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Abstract. For 2 decades, meteor radars have been routinely
used to monitor atmospheric temperature around 90 km al-
titude. A common method, based on a temperature gradient
model, is to use the height dependence of meteor decay time
to obtain a height-averaged temperature in the peak meteor
region. Traditionally this is done by fitting a linear regression
model in the scattered plot of log;((1/7) and height, where t
is the half-amplitude decay time of the received signal. How-
ever, this method was found to be consistently biasing the
slope estimate. The consequence of such a bias is that it pro-
duces a systematic offset in the estimated temperature, thus
requiring calibration with other co-located measurements.
The main reason for such a biasing effect is thought to be
due to the failure of the classical regression model to take
into account the measurement error in v and the observed
height. This is further complicated by the presence of vari-
ous geophysical effects in the data, as well as observational
limitation in the measuring instruments. To incorporate vari-
ous error terms in the statistical model, an appropriate regres-
sion analysis for these data is the errors-in-variables model.
An initial estimate of the slope parameter is obtained by as-
suming symmetric error variances in normalised height and
logy¢(1/7). This solution is found to be a good prior esti-
mate for the core of this bivariate distribution. Further im-
provement is achieved by defining density contours of this bi-
variate distribution and restricting the data selection process
within higher contour levels. With this solution, meteor radar
temperatures can be obtained independently without needing
any external calibration procedure. When compared with co-
located lidar measurements, the systematic offset in the esti-

mated temperature is shown to have reduced to 5 % or better
on average.

1 Introduction and background

As meteoroids enter the Earth’s atmosphere, they produce
ionised trails which can be detected as back-scattered ra-
dio signals by interferometric radars. After the trail has been
formed, the ionisation begins to dissipate by various pro-
cesses, such as ambipolar diffusion, eddy diffusion, or elec-
tron loss due to recombination and attachment depending on
the height of ablation. The rate at which the echo power de-
creases is also determined by the combined effect of electron
line density of the trail, ambient pressure and temperature.

If the electron line density of the trail is less than 2.4 x
10 electrons m~1, the trail is called “underdense”, mean-
ing each electron in the trail scatters independently (e.g.
Bronshten, 1983, p. 356). The decay of underdense trails is
thought to be mainly due to ambipolar diffusion at a height
range of 85-95 km, where the majority of the meteors ablate
(Jones, 1975). In the weak scattering limit the backscattered
amplitude of the radio signal from an underdense trail decays
with time () as

A(t) = A(0)e™ 107" Dat /47 (1)

where A; is the radar wavelength, and D, is the ambipolar
diffusion coefficient (Kaiser, 1953). This coefficient depends
on the ambient pressure (P) and temperature (7") of the neu-
tral gas (Chilson et al., 1996) and can be estimated from the
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half-amplitude decay time (7) as

b g T2 _ 2
a = hamb T = o2

@

Kamb in Eq. (2) is a constant related to the ionic constituent
of the plasma in the trail (Hocking et al., 1997). The pressure
at a given height (h) is

P(h) = P(0)e o B9, 3)

where m is the mass of a typical atmospheric molecule, g is
the acceleration of gravity, k is the Boltzmann constant and
z is an axis along the vertical. Substituting the equation for
pressure in Eq. (2) and differentiating Eq. (4) provides the
height profile of the decay time:

h
m 1
1og10Da(h)=210g10T(h)+1og10e—g/—dz+\1/, @)
k T(2)
0

d 1 dr 1 mg 1
d7110g10 (%> =2logge aHTD +log;ge Tgﬁ, )
where W is a constant. Equation (5) states that the height
profile of decay time is a function of both temperature and
temperature gradient under the assumption of ambipolar dif-
fusion for underdense meteor trails. In practice, most trail
echoes are received at a small altitude range referred to as the
region of peak meteor occurrence (Hocking, 1999). Hence
a height-averaged temperature gradient near the peak height
can be used to estimate the mean temperature (7p) at the peak
height by fitting a linear function (Hocking, 1999). A linear
approximation of Eq. (5) is

dTr m
To=p (2 <3 > +7g)1ogme, 6)
where B is the slope of the scattered plot of log;,(1/7) and
height, and T is the average temperature of the atmosphere
at the height of peak meteor occurrence. A typical scattered
plot of height and log;,(1/7) shows significant variation in
the measured data along both abscissa and ordinate (Fig. 1).
Traditionally, the slope (8) is estimated using the ordinary
least-squares (OLS) method with log;,(1/7) as the indepen-
dent variable. The justification of using log;y(1/7) as an in-
dependent variable is that the measurement errors in t are
smaller than those in heights (Hocking et al., 1997). While
the pulse length and angular resolution, etc. of the radar in-
troduces intrinsic measurement errors in heights, much of the
variation in decay time is due to various geophysical effects
that persist at all altitudes. At higher altitude, the collision
frequency with neutrals is reduced, and the diffusion is inhib-
ited in a direction orthogonal to the geomagnetic field (Jones,
1991; Robson, 2001). This anisotropic diffusion causes an
increase in the duration of meteor radar echoes as compared
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to ambipolar diffusion, whereas at lower altitude, decay time
tends to decrease due to additional effect of electron loss by
recombination and attachment (Younger et al., 2008). In ad-
dition, other geophysical factors, such as meteor fragmen-
tation, turbulence within trail, chemical composition of the
meteors or the temperature variation due to passage of tides
and gravity waves, can contribute to the measurements of de-
cay time and heights at all altitudes (Hocking, 2004).

Temperature estimation from meteor radar (MR) data re-
quires obtaining the best-fit regression line in the scattered
plot of log;y(1/7) and height. However, the pioneer work
done by Hocking (1999) to implement this method using
ordinary least-squares fitting showed a clear systematic off-
set between the MR temperature and co-located lidar mea-
surements, indicating that the estimated slope was not deter-
mined correctly. To correct for this offset, a common practice
is to calibrate the meteor radar temperatures using tempera-
tures from lidar, OH spectrometer, satellite or rocket clima-
tology. Hocking et al. (2001b) provided a statistical compar-
ison technique (SCT) to calibrate the biased slope estimate
as

Bous=(1- ) Pscr )
or
pser=(1-7) Bbus. ®)

where ss and s, are the error variances of the (log of) dif-
fusion coefficient (or decay time) and height respectively, sq
and sy, are data variances of log;((1/7) and of height respec-
tively and ﬂgLS and ,BgLS are slope coefficients when diffu-
sion coefficient or height is treated as an independent variable
respectively in the OLS regression analysis. The calibrated
slope, Bscr, is traditionally obtained by arbitrarily choosing
ss or s that gives the best temperature estimates of MR as
compared to optical or satellite data (e.g. Holdsworth et al.,
2006; Hocking et al., 2007; Kim et al., 2012). A severe short-
coming of such a calibration procedure is that the calibration
factors (ss and s;) in the parentheses of Eq. (7) or Eq. (8) are
dependent on the data selection criteria (e.g. limiting heights,
decay time or zenith angle to a certain range). Moreover, the
outcome of any such calibration routine will depend on the
location of the MR and the choice of the calibration instru-
ment. From a pure statistical context, the arbitrary choice of
calibration parameters makes the estimated temperature also
an arbitrary quantity, thereby making it impossible to draw
any reasonable statistical inferences.

In practice, the ordinary least-squares method will not be
valid for MR data since neither the height nor the decay time
can be predetermined as an independent variable, and both
variables are subject to intrinsic measurement errors and var-
ious geophysical effects. The reasons for such a bias, and
thus the need for calibration, are discussed on theoretical and
experimental grounds in Sect. 3.1. In addition, a statistical
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Figure 1. (a) Typical scatter plot of logy(1/7) and height. The lines correspond to best-fit models using different regression methods
described in the text. The green and blue line corresponds to the ordinary least-squares method (OLS), with log;(1/7) and height as
independent variables respectively. The red line corresponds to the geometric mean (GM) of ﬂgLS and 'BgLS' (b) The bivariate distribution
of the data. The measured height and log;((1/7) are converted to dimension-free coordinates using Eq. (18). The relative density contours
are obtained by counting the number of detections in a circle of unit area relative to the detection density at the height of peak meteor

occurrences at the centre.

procedure to estimate ss and s, using SCT calibration is for-
mulated and presented in Sect. 3.1. An alternative method
that includes measurement errors in the regression model is
introduced in Sect. 3.2. This analysis does not require an ab-
solute knowledge of s5 or s, but only the relative value is
needed. As an alternative to SCT calibration, in Sect. 4, an
independent slope estimation is obtained using the errors-in-
variables model. A comparison study of the estimated MR
temperatures with co-located lidar temperatures is discussed
to validate the method.

2 Instrumentation and data

The All-Sky Interferometric Meteor Radar (SKiYMET)
at Sodankyld Geophysical Observatory (SGO; 67°22'N,
26°38'E; Finland) has been routinely monitoring daily
meteor-height averaged temperatures and wind velocity since
December 2008 (Kozlovsky et al., 2016). The radar oper-
ates at a transmission power of 15kW and frequency of
36.9MHz, with a transmitting antenna which has a broad
radiation pattern designed to illuminate a large expanse of
the sky. The meteor trails are detected within a circle of
300 km diameter around SGO. The phase differences in the
five-antennae receiving array allow for the determination of
the azimuth, elevation, range, and line-of-sight Doppler ve-
locity of the meteor trails. The 2144 Hz pulse repetition fre-
quency of MR transmission introduces a range ambiguity of
70km, and the built-in analysis software therefore assumes
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meteor trails are within the height of 70 to 110 km for unam-
biguous detections. Uncertainty in the height is +1km (or
better for large zenith angle), which is determined by the
2 km range resolution. In addition, the half-time (7) of the
received signal is calculated from the width of the autocorre-
lation function. A detailed description of the algorithm of the
SKiYMET signal processing software is outlined in Hocking
et al. (2001a).

SGO is located at the corrected geomagnetic latitude of
64.1°, which is statistically a region of the auroral oval.
Hence the radar frequently detects non-meteor targets during
substorms associated with ionospheric plasma waves gener-
ated due to Farley—Buneman instability (Kelley, 2009). The
Doppler velocity of such echoes can be more than a few
hundreds of metres per second, which are mostly detected
at low elevation (Lukianova et al., 2018). For the Sodankyla
radar, Kozlovsky and Lester (2015) identified ground echoes
modulated by the ionosphere during pulsating auroras. These
targets have near-zero Doppler velocities and are also ob-
served at low elevation. Furthermore, the SKiYMET system
detects both underdense and overdense echoes as valid mete-
ors. However, more than 95 % of detections are underdense
(Hocking et al., 2001b). The percentage of overdense trails
may be larger during some meteor trails such as Geminids
or Quadrantids, and this leads to underestimation of temper-
atures (Kozlovsky et al., 2016). This artefact in temperature
was found to be reduced for Sodankyli radar for a zenith an-
gle of less than 50°. The initial data selection criteria is kept
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to a bare minimum, such that all heights and decay times are
included, as long as they are unambiguous detections above a
40° elevation angle with Doppler radial velocity in the range
+100ms~!. Subsequently, to improve the temperature esti-
mation, we used a contour selection process; i.e. the data out-
side a certain contour in the normalised height-log;o(1/7)
distribution were rejected (Fig. 1b).

For temperature estimation we considered daily data for
a 6-month period from October 2015 to March 2016 since
simultaneous lidar measurements were available during this
time. The Compact Rayleigh Autonomous Lidar (CORAL)
provided vertical profiles of the atmospheric temperature at
27-98km over Sodankyld as part of the GW-LCYCLE-II
(Gravity Wave Life Cycle Experiment) campaign in winter
2015/2016 (Reichert et al., 2019). The median number of
daily meteor detections in this data set is 1652, with a mini-
mum of 410 meteor detections on 4 October 2015 and a max-
imum of 3456 detections during the Geminids meteor shower
on 14 December 2015.

The Mass Spectrometer—Incoherent Scatter or MSIS90
(Hedin, 1991) model temperatures are used to generate a
temperature gradient model near the peak heights. Model
temperatures are computed for each date at intervals of 6h
between 85 and 95 km. A third-degree polynomial fit is car-
ried out to obtain the height profiles at 06:00, 12:00, 18:00
and 24:00 UT. For each time interval, the gradient at the re-
spective meteor peak height, as well as at 1 km above and
below the peak height, is estimated. These 12 values are then
used to obtain the mean and standard deviation of the tem-
perature gradient for each day near the peak height, which
varies in the range 89 &+ 1 km. The daily meteor detections,
the peak heights and the corresponding temperature gradient
model values are shown in Fig. 2. The standard deviation of
the MSIS model values corresponds to roughly of the order
of 0.7Kkm™".

Our reasons for choosing the MSIS temperature gradient
are twofold. Firstly, MSIS data are easily accessible from the
online version, which guarantees reproducibility of this work
independent of location. Secondly, even if the temperature
gradient term in Eq. (6) is ignored, the resulting offset in the
estimated temperature is on average 10 % (Hocking, 1999) or
less. Hence an approximate estimate is sufficient for the main
objective of this paper. However, the actual temperature gra-
dient in the atmosphere may be slightly different from these
model values, which can contribute to the biasing effect in
the estimated temperatures. Any such possibility and its ef-
fect on the estimated temperatures is addressed in the subse-
quent section.
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3 Method: regression analysis

3.1 Estimation of error variances in decay time and
height

In the following text we use the notation and formulation
in Gillard and Iles (2005). The observables, log;(1/7) and
height, are represented as d; and h; respectively and the cor-
responding unobserved true values as &; and n; respectively,
where the index i represents the ith meteor detection. For
consistency we also assume that log;y(1/7) is presented in
abscissa, and height is in the ordinate in the respective scat-
tered plot (as shown in Fig. 1). Suppose we are assuming a
linear relation in variables &; and »; as

ni=a+p&, i=12..,N. €))

Due to measurement errors and various geophysical pro-
cesses, the true values & and n; will be subject to random
errors, and hence the observable d; and /; will have scatter
around the linear model in Eq. (9):

di=§ +3; (10)
and
hi=ni+e=a+p &+, (1D

where §; and ¢; are errors in the measured log;y(1/7) and
height respectively and are assumed to be mutually uncor-
related, have zero mean and be independent of the suffix i.
This implies that the measurement error variances, ss and s,
are constant with respect to the suffix i. Classical regression
analysis or ordinary least-squares (OLS) treats d; as an in-
dependent variable without intrinsic errors (or, d; = &;) and
then minimises the sum of squared residuals along the or-
dinate. The slope from the OLS method can be represented
in terms of the covariance (Cov) and variance (Var) as (e.g.
Smith, 2009; Keles, 2018)
COV(d,',hl') . \/ﬁ

d _ )
ﬂOLS_—Var(di) =r NG (12)

where ,BgLS is the OLS slope estimated by considering
log;y(1/7) as an independent variable, and r is the Pear-
son product-moment correlation coefficient between d and
h. Likewise, by reversing the arguments above, it is trivial to
show that the reciprocal value of the OLS slope estimate with
height as an independent variable is (e.g. Smith, 2009)

N Var(h;) 1 /sn
Bos==———— =- “—. (13)
COV(di s hi) r ﬂ
To see the effect of errors in the independent variable on the
OLS slope estimate, e.g. for ﬂgLS’ Egs. (10) and (11) are used
in Eq. (12):
Cov(& +8i,a+B & +e;)

d _
Pous = Var(§; + 6;) ' (9
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Figure 2. (a) Temperature gradient model derived from MSIS90. (b) Peak meteor heights for the data used in this work and (c) the daily
meteor detection for zenith angle less than 50° and velocity in the range 100 m s—L.

Since §;, €; and &; are mutually independent, Eq. (14) sim-
plifies to

¢ _ BCov(.&) 1 _
PoLs = Narte o) 11w P =6 4>

where ¢ is known as the attenuation or regression dilu-
tion bias. Since variances are always positive by definition,
Eq. (15) shows that in the presence of measurement error
in the so-called independent variable (in abscissa), the OLS
slope estimate (,BSLS) will always be smaller than the un-
biased slope B. Likewise, ﬁgLS is greater than g if there is
error in the measured height (specific example presented in
Fig. 1a). By substituting d; = &; + 4;, Eq. (15) can be rear-
ranged as

(16)

a _Var(8,~)
P OLS_<1 Var(d») '

Equation (16) is a well known identity in statistical literature
(e.g. Carroll and Ruppert, 1996; Frost and Thompson, 2000),
that was re-derived by Hocking et al. (2001b) in Eq. (7) in the
context of SCT correction. Equation (16) reveals that an ab-
solute knowledge of error variances, s5 (or s¢), is required to
obtain the bias-corrected slope (8) if we choose OLS fitting
for the slope estimate. A common practice is to calibrate the
biased slope with optical or satellite data by arbitrarily choos-
ing a value of s or s, (e.g. Holdsworth et al., 2006; Hocking
et al., 2007; Kim et al., 2012). In the remaining part of this
section, we demonstrate how to obtain an average value of
the error variances in these data following a revised calibra-
tion procedure.

For each 24 h of the data set, we performed two OLS fit-
tings to estimate ﬁgLS and ﬁgLS by using Egs. (12) and (13).
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The corresponding biased temperatures, Tlis and TK}IR re-
spectively, are estimated using Eq. (6). Experimental values
of the parameters ss and s; can be obtained by comparing
these estimated biased temperatures with the co-located lidar
temperatures (7jiqar) as the reference values. Using Eqgs. (7)
and (8), and noting that the slope is proportional to the esti-
mated temperatures from Eq. (6), we obtain

Tiidar — T e — Tii
55 A (M) sq and sp ~ (MRTW) she (17)
Tlidar TMR

where T3z and T}, are MR temperatures estimated using
OLS fitting with log;y(1/7) and height as an independent
variable respectively. Furthermore, if the measurements are
normalised with the mean and standard deviation (SD) as

& = ; —mean(d;) and By — ; — mean( 1)7 (18)
NG NG

then Var(d;") = Var(h;") =1, and the OLS estimate of the
ratio of the measurement error variance is (from Egs. 17
and 18)

oLs _ S¢ __ Tl\}/l[R — TNidar  Tidar
)‘eff = .

, (19)
S Tiidar — TlSIR T]\l/l[R

where the error variances, s,/ and sy, are in the dimension-
free system defined by Eq. (18). In essence, kg]f“s is a mea-
sure of all sources of errors in the normalised heights and
decay times that cause the real data to deviate from the ide-
alised physical model of Eq. (6), thereby producing a typical
scatter as seen in Fig. 1.

)\gv]f“s, ss and s, were estimated by Eqgs. (17) and (19) us-
ing 24 h of MR data and co-located lidar temperatures at 88,

Atmos. Meas. Tech., 14, 4157-4169, 2021
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Figure 3. (a) Temperature estimated in OLS method using logy(1/7) (green) and height (blue) as an independent variable. Also shown are
(red) the temperatures obtained using the geometric mean (GM) fitting and the lidar temperatures (in black). (b) The offset between the lidar
(Tiidar) temperatures and the estimated MR temperatures (TR ) using OLS fitting and GM fitting (without contour selection).

89 and 90 km for the dates for which lidar data were avail-
able. The biasing effect on the OLS estimate of MR tem-
peratures with log;,(1/7) and height as an independent vari-
able respectively are presented in Fig. 3 (green and blue lines
and histogram). As expected from Eq. (7) or Eq. (8), a mean
offset of —75 and +335K occurs depending on whether
log;((1/7) or height respectively is considered as an inde-
pendent variable. In practice, the magnitude of these biases
is related to the total errors in heights and log;,(1/7) from
Eq. (17), which was not taken into account by the OLS re-
gression model in Egs. (12) and (13). Furthermore, the rel-
ative density contour lines for each data point is obtained
by counting the number of detections in a circle of unit
area in the normalised height-log;,(1/7) plane relative to
the number of detections in unit area at the peak meteor re-
gion (Fig. 1b). In addition, all the error estimates from the
SCT method are obtained at contour levels 0, 0.2 and 0.4,
and the results are presented in Table 1. Several key features
of these data are reflected in Table 1. Despite the data trans-
formation via Eq. (18), the average error variances for the
height data are more than those for the log;y(1/7) data in
these coordinates. This asymmetry in the error variances im-
plies that the bivariate distribution is slightly skewed away
from a perfectly normal distribution along the y direction.
However, this effect of asymmetric error variances is less
pronounced near the core of this distribution. This implies
that the parameter )\gc]f“s is closer to 1 near the core of this
distribution and further away from 1 near the tail of the dis-
tribution. The data near the outer contour area are subject to
larger parameter estimation error due to observational limita-
tion. For example, the zenith-angle-dependent error in height

Atmos. Meas. Tech., 14, 4157-4169, 2021

can easily skew the distribution in this direction. On the other
hand, natural geophysical variability in these data contributes
significantly at all altitudes. As seen in Table 1, the aver-
age error in height for contour levels 0, 0.2 and 0.4 are 5.0,
3.0 and 2.2 km respectively. This error is significantly higher
than what is expected from purely parameter estimation er-
ror (for zenith angle less than 50°, the error in height is 1 km
or less), indicating that geophysical variability dominates the
total error variance in these data at all altitudes. The aver-
age error variances estimated at the contour level 0.2 (Ta-
ble 1) correlate very well with the values reported in Hock-
ing (2004) and Holdsworth et al. (2006). Hocking (2004) es-
timated A(height) = 3.25 km using a numerical model for a
pulse length equivalent to 2km and a meteor at an altitude
of 90km and zenith angle 50°. Likewise, their estimation
of Alog;y(1/7) =0.14 was based on simulation studies for
meteors below 95 km and confirmed that “decay times’ vari-
ability” arise due to 27 % variability in K,mp and 8 % vari-
ability in temperatures over the meteor region. The argument
for choosing 95km as the maximum height is that above
this altitude, meteor decay rates are substantially affected by
processes other than ambipolar diffusion. Holdsworth et al.
(2006, p. 5) applied similar data rejection criteria and found
out that Alog;y(1/7) = 0.14 is required to calibrate the slope
if log;((1/7) is used as an independent variable in the OLS
regression model. Likewise, Thorsen et al. (1997) performed
the comparison between the parameter estimation error and
the geophysical variability for estimating the mean wind field
in the middle atmosphere and found that the geophysical
variability dominated at all heights.

https://doi.org/10.5194/amt-14-4157-2021
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Table 1. The average value of the (square root of) error variances in
height and log((1/7); s, and 55 are given along with the average
value of A from SCT calibration ()Leof%s) at contour levels 0, 0.2 and
0.4 for winter 2015-2016.

Contour: 0 0.2 0.4

/5e/km 50 30 22
Jss/sTh 018 0.4 0.11
<S5y > 062 044 038
<sy > 037 031 030

OLS
<20 > 168 143 1.25

It is worth noting that instead of directly using the indi-
vidual observation between biased MR temperatures and li-
dar measurements from Eq. (17), we have used the statistical
mean of differences for calibration. This is because lidar data
are not available for all days during the 6 months of data used
in this work. Moreover, both MR and lidar data have their
own intrinsic errors and technical differences in the observa-
tion time and volume of sky. MR temperatures are daily aver-
ages over 24 h of observation, whereas lidar data are just the
nightly mean profile. The lidar probes a small volume limited
to the diameter of the lidar beam, while the radar illuminates
a large part of the sky. For a single observation, the lidar may
see the phase structure of large-scale gravity waves, while
the MR averages over the gravity wave structure due to dif-
ferent spatial resolutions. As a result, the radar averages over
gravity waves with horizontal wavelengths smaller than few
hundred kilometres. On the other hand, the lidar may resolve
these gravity waves if the runtime is shorter than the period
of these waves. As gravity wave amplitudes can be up to 10—
15K at these altitudes (Reichert et al., 2019), we cannot ex-
pect perfect agreement between radar and lidar temperature
due to geophysical variation which shows up differently in
the two data sets as a result of the different observational
volumes.

While such calibration routine may prevent large offsets in
the estimated temperatures, the day-to-day variation in these
error variances due to natural geophysical processes will per-
sistently introduce artefacts in the estimated temperatures.
Moreover, due to the continually changing atmospheric dy-
namic, these calibration parameters need to be updated at
time intervals. This in turn requires availability of optical
or satellite data throughout the year for the given location.
In all generality, it is desirable to avoid any kind of calibra-
tion process and instead formulate an independent estimate
of temperatures using MR data alone. As an alternative to
the OLS method, errors-in-variables (EIV) regression analy-
sis provides a way to incorporate the error variances in both
height and log;(1/7) data, thereby reducing the biasing ef-
fect in the estimated slope parameter.
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3.2 Errors-in-variables (EIV) model: GM solution
For fitting a straight line model, such as
y(x) =a+ bx 20)

to a set of N data points (x;, y;) measured with errors, the
corresponding y 2 merit function is (Press et al., 1992, p. 660)

N 2
2 (yi —a —bx;)
X'=) —S———, (21)
; Gyzi +b%0y,

where oy; and o,; are the standard deviation of the ith data
point, and the weighted sum in the denominator of Eq. (21)
can be interpreted as the weighted error of the ith data point.
The regression coefficients, @ and b, can be found by min-
imising the merit function with respect to these coefficients
following any suitable numerical root-finding routine. How-
ever, under the assumption of symmetric error variances, it
is possible to derive an analytic solution for the regression
coefficients. This solution, when the data are appropriately
normalised, leads to a slope estimate which is both scale-
invariant and symmetric with respect to the data.

Application of Eq. (21) to physics data requires that all
measured variables are dimensionally consistent so that x>
is dimension-free. Moreover, the analysis in this section re-
quires that the measurements are presented in an appropriate
dimension-free system. This facilitates the direct comparison
between different parameters, such as the measured variables
or the associated error variances. By applying the coordinate
transformation introduced in Egs. (18) to (9), we therefore
intend to solve the simplified bivariate linear system of equa-
tions,

Ve
NG

where n;’, &’ and Bw are dimension-free. For the specific
choice of normalisation by Eq. (18), the intercept (cw) is
always zero in the transformed coordinate system. The merit
function in Eq. (21) can be further simplified by invoking
a homoscedastic standard weighting model (Macdonald and
Thompson, 1992). This error model assumes that the error
variances are independent of data point, thereby simplifying
the merit function as (Macdonald and Thompson, 1992; Lolli
and Gasperini, 2012)

ni'=p &' =Bw &, (22)

N h‘/ _IB d_/)2
2 7 —0) = ( i Wdi
X (Bw,aw = 0) ;21 T OB T

(23)
where sy and s, are constant error variances of the mea-
sured log;,(1/7) and heights respectively in the normalised
(or, dimension-free) coordinate system, and A is the ratio

e/

A== (24)
AN Y
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The x2 minimisation of Eq. (23) with respect to Bw leads to
the analytic expression (Carroll and Ruppert, 1996; Smith,
2009; Lolli and Gasperini, 2012) for the EIV slope parameter
in terms of the variances (sg, sy) and covariances (sygq’) of
the measured variables,

Sy — ASq + \/ (Spy — Asq)? + 4ks§, @

= 25
Bw T (25)

or

1=+ /(=12 +4rs, ]
. (26)

2sh/d/

Bw

since sq = sy = 1 from Eq. (18). And the covariance (syq)
is computed using the standard definition,

1 N
Sh'd = N ;(hi/di/), for large N. (27)

Equation (26) can be solved if a prior knowledge of X is avail-
able, which in turn requires a precise estimate of all sources
of errors in the measured data. In the more practical case for
unknown A, we need to initiate a good starting estimate. Us-
ing the calibration procedure described by Egs. (17) and (18),
the mean values of s,/ and s are found to be 0.62+0.04 and
0.37 £0.06 respectively (without any contour selection: Ta-
ble 1). Since the EIV estimate of the slope requires only the
ratio between s,/ and sg/, a good choice of this starting value
is A = 1. Furthermore, for A = s, = sy = 1, there is a sim-
ple geometric interpretation of the merit function in Eq. (23).
This solution corresponds to minimising the Euclidean or or-
thogonal distance between the fitted line and the measured
data. The residual function to be minimised with respect to
the regression coefficients is

N / 2 / 2

5 (hi" — Bwd;") (hi" —d;")

oy WY LAYy
iz +Bw i=1 2

since Bw = 1 when A = 1 from Eq. (26). Following Eq. (22),

we therefore have our first estimate of B in the scattered plot

of log;((1/7) and heights,

p=21 (29)

Equation (29) is commonly referred to as a reduced major
axis (RMA) solution in statistics literature (Smith, 2009). In
practice, this is just the geometric mean (GM) of the two
OLS estimates, ﬂgLs and /3(h)Ls’ as can be seen by combining
Egs. (12) and (13):

Bam =/ Bops BoLs = %' (30)

The GM solution in Eq. (30) has the unique feature that this
is the only case of EIV estimate which is both scale-invariant
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and symmetric in the variables (e.g. Ricker, 1984; Smith,
2009). While these properties do not necessarily imply that
the GM solution is the correct solution (discussed below),
this first estimate reflects the nature of the biasing effect in
the estimated slope in relation to the data selection process.
A specific example of GM fitting is presented in Fig. 1a. The
standard error in the OLS and GM slope estimate reported in
Fig. 1a is from Vicente de Julidn-Ortiz et al. (2010). Due to
the relatively low detections with Sodankyld radar (Fig. 2¢),
the 20 error in the estimated temperature using the GM so-
lution is found to be significantly higher (13 K on average at
contour level 0). This 13 K of noise level in the temperature
can be reduced by a factor of +/3 or +/5 if a 3 or 5d running
mean of temperature is estimated with this radar. However,
to test the robustness of the proposed method, this paper has
estimated the daily averaged temperatures.

The systematic offset between MR temperature and co-
located lidar temperature as a result of using Eq. (30) is re-
flected in Fig. 3a (red curve) and b (red histogram). Each
of these temperatures are then compared with lidar temper-
atures at 88, 89 and 90 km for the dates when lidar data are
available. The intrinsic noise in the lidar temperature is about
5-10K (Reichert et al., 2019), which implies no temperature
gradient is observed between 88 and 91 km in these data. Fig-
ure 3b (red histogram) reveals that the MR temperatures are
overestimated by a mean value of +-58 K for the case of the
GM solution.

When compared to the temperature gradient model de-
rived from optical, satellite and rocket climatology (e.g.
Holdsworth et al., 2006), it can be easily argued that our
MSIS-derived gradient model (Fig. 2a) is more negative than
expected. If these values are shifted by a constant positive
offset of +1 Kkm ™1, the absolute value of the estimated tem-
peratures will increase by 10 K (Singer et al., 2004). This will
further increase the offset between lidar and MR tempera-
ture, thereby shifting the histogram (in red) in Fig. 3b further
to the right.

On the other hand, lidar temperatures are usually obtained
during the night-time, which can lead to a systematic offset
due to day—night differences or tidal variations. As discussed
by Hocking et al. (2004), the day—night temperature differ-
ence at these altitudes is of the order of 3—4 K. This is sig-
nificantly less than the standard errors in these temperatures,
which is on average 6 K at contour level 0. Hence we ex-
pect the day—night difference in Sodankyld MR temperatures
to be insignificant during the winter period. Moreover, any
attempt to estimate MR temperatures using only night-time
data has the adverse effect of reducing the accuracy in the
estimated temperatures due to data loss. While no specific
studies of tidal variation have been made for this location,
the data from other sites (e.g. Hocking and Hocking, 2002;
Stober et al., 2008) show that the temperature variation due to
tidal activity is typically less than 10 K. We can therefore rule
out the possibility of an offset in the MSIS gradient model or
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tidal effects as the primary cause for the +58 K offset seen in
Fig. 3b (red histogram).

Ricker (1984) emphasised that the biasing in GM solution
is conditional upon the value of the correlation coefficient
(r) between the variables, while Kimura (1992) demonstrated
that this solution will be an overestimate in the case of low
r values. For the data set used in this work, we found that
the correlation between log;o(1/7) and height is typically
0.50+0.05, thereby indicating the presence of significant nat-
ural variation in the measurements. Furthermore, Jolicoeur
(1990) used error modelling to conclude that » must be more
than 0.6 for the GM solution to be acceptable. In fact, we
have observed that if we restrict our data selection process by
excluding all data beyond the density contour 0.2 (Fig. 1b),
this increases the r to be typically around 0.66 + 0.06, with
the consequence of reduced biasing in the GM solution. Such
a contour selection process essentially removes the erroneous
data at higher and lower altitudes from the tail of the distri-
bution, whereby the assumption of equal error variances (i.e.
Sgr A2 §g7) s achieved in the normalised coordinates (Table 1).
In other words, the validity of GM solution is conditional
upon how close the parameter A is to 1 for a given data selec-
tion process.

4 Results and discussion

The convergence of A towards 1 near the core of this bivari-
ate distribution is evident from Table 1. This is demonstrated
in Fig. 4a, where we have estimated the GM slope at vari-
ous contour levels between 0 and 0.7. In addition, Fig. 4b
reflects the asymptotic behaviour of GM solution at higher
contour levels in normalised coordinates. For these data, be-
yond the contour level 0.4, any change in slope at higher con-
tour level is within the 2o error limit. This error in the slope
corresponds to an average 20 error of 11 K in the estimated
temperatures at contour level 0.4. In addition, the estimated
temperatures can be biased due to small variation of A from
1 on a day-by-day basis. For example, If the true value of
A is 1.25, the GM slope will be overestimated by 4 % (from
Eq. 26 for the date 14 November 2015). For a typical win-
ter temperature of 200 K at 90km, a 4 % offset translates to
overestimation of temperatures by 8 K. In principle, this bias
can be further reduced by selecting a higher contour level
than 0.4, with the consequence of increased noise level in the
estimated temperatures. For these data, the contour level 0.4
is found to provide an optimum condition such that a maxi-
mum of 25 % uncertainty in the parameter A leads to 4 % bias
in temperature, which, in turn, is comparable to the standard
error in the temperature from regression analysis.

We have applied the GM slope estimate at contour level
0.4 to the MR data from the period October 2015 to March
2016. This is presented in Fig. 5, along with the data from
co-located lidar observations. The differences between MR
temperatures and lidar are shown in Fig. 6a for altitudes near

https://doi.org/10.5194/amt-14-4157-2021

4165

peak meteor counts. The mean difference between lidar and
MR temperatures is +12 K, which is expected due to the vari-
ation in the true value of A from 1. The root-mean-square
(rms) difference is about 21 K. This difference is partly due
the intrinsic errors of 5-10 K in lidar temperature and partly
due to the statistical noise in the estimated MR temperatures.

For direct comparison with the results above, we have also
estimated the MR temperatures using the revised SCT cali-
bration procedure described in Sect. 3.1. For this we have es-
timated the OLS slope (ﬁgLS) and used ,/ss = 0.11 (Table 1)
to obtain the calibrated temperatures from Eqs. (16) and (6).
These calibrated temperatures are presented in Fig. 5. The
histogram in Fig. 6b shows the differences between lidar data
and the SCT-calibrated MR temperatures. The mean differ-
ence between the MR and lidar temperatures is again about
—3 K, thereby showing that the biasing effect has been prop-
erly corrected by this calibration procedure. The rms differ-
ence is 15 K. Although the temperature estimated from the
GM solution is slightly biased as compared to that estimated
using SCT calibration, the presence of artefacts in the latter
is clearly visible in Fig. 5. As evident from Fig. 7, the GM so-
lution based on contour selection improves the temperature
estimation significantly as compared to the traditional use of
the OLS regression analysis.

The EIV analysis does not distinguish between the mea-
surement error and natural geophysical variability (e.g.
Sprent, 1990, p. 13). In other words, the error variances, sg
and s/, consist of both measurement errors and the natu-
ral geophysical variation. The effective value of A in a nor-
malised coordinate may vary on a day-by-day basis and may
be radar-dependent. For example, meteor trails can get mod-
ified by wind effects, ion composition, meteor fragmentation
and strong ionospheric currents, as well as temperature and
pressure fluctuations, on various spatial and temporal scales
(Hocking, 2004; Younger et al., 2014). Despite the contour
selection process, asymmetric effects of geophysical varia-
tion may have increased the effective variance of &;’, leading
to overestimates in the GM solution (Gillard and Iles, 2005).
Due to the high-latitude location of Sodankyli radar, the geo-
magnetic effect above 95 km can contribute to the systematic
bias. Below 85km, the decay of meteor radar echoes may
deviate slightly from diffusion-only evolution (Lee et al.,
2013), thereby requiring a better physical model that does not
assume the linearity of Eq. (6). Assessing the contribution
of geophysical variability at various altitudes would require
carefully designed replicates of observations as well as long-
term comparison of MR temperatures with other co-located
instruments. In other words, the case for A # 1 needs to be
handled with careful modelling of errors by taking into ac-
count the dominant effect of geophysical variability in these
data. This remains a subject of future research.
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5 Summary

The biasing effect in MR temperature has been a pressing is-
sue for the last 2 decades. Attempts have been made in the
past to correct the slope in the scattered plot of log;o(1/7)
and height, usually either by direct calibration with optical
or satellite data or by an arbitrary choice of data rejection
criteria to exclude parts of measurements. This paper has
addressed the underlying reasons for such a biasing effect,
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which is mainly due to the presence of various error terms.
We have reviewed the conventional calibration procedure (1)
and then provided an alternative method (2) for estimating
MR temperature that does not require any calibration. We
have applied both of these methods to the MR data from win-
ter 2015-2016 and assessed the quality of the estimated MR
temperature using co-located lidar measurements. The key
points from each of these two aspects of the paper are given
below.
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Figure 7. (a) Improved temperature estimation using the GM solution (red) as compared to OLS estimates (blue and green) at contour level
0.4. (b) Reduced mean offset between MR and lidar temperature for GM slope estimate (red) as compared to OLS estimate (green and blue).

1. This paper has reviewed the statistical comparison tech-

nique (SCT), originally proposed by Hocking et al.
(2001b), within the context of MR temperature cali-
bration. We have extended the theoretical basis of the
SCT method to obtain an estimate of error variances of
log;¢(1/7) and height using co-located lidar measure-
ments. No significant offset was seen in the calibrated
MR temperature, even without applying any outlier re-
jection criteria. But artefacts introduced due to the dif-
ference in measurement techniques between MR and li-
dar were clearly visible in the estimated temperatures.
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2.

As an alternative method, we have applied the errors-
in-variables (EIV) regression analysis to estimate the
slope in the scattered plot of log;y(1/7) and height. The
model error in EIV analysis takes into account the total
errors variances in both abscissa and ordinate. It is ob-
served that the geophysical variability dominates at all
altitudes as compared to measurement errors and is the
key factor in addressing the biasing effect. Moreover,
any asymmetry in the error variance is minimal near the
meteor peak region. This allows for an independent esti-
mate of weighted-averaged atmospheric temperatures at
90 km using a suitable contour selection procedure. The
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temperatures estimated using this method show very
good agreement with co-located lidar measurement and
with reduced systematic offset as compared to the tradi-
tional least-squares analysis.
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