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Abstract

In this paper, a launch vehicles re-entry strategy using an actuated parafoil is analyzed. In recent years, this concept is
gaining new momentum: it offers a lightweight and cost-effective control solution for autonomous landing of reusable
rockets to specific ground or sea coordinates, as well as for mid-air capturing. This landing maneuver requires appropriate
modeling together with suitable guidance and control strategies. This work expands upon the following aspects: (1) the
development of suitable models for control synthesis and verification; (2) the design of heading control system; (3) the
application of a path-following guidance law capable of steering the payload (i.e. the launch vehicle) to the prescribed end-
of-mission point. Three models of increasing complexity are proposed based on different assumptions and the dynamics are
compared in an ad-hoc simulation environment. MATLAB-Simulink is employed to design two versions of a 6 Degrees Of
Freedom (DOF) model accounting for distinct aerodynamic effects. On the other hand, the multi-physics object-oriented
language Modelica is used to develop a higher-fidelity 9DOF dynamic model of the system. The latter is then compiled
and embedded within MATLAB-Simulink. The same environment allows the implementation of the designed Guidance
and Control (G&C) algorithms. The G&C architecture comprises both low-level control loops, regulating course and
yaw angles by means of differential steering commands onto the canopy strings, and a guidance layer where the VF path-
following is employed. VF methods have already shown remarkable results for fixed-wing unmanned vehicles due to the
lower steady-state errors as compared to other approaches, while retaining the potential for realtime implementation. With
this work, the method is extended to the application of a launcher recovery. The results of the simulations are investigated,
highlighting overall satisfactory performance even in presence of wind disturbances.
Keywords: Launch vehicle re-entry, Parafoil, Vector Field path-following, Modelica, Multi-body modeling

1. Introduction
The rise of commercial companies in the launchers’

business has, in the last years, pushed the industry to pro-
pose innovative solutions to reduce the operating costs.
Reusability of the main boosters or of the subcomponents,
proves to be a key factor to reduce the mission costs and
in turn to increase access to space. The design of recov-
ery systems hold significant promises to reduce the overall
mission costs: in the case of Ariane 6, a recovery system
has been found out to cut the costs per launch by 15% [1],
whereas the reusability of the SpaceX Falcon 9 boosters is
estimated to cut 30% of the launching costs [2].

Recovery strategies to avoid the loss of different stages
of the launchers have been investigated since the early
space missions, with retro-propulsion, aerodynamic de-

celerators and landing impact attenuation systems being
well-researched options [3]. Mid-Air Recovery strategies
involve a main parachute that guarantees the desired decel-
eration, mounted on the system to be recovered, and in-air
randez-vouz with an helicopter that grapples the parachute.
The latter carries the descending system to a desired loca-
tion allowing a safe landing. Landing techniques involving
parafoils have been developed over the past 70 years to re-
trieve unmanned air vehicles or cruise missiles [4]. Despite
being limited by the mass of the re-entry system, the option
is getting increasingly popular among modern launchers’
recovery strategies. In 2020, Rocket Lab carried out several
tests to demonstrate the feasibility of recovering the Elec-
tron launcher through mid-air helicopter capturing [5, 6].
In a similar fashion, United Launch Alliance is planning
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Fig. 1: Rocket Lab mid-air capture concept.

to recover the Vulcan booster main engine with a system
comprising a guided parafoil descent and helicopter grasp-
ing [7].

Guided parafoils can be employed to recover valuable
components of the launchers, approach currently adpoted
by SpaceX to retrieve the payload fairings through landing
on autonomous boats [8].

Similar recovery systems are gaining popularity in the
academia and among student associations due to their low-
cost implementation. The increased availability of afford-
able and reliable off-the-shelf components, together with
the growth of compact embedded systems, has in fact led
research institutions to start developing proprietary launch
systems. For instance, Skyward Experimental Rocketry
is employing a recovery system constituted by a Rogallo
wing to recover the Rocksanne 2𝛼 and Hermes V0 rockets.

To guarantee the safety and accuracy of a landing sys-
tem including an autonomous parafoil, a robust guidance
and control system needs to be designed. The modeling of
the system is rendered particularly complex by the highly
coupled dynamics linking the parafoil and the oscillating
payload. For this purpose, models of increasing complex-
ity are studied and verified in a simulation environment
and the guidance system therefore tested. The system un-
der analysis, shown in Figure 2, is composed of a parafoil,
a payload and a set of suspension lines. The control is
achieved by means of flexible flaps located in the tail sec-
tion of the wing. Three dynamic models making use of
different assumptions are analyzed in this work and are re-
ported in increasing complexity order, as proposed in [9].
The differences in the models are due to assumptions linked
to aerodynamic effects, such as the added mass and inertia,
and to the choice of the type of joint linking the two bodies.

To simulate the system, MATLAB-Simulink is used in
the first instance to verify the dynamics of the simplified
models. Following, a Modelica-based approach is deemed
the most appropriate given the mutibody nature of the sys-

Fig. 2: Simplified parafoil-payload components depiction.

tem. Modelica is an open-source object-oriented modeling
language that allows multi-domain simulations. It offers a
standard Mechanics library allowing to design multibody
systems as assembly of rigid-bodies and mechanical inter-
faces. Modelica has been already proven to deliver state-
of-the-art performance when dealing with complex multi-
body space systems [10–12], or underwater autonomous
vehicles [13, 14]. The Modelica model is then exported
from Dymola, the IDE of choice, and imported in Simulink
through an S-function, to evaluate the performance of the
control architecture in a more complex system case.

The proposed G&C system is composed of both low-
level course and yaw control loops and a guidance law
based on the Vector Field (VF) algorithm [15,16]. The VF
has already been successfully used to control small UAVs
[17] but has never been designed to control the landing of
a parafoil-payload system.

In this work, different dynamic models are investigated
and an approach to design a VF-based guidance strategy is
proposed. The paper is organised as follows: in Section 2
different dynamic models are reported, in Section 3 the
low-level control architecture design is investigated and in
Section 4 the guidance system is detailed. The architecture
of the simulator is reported in Section 5. In Section 6 the
results obtained are illustrated, while conclusion and future
work are reported in Section 7.

2. System modeling
In this section, different dynamic models of a jointed

payload-parafoil system are proposed. The system is stud-
ied as composed of two different rigid bodies connected
by a link representing the suspension lines. In details,
three models of increasing complexity are proposed based
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on different assumptions. The suggested approach follows
the relevant literature on the subject [9, 18]. In the models
listed hereby, the main differences lie both in the number of
Degrees of Freedom (DOF), and in the nature of the forces
and torques acting on either the parafoil or the payload.

6DOF The parafoil and the payload are rigidly connected by
means of the suspension lines. This means imposing
that the parafoil and the payload have the same atti-
tude. In this model, the apparent mass and inertia are
not taken into account.

6DOF+ The parafoil and the payload are rigidly connected by
means of the suspension lines, similarly to the 6DOF
model. Here, the apparent mass and inertia are taken
into account, and the moments generate by the forces
displaced with respect to the system center of mass.

9DOF The parafoil and the payload are rigidly connected to
a spherical joint. The resulting model dynamics is
closer to reality and allows decoupling the attitudes
of the parafoil and the one of the payload. The bodies’
yaw dynamics are, nevertheless, coupled by means of
a spring-damper mechanism, as in [9, 18]. The effect
of all forces and torques as in the 6DOF+ model is
accounted for.

2.1 Kinematics
Figure 3 shows the adopted reference frames: an inertial-

fixed frame F𝐼 , three body-fixed frame (located in the
Center of Mass (CM) of the payload F𝐵, in the CM of
the parafoil F𝑃 and in the one of the overall system F𝐶𝑀 )
and a wind frame F𝑊 . The inertial frame is selected with
a North-East-Down (NED) convention. In what follows
the Earth curvature is neglected. The origin of the wind
frame coincides with the origin of the body-fixed frame of
the parafoil, and has the axes rotated by two aerodynamic
angles 𝛼𝑝 and 𝛽𝑝 , following the standard aerospace con-
vention [19]. Further details about the definition of these
angles are reported in Section 2.2.1. In this work, the kine-
matic quantities related to the parafoil are denoted with
the subscript p, whereas the ones linked to the body (also
referred to as payload) are reported with the subscript b.
Note that in the two 6DOF and 6DOF+ models F𝐵 and F𝑃

have the same attitude due to the rigid nature of the joint
C.

The reference frame F𝐶 is oriented as the inertial one
F𝐼 . It follows that its position 𝑋𝑐 can be expressed as:

¤𝑋𝑐 = 𝑉𝑐 (1)

where 𝑉𝐶 represents the C velocity in the F𝐼 frame.
The vector 𝜉𝑝 collects the derivative of the Euler Angles

of the parafoil, defined as 𝜉𝑝 = [ ¤𝜙𝑝 , ¤𝜃𝑝 , ¤𝜓𝑝]𝑇 using the

Fig. 3: Reference frames: inertial frame {F𝐼 }, parafoil
frame {F𝑃}, payload frame {F𝐵}, C frame {F𝐶}.
Adapted from [18].

3-2-1 sequence of rotations. In turn, it is related to the
angular rates 𝜔𝑝 = [𝑝𝑝 , 𝑞𝑝 , 𝑟𝑝]𝑇 as:

𝜉𝑝 =


1 𝑠𝜙𝑝

𝑡𝜃𝑝 𝑐𝜙𝑝
𝑡𝜃𝑝

0 𝑐𝜙𝑝
−𝑠𝜙𝑝

0 𝑠𝜙𝑝
/𝑐𝜃𝑝 𝑐𝜙𝑝

/𝑐𝜃𝑝

 𝜔𝑝 (2)

where 𝑐 ( ·) = cos (·), 𝑠 ( ·) = sin (·). Similar relations apply
to the body 𝜉𝑏 and respective rates 𝜔𝑏 .

Remark 1. The angular rates of the parafoil and of the
payload are equivalent in the 6DOF and 6DOF+ models.
As previously explained, 𝜔𝑝 and 𝜔𝑏 do not coincide in the
9DOF model since the attitudes are decoupled due to the
spherical joint.

Remark 2. Hereafter, only the 9DOF model is pre-
sented for conciseness. Obtaining the 6DOF and 6DOF+
is possible by appropriate modifications of the kinematic
and dynamic equations.

It is possible to compute the velocity of the parafoil
expressed in F𝑃 (hence 𝑉𝑝) and of the payload (𝑉𝑏) in F𝐵

starting from the velocity of point C:
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𝑉𝑝 = R𝑝 (𝜉𝑝)𝑉𝐶 + 𝜔𝑝 ∧ 𝑋𝑐𝑝

𝑉𝑏 = R𝑏 (𝜉𝑏)𝑉𝐶 + 𝜔𝑏 ∧ 𝑋𝑐𝑏

(3)

where 𝑋𝑐𝑝 and 𝑋𝑐𝑏 represent the distances from F𝐶 to F𝑃

and F𝐵, respectively. R𝑝 and R𝑏 are the 3-2-1 rotation
matrices from F𝐼 to F𝑃 and F𝐵 by the Euler angles 𝜉𝑝 and
𝜉𝑏 , respectively.

For example:

R𝑝 (𝜉𝑝) =
𝑐𝜃𝑝𝑐𝜓𝑝

𝑐𝜃𝑝 𝑠𝜓𝑝
−𝑠𝜃𝑝

𝑠𝜙𝑝
𝑠𝜃𝑝𝑐𝜓𝑝

− 𝑐𝜙𝑝
𝑠𝜓𝑝

𝑠𝜙𝑝
𝑠𝜃𝑝 𝑠𝜓𝑝

+ 𝑐𝜙𝑝
𝑐𝜓𝑝

𝑠𝜙𝑝
𝑐𝜃𝑝

𝑐𝜙𝑝
𝑠𝜃𝑝𝑐𝜓𝑝

+ 𝑠𝜙𝑝
𝑠𝜓𝑝

𝑐𝜙𝑝
𝑠𝜃𝑝 𝑠𝜓𝑝

− 𝑠𝜙𝑝
𝑐𝜓𝑝

𝑐𝜙𝑝
𝑐𝜃𝑝

 .
(4)

2.2 Dynamics
In this section, the dynamic effects acting on the sys-

tem are studied, and the overall dynamic models derived
accordingly.

2.2.1 Aerodynamic angles
The aerodynamic coefficients used to model the aerody-

namic effects such as drag and lift occurring on the parafoil,
are typically modeled as function of the angle of attack 𝛼𝑝

and side-slip angle 𝛽𝑝 of the parafoil, expressed as:

𝑉AIR𝑝
=

√︃
𝑢2𝑝 + 𝑣2𝑝 + 𝑤2

𝑝

𝛼𝑝 = tan−1
(
𝑤𝑝

𝑢𝑝

)
𝛽𝑝 = sin−1

(
𝑣𝑝

𝑉AIR𝑝

) (5)

where 𝑉𝐴𝐼𝑅𝑝
commonly named as airspeed. The com-

ponents of the parafoil velocity expressed in frame F𝑃

are collected in the vector 𝑉𝑝 = [𝑢𝑝 , 𝑣𝑝 , 𝑤𝑝]𝑇 . Simi-
lar reasoning holds true for the payload with appropriate
substitutions.

2.2.2 Translational dynamics
The translational dynamics equations, written for both

the parafoil and payload, can be expressed as:

𝑚𝑝𝑎𝑝 = 𝑊 𝑝 + 𝐹 𝑝 + 𝐹𝑎𝑝𝑝 + 𝑅𝑝 + Δ𝐹 𝑝 (6)
𝑚𝑏𝑎𝑏 = 𝑊𝑏 + 𝐹𝑏 + 𝑅𝑏 (7)

where:

• 𝑚𝑝 and 𝑚𝑏 are the masses of the parafoil and the
payload, respectively;

• 𝑎𝑝 and 𝑎𝑏 are the accelerations of parafoil and payload
in F𝑃 and F𝐵, respectively;

• 𝑊 𝑝 and 𝑊𝑏 are the weight forces of parafoil and pay-
load expressed in the F𝑃 and F𝐵 frames, respectively;

• 𝐹 𝑝 and 𝐹𝑏 are the aerodynamic forces of parafoil and
payload expressed in the F𝑃 and F𝐵 frames, respec-
tively;

• 𝐹𝑎𝑝𝑝 is the vector of the apparent forces expressed in
the F𝑃 frame;

• 𝑅𝑝 and 𝑅𝑏 are the reaction forces exchanged at the
joint 𝐶 and expressed in the F𝑃 and F𝐵 frames, re-
spectively;

• Δ𝐹 𝑝 the forces generated by the control flaps deflec-
tions and expressed in the F𝑃 frame.

The weight force of the parafoil expressed in frame F𝑃 can
be computed as:

𝑊 𝑝 = 𝑚𝑝𝑔


−𝑠𝜃𝑝
𝑠𝜙𝑝

𝑐𝜃𝑝
𝑐𝜙𝑝

𝑐𝜃𝑝

 (8)

The weight force of the payload expressed in frame F𝐵 can
be computed in the same fashion.

The aerodynamic forces acting on the parafoil can be
modeled in the wind frame F𝑊 as:

𝐹 𝑝 =
1

2
𝜌𝑉2

AIR𝑝
𝑆𝑝


−𝐶𝐷,𝑝

0
−𝐶𝐿,𝑝

 (9)

where 𝑆𝑝 is the surface of the parafoil, 𝜌 is the air density
and 𝑉AIR𝑝

the parafoil airspeed. The characteristic curves
of the aerodynamic coefficients expressed with respect to
𝛼𝑝 use a quadratic approximation for the drag force, and
a linear one for the lift force. These choices are repre-
sentative of the aerodynamic forces in the majority of the
operating conditions [9]. Further care must be taken in case
stall conditions need to be investigated. The aerodynamic
coefficients of the parafoil can be modeled as:

𝐶𝐷,𝑝 = 𝐶𝐷,𝑝0
+ 𝐶𝐷,𝑝𝛼

𝛼2
𝑝

𝐶𝐿,𝑝 = 𝐶𝐿,𝑝0
+ 𝐶𝐿,𝑝𝛼

𝛼𝑝

(10)

In a similar fashion, the aerodynamic forces experienced
by the payload can be described as:

𝐹𝑏 =
1

2
𝜌𝑉2

AIR𝑏
𝑆𝑏


−𝐶𝐷,𝑏

0
0

 (11)

where 𝐶𝐷,𝑏 = 𝐶𝐷,𝑏0
+ 𝐶𝐷,𝑏𝛼

𝛼2
𝑏
.

Following, it is possible to rotate the aerodynamic forces
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𝐹 𝑝 and 𝐹𝑏 from the wind to the parafoil and payload frames
as:

𝐹 𝑝 =


𝑐𝛼𝑝

𝑐𝛽𝑝
−𝑐𝛼𝑝

𝑠𝛽𝑝
−𝑠𝛼𝑝

𝑠𝛽𝑝
𝑐𝛽𝑝

0
𝑠𝛼𝑝

𝑐𝛽𝑝
−𝑠𝛼𝑝

𝑠𝛽𝑝
𝑐𝛼𝑝

 𝐹 𝑝

𝐹𝑏 =


𝑐𝛼𝑏

𝑐𝛽𝑏 −𝑐𝛼𝑏
𝑠𝛽𝑏 −𝑠𝛼𝑏

𝑠𝛽𝑏 𝑐𝛽𝑏 0
𝑠𝛼𝑏

𝑐𝛽𝑏 −𝑠𝛼𝑏
𝑠𝛽𝑏 𝑐𝛼𝑏

 𝐹𝑏

(12)

The apparent forces account for the effects of the volume
of air displaced by the parafoil as a fictitious increase of
the mass of the system. This contribution can be expressed
as:

𝐹𝑎𝑝𝑝 = −𝑀𝐹𝑎𝑝 − 𝜔𝑝 ∧ 𝑀𝐹𝑉𝑝 (13)

Further details related to the computation of the apparent
mass matrix 𝑀𝐹 are discussed in Section 2.2.4.

𝑅𝑝 and 𝑅𝑏 represent the reaction forces exchanged at
the joint, further discussed in [9]. To conclude, the effects
of the control force Δ𝐹 𝑝 are analyzed in Section 2.3.

2.2.3 Rotational dynamics
The balance of moments for both the parafoil and pay-

load are:

𝐼𝑝 ¤𝜔𝑝 +Ω𝑝 𝐼𝑝𝜔𝑝 = 𝑀 𝑝 + 𝑀𝑎𝑝𝑝 + 𝑀𝑅𝑝 + Δ𝑀 𝑝 (14)
𝐼𝑏 ¤𝜔𝑏 +Ω𝑏 𝐼𝑏𝜔𝑏 = 𝑀𝑅𝑏 (15)

where:

• 𝐼𝑝 and 𝐼𝑏 are the inertia matrices of the parafoil and
the payload, respectively;

• ¤𝜔𝑝 and ¤𝜔𝑏 represent the angular accelerations of F𝑃

and F𝐵, respectively;
• Ω𝑝 and Ω𝑏 are the skew-symmetric matrices of 𝜔𝑝

and 𝜔𝑏 , respectively;
• 𝑀 𝑝 is the vector of the aerodynamic moments ex-

pressed in frame F𝑃;
• 𝑀𝑎𝑝𝑝 is the vector of the apparent moments expressed

in frame F𝑃;
• 𝑀𝑅𝑝 and 𝑀𝑅𝑏 are the moments liked to the reaction

forces 𝑅𝑝 and 𝑅𝑏 and to the twisting resistance at the
joint expressed in frame F𝑃 and F𝐵, respectively;

• Δ𝑀 𝑝 the moments generated by the control flaps de-
flections and expressed in the F𝑃 frame.

The aerodynamic moments exerted on the parafoil are
defined as:

𝑀 𝑝 =
1

2
𝜌𝑆𝑝𝑉

2
AIR𝑝


𝐶𝑙

𝐶𝑚

𝐶𝑛

 ◦

𝑏

𝑐

𝑏

 (16)

Fig. 4: Parafoil geometry (from [20]).

where ◦ is the element wise multiplication, 𝑏 is the
wingspan of the parafoil and 𝑐 is its main chord, as re-
ported in Figure 4.

It is thus possible to define the aerodynamic coefficients
as:

𝐶𝑙 = 𝐶𝑙𝜙𝜙𝑝 + 𝐶𝑙𝑝𝑏
𝑝𝑝

2𝑉AIR𝑝

𝐶𝑚 = 𝐶𝑚0 + 𝐶𝑚𝛼
𝛼𝑝 + 𝐶𝑚𝑞

𝑐
𝑞𝑝

2𝑉AIR𝑝

𝐶𝑟 = 𝐶𝑛𝑟 𝑏
𝑟𝑝

2𝑉AIR𝑝

(17)

The apparent moments are modeled as:

𝑀𝑎𝑝𝑝 = −𝐼𝐹 ¤𝜔𝑝 −Ω𝑝 𝐼𝐹𝜔𝑝 −𝑉𝑝 ∧ 𝑀𝐹𝑉𝑝 (18)

where 𝐼𝐹 represents the apparent inertia tensor, further
discussed in Section 2.2.4.

𝑀𝑅𝑝 and 𝑀𝑅𝑏 represent the sum of the moments gener-
ated by the reaction forces 𝑅𝑝 and 𝑅𝑏 around point C and
of the resistance moments to twisting. The spring-damper
system simulating the mechanical damping and stiffness
of the suspension line has coefficients 𝑘𝑘 and 𝑐𝑐 . Further
details can be found in Equations (26)-(27) of [18].

To conclude, the effects of the moments Δ𝑀 𝑝 generated
by the control flaps are analyzed in Section 2.3.

2.2.4 Apparent mass and apparent inertia
A moving body immersed in a fluid induces into motion

the surrounding fluid as well. While for standard air vehi-
cles the added mass effects have negligible contributions,
for lightly loaded ones, such as parafoils, these terms need
to be kept into account. To compute the apparent mass, it is
possible to employ the Lissman and Brown formulas [20]:

𝑀𝐹 =


𝐴 0 0
0 𝐵 0
0 0 𝐶

 (19)
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where:

𝑘𝑎 = 0.848𝜋/4 𝐴 = 𝑘𝑎𝜌𝑡
2𝑏

(
1 + 8

3𝑎
3
)

𝑘𝑏 = 0.339𝜋/4 𝐵 = 𝑘𝑏𝜌[𝑡2 + 2𝑎2 (1 − 𝑡2)]𝑐
𝑘𝑐 = AR

1+AR
𝜋
4 𝐶 = 𝑘𝑐𝜌𝑐

2𝑏
√︁
1 + 2𝑎2 (1 − 𝑡2)

(20)

with 𝑎 the pronounced arch to the canopy shape at the
median line, reported in Figure 4, and AR the aspect ratio
of the wing defined as AR = 𝑏/𝑐.

The inertia tensor can be computed in a similar fashion
as:

𝐼𝐹 =


𝐼𝐴 0 0
0 𝐼𝐵 0
0 0 𝐼𝐶

 (21)

where:

𝑘∗𝑎 = 0.055 AR
1+AR 𝐼𝐴 = 𝑘∗𝑎𝜌𝑐

2𝑏3

𝑘∗
𝑏
= 0.0308 AR

1+AR 𝐼𝐵 = 𝑘∗
𝑏
𝜌𝑐4𝑏

[
1 + 𝜋

6 (1 + AR)AR𝑎2𝑡2
]

𝑘∗𝑐 = 0.0555 𝐼𝐶 = 𝑘∗𝑐𝜌𝑡
2𝑏3 (1 + 8𝑎2)

(22)

2.3 The Control surfaces
The control surfaces of the wings are constituted by two

flaps, located at the trail of the canopy, and independently
actuated one from the other. To steer the system, the flaps
need to be deflected asymmetrically, i.e. the flaps angles,
namely 𝛿𝑙 (left) and 𝛿𝑟 (right), need to have different values.
This generates rolling and yawing moments around the CM
of the parafoil that in turn induce the system into rotational
motions. To develop the control strategy, the effects of
the flaps deflections can be summarized in two quantities,
defined as:

𝛿𝑠 = min(𝛿𝑙 , 𝛿𝑟 )
𝛿𝑎 = 𝛿𝑟 − 𝛿𝑙

(23)

where 𝛿𝑠 is the symmetric deflection of the two flaps, that
only affect the lateral dynamics by producing a lateral slid-
ing, and 𝛿𝑎 is the difference in the flap deflections. When
the two flaps are symmetrically actuated, the drag force on
the parafoil increases and the lift decreases. This means
that the airspeed and the efficiency of the wing decrease
accordingly, having a braking effect on the system.

The deflections of the flaps cause additional forces and
moments on the parafoil, reported in Equations (24) and
(25), respectively:

Δ𝐹 𝑝 =
1

2
𝜌𝑆𝑝𝑉

2
AIR𝑝

𝑄

[
𝛿𝑎
𝛿𝑠

]
(24)

where the transformation from wind to parafoil frame has

been embedded in 𝑄 as:

𝑄 =
[𝐶𝐿𝛿𝑎

𝑤𝑝 − 𝐶𝐷𝛿𝑎
𝑢𝑝]sign(𝛿𝑎) 𝐶𝐿𝛿𝑠

𝑤𝑝 − 𝐶𝐷𝛿𝑠
𝑢𝑝

−𝐶𝐷𝛿𝑎
𝑣𝑝sign(𝛿𝑎) −𝐶𝐷𝛿𝑠

𝑣𝑝
[−𝐶𝐿𝛿𝑎

𝑢𝑝 − 𝐶𝐷𝛿𝑎
𝑤𝑝 −𝐶𝐿𝛿𝑠

𝑢𝑝 − 𝐶𝐷𝛿𝑠
𝑤𝑝

 .
The control moments are expressed as:

Δ𝑀 𝑝 =
1

2
𝜌𝑆𝑝𝑉

2
AIR𝑝


𝐶𝑙𝛿𝑎

𝑏/𝑡 0
0 0

𝐶𝑛𝛿𝑎
𝑏/𝑡 0


[
𝛿𝑎
𝛿𝑠

]
(25)

where 𝑡 represents the thickness of the parafoil, shown in
Figure 4.

2.4 Wind models
To investigate the stability of the system under perturbed

conditions and to test the controller performance, wind dis-
turbances have been modeled. Since this study considers
only low altitude operating conditions, the Dryden turbu-
lence model and a constant wind are considered. The
Dryden model treats the linear and angular velocity com-
ponents of continuous gusts as spatially varying stochastic
processes, and is characterized by rational power spectral
densities [21].

3. Low-level control system
As introduced in Section 2.3, imposing a symmetrical

deflection is equivalent to initiating a braking maneuver.
This control action increases the drag on the wing while
decreases its efficiency. On the other hand, an asymmetri-
cal deflection generates rolling and yawing moments that
in turn allow the wing to move sideways. Therefore, 𝛿𝑎 is
chosen as the control variable for the proposed low-level
architecture. Additionally, it is possible to select one of the
two flap deflections to be equal to 0◦, so to obtain 𝛿𝑠 = 0◦.
This means that, for instance, if 𝛿𝑎 = 10◦, then 𝛿𝑟 = 10◦

and 𝛿𝑙 = 0◦.
As it can be seen in Equation (25), 𝛿𝑎 influences both

the roll and the yaw angles, in turn allowing both to be
used as control variables. Parafoil and payload roll angles
(𝜙𝑝 and 𝜙𝑏) may differ significantly during the turning
maneuvers due to the spherical joint. On the other hand,
due to the damping effect of the joint, payload and parafoil
yaw angles tend to converge to the same values (assumption
further verified in simulation). Therefore, the yaw angle is
chosen for control system design. Additionally, obtaining
the measurement of the yaw angle of the parafoil is found
to be complex due to inertial sensors usually located in the
payload.
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Fig. 5: Yaw angles difference - worst case scenario.

By selecting a maximum value for a step change in the
𝛿𝑎, chosen to be equal to 20◦, it is possible to analyze
the effect on the yaw angles 𝜓𝑝 and 𝜓𝑏 . The difference
between the yaw angle of the parafoil and the one of the
payload for a step of 20◦ in 𝛿𝑎 reference is reported in
Figure 5.

It is possible to notice that, even in the worst case sce-
nario, the maximum difference between the 𝜓𝑝 and 𝜓𝑏

is bounded below 10◦. Is it therefore safe to assume the
following relationship between the measured yaw angle
(𝜓𝑚𝑒𝑎𝑠) and the yaw angles above mentioned:

𝜓𝑚𝑒𝑎𝑠 = 𝜓𝑏 ≈ 𝜓𝑝 (26)

Thus, the yaw controller is structured using two nested
loops, the inner one designed to track the payload yaw rate
¤𝜓𝑏 and the outer one for the yaw angle 𝜓𝑏 . To improve the
accuracy of the desired yaw angle tracking, either a sensor
needs to be positioned on the parafoil, or an appropriate
estimator needs to be designed.

To design the control system, a frequency decoupling
approach is chosen. By guaranteeing that the cutting fre-
quency of the closed-loop function is at least one decade
faster than the outer one, it is possible to tune the two
controllers independently. In particular, the inner loop has
a bandwidth of 7 rad/s, whilst the inner of 0.5 rad/s. In
Figure 6, the control loops are illustrated: 𝐺2 (𝑠) is as in-
tegrator 1

𝑠
, while 𝐺1 (𝑠) is a first order system, having the

transfer function form:

𝐺1 (𝑠) =
𝑘

1 + 𝑠𝜏
(27)

with 𝜏 the time constant of the system.

Fig. 6: Overall yaw control scheme approach.

The yaw rate dynamics can be computed based on Equa-
tion (2) as:

¤𝜓𝑏 = 𝑟𝑏 + 𝑑𝜓𝑏
(28)

where 𝑑𝜓𝑏
embeds all the cross coupling terms due to pitch

and roll. By deriving Equation (28), it is possible to obtain:

¥𝜓𝑏 = ¤𝑟𝑏 + ¤𝑑𝜓𝑏
(29)

=
1

2
𝜌𝑆𝑝𝑏

(
𝐶𝑛𝑟

𝑟𝑏

2𝑉AIR𝑏

+ 𝐶𝑛𝛿𝑎
𝛿𝑎

)
+ ¤𝑑𝜓𝑏

+ 𝑑𝑟𝑏 (30)

where the term 𝑑𝑟𝑏 represents the other dynamics discussed
previously and 𝑉AIR𝑏

the airspeed of the payload at steady
state. By considering ¤𝑑𝜓𝑝

and 𝑑𝑟𝑝 as disturbances and
assuming ¤𝜓𝑏 = 𝑟𝑏 , the yaw dynamics takes the form of
Equation (27).

For the design of 𝑅1 (𝑠) and 𝑅2 (𝑠), a purely proportional
law and a full PID with filtered derivative action are se-
lected, respectively. The presence of the integral action
in the outer open-loop transfer function ensures that step
references can be tracked with zero steady-state error. In
addition, the presence of a second integral action in the
overall open-loop yaw transfer function ensures that ramp
references can be tracked with zero steady-state error as
well.

In presence of wind disturbances, however, using the yaw
angle as guidance variable may not be sufficient since the
system can, despite being correctly oriented, experience
lateral drifting while keeping the same heading. For this
purpose, the payload course angle 𝜒𝑏 , defined as the angle
between i𝐼 and the ground speed vector 𝑉𝑔𝑏 = 𝑉AIR𝑏

+𝑉𝑤

(where 𝑉𝑤 represents the wind vector expressed in F𝐵), is
introduced. In other words, the course angle is the sum of
the yaw angle, the side-slip angle, and the angle between
𝑉AIR𝑏

and𝑉𝑔𝑏 . For this reason, a course-hold loop is added
as well. The yaw reference angle is provided as the sum of a
feed-forward reference course angle (𝜒𝑑) and the output of
a PI regulator controlling the course error angle (𝜒𝑑 − 𝜒𝑏),
as reported in Figure 6. The feed-forward term is explained
by noticing that, when 𝑉𝑤 = 0 and for small values of 𝛽𝑏 ,
then 𝜒𝑏 ≈ 𝜓𝑏 . The controller gains are tuned in order to
minimize course angle response overshoots.
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Fig. 7: Vector field straight-line path-following example.

4. Vector-field path-following
Once the inner control loops are tuned, the guidance loop

can be designed in order to produce a yaw reference angle.
Environmental disturbances, due to their unpredictable na-
ture constitute an additional challenge and require robust
controls to be developed.

To achieve the goal, a Vector-Field path-following ap-
proach can be employed. The reference quantity in the
path-following strategies is represented by the spacial de-
viation from the desired path, namely referred to as cross-
track error. Given the desired path, the initial location of the
vehicle, and its course angle 𝜒𝑏 , solving the path-following
problem means to determine the commanded course angle
that minimizes the cross-track error. The segments of path
to be tracked in the parafoil-payload application can be de-
veloped purely on the horizontal plane, formally the plane
(i𝐼 , j𝐼 ) reported in Figure 3. The VF algorithm is in fact
based on the assumption that the vehicle has a low flight
path angle 𝛾𝑝 = 𝜃𝑝 − 𝛼𝑝 . This allows writing a simplified
model for guidance as:

¤𝑋𝑏 (1) = 𝑉𝑔𝑏 cos 𝜒𝑏 (31)
¤𝑋𝑏 (2) = 𝑉𝑔𝑏 sin 𝜒𝑏 (32)

where ¤𝑋𝑏 is the velocity of the payload in inertial coor-
dinates. In Figure 7 an example of the desired headings
generated by a VF-algorithm for the case of a straight-line
tracking is reported. The assumptions made so far, are
summarized hereby:

1. the yaw angle of the payload is measurable (𝜓𝑚𝑒𝑎𝑠 =

𝜓𝑏);
2. the difference of the yaw angle of the payload and the

one of the payload is bounded (𝜓𝑏 ≈ 𝜓𝑝);

Fig. 8: Straight-line following configuration (adapted from
[16]).

3. the airspeed is constant or slowly varying;
4. the course angle of the payload 𝜒𝑏 is measurable;
5. the flight path angle 𝛾𝑝 is relatively small.

To drive the vehicle to a desired landing location, two
path primitives need to be tracked: a line and an orbit.
These two can be combined upon need and used to reach
the landing point.

4.0.1 Straight-line following
A straight-line can be described with a quantity r, hence

the origin of the path, and q, a unit inertial vector that
indicates the desired direction of travel. The course angle
of the line is:

𝜒𝑞 = atan2
(
q(2)
q(1)

)
(33)

The path-following implementation can be simplified by
changing the reference from the inertial frame to the line
path one. It is possible to define:

𝑅
𝑝

𝑖
=

[
cos 𝜒𝑞 sin 𝜒𝑞
− sin 𝜒𝑞 cos 𝜒𝑞

]
(34)

The cross-track error vector can be defined as:

e𝑝 =

[
𝑒𝑝𝑥
𝑒𝑝𝑦

]
= 𝑅

𝑝

𝑖
(p − r) (35)

where p is the position of the system in the inertial frame.
The quantities can be appreciated in Figure 8.

The objective is to design the vector field so that when
𝑒𝑝𝑦 is large the system is directed to approach the path
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Fig. 9: Orbit following configuration (adapted from [15]).

with course 𝜒∞ ∈ [0, 𝜋
2 ), and so that as 𝑒𝑝𝑦 approaches

zero, the desired course approaches zero too. We define
the desired course as:

𝜒𝑑 (𝑒𝑝𝑦) = 𝜒𝑞 − 𝜒∞
2

𝜋
tan−1 (𝑘𝑙𝑖𝑛𝑒𝑒𝑝𝑦) (36)

where 𝑘𝑙𝑖𝑛𝑒 is a positive constant that influences the rate
of transition from 𝜒∞ to zero. Large values of 𝑘𝑙𝑖𝑛𝑒
cause abrupt transitions, while small values cause longer
and smoother transitions in the desired course. Clearly,
− 𝜋

2 < 𝜒𝑑 (𝑒𝑝𝑦) < 𝜋
2 . In [15] formal proof of stability of

Equation (36) is given.
One note should be done regarding 𝜒𝑞: the given for-

mula makes the system not turning coherently with the
shortest path. As an example, if the angle is slightly less
than +𝜋 and the course is zero, the system turns right to
align with the path. As a counterexample, if 𝜒𝑞 is slightly
less than −𝜋 the system will turn left instead of right. To
address the issue, it is possible to define 𝜒𝑞 as:

𝜒𝑞 = atan2(q(2), p(1)) + 2𝜋𝑚 (37)

where 𝑚 is a constant such as 𝜒𝑞 − 𝜒 ∈ [−𝜋;+𝜋].

4.0.2 Orbit following
Similarly to the line, it is possible to define 𝜆 = ±1 to

denote a clockwise or counter-clockwise orbit, c to repre-
sent the coordinates of the center of the orbit, and 𝜚 the
orbit radius. In Figure 9 the definition of 𝜑 (phase angle of
relative position) can be seen.

Here, a course field for the orbit path is given by:

𝜒𝑑 (𝜑) = 𝜑 + 𝜆

[
𝜋

2
+ tan−1

(
𝑘𝑜𝑟𝑏𝑖𝑡

(
𝑑

𝜚

))]
. (38)

Note that 𝑘𝑜𝑟𝑏𝑖𝑡 is a positive tuning parameter that spec-
ifies the rate of transition from 𝜆𝜋/2 to zero, and 𝑑 is
always positive being the distance to the orbit center. The
cross-track error is here evidenced as 𝑑 = 𝑑 − 𝜚. Further
details about this control law can be found in [16] and [15].
Also here, 𝜑 should be computed as follows to avoid the
aforementioned problem:

𝜑 = atan2(p(2) − c(2), p(1) − c(1)) + 2𝜋𝑚. (39)

4.1 Path manager
In order to steer the payload towards the desired landing

location it is possible to combine a straight-line segment,
leading from the starting point an area above the landing
point, with a final orbit. Therefore, it is possible to imple-
ment a path manager that switches from the straight-line
path-following to the orbit path-following law when the
parachute is sufficiently close the the orbit. It is therefore
possible to define 𝑑boundary as:

𝑑boundary ∈
(
3

2
𝜚, 2𝜚

)
.

When the distance of the system from the landing point is
less than 𝑑boundary, the path manager hot-switches to the
loiter control law.

To steer the system towards the orbit center, it is possible
to start noticing that the descent rate is constant. Therefore,
the estimated time before landing is approximately 𝑡land '
ℎ/ ¤ℎ, where ℎ is the current altitude. Moreover, as a first
approximation, it is possible to compute the time required
to the system to converge to the center as:

𝑑final =
√︁
ℎ2 + 𝜚2

𝑡toCenter = 𝑑final/
√︃
¤ℎ2 +𝑉2

AIR𝑝

(40)

When 𝑡land < 𝑡toCenter, the orbit radius 𝜚 is reduced to a
very small value; this avoids the necessity of compute a
new straight-line reference for moving from the current
position to the center.

5. Simulator architecture
The plant models described in Section 2, as well as

the G&C algorithms, are implemented in the MATLAB-
Simulink environment (Figure 10). This includes a plant
subsystem containing three different variants, one per each
model (6DOF, 6DOF+, and 9DOF). The other subsystem
represent the guidance, control and the environmental dis-
turbances, and do not require further explanation.

The Modelica model has been implemented in the Dy-
mola IDE, as in Figure 11. To this purpose, the Multibody
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Fig. 10: Simulink base subsystem diagram view.

Fig. 11: Parafoil-payload system superclass implemented
in Dymola.

package of the Modelica Standard Library (MSL) [22] has
been employed: the latter can be seen via the usage of
the Body class for modeling the parafoil and the payload,
and the connecting elements among them. All the forces
and torques related to either one or the other, are enclosed
in the AeroParachute and AeroBody classes, including
forces and torques described in Section 2. In this model,
the inertial-referenced wind vector is an input of the whole
model, which is then compiled as S-function and embed-
ded in the Simulink simulator.

Param. Value Param. Value
𝑚𝑝 13 𝑚𝑏 135
a 1 b 7
𝑐 3 𝑡 3
𝑆𝑏 0.500 𝑆𝑝 21
‖𝑋𝑐𝑏 ‖ 0.500 ‖𝑋𝑐𝑝 ‖ 7.500
𝐼𝑏 diag(5.620) 𝐼𝑝 (1, 1) 53.180
𝐼𝑝 (2, 2) 9.840 𝐼𝑝 (3, 3) 62.830
𝐶𝐿,𝑝0

0.400 𝐶𝐿,𝑝𝛼
2

𝐶𝐷,𝑝0
0.150 𝐶𝐷,𝑝𝛼

1
𝐶𝐷,𝑏0

0.150 𝐶𝐷,𝑏𝛼
1

𝐶𝑙𝑝 -0.100 𝐶𝑙𝜙 -0.050
𝐶𝑚𝑞

-2 𝐶𝑚0
0.018

𝐶𝑛𝑟 -0.070 𝐶𝑚𝛼
-0.200

𝐶𝐿𝛿𝑎
1e-4 𝐶𝐿𝛿𝑠

0.210
𝐶𝐷𝛿𝑎

1e-4 𝐶𝐷𝛿𝑠
0.300

𝐶𝑙𝛿𝑎
21e-4 𝐶𝑛𝛿𝑎

0.004
𝑘𝑘 0.350 𝑐𝑐 4.700

Table 1: Model parameters (reported in SI units).

6. Simulation results
In this section, the guidance and control system is veri-

fied and results obtained are discussed. All the parameters
used for the models are reported in Table 6. In all simu-
lations, the parafoil-payload system is set to start with an
initial position with respect to F𝐼 of [0, 0,−1000] m and
velocity of [6, 0, 0.1] m/s. The initial Euler angles are set
to zero, as well as their respective angular velocities. In
the following figures, only the positions of the parafoil are
shown for simplicity.

In Figure 12, the response to a commanded step in yaw
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Fig. 12: Comparison of the three models response to a yaw
step input.

is shown, to highlight the performance of the three models:
it is noticeable how the dynamics of the 6DOF and 6DOF+
are comparable, with the 9DOF exhibiting low amplitude
oscillations due to the swinging payload. Given that the
differences found between the 6DOF and 6DOF+ models
are found to be negligible, hereafter, only the 6DOF+ is
used for comparison with the 9DOF.

Figures 13 and 14 show the performance of the straight-
line path-following guidance on both models. In particular,
Figure 13 reports the view from the (i𝐼 − j𝐼 ) plane of the
vehicle trajectory, whereas the Figure 14 shows the cross-
track error, which asymptotically reaches zero as desired.
The VF has been tuned so to achieve the least oscillations
in both cases, with a 𝜒∞ = 80◦ and 𝑘𝑙𝑖𝑛𝑒 = 0.01.

In Figures 15 and 16 the trajectory and the cross-track
error 𝑑 for an orbiting maneuver are reported, respectively.
Also in this case scenario, the cross-track error is found to
reach zero steady-state values by selecting 𝑘𝑜𝑟𝑏𝑖𝑡 = 1.

Similarly, Figures 17 and 18 report trajectory and cross-
track error for a path composed of both a straight-line and
of an orbit. Despite the abrupt change in the reference
course angle generated in transition instant (Time = 75 s),
the VF is eventually capable of achieve zero steady-state
error.

Lastly, the 9DOF model is simulated in presence of wind
disturbances. Both constant wind vector with magnitude
of 2 m/s and a fixed angle with respect to i𝐼 of 𝜅 = 90◦ is
applied, as well as a Dryden turbulence model described
in Section 2.4. Furthermore, the path manager is set up so
to steer the system towards the center of the orbit before

0 50 100 150 200 250 300

[m]

-50

0

50

100

150

200

250

300

350

400

450

[m
]

Trajectory XY

6DOF+

reference

9DOF

Fig. 13: Vehicle trajectory in the (i𝐼 − j𝐼 ) plane for a
straight-line path maneuver.

Fig. 14: Cross-track error for a straight-line path maneuver.

touchdown. Figures 19 and 20 show the parafoil-payload
system trajectory in the horizontal and vertical planes, re-
spectively. Note that in Figure 20, the sign of the altitude
is flipped with respect to the NED convention previously
introduced. It is shown that even in presence of distur-
bances, does not generate unstable dynamics during the
descent and landing. Nevertheless, more extensive simu-
lation campaigns are to be performed under more realistic
environmental conditions.

7. Conclusion and future work
In this work, the Vector Field path-following strategy

has been applied for the first time to the case of parafoil-
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Fig. 15: Vehicle trajectory in the (i𝐼 − j𝐼 ) plane for an orbit
maneuver.

Fig. 16: Cross track error for an orbit maneuver.

payload systems. This is specifically significant, since the
ability of such an algorithm to autonomously drive towards
a landing point can be exploited by atmospheric re-entry
vehicles and increase system safety and cost-effectiveness.
To achieve this goal, three different models have been de-
veloped and implemented in a simulation environment.
A 9DOF model has been developed using Modelica lan-
guage, better suited than causal simulation environments
(e.g. Simulink) for multibody systems representations.
The capability to switch with ease between models of dif-
ferent complexity, makes it also easier to evaluate the per-
formance of G&C system and its robustness to different
mechanical and aerodynamic assumptions.
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Fig. 17: Vehicle trajectory in the (i𝐼 − j𝐼 ) plane for a com-
bined maneuver (straight-line and orbit).

Fig. 18: Cross track error for a combined maneuver
(straight-line and orbit).

An easy-to-design control system for course angle track-
ing has been proposed. The selected approach keeps into
account the limitation on the quantities that can be po-
tentially measured onboard. Where needed, simplifying
assumptions are highlighted and further verified in simu-
lation.

The proposed implementation of the Vector Field path-
following laws shows that this G&C strategy is a valid
candidate for further studies and in-field tests. The straight-
line and orbit primitives can be accurately tracked both in
absence and presence of wind disturbances. These pre-
liminary results are independent of the selected model for
verification.
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Fig. 19: Total path tracking with wind disturbances
((i𝐼 , j𝐼 ) plane).
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Fig. 20: Total path tracking with wind disturbances
((i𝐼 , k𝐼 ) plane).

Despite these achievements, several improvements are
considered for future developments:

1. the models can be further refined and should include
a payload resembling an actual launch vehicle, with
consequent changes in the whole system dynamics;

2. the parafoil model can include the deployment shock
effect at the beginning of the controlled descent;

3. wind models can be extended to include gusts;
4. actuation strings dynamics can be included in the

model and in the control system synthesis process;
5. the simulations can include an extended flight enve-

lope at higher altitudes;
6. Monte-Carlo campaigns can be conduced to examine

the method validity also in presence of model uncer-
tainties;

7. the feasibility of a mid-air capture while following
a line and under atmospheric disturbances, can be
investigated;

8. the control variable 𝛿𝑠 can be exploited to achieve a
better stability or for the inclusion of more precise
braking maneuvers at terminal landing.
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