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Abstract— Long standing challenges in adaptive bipedal
walking control (i.e. control taking care of unknown robot
parameters) were to unify the control design instead of de-
signing multiple controllers for different walking phases as
well as to bypass computing constraint forces, since it often
leads to complex designs. A few attempts to design a single
controller for all walking phases ignored or oversimplified the
constraint forces. However, these forces are state-dependent
and may lead to conservative performance or instability if
not countered properly. This work proposes an innovative
adaptive control method, based on artificial time delay control,
which covers the entire bipedal walking phase and provides
robustness against state-dependent unmodelled dynamics such
as constraint forces and external impulsive forces arising during
walking. Studies using a high fidelity simulator under various
forms of disturbances show the effectiveness of the proposed
design over the state of the art.

I. INTRODUCTION

Owing to their capability to work in diverse applications
like humans, biped robots have attained a great amount
of research interest in the past decades [1]–[3]. Successful
bipedal walking demands accurate tracking of desired leg
motion [4]. However, a biped dynamics is usually complex,
involves multiple degrees-of-freedom (DoF) and highly non-
linear in nature [5]. Consequently, the research on control
of bipedal walking has inevitably looked beyond the model
based control strategies [4], [6]–[8] and toward adaptive
control [9]–[12] to tackle limited parametric knowledge.

Artificial time delay based control is a control strategy
requiring limited system knowledge: it was proposed in
[13], [14], by approximating uncertainties via input and
state information of immediate past instant. Owing to its
simplicity in implementation and significantly low compu-
tation burden, adaptive control using artificial delay found
remarkable acceptance in the robotics community in the last
decade [15]–[19], including bipedal robot control [20]–[22].
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Depending on the model used for control design, literature
of bipedal walking control can be broadly classified under
two approaches: (i) one relies on unconstrained leg dynamics
(cf. [4], [22]) and (ii) another relies on multi-model dynamics
(cf. [6]–[10]) accounting for various stages of walking (e.g.,
single support stage, double support stage (cf. [5] for the
definitions). Despite being easier for control design, the
first approach ignores the constraint forces when both feet
are on ground stemming from the dual support stage; the
second approach, however, considers different dynamics for
each walking stages requiring either a different individual
controller [6]–[8] for each walking stage or relatively com-
plicated control design to solve/estimate for the constraint
forces [9], [10]. Considering the individual pros and cons of
these two approaches, a potential solution can be to design
a controller based on the first approach, but considering the
constraint forces as unknown/unmodelled dynamics.

Therefore, based on the proven benefits of artificial time
delay based designs over other adaptive schemes, an obvious
question arises: can the state-of-the-art biped controllers [4],
[22] be extended to handle the unmodelled constraint forces?
Unfortunately, we do not get a positive answer for this
question as constraint forces are state-dependent terms and
cannot be bounded a priori [6]–[8]; whereas, [4], [22] cannot
handle state-dependent unknown uncertainties (cf. [23] and
discussion later in Remark 4). In fact, under such uncertainty
setting, instability cannot be ruled out for adaptive controllers
which are built on the assumption of a priori bounded
uncertainty (cf. [24]).

In view of the above discussion, an adaptive-robust TDE
(ARTDE) scheme is designed for bipedal walking with the
following contributions:

• The proposed controller is simpler as it does not require
different controllers for different phases of walking
motion (cf. [6]–[8]) or does not require to compute
constraint forces separately (cf. [9], [10]).

• Unlike [20]–[22], the proposed adaptive TDE method is
also robust (hence called adaptive-robust TDE) to con-
straint forces, which are considered as state-dependent
unmodelled dynamics.

Further, extensive study using high fidelity simulator has
shown remarkable accuracy of ARTDE over the state-of-the-
art during bipedal walking motion.

The following notations are used in the paper: (•)L denotes
that (•)(t) is delayed as (•)(t−L); ||• || denotes 2-norm and
I denotes Identity matrix.
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II. SYSTEM DYNAMICS AND PROBLEM FORMULATION

Let us consider the following class of n degrees-of-
freedom (DOFs) dynamics for the biped robot [4], [22]

M(q)q̈+H(q, q̇) = τ, (1)

where q ∈ Rn is the joint position; τ ∈ Rn is the control
input; M(q)∈Rn×n is the mass/inertia matrix and H(q, q̇)∈
Rn combines other system dynamics terms (e.g., Coriolis,
friction, gravity) including unmodelled dynamics and distur-
bances. The following standard property holds

Property ([4], [20]–[22]): The matrix M(q) is uniformly
positive definite for all q, i.e., ∃ψ1,ψ2 ∈ R+ such that

ψ1I≤M(q)≤ ψ2I⇒ (1/ψ2)I≤M−1(q)≤ (1/ψ1)I. (2)

Remark 1 (On the system dynamics): As an alternative to
the unconstrained system dynamics (1), some researchers
have proposed constrained multi-modal dynamics (cf. [6]–
[10]). However, the latter approach involves different dynam-
ics for different walking phases (e.g., single support, double
support, impulse etc.), requiring different controller for each
phases, making the control design and analysis comparatively
difficult [8]. Dynamics (1) can simplify the control design
provided it can handle the ground reaction forces acting as
impulsive unmodelled dynamics.

Assumption 1 (Uncertainty setting): Inertia matrix M is
not precisely known, but its upper bound ψ2 from (2) is
known. At the same time, the state-dependent (via q and q̇)
dynamics term H in (1) is unknown. Hence, H cannot be
considered to be bounded by a constant a priori to control
design [24], [25].

Remark 2 (Generality of the proposed approach):
Bipedal motion from a constrained and an unconstrained
dynamics are related via state-dependent dynamics terms
[8]. Therefore, Assumption 1 allows to include constraint
forces in the unified dynamics (1) as unmodelled dynamics.
Nevertheless, state-of-the-art adaptive designs cannot handle
such a challenge for biped walking problem (cf. Remark 4).

Assumption 2: The desired trajectory qd(t) is designed
such that qd , q̇d , q̈d ∈L∞. Further, to avoid kinematic singu-
larity, the desired knee angle trajectory is designed such that
the knee is never fully-stretched (cf. [4]).

In view of the aforementioned discussion, the control
problem is defined as below:

Control Problem: Under Assumptions 1-2 and Property
(2), design an adaptive control for biped walking motion
while negotiating unknown state-dependent uncertainty stem-
ming from constraint forces (in line with Remark 2).

III. CONTROLLER DESIGN AND ANALYSIS

Before presenting the proposed controller, the biped dy-
namics (1) is re-arranged by introducing a constant and
positive definite diagonal matrix M̄ as

M̄q̈+N(q, q̇, q̈) = τ, (3)
with N(q, q̇, q̈) = [M(q)−M̄]q̈+H(q, q̇) (4)

and the choice of M̄ is discussed later (cf. discussion
after (18)). Note that owing to Assumption 1, the unknown
dynamics is now subsumed under N.

Let us define the tracking error as e(t) = qd(t)− q(t).
Subsequently, variable dependency will be omitted whenever
obvious for brevity. The control input τ is designed as

τ = M̄u+ N̂(q, q̇, q̈), (5a)
u = u0 +∆u, (5b)

u0 = q̈d +KDė+KPe, (5c)

where KP,KD ∈Rn×n are two positive definite matrices; ∆u
is the adaptive control term to be designed later and N̂ is the
estimated value of N computed via the past input and state
data as [13], [14]

N̂(q, q̇, q̈)∼=N(qL, q̇L, q̈L) = τL−M̄q̈L, (6)

where L > 0 is a small time delay.
Remark 3 (Artificial time delay): The uncertainty esti-

mating process via past data (i.e., time delayed data) as in
(6) is typically called in literature as time-delay estimation
(TDE) or artificial delay based estimation method, since
time delay is invoked into the system artificially/intentionally
via past data, while the original system was free of any
time delay. Since the TDE process (6) relies on immediate
past data, L is typically selected in practice as the sampling
interval of available hardware [13]–[19].

Substituting (5a) in (3), one obtains

ë =−KDėL−KPeL +σ , (7)

where σ = M̄−1(N− N̂) represents the estimation error
stemming from (6), also termed as TDE error.

Design of the adaptive control term ∆u relies on the upper
bound structure of σ as derived subsequently, followed by
the proposed adaptive law.

A. Upper bound structure of σ

From (4) and (7), the following relations can be achieved:

N̂ = NL = [M(qL)−M̄]q̈L +HL, (8)
σ = q̈−u. (9)

Using (8), the control input τ in (5a) can be rewritten as

τ = M̄u+[M(qL)−M̄]q̈L +HL. (10)

Multiplying both sides of (9) with M and using (1) and (10)
we have

Mσ = τ−H−Mu,
= M̄u+[M(qL)−M̄]q̈L +HL−H−Mu. (11)

Defining K , [KP KD] and using (7) we have

q̈L = q̈d
L− ëL = q̈d

L +Kξ L−σL +∆uL. (12)

Substituting (12) into (11), and after re-arrangement yields

σ = M−1M̄(∆u−∆uL)︸ ︷︷ ︸
χ1

+M−1(ML∆uL−M∆u)︸ ︷︷ ︸
χ2
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+M−1{M̄q̈d− (M−ML +M̄)q̈d
L +HL−H}︸ ︷︷ ︸

χ3

+M−1(ML−M̄)Kξ L︸ ︷︷ ︸
χ4

−M−1(ML−M̄)σL︸ ︷︷ ︸
χ5

+(M−1M̄− I)Kξ︸ ︷︷ ︸
χ6

. (13)

The following Lemma provides the upper bound of ||σ ||:
Lemma 1 ([23], [26]): Under the condition

||E||= ||I−M−1(q)M̄||< 1, (14)

and the property (2), there exist (unknown) scalars δ1,2,··· ,5,
such that

||χ1,2,3|| ≤ δ1,2,3, ||χ4|| ≤ ||EK||||ξ ||+δ4, (15)

||χ5|| ≤ ||E||||σ ||+δ5, ||χ6|| ≤ ||EK||||ξ || (16)

yielding

‖σ‖ ≤ β0 +β1‖ξ‖, (17)

where β0 =
∑

5
i=1 δi

1−‖E‖
, β1 =

2‖EK‖
1−‖E‖

. (18)

The condition (14), which is standard in the literature of
TDE based controllers [13]–[22], gives the criterion to select
M̄, which is feasible since upper bound knowledge of M is
available from Assumption 1.

Remark 4 (State-dependent TDE error bound): The up-
per bound structure of TDE error σ in (17) has state-
dependency via β1||ξ ||, implying σ cannot be considered
bounded a priori. We will show later that assuming a priori
boundedness not only sacrifices tracking accuracy, but may
cause instability during bipedal walking (cf. Sect. IV.B).

B. Design of the Adaptive Control Law ∆u
The term ∆u is designed as

∆u = αc sig(s,ε), (19)

where s = BT Pξ , ξ =
[
eT ėT ]T and P > 0 is the solution

of the Lyapunov equation AT P+PA =−Q for some Q > 0,

where A =

[
0 I
−KP −KD

]
, B =

[
0
I

]
; α ∈ R+ is a user-

defined scalar; c ∈R+ is the overall switching gain tackling
σ and sig(s,ε) , s/

√
||s||2 + ε. Here, ε is a small positive

scalar used to avoid chattering.
The switching gain c in (19) is formulated based on the

structure of ||σ || as

c = β̂0 + β̂1||ξ ||, (20)

where β̂0, β̂1 are the estimates of β0,β1 ∈ R+, respectively.
The gains are evaluated as follows:

˙̂
β j =

{
γ j‖ξ‖ j‖s‖, if any β̂ j ≤ β

j
or sT ṡ > 0

−γ j‖ξ‖ j‖s‖, if sT ṡ≤ 0 and all β̂ j > β
j

, (21)

with β̂ j(0)≥ β
j
> 0, j = 0,1 are user-defined scalars.

Fig. 1. Schematic of Ojas (proposed humanoid).

Combining (5a), (5b), (6) and (19), ARTDE becomes

τ = τL−M̄q̈L︸ ︷︷ ︸
TDE part

+ M̄(q̈d +KDė+KPe)︸ ︷︷ ︸
Desired dynamics injection part

+ αM̄csig(s,ε).︸ ︷︷ ︸
Adaptive-robust control part

(22)

Remark 5: In (17), the term β0 can capture the effects
of bounded external impulsive forces, while β1||ξ || can
capture state-dependent unmodelled dynamics, particularly,
constraint forces (along with uncertain system parameters).
Therefore, compared to [22], estimating these parameters via
the adaptive laws (21) helps the proposed design avoid design
complexities computing constraint forces separately.
The closed-loop stability is stated via the following Theorem:

Theorem 1: The system (1) employing ARTDE with the
controller (22) and adaptive law (20)-(21) is Uniformly
Ultimately Bounded (UUB).

Proof: The analysis is analogous to [26] and is not
reported for lack of space.

IV. VERIFICATION OF THE PROPOSED ARTDE
A. Simulation Setup

To verify the performance of the proposed controller, a
20 DoFs humanoid named Ojas (cf. Fig. 1 for detailed
mechanical structure), weighing 8.986 kg and 0.94 m tall
from feet to head, is designed: each leg and arm of the robot
has 6 and 4 DoFs, respectively. We relied on the high fidelity
simulator Pybullet for verification of the proposed controller.

The objective is Ojas should maintain a desired walking
motion in the face of various uncertainties. For this purpose,
only the 6 joints of each leg, 3 hip joints, 1 knee joint and 2
angle joints, while other joints of the robot are kept fixed
(i.e., fixed upper-body). Thus, twelve joints are operated
simultaneously for both legs. Subsequently we denote q1 =
yaw hip joint, q2 = roll hip joint, q3 = pitch hip joint, q4 =
knee joint, q5 = pitch ankle joint and q6 = roll ankle joint.
Following [4], the desired walking motion is generated (cf.
Fig. 2) via the desired trajectories for the six joints for each
leg as in Fig. 3, leading to a walking speed 0.2 m/s with 1
s step period and stride of 0.1 m.
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Fig. 2. Desired trajectories of Center of mass (COM) and feet.

Fig. 3. Desired leg joint trajectories (same for both the legs).

Fig. 4. Ground reaction force on the legs.

B. Simulation Scenario, Results and Analysis

To properly judge the effectiveness of the proposed
ARTDE scheme against state-of-the-art, we consider the clas-
sical TDE [13] (control law (5) with ∆u = 0) and the adaptive
TDE biped controller [22] (called ATDE henceforth), with
∆u as (19) and the following adaptive law for c

ċ =

{
γ0||s||, if c≤ β

0
or (||s||− ||sL||)> 0

−γ0||s||, if (||s||− ||sL||)≤ 0
. (23)

Three simulation scenarios, S1, S2 and S3, are considered in
following subsections with same control design parameters
as: M̄ = 0.042I (kgm2), KP = 25I, KD = 10I, L = 0.001 sec,
Q = I, ε = 5×10−5, α = 4,β

j
= 0.01, β̂ j(0) = 0.01, j = 0,1.

For parity in the comparison, same values of M̄, KP,KD,L
and α,γ0,β 0

are selected for the TDE and ATDE (23).
For all scenarios, a ground reaction force (GRF) is created

following the model [27] which acts as impulsive external
disturbance whenever the foot lands on the ground while
walking (cf. Fig. 4) and it is considered to be unknown for
all the controllers. Due to structural symmetry in Ojas, only
the results for the right leg are presented to avoid repetition.

1) Description of Scenario S1: This scenario tests the
capability of various controllers to adapt to the dynamic
changes in the desired walking trajectory under the GRF
(cf. Fig. 4), which creates a significant nonlinearity while
propagating throughout the body.

Fig. 5. Tracking error for scenario S1.

Fig. 6. The snapshots from scenario S1 with proposed controller.

Results and Discussion for S1: The tracking performance
of TDE, ATDE and the proposed ARTDE are demonstrated
via Fig. 5 and further collected in Table I in terms of
root mean squared (RMS) error, maximum absolute error
(MAE) and RMS τ . Spikes can be noted in every error
plots whenever the GRF of the two legs overlap around their
peaks (cf. Figs. 4 and 5): this indicates both the feet are
on ground (double support phase) and the state-dependent
constraint forces are in effect. The significantly lower peaks
for ARTDE (cf. the MAE data in Table I) and minimum
performance improvements of 29.1% and 20.6% in terms
RMSE as compared to TDE and ATDE respectively across
all the joints, clearly demonstrate its capability to handle
state-dependent forces compared to others. A few snapshots
of the walking motion using ARTDE is shown in Fig. 6.

2) Description of Scenario S2: In this second scenario,
Ojas is required to follow the same walking motion via Fig.
3, but now, while carrying a payload of 1.3 kg mass (approx.
15% of robot’s mass) and using various controllers.

Results and Discussion for S2: Unlike scenario S1, Figs.
7-10 reveal that, while carrying the payload, the robot falls
with TDE after 26 steps (at t = 26 sec) and with ATDE
after 31 steps (at t = 31 sec) (cf. the sudden spikes in Fig.
10). Whereas, the proposed ARTDE could perform the task
successfully (cf. Fig. 9). This shows that TDE and ATDE,
built on the assumption of a priori bounded uncertainty,
may fail in presence of state-dependent uncertainty. Since
TDE and ATDE have shown destabilizing behaviour, only
the performance of ARTDE is given in Table II.
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Fig. 7. The snapshots from scenario S2 of walking with payload using TDE.

Fig. 8. The snapshots from scenario S2 of walking with payload using ATDE.

Fig. 9. The snapshots from scenario S2 of walking with payload using proposed ARTDE.

TABLE I
PERFORMANCE COMPARISON FOR SCENARIO S1

Joints Controller Performance Improvement
TDE ATDE Proposed over TDE over ATDE

RMS error (degree)
q1 0.108 0.035 0.024 77.7% 31.4%
q2 0.653 0.551 0.436 29.1% 20.8%
q3 2.231 1.847 1.455 34.7% 21.2%
q4 3.264 2.671 2.072 36.5% 22.4%
q5 3.254 2.741 2.190 32.6% 20.6%
q6 1.147 1.023 0.741 35.3% 27.5%

MAE (degree)
q1 0.173 0.225 0.075 56.65% 66.67%
q2 1.841 0.945 0.746 59.48% 21.06%
q3 2.456 1.889 1.447 41.08% 23.40%
q4 8.7415 7.483 5.407 38.15% 27.74%
q5 8.660 6.601 4.656 46.24% 29.47%
q6 5.976 6.190 2.415 59.59% 60.99%

RMS τ (Nm)
q1 2.864 3.076 2.826 1.33% 8.13%
q2 3.964 4.176 4.022 -1.46% 3.69%
q3 5.965 6.003 5.883 1.37% 2.00%
q4 5.901 5.783 5.532 6.25% 4.34%
q5 7.764 7.861 7.832 -2.16% -0.90%
q6 3.133 3.479 3.148 -0.48% 9.51%

TABLE II
PERFORMANCE OF THE PROPOSED CONTROLLER UNDER SCENARIO S2

Joints RMS error (degree) MAE (degree) RMS τ (Nm)
q1 0.026 0.063 2.826
q2 0.436 0.747 4.006
q3 1.466 3.140 5.882
q4 2.120 5.407 5.657
q5 2.205 5.944 7.974
q6 0.777 2.795 3.253

3) Description of Scenario S3: To further verify the
robustness property of the proposed ARTDE, this scenario
is constructed with the following phases:
(i) In phase 1 (0 ≤ t < 28), Ojas walks under similar

condition of scenario S2.

Fig. 10. TDE and ATDE fails to stabilize the robot, which falls over at
26s and 31s respectively.

Fig. 11. Snapshots from scenario S3.

(ii) In phase 2 (28≤ t < 37), an external impulsive push of
10 N is applied on the chest (cf. second snapshot in Fig.
11) at t = 28 sec while it was walking.

(iii) In phase 3 (t ≥ 37), another impulsive push of 10 N is
applied at t = 37 sec (cf. fourth snapshot in Fig. 11),
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Fig. 12. Tracking error of scenario S3.

TABLE III
PERFORMANCE OF THE PROPOSED CONTROLLER UNDER SCENARIO S3

RMS error (degree) MAE (degree)
Joints Phase1 Phase2 Phase3 Phase1 Phase2 Phase3

q1 0.025 0.026 0.025 0.065 0.062 0.063
q2 0.436 0.441 0.497 0.745 4.118 6.723
q3 1.460 1.456 1.462 3.142 4.008 3.802
q4 2.118 2.320 2.108 5.361 7.864 5.853
q5 2.184 2.243 2.182 5.980 5.801 5.701
q6 0.763 0.862 0.770 2.008 3.061 2.893

RMS τ (Nm)
q1 2.824 2.912 2.802
q2 3.924 4.004 4.964
q3 5.863 5.912 5.904
q4 5.351 5.801 5.368
q5 7.78 7.981 7.763
q6 4.253 3.837 3.568

but now to the left arm (450 to the z axis).
Results and Discussion for S3: The tracking performance of
ARTDE as in Fig. 12 clearly highlights the robustness of
the proposed design against external disturbances. Further,
comparison of RMS error in Tables II and III highlights
ARTDE provides good repeatability, while higher MAE in
q2 and q4 joints stem from the impulsive pushes.

V. CONCLUSION

A new artificial time delay based adaptive controller for
bipedal walking was designed to effectively provide robust-
ness against unmodelled state-dependent constraint forces
and impulse forces for all bipedal walking phases. Thus,
the control design and implementation became simpler com-
pared to a multi-modal dynamics based multiple controller
paradigm. Via extensive simulations under various forms of
disturbances, it was shown that the state-of-art might lead to
falling while walking, while the proposed controller could
execute the desired walking motion with notable accuracy.
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