavx 105 6.99×105 13.60 3.12 1.97
rsstd 105 2.22×105 2.57 3.89 1.22
ips2ra 105 1.33×106 39.43 2.88 2.98

continued on next page

95

𝒟 Sort Samples 𝑟 [ns] CPE IPC GHz

ips4o 105 2.21×105 2.56 3.91 1.22
bramas 105 1.31×106 43.85 2.15 3.37
cxxstd 105 1.09×106 32.34 2.93 2.97

uni rsavx512 105 1.17×106 18.42 2.19 1.59
rsavx 105 8.67×105 15.24 2.98 1.78
cxxavx 105 7.11×105 13.84 3.06 1.97
rsstd 105 2.19×106 99.40 1.93 4.55
ips2ra 105 1.98×106 88.30 0.94 4.46
ips4o 105 2.57×106 113.03 1.97 4.41
bramas 105 9.69×105 19.81 1.39 2.06
cxxstd 105 4.89×106 223.97 0.61 4.58

u16 rsavx512 105 5.14×105 7.85 2.22 1.55
rsavx 105 3.44×105 4.15 3.26 1.25
cxxavx 105 3.00×105 3.58 3.49 1.24
rsstd 105 1.02×106 20.16 2.24 1.99
ips2ra 105 7.95×105 13.16 3.39 1.67
ips4o 105 9.61×105 18.85 3.57 1.98
bramas 105 4.67×107 1851.87 2.55 3.96
cxxstd 105 2.07×106 94.44 1.21 4.57

pip rsavx512 105 9.22×105 18.11 2.22 1.98
rsavx 105 7.73×105 15.02 3.03 1.96
cxxavx 105 8.77×105 13.67 3.10 1.58
rsstd 105 1.95×106 85.40 2.04 4.38
ips2ra 105 1.21×106 35.77 1.93 2.96
ips4o 105 2.28×106 101.48 2.20 4.47
bramas 105 1.44×106 55.04 2.00 3.83
cxxstd 105 6.21×106 283.93 1.66 4.58

gau rsavx512 105 9.38×105 18.43 2.20 1.98
rsavx 105 7.70×105 11.41 3.00 1.50
cxxavx 105 7.92×105 9.97 3.08 1.28
rsstd 105 1.49×106 35.32 2.63 2.38
ips2ra 105 1.00×106 19.58 2.86 1.97
ips4o 105 1.26×106 31.91 3.08 2.54
bramas 105 1.69×106 50.34 2.16 2.99
cxxstd 105 3.34×106 149.60 0.79 4.48

continued on next page

96

𝒟 Sort Samples 𝑟 [ns] CPE IPC GHz

alm rsavx512 105 9.26×105 18.21 2.23 1.98
rsavx 105 7.59×105 14.71 3.10 1.96
cxxavx 105 1.04×106 13.21 3.21 1.28
rsstd 105 3.74×105 4.57 4.01 1.26
ips2ra 105 1.24×106 36.27 2.93 2.96
ips4o 105 1.64×106 72.58 2.42 4.45
bramas 105 1.33×107 528.12 2.23 3.96
cxxstd 105 1.35×106 41.31 3.03 3.08

pfr rsavx512 105 9.17×105 17.90 2.26 1.97
rsavx 105 7.62×105 14.78 3.07 1.96
cxxavx 105 9.34×105 13.68 3.10 1.48
rsstd 105 2.92×105 3.50 4.28 1.24
ips2ra 105 1.41×106 36.19 2.94 2.58
ips4o 105 1.67×106 72.72 2.43 4.36
bramas 105 6.35×107 2521.26 2.11 3.97
cxxstd 105 5.80×106 264.50 2.04 4.56

pmi rsavx512 105 9.17×105 17.97 2.25 1.98
rsavx 105 7.57×105 14.78 3.08 1.97
cxxavx 105 9.82×105 13.39 3.17 1.38
rsstd 105 2.15×105 2.50 4.39 1.22
ips2ra 105 1.53×106 36.22 2.93 2.38
ips4o 105 1.65×106 73.47 2.48 4.46
bramas 105 2.35×107 934.12 2.15 3.97
cxxstd 105 3.30×106 150.64 2.15 4.58

equ rsavx512 106 4.92×105 1.74 2.31 3.57
rsavx 106 3.23×105 0.90 3.41 2.84
cxxavx 106 3.32×105 0.74 3.74 2.28
rsstd 106 5.16×105 1.51 4.65 2.96
ips2ra 106 7.88×105 3.02 3.97 3.87
ips4o 106 4.79×105 1.38 5.08 2.91
bramas 106 1.06×1011 421 401.51 1.78 3.97
cxxstd 106 1.02×107 46.94 2.86 4.58

asc rsavx512 106 6.15×106 24.40 2.22 3.97
rsavx 106 3.95×106 18.06 3.08 4.57
cxxavx 106 3.59×106 16.37 3.16 4.56

continued on next page

97

𝒟 Sort Samples 𝑟 [ns] CPE IPC GHz

rsstd 106 5.29×105 1.51 4.65 2.91
ips2ra 106 7.58×106 34.74 3.06 4.58
ips4o 106 5.37×105 1.29 5.45 2.42
bramas 106 1.64×109 6515.99 2.04 3.98
cxxstd 106 9.82×106 44.92 3.28 4.58

dsc rsavx512 106 6.13×106 24.37 2.22 3.98
rsavx 106 3.95×106 18.06 3.09 4.58
cxxavx 106 3.60×106 16.44 3.14 4.58
rsstd 106 8.95×105 2.65 3.77 2.98
ips2ra 106 8.44×106 38.65 3.00 4.58
ips4o 106 8.47×105 2.52 3.97 2.99
bramas 106 1.64×107 64.98 2.13 3.97
cxxstd 106 7.60×106 34.50 3.20 4.54

uni rsavx512 106 6.28×106 24.98 2.16 3.98
rsavx 106 4.11×106 18.76 2.97 4.57
cxxavx 106 3.72×106 17.00 3.04 4.58
rsstd 106 2.37×107 108.77 2.04 4.59
ips2ra 106 1.76×107 80.67 1.30 4.58
ips4o 106 2.72×107 124.49 2.12 4.57
bramas 106 6.37×106 25.30 1.37 3.98
cxxstd 106 5.81×107 265.69 0.61 4.57

u16 rsavx512 106 2.02×106 7.99 2.14 3.97
rsavx 106 1.00×106 4.36 3.16 4.37
cxxavx 106 8.28×105 3.63 3.23 4.41
rsstd 106 4.15×106 18.88 2.51 4.55
ips2ra 106 2.85×106 13.02 3.40 4.58
ips4o 106 4.12×106 18.87 3.55 4.58
bramas 106 6.04×109 23 993.92 1.96 3.97
cxxstd 106 2.23×107 102.16 1.36 4.58

pip rsavx512 106 6.17×106 24.56 2.21 3.98
rsavx 106 4.00×106 18.28 3.05 4.58
cxxavx 106 3.63×106 16.56 3.11 4.57
rsstd 106 2.05×107 93.72 2.17 4.58
ips2ra 106 1.02×107 46.70 2.16 4.58
ips4o 106 2.41×107 110.19 2.39 4.57

continued on next page

98

𝒟 Sort Samples 𝑟 [ns] CPE IPC GHz

bramas 106 2.37×107 93.98 1.91 3.97
cxxstd 106 6.79×107 310.40 1.79 4.57

gau rsavx512 106 4.37×106 17.37 2.17 3.98
rsavx 106 2.04×106 9.19 3.12 4.53
cxxavx 106 1.76×106 7.98 3.21 4.55
rsstd 106 7.15×106 32.71 2.78 4.58
ips2ra 106 4.63×106 21.17 2.98 4.58
ips4o 106 5.64×106 25.79 3.31 4.58
bramas 106 2.13×108 846.56 2.52 3.98
cxxstd 106 3.36×107 153.50 0.92 4.57

alm rsavx512 106 6.13×106 24.38 2.22 3.98
rsavx 106 3.94×106 18.03 3.09 4.58
cxxavx 106 3.59×106 16.35 3.16 4.56
rsstd 106 1.61×106 7.32 3.97 4.57
ips2ra 106 7.59×106 34.74 3.06 4.58
ips4o 106 1.69×107 77.46 2.69 4.57
bramas 106 1.64×109 6509.98 2.04 3.98
cxxstd 106 9.82×106 44.98 3.28 4.58

pfr rsavx512 106 6.11×106 24.30 2.22 3.98
rsavx 106 3.94×106 18.01 3.09 4.58
cxxavx 106 3.65×106 16.67 3.10 4.57
rsstd 106 9.91×105 3.54 4.24 3.59
ips2ra 106 7.59×106 34.75 3.06 4.58
ips4o 106 1.70×107 77.60 2.69 4.57
bramas 106 6.98×109 27 717.47 1.91 3.97
cxxstd 106 6.30×107 288.18 2.18 4.57

pmi rsavx512 106 6.12×106 24.36 2.22 3.98
rsavx 106 3.99×106 18.26 3.05 4.58
cxxavx 106 3.62×106 16.50 3.13 4.57
rsstd 106 6.85×105 2.51 4.38 3.70
ips2ra 106 7.59×106 34.77 3.06 4.58
ips4o 106 1.71×107 78.17 2.76 4.58
bramas 106 2.54×109 10 110.17 1.97 3.98
cxxstd 106 3.56×107 163.15 2.33 4.58

99

Selbstständigkeitserklärung

Ich erkläre, dass ich die vorliegende Arbeit selbstständig und nur unter
Verwendung der angegebenen Quellen und Hilfsmittel angefertigt habe.

Seitens des Verfassers bestehen Einwände, die vorliegende Bachelorarbeit für
die öffentliche Benutzung im Universitätsarchiv zur Verfügung zu stellen.

Jena, den 2. August 2021

Frank Thiemicke

	Introduction
	Vectorization on modern hardware
	Vector processing and SIMD
	Vector instructions and intrinsics
	Advances of AVX-512 instructions

	Efficient sorting
	Properties of sorting algorithms
	Sorting networks
	Quicksort and Quickselect
	Relevant hybrid sorting algorithms

	Related work
	Porting AVX2 sort to AVX-512
	Choice of language and tooling
	Pivot calculation and introduction
	Enlargening sorting networks
	Sorting two vectors
	Merging sorted columns

	Updating partitioning
	Assembling Quicksort's recursion

	Experiments and benchmarks
	Benchmarking methodology
	Benchmarks against relevant sorting algorithms
	Assessing the implementation's efficiency

	Conclusion
	Bibliography
	Appendix
	Using the FFI bindings from C++
	Supplementary code examples
	Raw benchmarking results

