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ABSTRACT High-precision indoor localization systems (ILSs) are critical for applications such as human
smartphone navigation, autonomous robotics and automated warehouse and factory design. This paper
presents a novel fingerprinting-based ILS, which features a decimeter-level localization accuracy, the ability
to function in a constantly changing non line-of-sight (NLoS) environment, and user privacy protection
without the need for heavy computations. The proposed ILS is able to maintain its localization accuracy in a
constantly changing environment and to camouflage the user’s location by leveraging multipath propagation.
The method was successfully tested both by experimental verification using the ultra-wideband communi-
cation standard and a ray-tracing simulation. An average localization error of 6 cm is demonstrated for a
stationary or slow-moving receiver. An average error of 30 cm is demonstrated for a receiver that is moving
at a fast walking pace. The obtained localization accuracy is comparable to the accuracy of the state-of-the-art
localization algorithms. At the same time, the proposed approach solves two practical challenges faced by
ILSs: robustness to changing environments with moving objects and the high computation requirements of
user privacy protection. The high degree of user privacy was evaluated using a set of corresponding metrics.

INDEX TERMS Indoor localization, multipath fingerprinting, camouflage-based privacy protection.

I. INTRODUCTION
The demand for high-precision indoor localization sys-
tems (ILS) is growing rapidly. The applications, which criti-
cally depend on localization accuracy, include smart-phone
based navigation apps, large-scale internet of things (IoT)
systems and autonomous robotics. Furthermore, the higher
the precision with which the location of the user, IoT sensors
and the robots is estimated, the more functions the IoT and
robotics systems can perform. The development of the Global
Positioning System (GPS) was a breakthrough in the field
of positioning. However, it provided m-level accuracy, while
many robotics and industrial systems require cm-level pre-
cision. Relying on GPS indoors is additionally problematic,
since without a line-of-sight (LoS) GPS signals are severely
attenuated.

Cm-level localization accuracy has been achieved in [1]
by a system of intercommunicating electromagnetic (EM)
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transceivers. This demonstrates that EM indoor localization
systems (ILS) are a suitable alternative to GPS. In addition,
the transceiver chips or boards required by the ILSs can be
easily integrated into a robot, a smartphone or a communica-
tions router. The resulting ILSs also have a suitable range of
up to 900m [2]. Despite their high accuracy, state-of-the-art
ILSs still face several practical challenges, two of which are
addressed in this paper. The first challenge is the deployment
of ILS in non line-of-sight (NLoS) and dynamic environ-
ments. Most high accuracy ILSs are developed and tested
in either LoS or static NLoS environments [1]. However,
in reality people and robots move around public buildings
and factories, larger furniture and machinery is replaced over
time. This severely degrades the accuracy of state-of-the-art
ILS [3], [4]. Meanwhile, the second practical constraint is
the integration of a low-complexity and secure user privacy
protection into the ILSs.

ILSs, that similar to GPS, measure the distances or angles
between a receiver and a set of access points (APs) and then
calculate the user’s location using trilateration, triangulation,
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or multilateration [5]–[7] are accurate [2], [8]. However, they
require a LoS between the user’s device and the APs to func-
tion. On the other hand, fingerprinting-based ILSs perform
equally well in LoS and NLoS conditions [6]. Therefore,
the localization approach developed in this paper is based
on fingerprinting. Fingerprinting-based ILS compare a query
fingerprint measured by the user to a previously created
fingerprint map. The fingerprints themselves can either be
based on the received signal strength indicator (RSSI) [6],
[9]–[13] or channel state information (CSI). The accuracy
of practical RSSI-based ILSs is normally several meters
which is insufficient for most robotics and industrial appli-
cations. On the other hand, CSI-based fingerprinting systems
have been shown to achieve accuracies of up to 1-2 cm
in an NLoS environment [1]. However, while conventional
CSI-based fingerprinting schemes are accurate in a station-
ary environment their accuracy decreases significantly if
there are changes or moving objects in the environment.
If a fingerprint that is calculated from the channel impulse
response (CIR) [14] or the channel frequency response
(CFR) [1], [15], [16], [16]–[20] and is measured at a fixed
location, fluctuates because of changes in the environment,
it will no longer be similar to the map entry corresponding
to that location. The reasons for this are further explained in
Sections IV-I and III. In the author’s previous work [21]–[24]
the novel multipath component analysis (MCA) localiza-
tion algorithm is proposed. The MCA uses the multipath
delay profile (MDP) of a received signal as a fingerprint
and excludes and includes individual multipath components
in the calculation of the similarity between a reference and
query fingerprint. Therefore, the positioning accuracy of the
proposed fingerprinting algorithm is unaffected by moderate
changes in the indoor environment. Moreover, this paper also
shows that theMDPfingerprint structure andMCA algorithm
are uniquely suited to implement user privacy protection.

The second practical requirement for an ILS addressed
in this paper is user privacy. If a malicious party knows
the location of a user, it can make inferences about the
user’s health, shopping habits or other private information.
It can also uncover trade secrets by tracking the movement
of objects inside a factory. The communication messages
between the user and the ILS server can easily be encrypted,
however this measure will not protect the user from a mali-
cious ILS. This can be the case if the localization system is
provided by a party other than the user or factory/warehouse
owner. The objective of ILS privacy protection is, therefore,
for the user to be able to obtain his or her location from
the ILS server without the server knowing what that loca-
tion is. Unfortunately, existing K-anonymity [25]–[32] and
the Paillier cryptosystem [33]–[39] -based privacy protection
algorithms either have an extremely high computational com-
plexity, interfere with the communications infrastructure or
do not provide the required level of protection. Camouflage-
based privacy protection approaches [32], [40]–[42] do not
have the above disadvantages. In camouflage-based pri-
vacy protection schemes the user creates a number of

fake fingerprints and sends them to the ILS with the measured
fingerprint (see Fig. 5). The ILS does not know which finger-
print corresponds to the true location of the user. We refer
to the artificially created fingerprints as camouflage finger-
prints and to the corresponding locations computed by the
ILS as candidate locations. This scheme has two additional
advantages. Firstly, no changes have to be made to the com-
munication infrastructure and protocol between the user and
the ILS server. Secondly, the user’s degree of privacy and the
scheme’s complexity are a function of the number of cam-
ouflage fingerprints the user sends to the ILS server. Thus,
the scheme allows the user to control the degree of privacy
according to his requirements, the available computational
power and data transmission volume. However, to the best
of the author’s knowledge, no camouflage-based privacy pro-
tection scheme currently exists for CSI-based fingerprint-
ing. The challenges for implementing camouflage privacy
protection for CSI-based fingerprinting are further discussed
in Section IV-I.
In this paper the MCA algorithm is extended to include

a novel modification of the camouflage-based privacy pro-
tection scheme. Unlike the existing schemes, the proposed
algorithm is able to generate camouflage CSI fingerprints.
This is done by using the MDP as a fingerprint and by
creating partial instead of full camouflage fingerprints. In the
proposed approach, the user generates partial fingerprints by
randomly selecting a subset of the multipath delays in the
measured MDP. In addition to the measured partial finger-
prints the user also generates partial camouflage fingerprints.
The ILS selects multiple candidate locations for each partial
fingerprint and returns them to the user, who locally deter-
mines his or her true position. As is detailed in Section III-C,
a multipath partial fingerprint is much easier to fake than a
full or even partial CSI fingerprint. For example, if a subset
of CFR of CIR taps is used as a partial fingerprint, that
fingerprint might still be unique to a location and give the
server an estimate of where the user is. One partial MDP
fingerprint however, could be measured at several locations
in the environment with equal likelihood. This paper, there-
fore, demonstrates that the multipath-based MDP fingerprint
structure and theMCA algorithm are ideally suited for imple-
menting light-weight and secure privacy protection. In the
proposed scheme the user controls the degree of privacy
and the exchanged data volume by selecting the number
and length of the MDP camouflage fingerprints. It should
also be noted, that the communication protocols used by the
ILS do not need to be changed to implement this privacy
protection scheme. Due to the lack of a standard metric for
evaluating ILS privacy, several heuristics are proposed. The
initial conference publication [21], presented the core concept
of the MCA algorithm and an initial simulation-based vali-
dation. In this paper the MCA approach is augmented with
a novel privacy protection scheme and fully validated and
tested in a ray-tracing simulation and in measurements with
the ultra-wideband(UWB) communication standard [2] and
the DWM1000 chip [2]. The experimental results obtained in
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this paper show an average localization error of 6 cm for a
very slow moving robot and a localization accuracy of 30 cm
for a robot moving at a fast walking pace. The static measure-
ments were performed with an average distance of 3 cm from
each query to the closest reference fingerprint. Therefore,
the obtained 5 cm localization accuracy is comparable to the
state-of-the-art. At the same time, the proposed system offers
additional benefits of privacy and robustness.

The paper is organized as follows. Section II presents the
system model. The proposed multipath-based localization
scheme is detailed in Section III. The proposed novel pri-
vacy protection scheme and the derived evaluation metrics
are presented in Section III-C. Section IV-A contains the
simulation results. Section IV-F evaluates the algorithms on
measurement data. The merit of the proposed approach is
compared to the state-of-the-art in Section IV-I. The con-
clusion is presented in Section V. In this paper, sets are
denoted with non-italic bold characters. Vectors and arrays
are denoted with bold italic characters.

II. SYSTEM MODEL
This section presents the assumed system model and the
ILS requirements. A fingerprinting-based ILS is assumed
to be structured as follows. When an indoor localization
system (ILS) is installed, certain measurements, or reference
fingerprints are collected at a set of reference points through-
out the indoor environment. The reference fingerprints and
the corresponding reference points are stored in a map. This
is referred to as the off-line or training phase [43]. In the
on-line phase, the user collects analogous measurements at
his location and sends them to the ILS. Note, this communi-
cation can occur over any medium, not necessarily over the
access points (APs) used for fingerprinting. The ILS server
compares the resulting query fingerprint to the map. A scalar
similarity value is computed for each reference fingerprint
stored in the map. This similarity metric represents how
similar a reference fingerprint is to the query. Typical sim-
ilarity metrics include the Euclidean distance between two
fingerprint vectors [43] and the time reversal resonating
strength [1]. The communication between the user, the
ILS server and the APs is illustrated in Fig. 1.

FIGURE 1. Communication between the user, APs and the ILS server.

As an EM wave propagates at the speed of light,
the distance a signal travels corresponds to a delay at the
receiver. The received signal r(t) is composed of a sum
of multiple delayed and attenuated copies of the original

signal s(t).

r(t) =
∑
k

aks(t − τk )+ z(t), (1)

where ak is the attenuation undergone by the signal along
the k-th path from the transmitter to the receiver, and τk is
its delay. The term z(t) represents random noise added to the
signal at the receiver [6]. With τk = dk/c, we obtain

r(t) =
∑
k

aks(t − dk/c)+ z(t), (2)

where dk is the length of the k-th reflected or line-of-sight
path and is referred to as the k-th multipath component,
and c is the speed of light [44]. This is illustrated in Fig. 2
as the signal reflects multiple times from the walls, floors,
ceilings and objects before it reaches the receiver. When the
obstacle, marked with O, is not present, the signal reaches
the receiver with the delays {[dqj,1, . . . , d

q
j,4]}. The obsta-

cle blocks the propagation paths dqj,1 and dqj,2 and creates
the new propagation paths dqj,5 and dqj,6. Multipath compo-
nents have been previously used for localization in [8], [45]
and for simultaneous localization and mapping (SLAM)
in [46]–[48]. In this paper, the set of all multipath compo-
nents {dk} calculated for a received signal is referred to as a
multipath delay profile (MDP).

FIGURE 2. Example multipath reflections with and without the obstacle O.

The following assumptions are further made about the
system model shown in Fig. 1.

A. ATTACK SCENARIO
the ILS server or a third party accesses the communication
messages, calculates and stores the location of the user over
time.

B. SYSTEM PROPERTIES
firstly, the ILS server is truthful-but-curious. While it returns
the correct locations in response to the user’s queries, it may
track, analyze and exploit the user’s location information.
Secondly, the user does not know the indoor geometry or
have the fingerprint map. The user may be a human with a
smart device or a robot with limited sensors. The user may
learn the indoor geometry over time, however, the camou-
flage fingerprints generated by the user should be believable
even when he or she does not have any information about
the geometry or environment. Thirdly, the communication
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between the user and the server may be intercepted. The
location of the user needs to be protected even if the ILS is not
encrypting the communication. The ILS may do this to speed
up the localization, especially when it is communicating with
many users. And forth, there is no point for the ILS server to
protect the fingerprint map from the user. The user can collect
measurements and construct his or her own map.

C. ILS PERFORMANCE REQUIREMENTS
Firstly, the user should be able to obtain his or her location as
accurately as possible. Secondly, the user should be able to
obtain his or her location in a dynamic environment. Thirdly,
the volume of data exchanged between the user and the
ILS server should be as small as possible. The ILS should not
be required to send the user the entire fingerprint database.
And forth, the computational load on the user should be as
low as possible.

D. DESIRED FEATURES OF ILS PRIVACY PROTECTION
Firstly, the ILS should not be able to estimate the location
of the user up to a given certainty. The privacy scheme
should conceal the general area the user is in, not just the
exact coordinates. Secondly, the degree of privacy should
be guaranteed regardless of the number of users in the sys-
tem. Thirdly, the system should be able to guarantee privacy
for both moving and stationary users. Forth, no changes,
such as an additional encryption layer, should be introduced
to the established communication protocols. The localiza-
tion algorithm and the data exchanged by the user and the
ILS can be modified to implement user privacy protection,
but not the protocols over which this data is sent. And fifth,
the user should not need to hide his identity from the ILS.

III. PROPOSED APPROACH: MULTIPATH COMPONENT
ANALYSIS
This section summarizes the MCA algorithm originally pro-
posed in 2017 at the international conference on indoor posi-
tioning and indoor navigation [21] and presents the novel
privacy protection scheme proposed in this paper.

The MCA algorithm uses multipath delay profile (MDP)
fingerprints for the following reason. RSSI and CSI fin-
gerprints aggregate the information about the geometry and
material properties into all vector entries. When some feature
of the geometry or an object in the environment changes,
the power and frequency representations of the channel such
as the RSSI and CFR fluctuate unpredictably. This means
that a change in the environment will effect all the entries
in RSSI and CFR vectors. In that case it is extremely diffi-
cult to pinpoint the changes introduced into the fingerprints
by a dynamic environment. A CIR is the sum of impulse
responses along all of the individual propagation paths. Since
these impulse responses overlap, a change on one propaga-
tion path will remove, add or change the amplitude of one
CIR peak. However, it will also unpredictably effect the mag-
nitude of multiple CIR taps that belong to other propagation
paths. On the other hand, the propagation path lengths shown

in Fig. 2 cannot fluctuate, as they are tied to physical dis-
tances. Individual propagation paths in Fig. 2 can be blocked
and new paths can appear as objects move in the indoor
environment, however, the rest of the multipath components
remain the same and can be used for localization. This makes
the MDP a more robust fingerprint than the RSSI and CSI.
The proposed localization scheme is illustrated in Fig. 3. The
multipath delays are extracted from the measured CIR. After
the multipath delays have been extracted, the multipath com-
ponent analysis (MCA) algorithm is used to calculate the
location of a receiver.

FIGURE 3. Proposed multipath-based localization scheme.

A. MULTIPATH DELAY PROFILE
A multipath delay profile (MDP) is a set of vectors that
contain the lengths of all paths that a signal will follow from
a query point to each of the transmitters [21]. Two exam-
ple MDPs {[dqj,1, .., d

q
j,4]} and {[d

q
j,3, . . . , d

q
j,6]} are shown

in Fig. 2. The first MDP is produced by the geometry
without the obstacle, and the second MDP corresponds to
the geometry with the obstacle O. Reference MDP finger-
prints, Di = {d i1, .., d iM } with i = 1 . . .N are measured
in the off-line phase of a fingerprinting algorithm at N ref-
erence locations X i, with i = 1 . . .N . The vectors d ij =
[dij,1, .., dij,Kij ] contain the lengths of the propagation paths
on which the signal travels from the transmitter Tj to the
point X i. The query MDP Dq

= {dq1, . . . , d
q
M } is measured

by the user in the on-line phase of the localization algorithm
at an unknown location Xq. M is the number of transmitters
in the system.When a fingerprint contains all of the extracted
multipath components, it is referred to it as a full fingerprint.
A partial fingerprint Dq

p = {d
q
p1 ⊆ dq1, . . . , d

q
pM ⊆ dqM }

is a subset of the multipath components of the full MDP.
In Fig. 2, {[dqj3 , d

q
j4
]} is a partial fingerprint of the query

fingerprint {[dqj1, .., d
q
j4]}. This paper demonstrates that the

multipath-based fingerprint structure and fingerprint com-
parison metric proposed in [21] are ideally suited for the
implementation of a privacy protection scheme. The localiza-
tion scheme and multipath component analysis (MCA) algo-
rithm [21] are briefly summarized in the following section.

B. MULTIPATH COMPONENT ANALYSIS (MCA)
ALGORITHM
The multipath component analysis (MCA) algorithm pro-
posed in [21] is used to calculate the similarity metric
between two fingerprints. Algorithm 1 in Fig. 4 shows its
pseudo-code. In this paper, the reference fingerprint with the
highest similarity metric value is considered to be the user’s
location. Techniques such as k-nearest-neighbors (kNN),
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FIGURE 4. MCA Algorithm.

which calculate an average of k reference locations corre-
sponding to fingerprints that are most similar to the query,
can be used in the future together with the MCA algorithm
to further increase the localization accuracy. The MCA algo-
rithm can be used to calculate the similarity metrics for partial
as well as full fingerprints. The MCA algorithm is robust
to changes in the environment because it matches individual
query multipath delays to the reference fingerprints. Only
close matches are included in the calculation of the similarity
metric. In this way, propagation paths that disappeared from
or were added to the query MDP due to a new obstacle
are automatically excluded from the calculation [21]. The
similarity metric γ (Dq,Di) is calculated individually for each
transmitter and then summed up to one value as

γ (Dq,Di) =
M∑
j=1

γ (Dq,Di|T j). (3)

The MCA algorithm matches multipath components in the
vector dqj to the multipath components stored in d ij. Two
distances dqj,k and d

∗ are considered matched if the difference
|dqj,k −d

∗
| is minimized by d∗ ∈ d ij and |d

q
j,k −d

∗
| < ε. This

means that d∗ is the closest match to dqj,k from the vector d ij.
The similarity metric is a measure of howmanymatches were
found and how close they were. Query multipath components
which don’t have similar counter parts in the reference finger-
print, and thus correspond to changes in the environment, are
automatically excluded from the similarity metric calculation
and vice versa. For each match, the index k is added to the
setQij and (ε− |dj,k − d∗|)2 is added to the similarity metric

γ (Dq,Di|T j) =
∑
k∈Qij

(ε − |dqj,k − d
∗
|)2 (4)

Qij = {k|∃d∗ ∈ d ij : |d
q
j,k − d

∗
| → min ∩ |dqj,k − d

∗
| < ε}.

(5)

In the scenario when Dq is a full fingerprint, the MCA
algorithm returns the user’s estimated location. When a par-
tial fingerprint is compared to the map, the algorithm should
return κ candidate locations or guesses of the ILS server. The
parameters ε and κ are to be chosen empirically. The compu-
tation complexity of the MCA algorithm is discussed in [22].

C. PROPOSED PRIVACY PROTECTION SCHEME
This section details the proposed privacy protection scheme
and the proposed heuristics for evaluating the degree of loca-
tion privacy. The privacy protection scheme has to be built
into the communication protocol between the user and the
server. Its main objective is to allow the user to obtain his or
her location from the ILS server, without the server being able
to track the user.

A conventional camouflage privacy protection scheme is
illustrated on the left in Figure 5. The user generates fake
fingerprints and sends them to the indoor localization sys-
tem (ILS) and the ILS calculates locations of the real and
fake fingerprints. This is contrasted to the proposed privacy
protection protocol illustrated on the right. Np partial finger-
prints {Dq

p1, . . . ,D
q
pNp} of length np are generated by the user

as random subsets of the measured queryDq. For each partial
fingerprint, the user then generates Nc fake camouflage fin-
gerprints {Dq

c1, . . . ,D
q
c(NT−Np)

} of the same length. Therefore,
a total of NT partial fingerprints are sent by the user to the
ILS. Using the multipath component analysis (MCA) algo-
rithm, the ILS determines κ best matches from the map for
each partial fingerprint and returns them to the user. In the fol-
lowing, we refer to the reference fingerprints Dci selected by
the server as the candidate fingerprints and to the correspond-
ing locations Xci as the candidate locations. The user locally
runs theMCA algorithm using themeasured fingerprint as the
query and the candidate fingerprints as the map. It should be
noted, that in a state-of-the-art camouflage scheme, the server
receives a number of full fingerprints, some of which are real
and some fake. It calculates a location for each fingerprint.
The user needs to make sure that the camouflage fingerprints
are credible. In a conventional camouflage scheme, the server
can compare the created fingerprints to the map, find that
they are dissimilar to all map entries and know that they are
fake. The proposed scheme differs from the state-of-the-art
in that the user only generates the partial and not the com-
plete camouflage fingerprints as in [40]. The server receives
fingerprint pieces, some of which are real and some of which
are fake. Those fingerprint pieces match multiple reference
fingerprints and do not clash with the geometry. Therefore,
in contrast to classic camouflage schemes, the server cannot
simply pick out the query fingerprints that are dissimilar to
the map.

The user can generate the camouflage partial fingerprints
in two ways. np multipath propagation distances and trans-
mitter IDs can be randomly generated. This method is sum-
marized in Algorithm 2 in Fig. 6. Alternatively, the user can
create the camouflage fingerprints by randomly altering the
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FIGURE 5. Left: Camouflage-based privacy protection, Right: proposed privacy protection protocol.

FIGURE 6. Camouflage fingerprint generation algorithm with random
multipath values.

transmitter IDs of the partial fingerprints {Dq
p1, . . . ,D

q
pNp}.

The propagation distances in the fingerprints remain the
same. The approach is summarized in Algorithm 3 in Fig. 7.
It should be noted that the complexity of a camouflage

scheme is defined by the number of camouflage fingerprints,
their generation and localization effort. Since in this case
the one camouflage fingerprint is generated in constant time
and the complexity of the MCA algorithm is linear with the
size of the fingerprint database or better [22], the complexity
of the proposed privacy protection scheme is O(NT × N +
κ × NT ). The proposed privacy protection approach has sev-
eral distinct advantages. The computational load on the user
is low, as complex operations do not need to be performed
in order to ensure the credibility and wide distribution of
the camouflage fingerprints. The real and camouflage partial
fingerprints are automatically credible as they contain only
a subset of a fingerprint’s information and thus are simi-
lar to multiple reference fingerprints. Since the transmitter
IDs of the camouflage fingerprints are generated randomly,
the candidate locations will be located in very different parts
of a building. In addition, the user can control the number
of candidate locations and the degree of privacy by setting
the numbers of total and camouflage partial fingerprints NT
and Np. The privacy protection approach is possible due to
the structure of the MDP fingerprints. In order to apply it
to CIR or CFR-based fingerprints, the individual propagation

FIGURE 7. Camouflage fingerprint generation algorithm with random
transmitter IDs.

distances need to be extracted and the fingerprints need to be
converted to an MDP structure.

It should be noted that in contrast to ILSs using
the Paillier cryptosystem, ILSs that use k-anonymity and
camouflage-based privacy protection can never fully protect
the users privacy. The server can use statistical techniques
and analyze all the query data sent by all users. Eventually
the ILS can find patterns in the data and identify the user.
This also holds for the proposed scheme. On the other hand,
while the Paillier cryptosystem fully protects user privacy,
it requires heavy computations and a lot of data transfer.
The goal of k-anonymity and camouflage-based privacy pro-
tection schemes, including the proposed approach, is there-
fore, to make it as hard as possible for the ILS to track the
users, with as little computational load as possible on the
users.

D. PROPOSED PRIVACY METRICS
A scalar privacy metric is needed to quantify the perfor-
mance of the proposed scheme. The authors of this paper
are not aware of a general metric applicable to all camou-
flage privacy protection schemes. Existing privacy protection
schemes are often evaluated using specialized metrics. For
example, the privacy measure proposed in [29] is specific
to the proposed k-anonymity and differential privacy-based
scheme. Therefore, two quantitative measures of the degree
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of privacy of a stationary user and a metric for evaluating the
privacy of a moving user are derived. Since the user’s location
is protected by the camouflage locations, the distribution of
those locations is evaluated to determine the degree of privacy
protection. It should be noted, that the metrics derived in
this section are easy-to-compute heuristics that estimate the
degree of privacy. The metrics do not attempt to derive an
exact privacy value. The metrics can also be used to estimate
the privacy protection of a k-anonymity scheme, where the
ILS server knows only a list of possible user locations.

Figure 8 illustrates four example distributions of candidate
points. The top left distribution hides the user’s location.
In the other three subfigures there are two areas where the
user is likely to be according to the distribution of either the
candidate points themselves or their occurrence frequency
and similarity metric values. Figure 11 shows similar can-
didate point distributions for a moving user. The following
presents four heuristics that can be used to approximate the
location privacy of a user.

FIGURE 8. Privacy in example candidate point distributions.

1) PRIVACY METRIC 1: NUMBER OF UNIQUE CANDIDATE
POINTS
For each partial fingerprint sent by the user the ILS deter-
mines κ best matching reference fingerprints. As multiple
partial fingerprints are sent by the user, a reference fingerprint
can be selected as a match and, thus, picked multiple times.
Let Ni be the number of times Di is considered ‘‘matched’’ in
one localization request.
Statement 1: Let Ni be the number of partial fingerprints

sent by the user to the ILS within one localization step, for
which the ILS server selected fingerprint Di as a candidate.
The degree of privacy protection in a system is highest when
Ni is equal for all reference fingerprints.

Proof: The higherNi for a reference pointX i, the higher
the belief of the ILS that the user is located atX i. IfNi is equal
for all reference locations, the ILS cannot prefer any. �

2) PRIVACY METRIC 2: CAMOUFLAGE FINGERPRINT
CREDIBILITY ESTIMATE
Proposition 1: Themore uniform the distribution of Ni and

the more unique candidate fingerprints are calculated by the
server, the better the user’s privacy is protected.
Proof: If the camouflage fingerprints differ significantly

from the reference fingerprints stored in the map, the similar-
ity metric values that ILS server calculates for them will be
much lower than for the real query.
Proposition 2: The belief of the ILS server that the user is

located at reference point X i can be approximated as the sum
of the similarity metric values, calculated when X i is picked
as a candidate location.

ρ(X i) =
∑

Dqs∈L(Di)γ (D
q
s ,Di) (6)

ρ̂(X i) =
ρ(X i)

N∑
k=1

ρ(Xk )

(7)

L(Di) = {∀Dq
s | γ (D

q
s ,Di) ∈ top κ max values}, (8)

where Dq
s are the partial fingerprints sent by the user.

Proof: If γ (Dq
p,Dci) is high for a candidate location X i,

the likelihood, that from the point of view of the ILS serverX i
is the location of the user, is also high. The same holds for the
value Ni in Statement 1. ρ(X i) combines the two parameters.
ρ̂(X i) is normalized. �
Proposition 3: The entropy H (ρ̂(X i)) can be used as a

measure of location privacy of the user.
Proof: According to the definition of entropy, the higher

H (ρ̂(X i)) is, the higher the uncertainty of the ILS about the
user’s location will be. Entropy is also used to measure the
degree of privacy in [25], [28] and [32]. �

3) PRIVACY METRIC 3: AMOUNT OF CLUSTERING IN THE
SPATIAL DISTRIBUTION OF THE CANDIDATE FINGERPRINTS
The ILS should not be able to tell which general area the
user is located in. If the candidate points are located close
to each other, the ILS would know the rough location of
the user. Therefore, the candidate points should be dis-
tributed over as large an area as possible, and the distances
between neighboring candidate points should be as large as
possible.
Proposition 4: The parameter ω can be used to character-

ize the spatial distribution of the candidate points, with

ω =
1
ωu

N∑
k=1

N∑
l=1

ρ̂(Xk )× ρ̂(X l)×
√
d(Xk ,X l), (9)

ωu =
1
N 2

N∑
k=1

N∑
l=1

√
d(Xk ,X l), (10)

where d(Xk ,X l) is the euclidean distance between Xk and
X l . N is the number of reference fingerprints in the map.

Proof: Consider the hypothetical distribution of candi-
date points calculated by an ILS that is illustrated in Fig. 9.
If point X i is shifted to location X i′ , it is clear that the area
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FIGURE 9. Illustration of the proof of Proposition 4. The point X i is
shifted to X i ′ , X i ′′ , X i ′′′ and X i∗, a ≥ b.

covered by the candidate points increases. Therefore, the pri-
vacy of the user in the system increases. As a privacy estimate
ω needs to increase as well and it does so according to Eq. 9.
In the same manner, if X i is shifted to X i′′ , it moves closer
to the point clusters around X1 and X2. The candidate points
become less spread out in space and the intuitive amount of
user privacy and the value of the metric ω decrease. Let X i be
shifted to locationX i∗. As1∗1 > 1∗2,X i was moved is further
away from X1 than it was moved closer to X2. In this case,
it is difficult to intuitively determine whether the area covered
by the candidate points and the location privacy of a user for
whom the ILS calculated these candidate locations, increased
or decreased.Wemake the following approximation.We state
that, in this case, the change in privacy corresponds to the
change in the value of ω. Let X i be shifted to X i′′′ , so that
12 > 11. Intuitively, the area covered by the reference points
decreases. In the following, we will show that the value of
ω decreases as well. It can be easily seen that ω decreases if
√
a+
√
b >
√
a+11+

√
b−12. As both terms are positive,

we will compare their squares.

(
√
a+11 +

√
b−12)2

= a+ b− (12 −11)

+2
√
ab−12(a− b)− (12 −11)b−1112 (11)

Since a ≥ b,11 < 12, the value of ω decreases. The term
ρ(Xk )× ρ(X l) is used to only include the distances between
likely candidate points into the sum. It is easy to show that,
if ρ(X i) is uniform, ω = 1. �
It should be noted that the similarity metric is used to

calculate the above privacy metrics. If the ILS server is using
a special metric to compare fingerprints when trying to detect
fake ones and that metric is different from the similarity met-
ric used for localization, then the ‘‘fake fingerprint detection’’
metric should be used for privacy evaluation.

4) PRIVACY METRIC 4: PRIVACY OF A MOVING USER
Next, we consider a moving user attempting to localize him-
self at regular intervals τL . We define dL as the average
distance the user moves between two consecutive localization
steps. Four example hypothetical candidate point distribu-
tions are shown in Fig. 11. In the candidate point distribution
on the top left the user’s position is well protected. In the
examples on the top right and bottom left the ILS server can
identify the user relatively quickly, and in the bottom right

FIGURE 10. Two candidate trajectories. The left trajectory is more likely
to be a natural trajectory of the user.

FIGURE 11. Privacy in example candidate point distributions for a moving
user.

example the server can eventually identify the user but needs
to track many potential trajectories. The guess trajectories of
the ILS are marked in black and the identified user trajectory
is marked in red.
Statement 2: If dL < E[d(Xc,t ,Xc,t+τL )] the ILS can

easily identify the user among the candidate points.
E[d(Xc,t ,Xc,t+τL )] is the average distance between two can-
didate locations at time t and at time t + τL .

Proof: As illustrated in the top right of Fig. 11, if dL is
small compared to the distances between camouflage finger-
prints, the ILS can find the user at a trajectory made up of
close-by consecutive candidate points. �
Having the distances between candidate fingerprints in

consecutive localization steps smaller or equal to the distance
the user moves in one step is a necessary but not sufficient
condition to guarantee privacy. If the user is tracked over
enough time and the ILS server has infinite resources avail-
able, it will eventually be able to identify the user. The ILS can
keep track of and analyze all possible trajectories among the
candidate points. Over time the ILS will be able to eliminate
more and more trajectories as they will have an unnatural
shape. Figure 10 shows two trajectories. By evaluating the
angles between the line segments, the ILS can identify the
left trajectory as valid and the right trajectory as unlikely to
belong to a human user. The exact amount of time it would
take for the ILS to find the user depends on the sophistication
of the pattern recognition algorithms and the computational
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power available to the ILS. Therefore, instead of determining
whether or not the ILS can find the user, the proposed metric
estimates how difficult and computationally expensive it is
for the ILS to do so.
Proposition 5: Let η(d) be the average number of candi-

date locations Xc,t+τL , calculated by the ILS at time t + τL ,
located within a distance d from a candidate location Xc,t ,
previously calculated at time t. The parameter η(dL) can be
used to characterize the degree of privacy of a moving user.

η(d) = E
[ ∣∣{∀Xc,t+τL | d(Xc,t+τL ,Xc,t ) ≤ d}

∣∣ ] (12)

Proof: The higher the value of η(dL), the higher the
number of candidate trajectories exist with a step size less
than dL . This means there will be more candidate trajectories
for the ILS to consider. At time t + τL , η(dL) new candidates
will be created out of one candidate trajectory, existing at
time t . Therefore, the complexity of the tracking procedure
for the server will increase exponentially with η(dL). �

IV. EVALUATION RESULTS AND DISCUSSION
This section presents the simulated and experimental valida-
tion of the MCA localization algorithm detailed in Section III
and the privacy protection scheme proposed in this paper and
detailed in Section III-C.

A. SIMULATION SETUP
In the simulation-based evaluation, ray-tracing is used to
precisely extract the multipath delay profiles (MDPs) from a
model of the 3D indoor geometry. The simulation uses virtual
transmitters to recursively calculate the multipath delays at
the receiver locations. The methodology is further detailed
in [23]. The layers of the communication protocol stack
are, therefore, not simulated. In some simulated experiments
modeled noise is added directly to the multipath components.
The geometry used in the simulation is shown in Fig. 12. The
planes are used to represent the walls, ceilings and objects
in the room. The positions of the transmitters and the ref-
erence and query points are shown he bottom of Fig. 12.
Both the query and reference points are down-sampled before
being plotted. The MDP calculation is performed twice. The
geometry colored in green is used to generate the reference
fingerprints. When the query fingerprints are calculated, the
obstacles colored in blue are added to the geometry. The
similarity threshold ε in the MCA algorithm is set to 1m.

B. LOCALIZATION PERFORMANCE EVALUATION
Figure 13 shows the localization error obtained with trilatera-
tion and the proposed multipath component analysis (MCA)
algorithm. The ray-tracing simulation uses virtual transmit-
ters [23] to recursively calculate the multipath delays at
the receiver locations. The shortest delay, corresponding to
the shortest propagation path, is used to perform trilater-
ation using least-squares. This corresponds to ideal time-
of-arrival (TOA) ranging. Signal power-based fingerprinting
is not simulated for the following reason. In order to calculate

FIGURE 12. Simulation setup. Top: planes representing the indoor
geometry (floor and ceiling not displayed). The geometry used for
generating the fingerprint maps is colored in green. The three columns,
colored in blue, were added to the map before the query fingerprints were
generated. Bottom: Transmitter locations and the query/reference points.

realistic RSSI or CFR fingerprints in a ray racing simulation,
the signal fading and noise need to be modeled precisely
incorporating the material information, interference patterns,
antenna parameters. This is currently not possible, the chan-
nel fading and signal strength oscillations can be estimated
and modeled but those estimates will be imprecise. A signal
fading model can be used to compare different CSI-based
localization algorithms to each other. However, RSSI and
CSI approaches simulated with a fading model cannot be
compared to multipath-based schemes simulated with ray-
tracing. The figure is generated without noise, noise is added
in some of the following experiments. The figure shows
that the three obstacles significantly affect the localization
accuracy of trilateration-based localization. In order for the
trilateration algorithm to work correctly, a LoS needs to
exist from the query point to at least 4 of the transmitters.
This means that the shadowed area, where localization is not
possible, is a combination of several transmitter’s shadows.
Even in the left most plot where the walls are removed from
the rooms, the corners create a large amount of shadowing.
TheMCAalgorithm is shown to be robust against the addition
of obstacles. The small amount of error is there because the
query points do not coincide with the reference points. The
MCA algorithm calculates which reference point the query is
closest to and not the exact location of the query.

C. PARTIAL FINGERPRINT LOCALIZATION
Figure 14 shows the localization error obtained when
AWGN noise was added to the query and reference
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FIGURE 13. Left: Localization error of trilateration walls between the rooms removed. Center Left: Trilateration
with obstacles. Center Right: MCA algorithm, reference and query data generated without obstacles. Right: MCA
algorithm, obstacles added when the query data was generated. No noise is included in the simulation.

FIGURE 14. Localization error of the MCA algorithm with full fingerprints
in the presence of AWGN noise.

multipath components. Figure 15 shows the average local-
ization error obtained when matching a partial fingerprint
to the map. The localization error is evaluated for different
values of the partial fingerprint size np and the number of
candidates calculated by the ILS for a single partial finger-
print κ . The curves marked with an N show the results after
additive white Gaussian noise (AWGN) with σ 2

= 0.25m2

was added to the multipath components in the reference and
query fingerprints. The results show an expected decrease of
the localization accuracy in the presence of noise. They also
show that for κ > 3 the localization accuracy is independent
of κ . This shows that using a number of partial query finger-
prints instead one full query fingerprint does not decrease the
localization accuracy. In the following simulations, we set
κ = 3. It should be noted, that in reality the noise in the
multipath components comes from both the environment and
the extraction of the multipath components. In a practical
system, the noise statistics will, therefore, also depend on the
channel and the multipath estimation scheme.

D. PRIVACY EVALUATION FOR STATIONARY USERS
We evaluate the level of user privacy protection in the pro-
posed scheme using the metrics described in Section III-D.
Figure 16 shows the results obtained in a simulation with-
out noise. In Figure 17, AWGN with σ 2

= 0.25m2 was

FIGURE 15. Localization accuracy with partial fingerprints. N indicates
the presence of noise.

added to the propagation distances in the reference and query
fingerprints. The top figures show the number of candi-
date fingerprints returned by the indoor localization system
(ILS) vs. the number of partial fingerprints sent by the user.
It should be noted that the x-axis also controls the algo-
rithm complexity. The black dashed line shows the limit
κ × NT . Since the ILS can select the same reference point as
a candidate more than once, the number of candidate points
begins to saturate for large values of NT . The two bottom
subfigures show the privacy metrics H (ρ(Xi)) and ω, derived
in Section III-D1. The theoretical upper limits described in
Section III-D1 are also plotted. For the curves marked with
RF Algorithm 2 is used to generate the camouflage finger-
prints, Algorithm 3 is used for curves marked RT.

The results show a trade-off between complexity - the
number of partial fingerprints generated by the user, and the
amount of privacy protection. They also show that the size
of the partial fingerprints np does not significantly affect
the degree of privacy protection. The MCA algorithm only
searches for the matching propagation distances. It does not
penalize the presence of distances in an MDP that were
not matched to the reference fingerprint. However, if the
ILS used another approach to search for fake fingerprints,
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FIGURE 16. Privacy evaluation without noise. Top: number of candidate
points received by the user. Middle and bottom: degree of privacy.

the partial fingerprint length np will have a larger effect
on privacy. The number of candidates per partial fingerprint
is κ = 3. Our results show that the degree of privacy
of the algorithms increased with the value of κ , however,
the number of candidate points increased too much. It can
be seen from the figures that the degree of privacy increases
with Np when Algorithm 3 is used. This is understandable,
as Algorithm 3 creates camouflage fingerprints by randomly
changing the transmitter IDs in the real partial fingerprints.
The higher Np is, the higher the diversity of the camouflage
fingerprints will be. A better localization performance is
achieved for a larger number of real partial fingerprints Np
as the algorithm becomes more robust against changes in
the environment. Figure 2 illustrates that when some of the
multipath components appear or disappear due to changes
in the indoor environment, the multipath components that
remained the same can be used for localization. The larger
the number of real partial fingerprints sent by the user to
the ILS, the higher the chance that those fingerprints contain

FIGURE 17. Privacy evaluation in the presence of noise.
Notation identical to Fig. 16.

the unaltered multipath components. In addition, the obtained
results demonstrate that even though the presence of noise
predictably decreases the localization accuracy, the degree of
privacy protection and system complexity remained largely
unaffected.

E. PRIVACY OF A MOVING USER
An average value of the privacy metric η(d), introduced
in section III-D4, is estimated for an example user trajec-
tory. The simulations were performed without noise. np was
set to 4 and Np to 5. Figure 18 shows the results for the
random generation of partial fingerprints (Algorithm 2).
In Figure 19, the camouflage fingerprints are generated by
randomly changing the transmitter IDs in a real partial fin-
gerprint (Algorithm 3). The values of d used to calculate
η are shown in the legend. The results again show that better
privacy protection was achieved by Algorithm 2.
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FIGURE 18. Degree of privacy of a moving user. The camouflage
fingerprints generated using random multipath delays Algorithm 2.

FIGURE 19. Degree of privacy of a moving user. The camouflage
fingerprints generated using random transmitter IDs Algorithm 3.

It should be noted that a moving user can also increase
his degree of privacy by learning the fingerprint map over
time and generating camouflage fingerprints to mimic natural
movement patterns. The ILS can find the user by analyzing all
possible trajectories in the candidate points over time. There-
fore, the presented results and the metric η(d) characterize
the complexity of the trajectory identification task of the ILS
and not the actual degree of privacy of the user.

F. MEASUREMENT SETUP
The hardware setup was developed to test whether enough
multipath components can be resolved from a real received
signal to apply the MCA algorithm. An experiment also
checked whether the MCA algorithm is able function in an
environment with a moving object. The measurements are
conducted using the Decawave DWM1000 chip1 with UWB
two-way-ranging. The DWM1000 module is attached by a
breakout board to the GPIO outputs of a Raspberry Pi 3 B+.
A software on the Raspberry Pi communicates by the SPI
interface with the DWM1000 chip in order to operate the
DWM1000 chip and transfer the time stamps to calculate
distance estimates. In our measurement setup, 9 Raspberry
Pis are configured as anchors, in the following called APs

1https://www.decawave.com/product/dwm1000-module/

and one Raspberry Pi is configured as a tag, in the following
called receiver. The 9 APs are static and are mounted on
the walls at a height of roughly 1m. The receiver is mobile
and is attached to a moving robot or person during various
measurements. Figure 20 shows the locations of the APs.
For the measurements, the UWB system is configured to a
bandwidth of 500 MHz and a carrier frequency of 3.5 GHz.

FIGURE 20. Measurement setup, AP locations. APs are mounted on the
walls of the room.

As mentioned before, we use a two-way-ranging method
to calculate the distance between the receiver and the APs.
The receiver is initiating the two-way-ranging method by
a ranging request (poll) to one of the APs. The receiver
and AP are exchanging four messages, two are sent by the
receiver, and two by the AP. The estimated distance is after-
wards calculated on the receiver side, see [47]. In addition
to the ranging information, the Decawave DWM1000 chip
can provide the CIR. The DWM1000 chip includes a large
bank of memory that holds the accumulated CIR data which
contains complex values representing a 1ns sample inter-
val. The receiver software running on the Raspberry Pi
accesses thismemory after amessage from theAP is received.
To determine the sparse structure of the CIR, the multi-
path estimation algorithm called space-alternating general-
ized expectation-maximization (SAGE) is used [49]. It should
be noted, that the current ILS implementation uses active
localization. This means that the receiver needs to send mes-
sages and actively communicate with the APs to perform CIR
estimation. The system can potentially be modified to a pas-
sive ILS with multiple tags listening to the messages sent by
the APs and performing multipath estimation on the received
signals. Different state-of-the-art localization algorithms are
implemented on different hardware platforms using software
that is generally not published. As the author of this paper
does not have access to the software and hardware in question,
it was not possible to test the proposed algorithm against the
state-of-the-art algorithms in the same environment.

A Vicon motion capturer [50] is used to track the move-
ment of the receiver and obtain the ground truth. Our par-
ticular setup consists of 16 infrared sensitive cameras and
infrared strobes, and can locate reflectors in the measurement
room with a ground area of approximately 10 m by 4 m with
an accuracy of less than 1 cm with a sampling rate higher
than 100 Hz. We attached a reflector to the receiver, hence,
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FIGURE 21. Localization error at the query points for different reference
fingerprint densities. Static measurements.

FIGURE 22. Localization error at the query points for different numbers
of transmitters.

we were able to obtain the ground truth of the receiver with
an accuracy better than 1 cm.

G. EXPERIMENTAL MCA LOCALIZATION PERFORMANCE
Figures 23 - 27 show the localization error obtained at a
number of points in the indoor environment. Filled circles
correspond to the query points, their color represents the
localization error, and empty blue circles correspond to the
reference points. All of the experiments use the same refer-
ence data. It was collected the following way. A Decawave
board is placed on a robot that is moved very slowly along
the trajectory shown in Fig. 23. The robot is also stopped
and stands still roughly every 30 cm on the trajectory. Since
the robot was controlled by hand, this number is approxi-
mate. As the robot is moving slowly and stopping, in the
following we will refer to these measurements as station-
ary. The robot is continuously recording fingerprints even
when moving. There are a total of 897 reference finger-
prints, with 22.4 fingerprints/m2. All of them are located
on the trajectory shown in Figure 23. The reference points
are averaged such that the distance between two consecutive
points is not less than 10 cm. When two reference points
are combined their MDPs are also averaged. This is possible
since the multipath components are sorted within the MDPs.
The mean distance between two reference points on sections
where the robot was moving and was not turned or artificially

FIGURE 23. Localization error at query points. Near static measurements.

FIGURE 24. Localization error at query points. Query data collected by a
moving robot.

re-positioned was 12 cm. The distance between consecutive
query fingerprints of a fast moving robot is 15 to 20 cm, for
a moving person that number is 12.3 cm. Both the query
and reference points are additionally down-sampled when
plotting for better visibility. A subset of the stationary data
is used as the query data in Fig. 23. While they come from
the same measurement series, the sets of query and reference
data are different. In Fig. 21 the reference data was further
down-sampled while the query data remained the same. The
average localization error is plotted as a function of the aver-
age distance between the query fingerprints and the closest
reference fingerprints. A mean localization error of 0.057 m
was obtained for a mean distance of 0.0029 m between the
query and closest reference fingerprints. In Fig. 22 the local-
ization accuracy is calculated for the case when the data from
a subset of AP is excluded from the calculation. In Fig. 24
the query data was collected by the robot moving slightly
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FIGURE 25. Probability distribution of the localization errors. Moving
robot Fig. 24.

FIGURE 26. Localization error at query points. Query data collected by a
moving person.

faster than walking pace. The algorithm localizes the user
with an accuracy of 0.308 m. The mean distance from a query
to the closest reference point is 0.11 m. The ratio of the mean
error to the mean distance increased compared to the static
measurements, therefore, the motion of the receiver signifi-
cantly impacts the localization accuracy. Figure 25 shows the
histogram of the distribution of the localization error values.
Figure 26 shows the localization error obtained when the
query data is collected by a moving person. The increase in
localization error corresponds either to the vertical movement
of the users hand carrying the receiver or to the fast walking
pace of the user. Figure 27 shows the localization error for
the case when a person is moving around the room when
the query data is collected. The query data is collected by a
moving robot. The trajectories in Figs. 24 - 27 are different
due to the manual control of the robot.

Figure 21 shows that when the reference and query fin-
gerprints are not identical, the localization error is almost the
same as the average distance from the query to the nearest
reference fingerprints. Therefore, precise localization with
an average error of 5.7 cm is achieved when the robot is
stationary or moving slower than a walking pace. The results
also show, that the motion of the receiver impacts localization

FIGURE 27. Localization error at query points. Query data collected by a
moving robot, a person moving around the room during query
measurements.

performance. This is most likely because the motion of the
receiver changes the CIR estimation andmultipath extraction.
Figure 26 shows that even when the receiver is moving at a
fast walking pace the user is localized with an average error
of approximately 30 cm. Fig. 27 shows that the presence and
movement of a person in the indoor environment does not
affect the localization performance.

H. EXPERIMENTAL PRIVACY EVALUATION
Figure 28 shows the privacy metrics evaluated on the static
data. The measurement results mirror the simulated privacy
evaluation and validate the effectiveness of the proposed
privacy protection scheme.

I. DISCUSSION
The simulation and measurement results demonstrated the
high accuracy and effectiveness of the proposed approach.
At the same time, the proposed scheme has several addi-
tional advantages over the state-of-the-art. Firstly, the pro-
posed scheme maintains its localization accuracy under a
moderate amount of changes and movement in the envi-
ronment. This is not the case for most fingerprinting-based
localization schemes and is demonstrated by the experiments
in Figs. 13 and 27. The RSSI, which is the received power
in dB of a signal that is averaged over a certain sampling
period [6], [9]–[13], is very popular and is measured by
default by many devices. However, it fluctuates significantly
over time due to fading and changes in the environment [3].
Since the RSSI aggregates the whole channel information
into one scalar value per AP, it is not possible to identify
fingerprint components that correspond to changes in the
environment. Classical CSI-based fingerprinting also cannot
be used in a dynamic environment. There are several types of
CSI fingerprints: parameters of the channel impulse response
(CIR) [14], the channel frequency response (CFR) [1], [15],
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FIGURE 28. Privacy evaluation with measurement data.
Notation in Figs.16 and 17.

down-sampled CFR consisting of the received power and
phase at each OFDM carrier [16], [16]–[20] and multipath
delays extracted from a received signal [51]–[54]. Because
CIR and CFR fingerprints include power and fading infor-
mation, it is not possible to separate the fingerprints into
vectors, that correspond to the original geometry, and vectors,
that correspond to the changes in the environment. Therefore,
a fingerprint measured in a dynamic environment will not
be similar to the map entry at its location. It should be
noted, that because of the used similarity metrics, classical
multipath-based fingerprinting schemes [51]–[54] suffer a
similar accuracy decrease in a dynamic environment as CIR
and CFR fingerprinting schemes.

The proposed MCA algorithm and MDP fingerprint struc-
ture also makes the integration of low-cost privacy protection
into the ILS possible. Camouflage-based privacy protection
has several advantages over the other existing schemes.
K-anonymity-based privacy protection algorithms [25]–[32]
can create user ID collisions and network disruptions. They
can also cause an authorized user to be denied access to a
private wireless network [26]. In addition, because the user’s

identity is concealed from the ILS by, for example, replacing
the user’s IDs or MAC addresses by frequently changing
pseudonyms, the degree of privacy of one user strongly
depends on the total number of ILS users and their movement
patterns [32]. The disadvantage of privacy protection schemes
that use the Paillier cryptosystem [33]–[39] is that they
require the ILS to encode and send the entire fingerprint map
to the user. Because in such ILS the server processes encoded
data, the privacy of the user is fully secured. However, in this
case the computational complexity and transmitted data vol-
ume grow linearly with the size of the fingerprint map [33].
This is impractical for most high-precision ILSs, such as [1],
that require a very large fingerprint database. Alternative
approaches include AP fuzzification [55] and differential
privacy [56], and data partitioning [57]. In camouflage-based
privacy protection schemes [32], [40]–[42] the user creates
a number of fake fingerprints and send them to the ILS with
the measured fingerprint (see Fig. 5). Several challenges have
to be overcome by the state-of-the-art camouflage schemes.
When the user moves, the ILS can potentially locate him or
her if a candidate location at localization step n − 1 is close
to a candidate location at localization step n. This concept
is further illustrated in Fig. 8. Additionally, to the best of
the author’s knowledge, no camouflage-based privacy pro-
tection scheme currently exists for CSI-based fingerprinting.
However, as mentioned above, CSI fingerprints are needed
for high-precision localization. RSSI fingerprints are easy to
fake as they are simple in structure and fluctuate significantly
throughout the indoor environment. Believable RSSI finger-
prints can be created as vectors of random numbers. How-
ever, if camouflage CSI fingerprints are created by randomly
generating CIR or CSI taps, the ILS sever can easily identify
the resulting fingerprint as fake. Furthermore, the CIR and
CFR at a given location are functions of the indoor geometry.
Even if a fingerprint sent to the ILS looks ’believable’ it needs
to be similar to a fingerprint stored in the map. Otherwise
the server can identify the camouflage fingerprints as very
dissimilar to all of the reference fingerprints stored in the
map. Another challenge to be overcome is that if most of
the camouflage locations, or points calculated by the ILS,
end up in one area, the ILS can infer the general location of
the user. The MCA algorithm and MDP fingerprint structure
allow the proposed scheme to overcome the above mentioned
challenges of localization and privacy protection algorithms.

V. CONCLUSION
This paper presented a multipath-based localization algo-
rithm with decimeter-level accuracy which is robust to
changes in the indoor environment. The proposed approach
selectively includes and excludes multipath components in
the location calculation. The paper also presented a novel pri-
vacy protection algorithm. In the proposed privacy-protection
scheme, the user sends a number of partial camouflage fin-
gerprints to the ILS and obtains a list of candidate loca-
tions. The user locally determines his or her true location.
This paper demonstrated that camouflage-based privacy
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protection is made possible specifically due to the selected
multipath fingerprint structure. Several heuristics for evalu-
ating the degree of user privacy were also developed. The
performance of the proposed localization and privacy pro-
tection algorithms was demonstrated using simulation and
measurement data. The results show that the performance
of the proposed privacy-protection algorithm approaches the
derived theoretical limits for large numbers of camouflage
fingerprints. The results also show that the two algorithms,
proposed for camouflage fingerprint generation, present a
trade-off between the degree of privacy protection and com-
putational complexity and transmitted data volume.
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