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Abstract

Bipedal legged locomotion promises improved accessibility and navigation of complex
and non-barrier-free terrain compared to wheel-based mobility. The tradeoff for in-
creased versatility, especially for humanoid robots, is slow locomotion. Based on exist-
ing methods for walking and running, this work presents a new approach that allows for
smooth transitions between the two gaits, and thus faster locomotion. Due to the distinct
biomechanics of the two gaits, different mathematical models and control approaches are
used. The existing trajectory generation algorithms for walking and running developed
at the German Aerospace Center were modified and integrated into a combined trajec-
tory generation framework that generates continuous trajectories for multiple walking
and running sequences and their transitions. Due to the coupling of different state vari-
ables between walking and running, the complete trajectory in the horizontal direction
was generated in a single matrix calculation. By resolving the coupling in the vertical
direction, the vertical trajectory was computed in a forward recursion from the first to
the last gait sequence. The control strategies are unified by integrating the proposed tra-
jectory generation into an inverse dynamics based whole-body controller. The presented
approaches are validated in simulations with the humanoid robot Toro.

v



vi



Contents

Abstract v

1 Introduction 1

1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Content outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work 3

3 Walking Trajectory Generation 5

3.1 Divergent Component of Motion and encoding of forces on the CoM . . . 5

3.2 Generation of consistent multi-step VRP, DCM and CoM trajectories . . 7

3.2.1 Consistent VRP, DCM and CoM interpolation in single transition
phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.2 Computation of multi-step preview matrices . . . . . . . . . . . . . 9

4 Running Trajectory Generation 13

4.1 Center of mass dynamics in the flight phase . . . . . . . . . . . . . . . . . 14

4.2 Vertical planning and boundary conditions . . . . . . . . . . . . . . . . . . 15

4.3 Horizontal planning and boundary conditions . . . . . . . . . . . . . . . . 16

5 Continuous Gait Transitions between Walking and Running 21

5.1 Vertical planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.1 Running boundary conditions . . . . . . . . . . . . . . . . . . . . . 23

5.1.2 Walking boundary conditions . . . . . . . . . . . . . . . . . . . . . 24

5.1.3 Vertical planning for multiple walking and running sequences . . . 24

5.2 Horizontal planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.1 Running matrix assembly . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.2 Walking matrix assembly . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.3 Global matrix equation assembly . . . . . . . . . . . . . . . . . . . 36

5.2.4 Structure of the global constraint and target mapping matrix . . . 39

vii



5.2.5 Ensuring continuity for the transition between standing and
walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.6 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Divergent Component of Motion tracking control . . . . . . . . . . . . . . 42

6 Evaluation and Visualization of the Presented Methods 45

6.1 Foot trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Walking and running over stepping stones . . . . . . . . . . . . . . . . . . 51

7 Whole-Body Control 53

7.1 Dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2 Contact constraints on the robot . . . . . . . . . . . . . . . . . . . . . . . 54

7.3 Derivation of tasks for the whole-body controller . . . . . . . . . . . . . . 56

7.3.1 Centroidal momentum task . . . . . . . . . . . . . . . . . . . . . . 56

7.3.2 Foot acceleration task . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3.3 Further tasks and task summary . . . . . . . . . . . . . . . . . . . 57

7.4 Optimization via a quadratic program . . . . . . . . . . . . . . . . . . . . 58

8 Whole-Body Simulation 59

9 Conclusion and Future Work 65

List of Figures 68

List of Tables 69

References 73

viii



Chapter 1

Introduction

Legged locomotion in robotics continues to gain attention in both the research commu-
nity and in the general public. Videos of robots dancing or doing parkour from Boston
Dynamics and news of Tesla’s intention to build a humanoid robot reach millions of
people within days. However, even with great progress in recent years, today’s robots
just barely reach a fraction of human locomotion capabilities to operate safely and re-
liably in human environments. What seems natural for humans is regarded as a very
difficult problem for robots. Although, the improved versatility of legged locomotion in
complex terrain, especially bipedal locomotion, attracts with great advantages compared
to wheel-based mobility.

Bipedal robots can more easily overcome barriers (such as stairs), narrow passages,
tight corners, and stepping stones, to name a few examples. However, this versatility
comes with the drawback that today’s humanoid robots can generally only move very
slowly. This is the substantial advantage of wheel-based mobility and also the reason why
humans use bicycles, buses and trains. In contrast to most of today’s robots, humans
can change their gait pattern from walking to running to significantly increase their
locomotion speed.

There are specialized robots based on the rimless wheel model that can handle running
very well [3]. In contrast, running is still a challenging problem for humanoid robots
designed for versatility. This is mainly due to the very short contacts during running,
which are potentially underactuated, and the high torque demands on the robot’s joints.
Furthermore, the biomechanics of the basic human gaits, walking and running, differ
significantly. In walking, the body’s center of mass height reaches a maximum in the
middle of the stance phase, while the opposite is true for running [17]. To reproduce this
center of mass motion for a humanoid robot, most often different mathematical models
and control strategies for the two gaits are adopted.

1.1 Contribution

This thesis aims at developing a planning approach that enables a smooth transition
between the two gaits and the different mathematical models behind them. The algo-
rithms for generating walking [9, 11, 19] and running [7, 10] trajectories developed at
the Institute of Mechatronics and Robotics at the German Aerospace Center serve as
the basis for this work. A subsequent goal is to generate a full-body walking and run-
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2 Chapter 1. Introduction

ning motion and its transition on a humanoid robot in simulation by implementing the
developed planning approach in a whole-body controller [5].

1.2 Content outline

The work is organized as follows. Chapter 2 summarizes related work of walking and
running trajectory generation in the field of robotics and references approaches for the
transition between walking and running. In Chapter 3 an overview of the walking trajec-
tory generation algorithm is presented. Chapter 4 introduces the trajectory generation
utilized for running. The two algorithms for walking and running from the previous
Chapters are modified and integrated into a combined trajectory generation framework
that generates continuous trajectories for multiple walking and running sequences and
their transitions. The trajectory generation is divided into horizontal and vertical direc-
tions and is derived in Chapter 5. Subsequently, the developed approach is evaluated
in Chapter 6 and additional trajectories for the feet are generated for visualization pur-
poses and integration in the whole-body controller. The whole-body control framework
is derived in Chapter 7. The integration of the proposed trajectory generation method
in the whole-body controller is evaluated in simulation with the humanoid Robot Toro
(see Fig. 1.1) in Chapter 8. Chapter 9 concludes the work.

Figure 1.1: Simulation of the humanoid robot Toro [8] during the walk-to-run (W2R) transition
(time series with 0.2 s interval). The robot is displayed in the walking sequence (left), the
transition stance phase (center) and in the flight phase during running (right).



Chapter 2

Related Work

Most scientific work in the field of robotic bipedal locomotion follows the idea to focus on
the robot’s center of mass (CoM) dynamics for generating gait trajectories. The center
of mass motion captures the most important aspects of a specific gait without having
to consider the complexity of the robot’s nonlinear general dynamics. However, due to
unilateral contact constraints, not every CoM trajectory is feasible. More specifically,
the robot can only push on its environment with its feet and is therefore not able to
accelerate towards the ground faster than gravity. Furthermore, without considering
rotational inertia, all external forces have to pass through the robot’s support polygon
(e.g. the convex hull of the stance feet) and the CoM to be physically feasible. To fulfill
these requirements, a variety of models exist for different gaits.

One of the most popular models for walking is the Linear Inverted Pendulum (LIP)
model [26, 28]. In this approach, a focus point of all external forces is designed to be
equivalent to the torque-free base joint of the LIP model. The external force is then
only dependent on the position of the CoM and the LIP base joint on the ground and
always passes through these two points.

Other research suggests introducing an additional state variable and split the second-
order CoM dynamics into a stable and an unstable part. Takenaka et al. [27] introduce
the divergent component of motion (DCM) which is extended to 3D by Englsberger
et al. [11] as a generalization of the capture point (or 2D DCM) [6, 22]. Using the
DCM, the general second-order CoM dynamics can be separated into two decoupled
first-order dynamics. The DCM is defined as a point a certain distance in front of the
CoM and is attracting it. Similar to the force-to-point transformation in the LIP model,
a linear repelling force law uses a point, the so-called enhanced Centroidal Moment Pivot
point (eCMP) to encode the direction and magnitude of the external forces. Starting
from a eCMP trajectory that stays in the robot’s support polygon, the CoM trajectory
can be calculated to always be physically feasible. The walking trajectory generation
algorithm [11] provides a smooth CoM reference trajectory with continuous transitions
from standing to walking and back to standing.

Furthermore, the second-order control problem turns into a first-order one, as only the
unstable DCM dynamics needs to be stabilized, while the naturally stable CoM dynamics
remains unaffected. By embedding the DCM-based walking controller into a whole-body
control framework [5], stable full-body walking behavior can be shown in simulation and
experiment on the humanoid robot Toro [8, 14].

3



4 Chapter 2. Related Work

The generation of running motions is most commonly based on the Spring-Loaded In-
verted Pendulum (SLIP) model, which consists of a point mass on top of a massless,
compliant leg [24]. Previous works show that the SLIP model is also suitable to describe
the CoM dynamics of walking, where compression of the leg in the stance phase can
also be observed, although not as pronounced as in running [1, 12]. With the right
parameters and initial conditions, the SLIP model can be shown to be open-loop stable
[12] or can be controlled to return to a stable limit cycle [4, 29]. However, there are
no closed-form solutions available for the SLIP model. This motivates the approach
by Englsberger et al. [10], which aims to use polynomial splines to design CoM trajec-
tories that produce approximately natural ground reaction forces by fulfilling a set of
boundary conditions. The CoM trajectories are stabilized by a deadbeat controller, the
so-called Biologically Inspired Deadbeat (BID) controller, that can also be implemented
in a whole-body control framework and produces stable full-body running motion in
simulation [10].

In the field of robotic bipedal locomotion, there is not much research on the transition be-
tween walking and running. The existing literature primarily focuses on the SLIP model.
Rummel et al. [23] find an overlap between stable limit cycles of walking and running,
showing that the same locomotion speed can be achieved with both gaits. Martinez and
Carbajal [18] use a new gait called ’hopping’ to connect the walking and running limit
cycles and Shahbazi et al. [25] utilize a SLIP model with adjustable compliance to realize
transitions between walking and running.



Chapter 3

Walking Trajectory Generation

The walking algorithm presented in this chapter was first introduced by Englsberger
et al. [9, 11] and is based on the concept of separating the general second-order center of
mass (CoM) dynamics into a stable and an unstable part. This is achieved by introducing
an additional state variable, called the divergent component of motion (DCM).

3.1 Divergent Component of Motion and encoding of forces

on the CoM

The DCM ξ ∈ R
3 is defined as

ξ = x + bẋ, (3.1)

where x ∈ R
3 and ẋ ∈ R

3 are the CoM position and velocity, respectively, and b is
the time constant of the DCM dynamics. Reordering (3.1) yields the first-order CoM
dynamics:

ẋ = −
1

b
(x − ξ) . (3.2)

This equation shows that the CoM dynamics is stable for b > 0 and the CoM naturally
follows the DCM. The DCM dynamics is found by differentiating (3.1) and inserting
(3.2) and newton’s 2nd law ẍ = F /m:

ξ̇ = −
1

b
x +

1

b
ξ +

b

m
Fcom. (3.3)

Here, m is the robot’s total mass and Fcom = Fg + Fext is the total force acting on the
CoM, which consists of the gravitational force Fg and the external force Fext. Due to the
focus on locomotion, the external force is hereafter referred to as leg force Fleg. Without
rotational inertia, the leg force is only physically feasible if it passes through both the
robot’s support polygon, e.g. the convex hull of the stance feet, and the CoM. The
intersection point of the leg forces line of action with the foot plane is denoted center of
pressure (CoP). If rotational inertia is considered, the line of action lact of the external
force can temporarily leave the support polygon, i.e. when it is shifted by a torque
around the CoM. To fulfill the leg force feasibility constraint, a linear repelling force law
is constructed that uses a point, the so-called enhanced Centroidal Moment Pivot point
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6 Chapter 3. Walking Trajectory Generation

(eCMP) recmp, to encode the direction and magnitude of the leg forces relative to the
CoM:

Fleg =
m

b2
(x − recmp) . (3.4)

Consequently, the eCMP is not constrained to the ground while the centroidal moment
pivot (CMP) is located at the intersection of the line eCMP-to-CoM with the ground
and acts as an effective CoP in the presence of a torque caused by changes in the
robot’s angular momentum. Conversely, the CMP and CoP coincide when the angular
momentum of the robot does not change. Fig. 3.1 illustrates the relationship between
the eCMP, the CMP and the CoP. With the specific definition of the leg force (3.4), the

v

Figure 3.1: Point correlations for general robot dynamics (adapted from [9]).

DCM dynamics (3.3) can be written in a form that is independent of the CoM, which
corresponds to a decoupling. To further simplify, the so-called Virtual Repellent Point
(VRP) v is introduced as

v = recmp +
[

0 0 b2g
]T

= recmp + [ 0 0 ∆zvrp ]T , (3.5)

which encodes the total force on the CoM in another linear repelling force law, based on
the difference of the CoM and the VRP:

Fcom =
m

b2
(x − v) . (3.6)

Inserting (3.6) into (3.3), the DCM dynamics can be simplified to

ξ̇ =
1

b
(ξ − v) . (3.7)

This equation shows that the DCM dynamics is unstable for b =
√

∆zvrp/g > 0 and the
DCM, as the name implies, diverges away from the VRP.
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3.2 Generation of consistent multi-step VRP, DCM and

CoM trajectories

First, a footstep plan is generated that is compatible with the kinematics of the robot.
To satisfy the feasibility constraint on the leg forces, N eCMP waypoints are chosen that
lie within the planned footstep plane. Consequently, the corresponding leg forces always
pass through both the CoM and the convex hull of the robot’s stance foot/feet. To find
the corresponding VRP waypoints, a desired eCMP-to-VRP height difference ∆zvrp is
added to the z-component of the eCMP as in (3.5):

vwp,ϕ = recmp,wp,ϕ + [ 0 0 ∆zvrp ]T . (3.8)

The walking sequence is then split into Nϕ = N−1 transition phases ϕ ∈ {1, .., Nϕ}.
During each transition phase, the VRP trajectory is generated by interpolation between
the ϕ-th VRP waypoint vwp,ϕ and the (ϕ+1)-th VRP waypoint vwp,ϕ+1. Desired DCM
and CoM waypoints can be derived from the VRP waypoints by solving the DCM dy-
namics (3.7) and the CoM dynamics (3.2), respectively. The next section describes the
interpolation scheme for a single transition phase.

3.2.1 Consistent VRP, DCM and CoM interpolation in single transi-

tion phase

In general, for each transition phase ϕ, low-order polynomial splines are used as inter-
polation functions fϕ(tϕ) between a VRP start point v0,ϕ and a VRP end point vT,ϕ.
The smoothness of the resulting trajectories such as DCM and CoM depends on the
polynomial order npoly of the VRP waypoint interpolation function. The polynomial
splines have the following general form:

vϕ(tϕ) = (1 − fϕ(tϕ)) v0,ϕ + fϕ(tϕ) vT,ϕ, (3.9)

where v0,ϕ = vϕ(0), vT,ϕ = vϕ(Tϕ) and tϕ ∈ [0, Tϕ] is the local time of the transition
phase ϕ. Concerning the transition between walking and running in Chapter 5, it is
convenient to use the same continuity requirements between the transition phases ϕ for
walking and running. Since the VRP interpolation directly influences the smoothness
of the total force via (3.6) and the gravitational force is always constant, it is only
necessary to compare the smoothness of the leg force. In running the leg force is C0

continuous on the boundary of the transition phases, i.e. between the flight and stance
phase. Therefore, it is sufficient to choose a linear interpolation function for the VRP
waypoints of the following form:

fϕ(tϕ) =
tϕ

Tϕ
. (3.10)

Higher-order interpolation schemes are presented by Englsberger et al. [11]. Inserting
the time-dependent VRP trajectory (3.9) into the DCM dynamics (3.7) results in an
ODE for the DCM dynamics in the transition phase ϕ:

ξ̇ϕ(tϕ) =
1

b
(ξϕ(tϕ) − vϕ(tϕ)) . (3.11)
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Multiplying (3.11) by the integrating factor e−tϕ/b facilitates partial integration and
results in the solution of the ODE as

ξϕ(tϕ) = vΣ,ϕ(tϕ) + e
tϕ
b (ξ0,ϕ − vΣ,ϕ(0)) , (3.12)

where

vΣ,ϕ(tϕ) = (1 − σϕ(tϕ)) v0,ϕ + σϕ(tϕ)vT,ϕ, (3.13)

with

σϕ(tϕ) =

npoly∑

j=0

(
bj

(j)

fϕ(tϕ)

)
. (3.14)

Here, ξ0,ϕ = ξϕ(0) is the DMC start point and the operator
(j)

� denotes the j-th derivative
of any function �. With (3.13), the solution (3.12) can be reformulated to result in an
equation, which depends on the VRP start and end point v0,ϕ and vT,ϕ, respectively,
and the DCM start point ξ0,ϕ as boundary conditions:

ξϕ(tϕ) =

(
1 − σϕ(tϕ) − e

tϕ
b (1 − σ0,ϕ)

)
v0,ϕ+

(
σϕ(tϕ) − e

tϕ
b σ0,ϕ

)
vT,ϕ+e

tϕ
b ξ0,ϕ, (3.15)

where σ0,ϕ = σϕ(0). The solution to (3.11) can alternatively be expressed in terms of
both VRP start and end points and the DCM end point ξT,ϕ = ξϕ(Tϕ):

ξϕ(tϕ) =

(
1 − σϕ(tϕ) − e

tϕ−Tϕ
b (1 − σT,ϕ)

)

︸ ︷︷ ︸
αξ,ϕ(tϕ)

v0,ϕ +

+

(
σϕ(tϕ) − e

tϕ−Tϕ
b σT,ϕ

)

︸ ︷︷ ︸
βξ,ϕ(tϕ)

vT,ϕ + e
tϕ−Tϕ

b︸ ︷︷ ︸
γξ,ϕ(tϕ)

ξT,ϕ,

(3.16)

where σT,ϕ = σϕ(Tϕ).

Further, the DCM trajectory (3.16) can be inserted in the CoM dynamics (3.2) to find
the ODE for the CoM dynamics in transition phase ϕ:

ẋϕ(tϕ) = −
1

b
(xϕ(tϕ) − ξϕ(tϕ)) (3.17)

Again, the partial integration of the CoM dynamics is enabled by multiplication with
the integrating factor etϕ/b and the solution of (3.17) results in:

xϕ(tϕ) = ξΣ,ϕ(tϕ) + e−
tϕ
b (x0,ϕ − ξΣ,ϕ(0)) , (3.18)

where

ξΣ,ϕ(tϕ) =


1 − e−

tϕ
b − ρϕ(tϕ) −

e
2tϕ−Tϕ

b − e−
Tϕ
b

2e
Tϕ
b

(1 − σT,ϕ)


v0,ϕ +

+


ρϕ(tϕ) −

e
2tϕ−Tϕ

b − e−
Tϕ
b

2e
Tϕ
b

σT,ϕ


vT,ϕ +

+
e

2tϕ−Tϕ
b − e−

Tϕ
b

2e
Tϕ
b︸ ︷︷ ︸

γx,ϕ(tϕ)

ξT,ϕ,

(3.19)
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with

ρϕ(tϕ) =

npoly∑

j=0

(
(−1)jbj (j)

σϕ(tϕ)

)
. (3.20)

The CoM start point is given by x0,ϕ. With (3.19), the solution (3.18) can be reformu-
lated as

xϕ(tϕ) =

(
1 − e−

tϕ
b (1 + ρ0,ϕ) − ρϕ(tϕ) − γx,ϕ(tϕ) (1 − σT,ϕ)

)

︸ ︷︷ ︸
αx,ϕ(tϕ)

v0,ϕ +

+

(
ρϕ(tϕ) − e−

tϕ
b ρ0,ϕ − γx,ϕ(tϕ) σT,ϕ

)

︸ ︷︷ ︸
βx,ϕ(tϕ)

vT,ϕ +

+ γx,ϕ(tϕ) ξT,ϕ + e−
tϕ
b︸ ︷︷ ︸

δx,ϕ(tϕ)

x0,ϕ,

(3.21)

where ρ0,ϕ = ρϕ(0). This equation returns the CoM trajectory in the transition phase
ϕ, using the VRP start and end points, the DCM end point and the CoM start point as
input.

3.2.2 Computation of multi-step preview matrices

This section extends the trajectory generation in a single phase to a gait sequence with
multiple steps and transition phases. The considered walking sequence consists of N
VRP waypoints and Nϕ = N−1 transition phases. As described at the beginning of
Section 3.2, during each transition phase ϕ, the VRP trajectory is generated by inter-
polation between the ϕ-th VRP waypoint

vϕ(tϕ = 0) = v0,ϕ = vwp,ϕ (3.22)

and the (ϕ+1)-th VRP waypoint

vϕ(tϕ = Tϕ) = vT,ϕ = vwp,ϕ+1. (3.23)

Since all VRP waypoints are known from (3.5), the VRP trajectory for the complete
walking sequence can be computed by (3.9) and (3.10). Now the DCM and CoM tra-
jectories that are consistent with the VRP trajectory can be derived. First, a terminal
constraint at the end of the walking sequence, i.e. on the last DCM waypoint ξwp,N ,
is used to find the consistent DCM waypoints by backward iteration. For this, the
trajectory in transition phase ϕ (3.16) is evaluated for tϕ = 0 to obtain

ξ0,ϕ =

(
1 − σ0,ϕ − e−

Tϕ
b (1 − σT,ϕ)

)

︸ ︷︷ ︸
αξ,0,ϕ

v0,ϕ+

(
σ0,ϕ − e−

Tϕ
b σT,ϕ

)

︸ ︷︷ ︸
βξ,0,ϕ

vT,ϕ+e−
Tϕ
b︸ ︷︷ ︸

γξ,0,ϕ

ξT,ϕ. (3.24)

This equation gives the DCM start point in each transition phase and therefore all DCM
waypoints except for the last one, which is defined by the terminal constraint:

ξT,Nϕ = ξwp,N = vwp,N . (3.25)
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The terminal constraint ensures that the DCM comes to a stop at the end of the walking
sequence, i.e. ξ̇ϕ(tϕ = Tϕ) = 0. Starting from this terminal condition, the DCM end
points ξT,ϕ of each transition phase ϕ ∈ {1, .., Nϕ − 1} are chosen to coincide with the
start points of the next transition phase ξ0,ϕ+1:

ξT,ϕ = ξ0,ϕ+1 ∀ϕ ∈ {1, .., Nϕ − 1}. (3.26)

This backward iteration scheme assures continuity between transition phases. With
ξ0,ϕ = ξwp,ϕ, ξT,ϕ = ξwp,ϕ+1, (3.22) and (3.23), the solution to the DCM Dynamics
(3.24) can be written in terms of VRP and DCM waypoints:

ξwp,ϕ = αξ,0,ϕ vwp,ϕ + βξ,0,ϕ vwp,ϕ+1 + γξ,0,ϕ ξwp,ϕ+1. (3.27)

Equations (3.25) and (3.27) can be written in matrix form as



ξwp,1

...

...

...

ξwp,N




︸ ︷︷ ︸
ξwp

=




0 γξ,0,1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . γξ,0,Nϕ

0 . . . . . . . . . 0




︸ ︷︷ ︸
Aξ ∈RN×N




ξwp,1

...

...

...

ξwp,N




︸ ︷︷ ︸
ξwp

+

+




αξ,0,1 βξ,0,1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . . α0,Nϕ β0,Nϕ

0 . . . . . . 0 1




︸ ︷︷ ︸
Av ∈RN×N




vwp,1

...

...

...

vwp,N




︸ ︷︷ ︸
vwp

.

(3.28)

Rearranging (3.28) and solving for the DCM waypoint vector ξwp gives

ξwp = (I − Aξ)−1 Av vwp, (3.29)

which relates the VRP waypoints vwp to the DCM waypoints ξwp in a single matrix
equation.

The consistent CoM waypoints are found by iterating forwards from a CoM start point

x0,1 = xwp,1 = vwp,1. (3.30)

Therefore, the trajectory (3.19) is evaluated for tϕ = Tϕ to obtain:

xT,ϕ =

(
1 − e−

Tϕ
b (1 + ρ0,ϕ) − ρT,ϕ − γx,T,ϕ (1 − σT,ϕ)

)

︸ ︷︷ ︸
αx,T,ϕ

v0,ϕ +

+

(
ρT,ϕ − e−

Tϕ
b ρ0,ϕ − γx,T,ϕ σT,ϕ

)

︸ ︷︷ ︸
βx,T,ϕ

vT,ϕ +

+ γx,T,ϕ ξT,ϕ + e−
Tϕ
b︸ ︷︷ ︸

δx,T,ϕ

x0,ϕ.

(3.31)
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This equation gives the CoM end point in each transition phase. Starting from the initial
condition (3.30), the CoM start points χ0,ϕ of each transition phase ϕ ∈ {2, .., Nϕ} are
defined to coincide with the end points of the previous transition phase χT,ϕ−1:

x0,ϕ = xT,ϕ−1 ∀ϕ ∈ {2, .., Nϕ}. (3.32)

This forward iteration scheme garantees continuity between the transition phases. With
x0,ϕ = xwp,ϕ, xT,ϕ = xwp,ϕ+1, ξT,ϕ = ξwp,ϕ+1, (3.22) and (3.23), the solution to the
CoM Dynamics (3.31) can be written as:

xwp,ϕ+1 = αx,T,ϕ vwp,ϕ + βx,T,ϕ vwp,ϕ+1 + γx,T,ϕ ξwp,ϕ+1 + δx,T,ϕ xwp,ϕ. (3.33)

Equations (3.30) and (3.33) can be written in matrix form as




xwp,1

...

...

...

xwp,N




︸ ︷︷ ︸
xwp

=




0 . . . . . . . . . 0

δx,T,1
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 δx,T,Nϕ 0




︸ ︷︷ ︸
Bx ∈RN×N




xwp,1

...

...

...

xwp,N




︸ ︷︷ ︸
xwp

+

+




0 0 . . . . . . 0

0 γx,T,1
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 0

0 . . . . . . 0 γx,T,Nϕ




︸ ︷︷ ︸
Bξ ∈RN×N




ξwp,1

...

...

...

ξwp,N




︸ ︷︷ ︸
ξwp

+

+




1 0 . . . . . . 0

αx,T,1 βx,T,1
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 αx,T,Nϕ βx,T,Nϕ




︸ ︷︷ ︸
Bv ∈RN×N




vwp,1

...

...

...

vwp,N




︸ ︷︷ ︸
vwp

.

(3.34)

Rearranging (3.34) and solving for the CoM waypoint vector xwp gives

xwp = (I − Bx)−1 (Bξ ξwp + Bv vwp) , (3.35)

which yields all CoM waypoints xwp from the DCM and VRP waypoints ξwp and vwp

in a single matrix equation.
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Chapter 4

Running Trajectory Generation

A biologically inspired trajectory generation introduced by Englsberger et al. [10] is
proposed to generate running motions of the center of mass (CoM). The main idea
behind this approach is to design CoM trajectories that produce approximately natural
ground reaction forces (GRF) compared to a human experiment. It is shown that the
human GRF profiles can be well approximated by a second-order polynomial in the
vertical direction and a third-order polynomial in the horizontal direction. The total
force on the CoM Fcom consists of the gravitational force Fg and the leg force Fleg:

Fcom = Fg + Fleg = mg + Fleg. (4.1)

Here, m is the robot’s total mass and g = [0 0 −g]T is the gravitational acceleration
vector. The forces Fcom and Fleg in (4.1) differ only by the constant offset of the
gravitational force Fg. Consequently, according to Newton’s second law (Fcom = mẍ),
leg forces are represented by the desired second and third-order polynomials, respectively,
when the CoM position is expressed by fourth-order polynomials for the vertical direction
and fifth-order polynomials for the horizontal direction. Furthermore, different objectives
besides the continuity constraints between the stance and flight phases are fulfilled in
the vertical and horizontal direction. The vertical trajectory planning is solved locally in
each step with the main goal to reach a certain apex height in the following flight phase.
The horizontal planning approach aims at finding the most suitable CoM trajectory for
a sequence of footsteps and a terminal condition at the end of the running sequence.
It is therefore solved globally for the whole running sequence. For this reason, the
horizontal and vertical trajectories are generated separately, while the vertical trajectory
is calculated before the horizontal one.

The trajectory generation for running can be illustrated by a current flight phase and
two successive stance and flight phases, as shown in Fig. 4.1. The stance phase described
by polynomials is shown in red. The flight phase, in which the CoM follows a parabolic
path similar to that of a thrown object under the influence of gravity, is displayed in blue.
The desired relative apex ∆zapex,des and touch down (TD) heights ∆zTD,des are used as
design parameters. They specify the maximum height of the CoM in the flight phase (i.e.
ż = 0) and the height at which the TD should occur. Another design parameter is the
total stance time Ts in each step, whereas the flight time results from the aforementioned
parameters ∆zTD,des and ∆zapex,des and the gravitational acceleration g.

13
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Figure 4.1: Preview of upcoming flight and stance phases (planar sketch) - used for the design
of boundary conditions [10].

4.1 Center of mass dynamics in the flight phase

The CoM position x(t) and velocity ẋ(t) during flight can be described by

x(t) = x0 + ẋ0t + g
t2

2
, (4.2)

ẋ(t) = ẋ0 + gt, (4.3)

where x0 and ẋ0 are the initial position and velocity, respectively. As mentioned at the
beginning of the chapter, an important task of running trajectory planning is to achieve
the desired apex height in the flight phase. At the apex, the highest point of a ballistic
curve, the vertical CoM velocity is zero: żapex = 0. Starting from a current velocity ż,
this condition can be used to calculate the current time to apex from the third line of
(4.3) as

∆tapex =
ż

g
. (4.4)

The remaining time to TD is dependent on the TD height zTD = zfloor + ∆zTD and is
computed as

∆tTD = ∆tapex +

√
∆t2

apex +
2

g
(z − zTD) (4.5)

Inserting (4.5) into (4.2) and (4.3) yields the upcoming TD state for a given CoM position
and velocity as


 xTD

ẋTD


 =


 x + ∆tTD ẋ +

∆t2
TD
2 g

ẋ + ∆tTD g


 (4.6)

The relative TD height ∆zTD is either defined as ∆zTD,des or a minimum height difference
between apex and TD ∆zapex,TD,min is guaranteed, such that the square root term in
(4.5) is positive and a real solution is obtained:

∆zTD = min

(
∆zTD,des, z − zfloor +

ż2

2g
− ∆zapex,TD,min

)
. (4.7)

This describes the dynamics of the CoM in the flight phase. In the following, the CoM
dynamics in the stance phase, divided into the vertical and horizontal direction, will be
examined.
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4.2 Vertical planning and boundary conditions

The fourth-order polynomial encoding is given by




z(t)

ż(t)

z̈(t)


 =




1 t t2 t3 t4

0 1 2t 3t2 4t3

0 0 2 6t 12t2


pz =




tT
z (t)

tT
ż (t)

tT
z̈ (t)


pz, (4.8)

where tT
z , tż and tT

z̈ are time-mapping row vectors that map the polynomial parameter
vector pz ∈ R

5 to the CoM position z, velocity ż and acceleration z̈ for a given time
t. The five polynomial parameters can be derived using five boundary conditions. For
each stance phase i, four linear vertical boundary conditions are determined as:




zTD,i

żTD,i

−g

−g




︸ ︷︷ ︸
bz,i

=




tT
z (0)

tT
ż (0)

tT
z̈ (0)

tT
z̈ (Ts,i)




︸ ︷︷ ︸
Bz,i

pz,i. (4.9)

Here, bz,i is the boundary condition vector and Bz,i denotes the boundary condition
mapping matrix. The first two elements in bz,i determine that the initial CoM position
and velocity are equal to the TD state of the previous flight phase. The other two
elements in bz,i ensure that the CoM acceleration at the beginning and end of the stance
phase is the negative gravitational acceleration so that the vertical leg force is zero. The
last boundary condition aims to achieve the desired apex height of the next flight phase:

zapex,i,des = zfloor,i+1 + ∆zapex,des. (4.10)

The apex height can be computed with (4.2) and (4.4) as:

zapex,i = zTO,i +
ż2

TO,i

2g
. (4.11)

Since the boundary condition is non-linear, it needs to be fulfilled in the nullspace of
Bz,i. The general solution of (4.9) is given by

pz,i = BT
z,i

(
Bz,i BT

z,i

)−1
bz,i

︸ ︷︷ ︸
pz,i,0

+rz,i p̃z,i, (4.12)

where p̃z,i is a scalar multiple of the one-dimensional nullspace spanned by the vector
rz,i, which is computed as

rz,i =


 −B−1

z,i,squarebz,i,final

1


 . (4.13)
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The vector bz,i,final is the last column of Bz,i and Bz,i,square consists of all other columns.
To solve for the unknown scalar variable p̃z,i, the i-th takeoff (TO) state can be expressed
via (4.8) as

zTO,i = tT
z (Ts,i) pz,i

żTO,i = tT
ż (Ts,i) pz,i

(4.14)

and inserted into (4.11). The only valid solution to the resulting quadratic equation is

p̃z,i =
2żTD,i − gTs,i − Γ

4T 3
s,i

with

Γ =

√
g
(
gT 2

s,i − 4żTD,iTs,i + 8 (zapex,i,des − zTD,i)
)
.

(4.15)

Equations (4.15) and (4.12) form the solution of the vertical polynomial parameter vector
and thus the solution of the vertical CoM dynamics of each stance phase.

4.3 Horizontal planning and boundary conditions

The planning for the x- and y-component is equivalent. Therefore, the vector χ = [x y]
is chosen to summarize horizontal quantities. The fifth-order polynomial encoding in
the horizontal direction is given by




χ(t)

χ̇(t)

χ̈(t)


 =




1 t t2 t3 t4 t5

0 1 2t 3t2 4t3 5t4

0 0 2 6t 12t2 20t3


Pχ =




tT
χ (t)

tT
χ̇ (t)

tT
χ̈ (t)


Pχ. (4.16)

Here, tT
χ , tχ̇ and tT

χ̈ are the time-mapping row vectors for the horizontal direction, which
map, for a given time t, the polynomial parameter matrix Pχ = [px py] ∈ R

6×2 to the
CoM position χ, velocity χ̇ and acceleration χ̈. Due to the higher polynomial order
compared to the vertical direction, there is an additional polynomial parameter in the
horizontal direction and thus a total of six boundary conditions must be found for the six
degrees of freedom. For each stance phase i five linear horizontal boundary conditions
are defined as




χTD,i

χ̇TO,i

0

0

χTD,i+1,des




︸ ︷︷ ︸
Hχ,i

=




tT
χ (0)

tT
χ̇ (Ts,i)

tT
χ̈ (0)

tT
χ̈ (Ts,i)

tT
χ (Ts,i) + Tf,it

T
χ̇ (Ts,i)




︸ ︷︷ ︸
Bχ,i

Pχ,i. (4.17)

Here, Hχ,i is the horizontal boundary condition matrix and Bχ,i denotes the boundary
condition mapping matrix. The first row in Hχ,i sets the initial CoM positions equal
to the TD positions. Here, the second row specifies the TO velocities χ̇TO,i and not
the TD velocities χ̇TD,i as in [10]. The next two rows ensure that the horizontal CoM
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accelerations at the beginning and end of the stance phase are zero, i.e. horizontal leg
forces are zero. The fifth boundary condition determines the desired CoM TD positions
χTD,i+1,des of the next stance phase. Assuming no perturbations in the flight phase and
thus constant horizontal velocities, the next TD positions can be calculated as

χTD,i+1,des = χTO,i + Tf,i χ̇TO,i =
(
tT

χ,i (Ts,i) + Tf,i tT
χ̇ (Ts,i)

)
Pχ,i. (4.18)

Again the last boundary condition is non-linear and is fulfilled in the nullspace of Bχ,i.
The general solution of (4.17) is

Pχ,i = BT
χ,i

(
Bχ,i BT

χ,i

)−1
Hχ,i

︸ ︷︷ ︸
Pχ,i,0

+rχ,i p̃χ,i, (4.19)

with p̃χ,i = [p̃x,i p̃y,i] ∈ R
2 being the row vector of scalar multiples of the nullspace

column vector:

rχ,i =


 −B−1

χ,i,squarebχ,i,final

1


 . (4.20)

The goal is to find p̃χ,i, i.e a scalar value for each direction x and y, which provides
the best possible focusing of leg forces at an intersection point with the ground. For
this purpose, the time-dependent intersection point xint,i = [xint,i yint,i zfloor,i] of the
leg forces with the ground is calculated and the integral of the mean squared deviation
xint,i,ms from its mean value x̄int,i (i.e. the variation) is minimized. The horizontal
components of xint,i,ms are given by

χint,i,ms = P T
χ,i

1

Ts,i

∫ Ts,i

ts=0
Lχ,i (ts) dts

︸ ︷︷ ︸
Mχ,i

Pχ,i

(4.19)
= p̃T

χ,i rT
χ,i Mχ,i rχ,i p̃χ,i + 2 rT

χ,i Mχ,i Pχ,i,0 p̃χ,i + P T
χ,i,0 Mχ,i Pχ,i,0.

(4.21)

For details on the analytical computation of matrices Lχ,i and Mχ,i see Englsberger
et al. [10]. Equating the derivative of (4.21) with respect to p̃χ,i to zero yields, with
Mχ,i symmetric, the optimal vector of scalar nullspace multipliers

p̃∗

χ,i =
rT

χ,i Mχ,i Pχ,i,0

rT
χ,i Mχ,i rχ,i

, (4.22)

which minimizes the mean squared deviation as described above. Inserting (4.22) into
(4.19) gives

Pχ,i =

(
I −

rχ,i rT
χ,i Mχ,i

rT
χ,i Mχ,i rχ,i

)

︸ ︷︷ ︸
Ωχ,i

BT
χ,i

(
Bχ,i BT

χ,i

)−1

︸ ︷︷ ︸
B+

χ,i

Hχ,i. (4.23)

This equation returns the polynomial parameters Pχ,i for the given horizontal boundary
conditions Hχ,i including the best focusing of the leg forces at the foot contact point (see
Fig. 4.2). The disadvantage is that the horizontal position χ̄int,i of the focused leg forces
cannot be chosen arbitrarily, leading to problems such as leg crossover or unprecise foot
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Figure 4.2: Effect of p̃χ,i on force ray focusing (lines of action) at the contact point [10].

placement in challenging terrain. So far, the foot position results from the choice of the
upcoming desired CoM TD position χTD,i+1,des. To allow arbitrary foot placement, this
dependency is reversed by choosing χ̄int,i = χfoot,i to find the upcoming desired CoM
TD position, which corresponds to the desired foot position χfoot,i (see [10]). Inserting
this particular χTD,i+1,des into (4.23) results in

Pχ,i =

[ (
I − e⊕

χ,ie
T
χ,i

)
Ωχ,iµχ,i

︸ ︷︷ ︸
ap,χ,i

(
I − e⊕

χ,ie
T
χ,i

)
Ωχ,iνχ,i

︸ ︷︷ ︸
av,χ,i

Ωχ,iπχ,i

eT
χ,iΩχ,iπχ,i
︸ ︷︷ ︸

e⊕

χ,i

]



χTD,i

χ̇TO,i

χfoot,i


 ,

(4.24)

where ap,χ,i, av,χ,i and e⊕

χ,i map the i-th TD position, TO velocity and foot position
to the matrix of polynomial coefficients Pχ,i. The column vectors µχ,i, νχ,i and πχ,i

denote the first, second and fifth (final) column of B+
χ,i. As the third and fourth entry of

bχ,i is zero (see (4.17)), the corresponding boundary conditions are implicitly satisfied.
Equation (4.24) can be written in matrix form as




Pχ,1

...

...

Pχ,N




︸ ︷︷ ︸
Pχ

=




ap,χ,1 av,χ,1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 ap,χ,N av,χ,N




︸ ︷︷ ︸
Aχ ∈R6N×2N




χTD,1

χ̇TO,1

...

χTD,N

χ̇TO,N




︸ ︷︷ ︸
ωwp

+

+




e⊕

χ,1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 e⊕

χ,N




︸ ︷︷ ︸
Eχ ∈R

6N×Nf




χfoot,1

...

...

χfoot,Nf




︸ ︷︷ ︸
Xfoot

,

(4.25)
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where Pχ ∈ R
6N×2 summarizes the individual polynomial coefficients matrices Pχ,i and

ωwp ∈ R
2N×2 contains the TO position χTD,i and TD velocity χ̇TO,i for each stance

phase. Matrix Aχ is the constraint mapping matrix, Eχ is the footstep mapping matrix
and Nf denotes the number of footsteps. With a desired set of footsteps xfoot,i =
xfoot,i,des, an initial TD position

χTD,1 = χTD,1,des (4.26)

and a terminal TO velocity

χ̇TO,N = χ̇TO,N,des, (4.27)

a complete multistep trajectory can be calculated. The choice of the terminal velocity
boundary condition guarantees the stability of the running trajectory and allows for
the integration into a series of several alternating walking and running sequences in
Chapter 5. Each upcoming TD position can be recursively defined as

χTD,i+1 =
(
tT

χ,i(Ts,i) + Tf,i tT
χ̇ (Ts,i)

)

︸ ︷︷ ︸
fi

Pχ,i (4.28)

Similarly each previous TO velocity can be determined in a backward recursion as

χ̇TO,i−1 = tT
χ̇ (0)
︸ ︷︷ ︸

bi

Pχ,i (4.29)

Equations (4.26) to (4.29) can be summarized in matrix form as




χTD,1

χ̇TO,1

χTD,2

χ̇TO,2

...

χTD,N−1

χ̇TO,N−1

χTD,N

χ̇TO,N




︸ ︷︷ ︸
ωwp

=




0 0 . . . . . . . . . . . . 0

0 b2
. . .

...

f1 0 0
. . .

...

0 0 b3
. . .

...

...
. . .

. . .
. . .

...
...

. . . fN−2 0 0
...

. . . 0 0 bN

...
. . . fN−1 0

0 . . . . . . . . . . . . 0 0




︸ ︷︷ ︸
Sχ ∈R2N×6N




Pχ,1

Pχ,2

Pχ,3

...

Pχ,N−2

Pχ,N−1

Pχ,N




︸ ︷︷ ︸
Pχ

+




χTD,1,des

0
...
...
...
...
...
...

0




︸ ︷︷ ︸
χI

+




0
...
...
...
...
...
...

0

χ̇TO,N,des




︸ ︷︷ ︸
χT

.

(4.30)

Here, Sχ represents the recursive mapping of the polynomial parameter matrix to the
waypoint matrix and χI and χT contain the initial condition and terminal condition for
the first TD position and last TO velocity, respectively. Inserting (4.25) into (4.30) and
solving for the running waypoint matrix ωwp yields

ωwp = (I − Sχ Aχ)−1 (Sχ Eχ Xfoot + χI + χT ) . (4.31)

The solution for the horizontal parameter matrix Pχ can be obtained by inserting (4.31)
into (4.25), which results in

ωwp = Aχ (I − Sχ Aχ)−1 (Sχ Eχ Xfoot + χI + χT ) + Eχ Xfoot. (4.32)

This equation returns the polynomial parameter matrix Pχ and thus the solution of the
horizontal CoM dynamics of each stance phase.
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Chapter 5

Continuous Gait Transitions

between Walking and Running

In the following chapter, the transition between walking and running is presented. Due
to the separate calculation of vertical and horizontal components of the center of mass
(CoM) trajectory in the running framework, this distinction is also maintained for the
computation of the gait transition trajectories. Moreover, the continuity requirements
for the gait transition are determined by the running algorithm, since the CoM position
in running is C2 continuous by design. Thus, the position, velocity and acceleration
of the CoM need to be continuous between different gaits, resulting in three transition
boundary conditions for each gait change. However, due to the use of the DCM as a state

walking running

R2W

W2R

CoM pos xw

DCM pos ξw

VRP pos vw

CoM pos xr

CoM vel ẋr

CoM acc ẍr

xr = xw

ẋr = −1
b (xw − ξw)

ẍr = 1
b2 (xw − vw)

xw = xr

ξw = xr + b ẋr

vw = xr − b2 ẍr

Figure 5.1: Correlations between walking and running quantities.

variable and the VRP encoding the accelerations in the walking algorithm, it is necessary
to convert between the walking and running quantities in each gait transition in order
to fulfill the boundary conditions between walking and running. Fig. 5.1 illustrates the

21
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relation between walking and running quantities. Here, the transition from walking to
running is denoted walk-to-run (W2R) transition and the transition from running to
walking is called run-to-walk (R2W) transition.

In the vertical direction, the trajectory can be solved in a forward recursion from the
first to the last gait sequence. The coupling of the states by conversion between the
walking and running quantities and additional initial and final conditions in the walking
sequence leads to the fact that the entire trajectory in the horizontal direction must be
solved in one computation. In the following, the trajectory generation for the vertical
and horizontal direction is presented.

5.1 Vertical planning

Trajectory generation for walking essentially involves solving a second-order differential
equation, where it is sufficient to specify two boundary conditions. For running, the ver-
tical component of the trajectory is obtained by specifying five boundary conditions for
a polynomial spline. Therefore, most of the transition boundary conditions are fulfilled
by the running algorithm. In the W2R transition, all three vertical boundary condi-
tions are satisfied by the running algorithm, while in the R2W transition, two boundary
conditions are fulfilled by the running algorithm and one by the walking algorithm.

Table 5.1 shows the first and final CoM position, velocity and acceleration waypoints and
the corresponding transition boundary conditions for three consecutive gait sequences.
Additionally, the first and last DCM position waypoint is displayed in each sequence. The
color denotes which algorithm fulfills the boundary condition. According to the definition
of the DCM (see (3.1)), the unhighlighted boundary conditions are implicitly satisfied
by fulfilling either CoM position and velocity or CoM and DCM position boundary
conditions in the W2R transition or R2W transition, respectively.

gait sequence . . . walking j running j walking j+1 . . .

transition W2R R2W

waypoint start end start end start end

DCM position . . . ξz,1,wj
ξz,N,wj

1
= ξz,TD,1,rj

ξz,TO,N,rj

2
= ξz,1,wj+1 ξz,N,wj+1 . . .

CoM position . . . z1,wj
zN,wj

3
= zTD,1,rj

zTO,N,rj

4
= z1,wj+1 zN,wj+1 . . .

CoM velocity . . . ż1,wj
żN,wj

5
= żTD,1,rj

żTO,N,rj

6
= ż1,wj+1 żN,wj+1 . . .

CoM acceleration . . . z̈1,wj
z̈N,wj

7
= z̈TD,1,rj

z̈TO,N,rj

8
= z̈1,wj+1 z̈N,wj+1 . . .

boundary condition fulfilled by walking: boundary condition fulfilled by running:

Table 5.1: Vertical transition boundary conditions for three consecutive gait phases.

As described in Chapter 4, the vertical planning for running is solved locally in each
stance phase with the main goal of reaching the desired apex height in the subsequent
flight phase. By choosing the goal of matching the initial DCM position of the subsequent
walking sequence in the last stance phase, all vertical transition boundary conditions can
be fulfilled by the running algorithm, except for the CoM position boundary condition in
the R2W transition. The walking algorithm satisfies the remaining transition boundary
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condition by selecting the last CoM takeoff (TO) position from running as the initial
position for the following walking sequence. Thus, the position boundary conditions can
be directly assigned as

3 : zTD,1,rj
= zN,wj

and (5.1)

4 : z1,wj+1 = zTO,N,rj
. (5.2)

Due to the DCM as a state variable during walking, there is a DCM boundary condition
in the R2W transition, which can be written in terms of the polynomial encoding form
(4.8) as

2 : ξz,TO,N,rj
= zTO,N,rj

+ b żTO,N,rj

(4.8)
=

(
tT

z (Ts,N ) + b tT
ż (Ts,N )

)
pz

!
= ξz,1,wj+1 .

(5.3)

The velocity boundary condition is specified by using the DCM definition (3.1) as

5 : żTD,1,rj
= żN,wj

=
1

b

(
ξz,N,wj

− zN,wj

)
. (5.4)

With z̈ = Fz/m and the third row of (3.6) the vertical acceleration boundary condition
in the W2R transition can be formulated in terms of the CoM and VRP position as

7 : z̈TD,1,rj
= z̈N,wj

=
1

b2

(
zN,wj

− vz,N,wj

)
. (5.5)

Since only the VRP position waypoints in the next walking sequence wj+1 are known,
the acceleration boundary condition 8 in the R2W transition is in fact a VRP boundary
condition:

vz,TO,N,rj
= zTO,N,rj

− b2 z̈TO,N,rj

(4.8)
=

(
tT

z (Ts,N ) − b2 tT
z̈ (Ts,N )

)
pz

!
= vz,1,wj+1 .

(5.6)

By satisfying the CoM (5.2) and VRP (5.6) position boundary condition, the accel-
eration boundary condition 8 in the R2W transition is implicitly fulfilled. With the
highlighted transition boundary conditions in Table 5.1, all other boundary conditions
are also satisfied as the not highlighted DCM 1 and CoM velocity 6 boundary condi-
tions are implicitly satisfied by fulfilling boundary conditions 3 and 5 and boundary
conditions 2 and 4 , respectively.

5.1.1 Running boundary conditions

Table 5.2 shows the boundary condition vector bz,i, boundary condition mapping matrix
Bz,i and the nullspace target for different stance phases in the running sequence. For
stance phase 1 to N−1 there are four linear boundary conditions and one nonlinear
boundary condition (apex height), that is fulfilled in the nullspace of Bz,i. In stance
phase 1, the boundary conditions (5.1), (5.4) and (5.5) are used to specify the initial
conditions of this stance phase, whereas the acceleration terminal condition is set to
z̈TO,1 = −g. For stance phases i = 2..N−1, the matrices are unchanged to the ones
presented in Section 4.2. In stance phase N , there are five boundary conditions, which
are all linear. The first three are the same as for stance phases i = 2..N−1 and the last
two are defined as boundary conditions (5.3) and (5.6). Thereby, in each stance phase,
all five boundary conditions for the running trajectory generation are given.
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stance
phase

phase 1 phase i = 2..N−1 phase N

boundary
condition
vector

bz,1 =




zTD,1,rj

żTD,1,rj

z̈TD,1,rj

−g




bz,i =




zTD,i

żTD,i

−g

−g




bz,N =




zTD,N

żTD,N

−g

vz,TO,N,rj

ξz,TO,N,rj




boundary
condition
mapping
matrix

Bz,1 =




tT
z (0)

tT
ż (0)

tT
z̈ (0)

tT
z̈ (Ts,1)




Bz,i =




tT
z (0)

tT
ż (0)

tT
z̈ (0)

tT
z̈ (Ts,i)




Bz,N =




tT
z (0)

tT
ż (0)

tT
z̈ (0)

tT
z (Ts,N ) − b2 tT

z̈ (Ts,N )

tT
z (Ts,N ) + b tT

ż (Ts,N )




nullspace
boundary
condition

zapex,1 = zTO,1 +
ż2

TO,1

2g zapex,i = zTO,i +
ż2

TO,i

2g -

Table 5.2: Vertical boundary conditions for different running stance phases displayed as bound-
ary condition vector bz,i, boundary condition mapping matrix Bz,i and the nullspace target.

5.1.2 Walking boundary conditions

With (5.2), only one of two boundary conditions in the walking sequence is defined.
Similar to (3.25), the vertical component of the last DCM position is set equal to the
last VRP position in the walking sequence, i.e.

ξz,N,wj
= vz,N,wj

, (5.7)

to specify the remaining walking boundary condition. With this terminal constraint, the
DCM dynamics (of walking sequence wj) is decoupled from the next running sequence
rj and can be precomputed separately for each walking sequence, while the computation
of the CoM dynamics is still dependent on an initial position provided by the previous
running or standing sequence.

5.1.3 Vertical planning for multiple walking and running sequences

This section gives an overview of the procedure for calculating the vertical trajectory for
multiple walking and running sequences in succession. An outline of the computation
flow is given in Fig. 5.2. First, the vertical DCM dynamics is precomputed for all walking
sequences since it depends only on the vertical components of the known VRP waypoints
and the terminal condition (5.7), which is already included in the third row of (3.29),
i.e.

ξz,wp,wj
= (I − Aξ)−1 Av vz,wp,wj

. (5.8)

This equation returns all DCM waypoints for each walking sequence wj .

In the following, the CoM dynamics of walking and running are calculated in a forward
recursion from the first gait sequence to the last. Since the initial CoM position is
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dependent on the previous running or standing sequence, the mapping of the vertical
components of the first CoM waypoint to the CoM waypoint vector zwp needs to be
separated by modifying (3.35) to

zwp = (I − Bx)−1 (Bξ ξz,wp + Bαβ vz,wp) + (I − Bx)−1 bIC zIC , (5.9)

with

Bαβ =




0 0 . . . . . . 0

αx,T,1 βx,T,1
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 αx,T,nϕ βx,T,nϕ




and bIC =




1
...

0




. (5.10)

Here, Matrix Bαβ ∈ R
N×N is equivalent to matrix Bv in (3.34) except for the first entry

in the upper left corner, which so far constrained the initial CoM position waypoint to
be equal to the first VRP waypoint.

Starting with the first walking sequence, the initial CoM position is defined (only for the
first walking sequence) as the first standing VRP position (as in equation (3.30)) as

z1,w1 = vz,1,w1 , (5.11)

Inserting this initial CoM position, the VRP waypoints and the DCM terminal condition
(5.7) in (5.9) yields the vertical components of the CoM position waypoints for the first
walking sequence.

The vertical running trajectory planning is solved locally in each step with the goal to
find polynomial parameters pz,i that satisfy the following equation (see (4.9))

bz,i = Bz,i pz,i, (5.12)

where the boundary condition vector bz,i and the boundary condition mapping matrix
Bz,i depend on the index of the respective stance phase (see Table 5.2). For the non-
boundary stance phases i = 2..N−1, the polynomial parameters are calculated using
the same procedure as described in Section 4.2. The calculation of the polynomial
parameters in the W2R (first stand phase) and R2W transition (last stand phase) is
described below.

In the walk-to-run transition, the boundary conditions 3 (5.1), 5 (5.4) and 7 (5.5)
specify the initial TO position, velocity and acceleration in the first stance phase. The
complete boundary condition vector for the first stance phase bz,1 is summarized in
Table 5.2. Since the system of equations (5.14) is under-determined in the first stance
phase and in stance phases i = 2..N−1, the last (non-linear) boundary condition must
be satisfied in the nullspace of Bz,i. Again, the goal is to reach the desired apex height
zapex,i,des in the following flight phase. The derivation follows the one described in
Section 4.2. Due to the modified boundary conditions, the only valid solution to the
quadratic equation (4.11) results in

p̃z,1 =
6
(
1 + 4 T 2

s

)
żTD,1 +

(
3 Ts + 16 T 3

s

)
z̈TD,1 + 4 T 3

s g − 3 g
(
1 + 4 T 2

s

)
Γ1

12 (4 T 5
s + T 3

s )
with

Γ1 =

√
24 zapex,i,des − 24 zTD,1 − 12 Ts żTD,1 − 2 T 2

s z̈TD,1 + T 2
s g

3 g
.

(5.13)
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(5.7)

VRP
waypoints vz,wp

DCM
waypoints ξz,wp

CoM
waypoints zwp

walking
sequence wN

initial
condition

(5.2)
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Figure 5.2: Outline of the vertical planning computation flow.

The calculation of the polynomial parameters in the run-to-walk transition is straightfor-
ward as Bz,N in (5.14) has full rank. The boundary condition vector bz,N is assembled
with boundary conditions 2 (5.3) and the VRP boundary condition (5.6) that implicitly
satisfies boundary condition 8 . The vertical polynomial parameters in the last stance
phase are obtained by inversion of Bz,N as

pz,N = (Bz,N )−1 bz,N . (5.14)

For the next walking sequence, the initial CoM position is specified by boundary condi-
tion 4 (5.2). With the DCM trajectory already known, the CoM position of the next
walking sequence can be calculated with (5.9). In the described way, the CoM trajec-
tory can be propagated forward to the last walking sequence by successive calculation
of walking and running sequences.

5.2 Horizontal planning

In horizontal trajectory generation, both the walking and the running sequence are
interdependent from the first to the last step. As described in Chapter 3 and Chapter 4,
in each gait sequence there is a CoM position initial condition and a DCM or CoM
velocity terminal condition for walking or running, respectively. This implies that the
CoM position trajectory has to be solved by a forward recursion and the DCM or CoM
velocity trajectory by a backward recursion. For a single walking sequence, the DCM
dynamics are decoupled from the CoM dynamics, but by converting between DCM
position and CoM velocity in each gait transition the coupling is reestablished. The
solution is to set up a global matrix equation for multiple gait sequences that takes
into account all boundary conditions and solves for the waypoints of both trajectories
simultaneously.

Table 5.3 shows the horizontal components of the first and final DCM position and CoM
position, velocity and acceleration waypoints for three consecutive gait sequences with
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gait sequence . . . walking j running j walking j+1 . . .

transition W2R R2W

waypoint start end start end start end

DCM position . . . ξχ,1,wj
ξχ,N,wj

1
= ξχ,TD,1,rj

ξχ,TO,N,rj

2
= ξχ,1,wj+1 ξχ,N,wj+1 . . .

CoM position . . . χ1,wj
χN,wj

3
= χTD,1,rj

χTO,N,rj

4
= χ1,wj+1 χN,wj+1 . . .

CoM velocity . . . χ̇1,wj
χ̇N,wj

5
= χ̇TD,1,rj

χ̇TO,N,rj

6
= χ̇1,wj+1 χ̇N,wj+1 . . .

CoM acceleration . . . χ̈1,wj
χ̈N,wj

7
= χ̈TD,1,rj

χ̈TO,N,rj

8
= χ̈1,wj+1 χ̈N,wj+1 . . .

boundary condition fulfilled by walking: boundary condition fulfilled by running:

Table 5.3: Horizontal transition boundary conditions for three consecutive gait phases.

the corresponding transition boundary conditions highlighted. The position boundary
condition in the W2R transition can be readily specified as the corresponding quantities
exist for both gaits:

3 : χTD,1,rj
= χN,wj

. (5.15)

Since the first TD position χTD,1,rj
in the running sequence is mapped only up to the

last TD position χTD,N,rj
, the final TO position

χTO,N,rj
= tT

χ (Ts,N )
︸ ︷︷ ︸

lN

Pχ,N (5.16)

must be introduced by using the polynomial encoding from (4.16) as additional variable
in the last stance phase to satisfy boundary condition

4 : χ1,wj+1 = χTO,N,rj
. (5.17)

Similarly the additional variable

χ̇TD,1,rj
= tT

χ̇ (0)
︸ ︷︷ ︸

b1

Pχ,1 (5.18)

is required by the DCM boundary condition in the W2R transition which can be com-
puted with the definition of the DCM (see (3.1)) as

1 : ξχ,N,wj
= ξχ,TD,1,rj

= χTD,1,rj
+ b χ̇TD,1,rj

. (5.19)

Here, with 1 and 3 , the DCM and CoM position boundary condition are fulfilled, thus
in this case the CoM velocity boundary condition 5 is implicitly satisfied. The R2W
velocity boundary condition is also formulated via DCM definition as

6 : χ̇1,wj+1 = χ̇TO,N,rj
=

1

b

(
ξχ,1,wj+1 − χ1,wj+1

)
. (5.20)

In the R2W transition, the DCM boundary condition 2 is implicitly satisfied by fulfilling
boundary conditions 4 and 6 . With χ̈ = F χ/m and the first and second row of (3.6)
the acceleration boundary conditions can be written in terms of the CoM position and
VRP waypoint as

7 : χ̈TD,1,rj
= χ̈N,wj

=
1

b2

(
χN,wj

− Vχ,N,wj

)
and (5.21)

8 : χ̈TO,N,rj
= χ̈1,wj+1 =

1

b2

(
χ1,wj+1 − Vχ,1,wj+1

)
. (5.22)
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5.2.1 Running matrix assembly

stance phase stance phase 1 stance phase i = 1..N−1 stance phase N

boundary
condition
matrix

τχ,1 =




χTD,1

χ̇TD,1

χ̇TO,1

χ̈TD,1




τχ,i =


 χTD,i

χ̇TO,i


 τχ,N =




χTD,N

χTO,N

χ̇TD,N

χ̈TO,N




Table 5.4: Horizontal boundary condition matrix τχ,i for different running stance phases.

Table 5.4 shows the boundary condition matrix for different stance phases with additional
variables introduced in the first and last stance phases to satisfy the transition boundary
conditions towards walking. The first TD velocity χ̇TD,1 and last TO position χTO,N

are defined in (5.18) and (5.16), respectively. The first TD acceleration χ̈TD,1 and last
TO acceleration χ̈TO,N are already defined in Chapter 4. However, unlike in (4.17),
these are not zero on the boundary between running and walking but must satisfy the
corresponding transition boundary conditions (5.21) and (5.22). With the additional
variables in the transition stance phases, the mapping from the polynomial parameters
to the boundary conditions (see (4.30)) has to be modified:




τχ,1

...

τχ,i

...

τχ,N




︸ ︷︷ ︸
Σwp,r

=




S1 0 . . . . . . 0

0
. . .

. . .
...

...
. . . Si

. . .
...

...
. . .

. . . 0

0 . . . . . . 0 SN




︸ ︷︷ ︸
S ∈RNc×6N




Pχ,1

...

Pχ,i

...

Pχ,N




︸ ︷︷ ︸
Pχ

+




I1

0
...
...

0




︸ ︷︷ ︸
IIC

τχ,IC +




0
...
...

0

IN




︸ ︷︷ ︸
ITC

τχ,TC,

with I1 =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1




and IN =




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1




.

(5.23)

Here, Σwp,r ∈ R
Nc×2 is the running waypoint matrix consisting of the boundary condi-

tion matrices τχ,i and Nc = 2N + 4 is the number of combined waypoints (two for each
stance phase and two additional waypoints each for the first and last stance phase, see
Table 5.4). The definition of Si in matrix S depends on the particular stand phase and
is defined with Eqs. (4.28), (4.29), (5.16) and (5.18) in Table 5.5. τχ,IC and τχ,TC are
arbitrary initial and terminal constraint matrices, respectively, which are mapped to the
waypoint matrix using IIC and ITC. The selections matrices I1 and I2 select only the
first and last row and the third and last row of τχ,IC and τχ,TC, respectively, i.e. the
boundary conditions that are specified for running in Table 5.3.
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stance phase stance phase 1 stance phase i = 1..N−1 stance phase N

S1 =




0 0

b1 0

0 b1

0 0




Si =


 fi−1 0 0

0 0 bi+1


 SN =




fN−1 0

0 lN

0 0

0 0




Table 5.5: Polynomial coefficient mapping matrix Si for different running stance phases.

Since the waypoint matrix Σwp,r has changed, matrix equation (4.25) must also be
adjusted. The mapping of the additional acceleration variables to the polynomial pa-
rameter matrix is already contained in (4.24), which is written out in full to explicitly
account for these quantities:

Pχ,i =

[ (
I − e⊕

χ,ie
T
χ,i

)
Ωχ,iΠχ,i

︸ ︷︷ ︸
Qχ,i

Ωχ,iπχ,i

eT
χ,iΩχ,iπχ,i
︸ ︷︷ ︸

e⊕

χ,i

]




χTD,i

χ̇TO,i

χ̈TD,i

χ̈TO,i

χfoot,i




. (5.24)

Here, the matrix Πχ,i combines the first to the fourth column vector of B+
χ,i in (4.23)

and

Qχ,i =
[

qi,c1 qi,c2 qi,c3 qi,c4

]
(5.25)

is the boundary condition mapping matrix consisting of four columns qi,cn . The map-
pings of the first TD acceleration χ̈TD,1 and last TO acceleration χ̈TO,N are stated in
the third and fourth row of (5.24), respectively. These are the only two acceleration
waypoints that are non-zero during the running sequence, so it is not necessary to ex-
plicitly calculate the acceleration waypoints in each stance phase. Therefore, the TO
and TD acceleration boundary condition in the first and last stance phase, respectively,
and both acceleration boundary conditions for the stance phases 2..N−1 are implicitly
fulfilled as in (4.24). The additional variables χ̇TD,1 and χTO,N have no influence on
the polynomial parameter matrix and are therefore mapped with the zero vector. With
Eqs. (5.24) and (5.25), the relation between the boundary condition matrix τχ,i and
the polynomial parameter matrix Pχ,i for different stand phases is stated in Table 5.6.
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Accordingly, equation (5.24), considering the additional variables specified in Table 5.4,
can be written in matrix form as




Pχ,1

...

Pχ,i

...

Pχ,N




︸ ︷︷ ︸
Pχ

=




A1 0 . . . . . . 0

0
. . .

. . .
...

...
. . . Ai

. . .
...

...
. . .

. . . 0

0 . . . . . . 0 AN




︸ ︷︷ ︸
A ∈R6N×Nc




τχ,1

...

τχ,i

...

τχ,N




︸ ︷︷ ︸
Σwp,r

+

+




e⊕

χ,1 0 . . . . . . 0

0
. . .

. . .
...

...
. . . e⊕

χ,i

. . .
...

...
. . .

. . . 0

0 . . . . . . 0 e⊕

χ,N




︸ ︷︷ ︸
Eχ ∈R

6N×Nf




χfoot,1

...

χfoot,i

...

χfoot,Nf




︸ ︷︷ ︸
Xfoot

,

(5.26)

where A is the constraint mapping matrix, Eχ is the footstep mapping matrix and Nf

stance phase stance phase 1 stance phase i = 1..N−1 stance phase N

A1 =
[

q1,c1 q1,c2 0 q1,c3

]
Ai =

[
qi,c1 qi,c2

]
AN =

[
qN,c1 0 qN,c2 qN,c4

]

Table 5.6: Constraint mapping matrix Ai for different running stance phases.

is the number of footsteps. The definition of Ai in A again depends on the stance phase
and is specified in Table 5.6. Inserting (5.26) into (5.23) and solving for the waypoint
vector Σwp,r yields

Σwp,r = (I − S A)−1 IIC︸ ︷︷ ︸
C

τχ,IC +(I − S A)−1 ITC︸ ︷︷ ︸
D

τχ,TC +(I − S A)−1 S Eχ︸ ︷︷ ︸
F

Xfoot,

(5.27)

in which

C =




c1

...

cNc




∈ R
Nc×4, D =




d1

...

dNc




∈ R
Nc×4 and

F =




f1

...

fNc




∈ R
Nc×Nf .

(5.28)

Here, the vectors cj , dj and fj are the rows of the matrices C, D and F , respectively.
As shown in equation (5.23), χTD,1 and χ̈TD,1 are given as initial conditions in the
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first stance phase and χ̇TO,N and χ̈TO,N are specified as terminal conditions in the
last stance phase. Since these values are not influenced by any other waypoints in the
running sequence, the corresponding row vectors of the matrices C, D and F result as
follows

c1 =
[

1 0 0 0
]

c4 =
[

0 0 0 1
]

dNc−1 =
[

0 0 1 0
]

dNc =
[

0 0 0 1
]

f1 = f4 = fNc−1 = fNc = 01×Nf
.

(5.29)

By replacing the corresponding rows 1, 4, Nc−1 and Nc in (5.27) with the boundary
conditions 3 (5.15) and 6 to 8 (Eqs. (5.20) to (5.22)), a recursive matrix equation can
be assembled which maps the initial and terminal constraints to the remaining running
waypoints:




χTD,1,rj

χ̇TD,1,rj

χ̇TO,1,rj

χ̈TD,1,rj

...

χTD,N,rj

χTO,N,rj

χ̇TO,N,rj

χ̈TO,N,rj




︸ ︷︷ ︸
Σwp,r,j

=




0 0

c2 d2

c3 d3

0 0
... 0

...

cNc−3 dNc−3

cNc−2 dNc−2

0 0

0 0




︸ ︷︷ ︸
Rj ∈RNc×Nc




χTD,1,rj

χ̇TD,1,rj

χ̇TO,1,rj

χ̈TD,1,rj

...

χTD,N,rj

χTO,N,rj

χ̇TO,N,rj

χ̈TO,N,rj




︸ ︷︷ ︸
Σwp,r,j

+

+




f1

f2

f3

f4

...

fNc−3

fNc−2

fNc−1

fNc




︸ ︷︷ ︸
Fj ∈R

Nc×Nf




χfoot,1,rj

χfoot,2,rj

...

χfoot,N−1,rj

χfoot,N,rj




︸ ︷︷ ︸
Xfoot,j

+




χN,wj

0

0

1
b2

(
χN,wj

− Vχ,N,wj

)

...

0

0

1
b

(
ξχ,1,wj+1 − χ1,wj+1

)

1
b2

(
χ1,wj+1 − Vχ,1,wj+1

)




︸ ︷︷ ︸
XBC,r,j

.

(5.30)

Here, j denotes the index of the considered running sequence and Σwp,r,j , Rj , Fj , Xfoot,j

and χBC,r,j denote the corresponding running waypoint matrix, running constraint map-
ping matrix, footstep mapping matrix, footstep matrix and running boundary condition
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matrix, respectively. Extending the running waypoint matrix Σwp,r,j to the right side of
Rj in (5.30) from above by the last waypoint of the previous walking sequence wj and
from below by the first two waypoints of the next walking sequence wj+1, part of the
boundary conditions in χBC,r,j can be integrated into an augmented running constraint
matrix R⊗

j . The remaining part, concerning VRP waypoints, can be integrated into an

augmented footstep mapping matrix F ⊗

j by extending the footstep matrix Xfoot,j from
above by the last VRP waypoint of the previous walking sequence wj and from below
by the first VRP waypoint of the next walking sequence wj+1. Thus (5.30) turns into




χTD,1,rj

χ̇TD,1,rj

χ̇TO,1,rj

χ̈TD,1,rj

...

χTD,N,rj

χTO,N,rj

χ̇TO,N,rj

χ̈TO,N,rj




︸ ︷︷ ︸
Σwp,r,j ∈RNc×2

=




1 0 0 0 0

0 c2 d2 0 0

0 c3 d3 0 0

1/b2 0 0 0 0
...

... 0
...

...
...

0 cNc−3 dNc−3 0 0

0 cNc−2 dNc−2 0 0

0 0 0 1/b −1/b

0 0 0 0 1/b2




︸ ︷︷ ︸
R⊗

j
∈RNc×(Nc+3)




χN,wj

χTD,1,rj

χ̇TD,1,rj

χ̇TO,1,rj

χ̈TD,1,rj

...

χTD,N,rj

χTO,N,rj

χ̇TO,N,rj

χ̈TO,N,rj

ξχ,1,wj+1

χ1,wj+1




︸ ︷︷ ︸
Σ

⊗

wp,r,j
∈R(Nc+3)×2

+

+




0 0 0

−1/b2 f2 0

0 f3 0

0 0 0
...

...
...

0 fNc−3 0

0 fNc−2 0

0 0 0

0 0 −1/b2




︸ ︷︷ ︸
F ⊗

j
∈R

Nc×(Nf +2)




vχ,N,wj

χfoot,1,rj

χfoot,2,rj

...

χfoot,N−1,rj

χfoot,N,rj

vχ,1,wj+1




︸ ︷︷ ︸
X⊗

foot,j
∈R

(Nf +2)×2

,

(5.31)

where �⊗ denotes the corresponding augmented quantity of any matrix � and all nonzero
entries of the matrices R⊗

j and F ⊗

j are highlighted. At this point, equation (5.31) is
prepared to be embedded in a global matrix equation for multiple walking and running
sequences. Thus by stacking up the waypoints of alternating walking and running se-
quences, a global waypoint matrix can be assembled and solved for, resulting in the
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waypoints of the entire trajectory for multiple walking and running sequences from a
single matrix calculation. This requires computing the constraint and target mapping
matrix for walking as part of the assembly, which is discussed in the next section.

5.2.2 Walking matrix assembly

In Chapter 3, the DCM terminal constraint ξwp,N = vwp,N is used such that the DCM
comes to a stop at the end of the walking sequence (see (3.25)). Here, however, due
to the transition boundary condition (5.19), the horizontal components of the DCM
are specified by the subsequent running sequence. To separate the mapping of the
horizontal components of the terminal DCM waypoint ξχ,TC to the horizontal DCM
waypoint matrix ξχ,wp, equation (3.29) can be reformulated as

ξχ,wp = (I − Aξ)−1 Aαβ︸ ︷︷ ︸
Ãv

Vχ,wp + (I − Aξ)−1 aTC︸ ︷︷ ︸
aξ

ξχ,TC, (5.32)

with

Aαβ =




αξ,0,1 βξ,0,1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . . α0,nϕ β0,nϕ

0 . . . . . . 0 0




and aTC =




0
...

1




. (5.33)

Matrix Aαβ ∈ R
N×N is equivalent to matrix Av in (3.28) except for the last entry in

the lower right corner, which previously represented the terminal constraint. Any DCM
terminal waypoint ξχ,TC is mapped by the vector

aξ =




aξ,1

...

aξ,N−1

1




∈ R
N (5.34)

in (5.32) to the DCM waypoint matrix. The matrix

Ãv =




av,1

...

av,N−1

0




∈ R
N×N (5.35)

in (5.32), where av,i denote single rows, relates VRP waypoints to DCM waypoints.

Similarly, the first horizontal CoM position is specified by the boundary condition (5.17).
Therefore, the mapping of the horizontal components of the first CoM waypoint to the
CoM waypoint vector χwp needs to be separated by modifying (3.35) to

χwp = (I − Bx)−1 (Bξ ξwp + Bαβ vwp) + (I − Bx)−1 bIC︸ ︷︷ ︸
bx

χIC . (5.36)
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This equation is the equivalent of (5.9) for the horizontal direction. Matrix Bαβ ∈ R
N×N

and vector bIC are defined in (5.10). Inserting (5.32) into (5.36) isolates the mapping
from the DCM terminal point to the CoM start point:

χwp = (I − Bx)−1
(
BξÃv + Bαβ

)

︸ ︷︷ ︸
B̃v

Vχ,wp + (I − Bx)−1 Bξ aξ︸ ︷︷ ︸
bξ

ξχ,TC +

+ (I − Bx)−1 bIC︸ ︷︷ ︸
bx

χIC ,
(5.37)

The mapping of the VRP waypoints Vχ,wp, an arbitrary DCM terminal waypoint ξχ,TC

and CoM initial waypoint χIC to the CoM waypoint matrix is represented in (5.37) by

B̃v =




0

bv,2

...

bv,N




∈ R
N×N , bξ =




0

bξ,2

...

bξ,N




∈ R
N and bx =




1

bx,2

...

bx,N




∈ R
N , (5.38)

respectively. Here, bv,i denote single rows of B̃v. With these preparations, equations
(5.32) and (5.37) can be combined row by row into a single matrix equation:




ξχ,1

χ1

ξχ,2

χ2

...

ξχ,N−1

χN−1

ξχ,N

χN




︸ ︷︷ ︸
Σwp,w

=




av,1

0

av,2

bv,2

...

av,N−1

bv,N−1

0

bv,N




︸ ︷︷ ︸
Y




vχ,1

vχ,2

...

vχ,N−1

vχ,N




︸ ︷︷ ︸
Vχ

+




0

1

0

bx,2

...

0

bx,N−1

0

bx,N




︸ ︷︷ ︸
cx,b

χIC +




aξ,1

0

aξ,2

bξ,2

...

aξ,N−1

bξ,N−1

1

bξ,N




︸ ︷︷ ︸
cξ,a,b

ξχ,TC (5.39)

Here, matrix Σwp,w summarizes both DCM and CoM position waypoints in a single
matrix, Y is the combined target mapping matrix and cx,b and cξ,a,b denote the combined
initial condition and terminal condition mapping vector, respectively. Similar to the
previous Section 5.2.1 for running, replacing row 2 and Nc−1 with the CoM position
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boundary condition 4 (5.17) and the DCM position boundary condition 1 (5.19) and
writing (5.39) as a recursive matrix equation results in:




ξχ,1,wj

χ1,wj

ξχ,2,wj

χ2,wj

...

ξχ,N−1,wj

χN−1,wj

ξχ,N,wj

χN,wj




︸ ︷︷ ︸
Σwp,w,j

=




0 0 aξ,1 0

0 0 0 0

0 0 aξ,2 0

0 bx,2 bξ,2 0
...

... 0
...

...

0 0 aξ,N−1 0

0 bx,N−1 bξ,N−1 0

0 0 0 0

0 bx,N bξ,N 0




︸ ︷︷ ︸
Wj ∈RNc×Nc




ξχ,1,wj

χ1,wj

ξχ,2,wj

χ2,wj

...

ξχ,N−1,wj

χN−1,wj

ξχ,N,wj

χN,wj




︸ ︷︷ ︸
Σwp,w,j

+

+




av,1

0

av,2

bv,2

...

av,N−1

bv,N−1

0

bv,N




︸ ︷︷ ︸
Yj ∈RNc×Nv




vχ,1,wj

vχ,2,wj

...

vχ,N−1,wj

vχ,N,wj




︸ ︷︷ ︸
Vχ,j

+




0

χTO,N,rj−1

0
...
...
...

0

χTD,1,rj
+ b χ̇TD,1,rj

0




︸ ︷︷ ︸
XBC,w,j

,

(5.40)

where j denotes the index of the considered walking sequence and Σwp,w,j , Wj , Yj , Vχ,j

and XBC,w,j denote the corresponding walking waypoint matrix, walking constraint
mapping matrix, VRP mapping matrix, VRP matrix and walking boundary condition
matrix, respectively. By extending the walking waypoint matrix Σwp,w,j to the right
side of Wj in (5.40) with the last three waypoints of the previous running sequence rj−1

from the top and with the first two waypoints of the next running sequence rj from the
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bottom, the calculation of the walking waypoints can also be expressed by a mapping of
only two matrices:




ξχ,1,wj

χ1,wj

ξχ,2,wj

χ2,wj

...

ξχ,N−1,wj

χN−1,wj

ξχ,N,wj

χN,wj




︸ ︷︷ ︸
Σwp,w,j ∈RNc×2

=




0 0 0 0 0 aξ,1 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 aξ,2 0 0 0

0 0 0 0 bx,2 bξ,2 0 0 0
...

...
...

...
... 0

...
...

...
...

0 0 0 0 0 aξ,N−1 0 0 0

0 0 0 0 bx,N−1 bξ,N−1 0 0 0

0 0 0 0 0 0 0 1 b

0 0 0 0 bx,N bξ,N 0 0 0




︸ ︷︷ ︸
W ⊗

j
∈RNc×(Nc+5)




χTO,N,rj−1

χ̇TO,N,rj−1

χ̈TO,N,rj−1

ξχ,1,wj

χ1,wj

ξχ,2,wj

χ2,wj

...

ξχ,N−1,wj

χN−1,wj

ξχ,N,wj

χN,wj

χTD,1,rj

χ̇TD,1,rj




︸ ︷︷ ︸
Σ

⊗

wp,w,j
∈R(Nc+5)×2

+

+




av,1

0

av,2

bv,2

...

av,N−1

bv,N−1

0

bv,N




︸ ︷︷ ︸
Yj ∈RNc×Nv




vχ,1,wj

vχ,2,wj

...

vχ,N−1,wj

vχ,N,wj




︸ ︷︷ ︸
Vχ,j ∈RNv×2

.

(5.41)

Again �
⊗ denotes the respective augmented quantity of any matrix � and all nonzero

entries of the matrices W ⊗

j and Yj are highlighted. This completes the preparations for
the assembly of the global matrix calculation in the next section.

5.2.3 Global matrix equation assembly

In this section, a global equation for multiple walking and running sequences is con-
structed by stacking the waypoints of the alternating gait sequences on top of each
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other. Similarly, the constraint mapping matrices R⊗

j and W ⊗

j and the target map-

ping matrices F ⊗

j and Yj are arranged in a diagonal-like structure to obtain a global
constraint mapping and target mapping matrix for multiple gait sequences. This global
equation can be solved to obtain all waypoints of the whole trajectory in a single calcu-
lation. Before this, however, the first and last walking sequences must be adapted, since
special boundary conditions occur in the transition between standing and walking. For
the first and last walking sequence, the initial constraint for the CoM position

χ1,w1 = vχ,1,w1 (5.42)

and the terminal constraint for the DCM position

ξχ,N,wN
= vχ,N,wN

(5.43)

are used, respectively. The initial constraint (5.42) can be incorporated by omitting the
first three rows in (5.41) and defining Y1 as:

Y1 =




av,1

bv,1

av,2

bv,2

...

av,N−1

bv,N−1

0

bv,N




with bv,1 =
[

1 01×N−1

]
. (5.44)

Similarly, the terminal constraint (5.43) can be considered by removing the last two rows
in (5.41) and choosing YN as:

YN =




av,1

0

av,2

bv,2

...

av,N−1

bv,N−1

av,N

bv,N




with av,N =
[

01×N−1 1
]

. (5.45)
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The global matrix equation for multiple walking and running sequences can then be
assembled considering the above-mentioned variations in the first and last walking se-
quence by (5.31) and (5.41):




Σwp,w,1

Σwp,r,1

Σwp,w,2

...

Σwp,r,N

Σwp,w,N




︸ ︷︷ ︸
Σwp

=




W ⊗

1

R⊗

1

W ⊗

2

. . .

R⊗

N

W ⊗

N




︸ ︷︷ ︸
G ∈R

Nwp×Nwp




Σwp,w,1

Σwp,r,1

Σwp,w,2

...

Σwp,r,N

Σwp,w,N




︸ ︷︷ ︸
Σwp

+

+




Y1

F ⊗

1

Y2

. . .

F ⊗

N

YN




︸ ︷︷ ︸
T ∈R

Nwp×Nt




Vχ,1

Xfoot,1

Vχ,2

...

Xfoot,N

Vχ,N




︸ ︷︷ ︸
Xtarget

(5.46)

Here, Σwp ∈ R
Nwp×2 is the global matrix of all horizontal waypoints for multiple gait

sequences, Xtarget ∈ R
Nt×2 is the global horizontal target waypoint matrix and Nwp and

Nt denote the number of all horizontal waypoints and target waypoints, respectively.
The global constraint mapping matrix G satisfies, by mapping the waypoint matrix
onto itself, all constraints of the waypoints between each other and the global target
mapping matrix T maps the target waypoints onto the waypoint matrix Σwp. Solving
(5.46) for Σwp yields

Σwp = (I − G)−1 T︸ ︷︷ ︸
U

Xtarget. (5.47)

Here, I ∈ R
Nwp×Nwp is an identity matrix and the global combined target and constraint

mapping matrix U ∈ R
Nwp×Nt maps the global target waypoint matrix to the global
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waypoint matrix considering the waypoint constraints among each other. Equation
(5.47) solves the complete horizontal trajectory for multiple gait phases in a single matrix
operation.

5.2.4 Structure of the global constraint and target mapping matrix

This section is intended to give an insight into the structure of the global mapping
matrices derived in the previous section. Fig. 5.3 shows the structure of the global con-
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Figure 5.3: Heatmap of global constraint mapping matrix G and the global target mapping
matrix T in (5.46) for five consecutive gait sequences with three footsteps each consisting of 12
waypoints in each walking phase and 14 waypoints in each running sequence, i.e. 64 waypoints
in total. Submatrices according to the coloring scheme in (5.46) with non-zero entries colored in
gray.

straint mapping matrix G and the global target mapping matrix T for five consecutive
gait sequences with three footsteps each. The robot’s CoM starts and ends in a steady
state, i.e. standing. The individual constraint matrices for a gait sequence are shown in
green and red, and the target matrices for walking and running are shown in blue and
yellow, respectively. They have the same structure as in equations (5.31) and (5.41). All
non-zero entries are colored in gray. The mapping from the waypoints of a sequence to
each other is framed in bold in matrix G and the mapping from the VRP or foot target
waypoints to the gait sequence waypoints is framed in bold in matrix T . Outside the
bold framed region, the transition boundary conditions to the neighboring gait sequences
are considered. In the running sequence, each waypoint depends on the four boundary
conditions, while in the walking sequence the decoupling of the DCM dynamics from the



40 Chapter 5. Continuous Gait Transitions between Walking and Running

Figure 5.4: Heatmap of the matrix (I − G)−1 in (5.47) with same settings as in Fig. 5.3. The
values of each cell � are displayed on a linear scale from � = 0 (white) to |�| ≥ 1 (dark gray).

CoM dynamics is evident, such that only the CoM waypoint depends on both boundary
conditions and the DCM waypoint depends only on the DCM terminal condition.

Fig. 5.4 illustrates the structure of the matrix (I − G)−1 of the solution equation (5.47).
The gray tone of the individual entries changes linearly from � = 0 (white) to |�| ≥ 1
(dark gray), where � denotes the value of the corresponding cell. Matrix (I − G)−1

is multiplied by the target mapping matrix T to yield matrix U in Fig. 5.5, whose
structure reveals how the individual waypoints are influenced by the target waypoints
of their own and neighboring gait sequences. Overall, it can be seen that both matrices
have a diagonal-like structure and that the waypoints are influenced at most by the
surrounding ten target waypoints. The influence is most pronounced in the boundary
regions to the neighboring gait sequences and especially in running since there is a
stronger coupling and more boundary conditions compared to walking.

5.2.5 Ensuring continuity for the transition between standing and

walking

When the robot is stationary, the desired CoM position, DCM position and VRP position
coincide, such that DCM velocity and CoM velocity are zero (see (3.2) and (3.7)). It
follows that

χ1,w1 = ξχ,1,w1 = vχ,1,w1 (5.48)

must be valid in the first walking sequence and

χN,wN
= ξχ,N,wN

= vχ,N,wN
(5.49)
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Figure 5.5: Heatmap of the global target mapping matrix U in (5.47) with same settings as in
Fig. 5.3. The values of each cell � are displayed on a linear scale from � = 0 (white) to |�| ≥ 1
(dark gray).

in the last walking sequence. In the stand-to-walk (S2W) transition, the initial CoM
waypoint in the first walking sequence χ1,w1 is already constrained to coincide with the
first VRP waypoint vχ,1,w1 via (5.42). Similarly, in the walk-to-stand (W2S) transition,
the terminal DCM waypoint ξχ,N,wN

in the last walking sequence is constrained to be
equal to the terminal VRP waypoint vχ,N,wN

via (5.43). Thus, two additional constraints
are necessary for a continuous transition between standing and walking. In the S2W
transition, the first DCM waypoint must coincide with the first VRP waypoint. Due to
the stable CoM dynamics (3.2) the CoM position converges to the steady state (5.48)
anyway, but to reach it in finite time the last CoM position in the W2S transition has to
be set equal to the last VRP waypoint. The two additional constraints can be expressed
in matrix form:




vχ,1,w1

vχ,1,w1

Xtarget,rem

vχ,N,wN

vχ,N,wN




︸ ︷︷ ︸
Kwpc ∈RNt×2

=




1 0 0 . . . 0

u1

0Nrem 0Nrem INrem 0Nrem 0Nrem

uNwp

0 . . . 0 0 1




︸ ︷︷ ︸
Ktcm ∈RNt×Nt

Xtarget. (5.50)

Here, Kwpc denotes the target waypoint constraint matrix and Ktcm denotes the target
constraint mapping matrix, with 0Nrem ∈ R

Nrem and INrem ∈ R
Nrem×Nrem . The matrix
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Xtarget,rem summarizes the Nrem = Nt − 4 remaining waypoints, which can be freely
specified together with vχ,1,w1 and vχ,N,wN

during the footstep planning. The column
vectors u1 and uNwp denote the first and last row of matrix U in (5.47). The second
row in (5.50) encodes the first DCM position in walking sequence w1 as

ξχ,1,w1 = u1 Xtarget = vχ,1,w1 (5.51)

and the second to last row encodes last CoM position in walking sequence wN as

χN,wN
= uNwp Xtarget = vχ,N,wN

. (5.52)

Thereby, the degree of freedom of the second and second to last VRP position in the
respective walking sequence w1 and wN is given up in order to fulfill the particular
constraint. By inverting matrix Ktcm, equation (5.50) results in

Xtarget = K−1
tcm Kwpc, (5.53)

which maps the target waypoint constraint matrix Kwpc to a waypoint matrix Xtarget

that is compatible with constraints (5.51) and (5.52).

5.2.6 Postprocessing

For the subsequent calculation of the horizontal trajectory, the waypoints Σwp,w,wi
and

Σwp,r,ri
of the individual walking and running sequences wi and ri, respectively, are

extracted from the global horizontal waypoint matrix Σwp.

During the walking sequence the DCM and CoM trajectory is calculated with (3.16) and
(3.21) for any time tϕ in phase ϕ, i.e.

ξχ,ϕ(tϕ) = αξ,0,ϕ vwp,ϕ + βξ,0,ϕ vwp,ϕ+1 + γξ,0,ϕ ξχ,wp,ϕ+1 (5.54)

and

χϕ(tϕ) = αx,ϕ(tϕ) vwp,ϕ +βx,ϕ(tϕ)vwp,ϕ+1 +γx,ϕ(tϕ) ξχ,wp,ϕ+1 +δx,ϕ(tϕ) χwp,ϕ. (5.55)

Here, vwp,ϕ, vwp,ϕ+1, ξχ,wp,ϕ+1 and χwp,ϕ denote the individual waypoints in the VRP
waypoint matrix Vχ,i and walking waypoint matrix Σwp,w,wi

.

For running, the polynomial parameters Pχ for all stance phases in running sequence ri

are calculated according to (5.26) as

Pχ = A Σwp,r,ri
+ Eχ Xfoot,i. (5.56)

The horizontal CoM trajectory for running is calculated for any time ts ∈ [0..Ts,i] during
stance phase i by inserting the polynomial parameters Pχ in (4.16). During flight, the
horizontal trajectory is given by the first and second row of (4.2) and (4.3).

5.3 Divergent Component of Motion tracking control

Due to the naturally stable CoM dynamics, only the unstable first-order DCM dynam-
ics must be controlled. The control framework used for this purpose is adopted from
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Englsberger et al. [9]. To track the reference DCM trajectory a closed-loop dynamics of
the form

ξ̇ − ξ̇ref︸ ︷︷ ︸
ėξ

= −kξ (ξ − ξref)︸ ︷︷ ︸
eξ

(5.57)

is desired, which is stable for kξ > 0. The DCM error eξ converges asymptotically
and thus also the desired VRP vdes and the corresponding eCMP reCMP,des converge to
their reference values. Inserting the DCM dynamics (3.7) into the desired dynamics and
solving for the input v yields the tracking control law of the form

vdes = ξ − b ξ̇ref + kξ b (ξ − ξref) (5.58)

Writing the DCM dynamics (3.7) in terms of reference quantities and inserting into
(5.58) yields the DCM tracking controller of the form

vdes = vref + (1 + b kξ) (ξ − ξref) , (5.59)

which takes a VRP reference trajectory vref and the DCM tracking error eξ as input
to determine the desired VRP position. Inserting (5.59) into (3.6) returns the desired
linear force on the CoM as

Fcom,des =
m

b2
(x − vref − (1 + b kξ) (ξ − ξref)) . (5.60)

By subtracting the gravitational force Fg, the desired leg force is given by

Fleg,des =
m

b2
(x − vref − (1 + b kξ) (ξ − ξref)) − Fg, (5.61)

which is commanded to the whole-body controller in Chapter 7.
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Chapter 6

Evaluation and Visualization of

the Presented Methods

In the previous section, a method for generating smooth and consistent trajectories
of multiple gait transitions between walking and running was introduced. The results
obtained are presented below. The visually meaningful force-to-point transformations
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Figure 6.1: Top view of a trajectory consisting of five consecutive gait sequences with 0.25 m
step length, double support time TDS = 0.12 s and single support time TSS = 0.6 s during walking
(eCMP stationary in foot center during single support) and 0.4 m step length and stance time
Ts = 0.12 s during running (eCMP focus point on the foot plane).

(VRP and eCMP) and the DCM introduced in Chapter 3 are additionally calculated
for the running sequences and displayed for the whole trajectory. Provided the CoM
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position is continuous, a continuous DCM trajectory corresponds to a continuous ve-
locity trajectory according to (3.1). Furthermore, equations (3.6) and (3.4) show that
continuous VRP and eCMP trajectories correspond to continuous forces on the CoM and
external forces, respectively. In the horizontal direction, the VRP is equal to the eCMP
(see (3.5)) and it is sufficient to plot one of the two quantities. Fig. 6.1 shows a series of
five consecutive gait sequences with three footsteps each. The robot’s CoM alternates
between walking and running motions, while additionally switching from standing to
walking at the beginning of the first walking sequence, and switching back to standing
at the end of the last walking sequence. As described in Chapter 5, the entire trajec-
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Figure 6.2: Top view of a trajectory consisting of five consecutive gait sequences with 0.25 m
step length, double support time TDS = 0.12 s and single support time TSS = 0.6 s during walking
(eCMP moves from the heel of the foot) and 0.4 m step length and stance time Ts = 0.12 s during
running (eCMP focus point 0.3 m vertically below the foot plane).

tory depends only on the VRP waypoints for walking and the eCMP focus points for
running, which can be freely chosen with the exception of the second and second to last
horizontal VRP (see Section 5.2.5). The VRP waypoints can be readily computed from
the eCMP waypoints via (3.5). Therefore, it is sufficient to plan the eCMP waypoints.
For running, in addition to footstep center points, the last and first eCMP waypoint
of the previous and subsequent walking sequences is used as eCMP focus point. This
creates the push-off or landing in the single support phase during the transition between
walking and running.

The placement of eCMP waypoints for walking depends on the walking sequence, which
are distinguished between standing-to-running (S2R), running-to-running (R2R) and
running-to-standing (R2S) walking sequences. In the S2R and R2S walking sequence,
the first and last eCMP waypoint, respectively, is chosen to correspond to the standing
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Figure 6.3: Side view of the trajectory in x- and y-direction with the eCMP stationary in the
foot center during walking single support and the eCMP focus on the foot plane during running.
In the diagram on the right, only the running sequences are displayed since the eCMP waypoints
are constrained to the footstep surface during walking anyway.
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Figure 6.4: Side view of the trajectory in x- and y-direction with eCMP heel-to-toe movement
during walking single support and the eCMP focus point 0.3 m vertically below the foot plane
during running. In the diagram on the right, only the running sequences are displayed since the
eCMP waypoints are constrained to the footstep surface during walking anyway.

eCMP waypoint that lies exactly between the two footsteps in case of no perturbations.
An additional eCMP waypoint is inserted, which is determined in Section 5.2.5 in such
a way that there is a continuous transition between standing and walking.
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Figure 6.5: Time diagram of the horizontal trajectory consisting of five consecutive gait se-
quences with 0.25 m step length, double support time TDS = 0.12 s and single support time
TSS = 0.6 s during walking and 0.4 m step length and stance time Ts = 0.12 s during running.
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Figure 6.6: Time diagram of the vertical trajectory consisting of five consecutive gait sequences
with 0.25 m step length, double support time TDS = 0.12 s and single support time TSS = 0.6 s
during walking and 0.4 m step length and stance time Ts = 0.12 s during running.

For the remaining footsteps as well as all footsteps in the R2R walking sequence, two
eCMP waypoints are planned per footstep. There are several ways to place the way-
points. In Fig. 6.1, similar to running, the eCMP waypoints are chosen to be both at the
foot center, i.e. the eCMP trajectory remains at the foot center throughout the single
support phase. Another option is to place the eCMP waypoints on the longitudinal axis
of the foot, allowing the eCMP trajectory to move from the heel to the ball of the foot
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during the single support phase, as shown in Fig. 6.2. Additionally, the eCMP focus
point for running is shifted 0.3 m in the vertical direction, such that it lies under the
foot. In combination, this creates a slightly more natural gait and also makes the DCM
trajectory a little smoother especially in the R2W transition.

Fig. 6.3 shows the side view of the trajectory and illustrates that the external force acting
on the CoM always passes through the center of the foot in the single support phase.
This corresponds to the same eCMP start and endpoints in the single support phase of
walking as in Fig. 6.1. According to (3.4), the eCMP trajectory in the flight phase, i.e.
the leg force is zero, is equal to the CoM trajectory. During the stance phase of running,
the eCMP is below the foot position in a way that maintains the chosen eCMP focus
point.

The same plot is shown in Fig. 6.4 with the heel-to-toe transition of the eCMP during
walking and the shift of the eCMP focus point under the foot during running. It can be
observed that the line of action of the external force is more distributed across the foot,
but at all times remains within the footstep boundary.

Already in the spatial plots, it became clear that the DCM is always in front of the CoM
and attracts it. Figs. 6.5 and 6.6 show the time diagram of the horizontal and vertical
trajectories and illustrate even more clearly that the DCM always precedes the CoM,
which is particularly well visible in the x-direction in Fig. 6.5.

Since the VRP trajectory is continuous and thus with (3.6) and ẍ = Fcom/m the accel-
eration is continuous, it can be concluded that the chosen continuity requirements are
satisfied at the transition between walking and running. The CoM trajectory is C2 con-
tinuous and the DCM trajectory is C1 continuous, which corresponds to a C1 continuity
of the velocities. Fig. 6.7 shows the leg forces of the humanoid robot Toro [8] with a
weight of 79.2 kg, which fulfill C0 continuity within the gait sequences and at the gait
transitions.
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Figure 6.7: Leg forces over time of the humanoid robot Toro (79.2 kg). Step lengths and timings
according to Fig. 6.6.
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6.1 Foot trajectories

To obtain the foot trajectories, two consecutive foot positions for a single leg are inter-
polated with a fifth-order polynomial and a sixth-order polynomial in the horizontal and
vertical direction, respectively. The chosen polynomials have enough degrees of freedom
to allow the velocity and acceleration at the beginning and end of the swing phase to be
zero and, in addition, in the vertical direction to reach the desired apex height in the
middle of the swing phase. A linear system of equations can be set up that yields the
vectors of the polynomial coefficients in the horizontal and vertical direction

pχ,f =




tT
χ (0)

tT
χ̇ (0)

tT
χ̈ (0)

tT
χ (Tsw)

tT
χ̇ (Tsw)

tT
χ̈ (Tsw)




−1

︸ ︷︷ ︸
Tc,χ




χf,sw(0)

χ̇f,sw(0)

χ̈f,sw(0)

χf,sw (Tsw)

χ̇f,sw (Tsw)

χ̈f,sw (Tsw)




︸ ︷︷ ︸
Fc,χ

and pz,f =




tT
z (0)

tT
ż (0)

tT
z̈ (0)

tT
z

(
Tsw

2

)

tT
z (Tsw)

tT
ż (Tsw)

tT
z̈ (Tsw)




−1

︸ ︷︷ ︸
Tc,z




zf,sw(0)

żf,sw(0)

z̈f,sw(0)

zf,sw

(
Tsw

2

)

zf,sw (Tsw)

żf,sw (Tsw)

z̈f,sw (Tsw)




︸ ︷︷ ︸
fc,z

,

(6.1)

respectively. Here, the matrices Tc,χ and Tc,z are assembled with the following time
mapping row vectors

tT
χ (tsw) =

[
1, tsw, t2

sw, t3
sw, t4

sw, t5
sw

]
tT

z (tsw) =
[
1, tsw, t2

sw, t3
sw, t4

sw, t5
sw, t6

sw

]

tT
χ̇ (tsw) =

[
0, 1, 2tsw, 3t2

sw, 4t3
sw, 5t4

sw

]
tT

ż (tsw) =
[
0, 1, 2tsw, 3t2

sw, 4t3
sw, 5t4

sw, 6t5
sw

]

tT
χ̈ (tsw) =

[
0, 0, 2, 6tsw, 12t2

sw, 20t3
sw

]
tT

z̈ (tsw) =
[
0, 0, 2, 6tsw, 12t2

sw, 20t3
sw, 30t2

sw

]
.

(6.2)

The local time is defined as tsw ∈ [0, Tsw] and Tsw denotes the total swing time.

Table 6.1 shows the appropriate boundary conditions for the components of Fc,χ and fc,z

in (6.1), where xf,0 = [χf,0 zf,0] is the starting position of the foot and xf,T = [χf,T zf,T ]
is the foot target position. The foot positions, velocities and accelerations for the current
time tsw are calculated with the polynomial coefficients from (6.1) as




χf,sw (tsw)

χ̇f,sw (tsw)

χ̈f,sw (tsw)


 =




tT
χ (tsw)

tT
χ̇ (tsw)

tT
χ̈ (tsw)


pχ and




zf,sw (tsw)

żf,sw (tsw)

z̈f,sw (tsw)


 =




tT
z (tsw)

tT
ż (tsw)

tT
z̈ (tsw)


pz. (6.3)

In the stance phase, it is assumed that the foot is not slipping on the ground. Accordingly,
the stance trajectory can readily be defined as

χf,st(t) = χf,0,

zf,st(t) = zf,0,
(6.4)



6.2. Walking and running over stepping stones 51

order position interpolation boundary conditions

5

χf,sw(tsw) = χf,0

− (10 t3 (χf,0 − χf,T ))/T 3
sw

+ (15 t4 (χf,0 − χf,T ))/T 4
sw

− (6 t5 (χf,0 − χf,T ))/T 5
sw

χf,sw(0) = χf,0

χ̇f,sw(0) = 0

χ̈f,sw(0) = 0

χf,sw(Tsw) = χf,T

χ̇f,sw(Tsw) = 0

χ̈f,sw(Tsw) = 0

6

zf,sw(tsw) = zf,0

−
(
2 t3 (21 zf,0 + 11 zf,T − 32 zf,apex)

)
/T 3

sw

+ (3 t4 (37 zf,0 + 27 zf,T − 64 zf,apex))/T 4
sw

− (6 t5 (17 zf,0 + 15 zf,T − 32 zf,apex))/T 5
sw

+ (32 t6 (zf,0 + zf,T − 2 zf,apex))/T 6
sw

zf,sw(0) = zf,0

żf,sw(0) = 0

z̈f,sw(0) = 0

zf,sw(Tsw/2) = zf,apex

zf,sw(Tsw) = zf,T

żf,sw(Tsw) = 0

z̈f,sw(Tsw) = 0

Table 6.1: Analytical solution of the foot position interpolation and corresponding boundary
conditions in the horizontal and vertical direction.

where χf,0 and zf,0 is the current foot position in the horizontal and vertical direction,
respectively, and the corresponding velocities and accelerations are zero.

This allows the foot reference trajectories to be assembled for the entire sequence of
multiple stance and swing phases, resulting in

xf,ref =




[χf,st,1 zf,st,1]

[χf,sw,1 zf,sw,1]
...

[χf,st,N zf,st,N ]




, ẋf,ref =




[χ̇f,st,1 żf,st,1]

[χ̇f,sw,1 żf,sw,1]
...

[χ̇f,st,N żf,st,N ]




, ẍf,ref =




[χ̈f,st,1 z̈f,st,1]

[χ̈f,sw,1 z̈f,sw,1]
...

[χ̈f,st,N z̈f,st,N ]




.

(6.5)

The foot reference trajectories are visualized in the next section over a series of 3D
stepping stones and also provide a reference for the foot tracking task in the whole-body
controller in Chapter 7.

6.2 Walking and running over stepping stones

Since the foot stepping points for walking and running are specified exactly, the devel-
oped method is also suitable for generating trajectories over varying floor positions and
heights, e.g. stepping stones. The algorithm facilitates trajectories around curves, but
this requires planning foot orientation trajectories, which will be part of future work.
Fig. 6.8 shows the CoM trajectory and the foot trajectories derived in Section 6.1 for
walking (continuous line) and running (dashed line) over several stepping stones, whose
color specifies the gait. To illustrate the relationship between the trajectories, the legs
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of the robot are indicated by two lines from the CoM trajectory to the foot trajectories,
which are shown at different times during the gait series.
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Figure 6.8: Bipedal point mass model walking (continuous line) and running (dashed line) over
3D stepping stones with CoM (blue), left foot (black) and right foot (red) trajectories.



Chapter 7

Whole-Body Control

This chapter provides an overview of the whole-body control (WBC) framework, which
allows the robot to perform various tasks such as walking or running. Humanoid robots
usually have a large number of degrees of freedom that are exploited to varying degrees
for different tasks. The task of the whole-body controller is to find the optimal control
outputs for all degrees of freedom, even if they are not primarily involved in the execu-
tion of a task. This applies, for example, to the upper body during locomotion, which
nevertheless plays an important role in maintaining balance. In this thesis, an inverse
dynamics approach introduced in Englsberger [5] is adopted, embedded in a quadratic
program (QP) based optimization framework, which has been shown to provide satisfac-
tory results for both gaits individually. The main objective of the whole-body controller
in this work is to be general enough to enable the execution of whole-body walking
and running motions and their transitions based on the reference trajectories derived in
Chapters 5 and 6.

7.1 Dynamic model

This section gives a brief overview of the free-floating dynamic model for humanoid
robots. The advantage of legged robots is that they can move freely in their environment
and thus gain an additional six degrees of freedom compared to stationary robots. To
account for these, the state of the free floating base is added to the robot’s configuration.
It is described by the position xbase ∈ R

3 and orientation Rbase ∈ SO(3) of the base
frame relative to the world frame. In the base state vector qbase ∈ R

6 the orientation is
represented in local coordinates αbase ∈ R

3, e.g. roll-pitch-yaw angles. Combined with
the joint position qjnt ∈ R

n the variables are concentrated into a single state vector:

q =




xbase

αbase

qjnt


 =


qbase

qjnt


 ∈ R

6+n. (7.1)

The additional six degrees of freedom of the base cannot be controlled directly. Thus,
robots with a free-floating base belong to a class called underactuated systems, for which
the equation of motion is given by

M(q)q̈ + C(q, q̇) + τg(q) = ST τ + τext. (7.2)

53
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Here, M is the inertia matrix, C denotes the Coriolis and centrifugal matrix and the
vector τg captures the gravitational forces and moments. The robot’s joint torques
are concentrated in the vector τ . The matrix S = [0n×6 In×n] is a selection matrix,
that selects only the bottom n components of τ , which can be actuated directly. The
vector τext contains the generalized external forces and torques acting on the robot. For
simplicity, it is assumed that all external forces act at the end-effector frames k ∈ [1..η].
Due to the focus on locomotion, only the two feet are considered to be end effectors,
which yields η = 2. With this assumption τext simplifies to

τext = J(q)T w, (7.3)

where J ∈ R
m×n is the Jacobi matrix1 and the vector w ∈ R

m contains all Cartesian
end effector wrenches wk, which are the six-dimensional vectors of external Cartesian
forces and torques.

7.2 Contact constraints on the robot

Despite the slightly misleading name of the dynamic model, the robot does not float
in space and therefore needs to make contact with its environment. One approach to
modeling the contact is to approximate the continuous rectangular foot contact area
via single contact points in the four corners [10, 13]. Since the robot can generally
only push off the ground and only move forward due to friction, unilateral contact and
friction cone constraints must be considered. Here, the friction cone in each contact

0x0,com

friction cone

polyhedral convex cone

linear contact force unit vectors ufi 0p0,ci

CoM frame 0Hcom

world frame

0

contact frame 0Ci

Figure 7.1: Outline of CoM frame, contact frame and polyhedral convex cone approximation
(adapted from [5]).

point is approximated by a polyhedral convex cone consisting of four contact forces (see
Fig. 7.1). With four contact points in each foot, there are a total of ncf = 16 contact

1Supposing the forward kinematics x = ϕ(q) is a local mapping between the configuration space
q ∈ R

n and an m-dimensional task space x ∈ R
m. Then the velocity transformation between these

spaces is given by: ẋ = dϕ(q)
dt

= ∂ϕ(q)
∂q

q̇ = J(q)q̇, where J(q) is the Jacobi matrix.
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forces fi ∈ R
3 per foot, which are defined by a unit vector 0ufi

and a scalar parameter
ρi ≥ 0 indicating the direction and magnitude of the contact force, respectively, i.e.

fi = 0ufi
ρi. (7.4)

Here, 0
� denotes the representation in the world frame for any quantity �. The contact

force magnitudes ρi for each foot are summarized in the vector ρ, which is mapped to
the feasible spacial wrench wk via

0wk =
[

0gρ,1 · · · 0gρ,ncf

]

︸ ︷︷ ︸
0Gρ,k




ρ1

...

ρncf




︸ ︷︷ ︸
ρ

(7.5)

where 0Gρ,k is the so-called grasp matrix. The column vectors 0gρ,i are given by

0gρ,i =




0ufi

0p̃0,ci
0ufi


 , (7.6)

where ufi
is the contact force direction vector form (7.4) and p̃0,ci

is the skew-symmetric
cross-product matrix

0p̃0,ci
=




0 −pz py

pz 0 −px

−py px 0


 (7.7)

for the vector 0p0,ci
= [px py pz] denoting the spacial position of contact frame 0Ci

corresponding to contact force fi. The definition of the contact wrench in (7.5) can be
inserted in (7.3) and thus the general robot equations of motion (7.2) result in

Mq̈ + Cq̇ + τg︸ ︷︷ ︸
h

= Sτ +
η∑

k=1

(0
sJT

0,k
0Gρ,kρ
︸ ︷︷ ︸

0wk

)

=
[

S
∑η

k=1

(
0
sJT

0,k
0Gρ,k

) ]

︸ ︷︷ ︸
Au


 τ

ρ




︸ ︷︷ ︸
u

.

(7.8)

Here, 0
sJT

0,k is the spacial end effector Jacobian corresponding to the k-th end effector

wrench 0wk. The robot’s actuated joint torques and contact force magnitudes are se-
lected as control variables and summarized in the control input vector u. Matrix Au

combines the selection matrix S and the contact force mapping matrices in a single
operator that maps the control input vector u to the generalized joint torques. Since
many whole-body control tasks can be written as a relation between the generalized
accelerations q̈ and the control inputs u, equation (7.8) is solved for q̈ as

q̈ = −M−1n︸ ︷︷ ︸
q̈MB

+ M−1Au︸ ︷︷ ︸
Q

u, (7.9)

where q̈MB is the acceleration due to multi-body effects and Q denotes the mapping of
control inputs u to generalized accelerations q̈. This allows inserting the acceleration
directly into the respective tasks and the enforcement of (7.8) via an equality constraint
in the QP is not necessary.
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7.3 Derivation of tasks for the whole-body controller

Performing basic activities such as walking or running requires multiple whole-body
control tasks to find control outputs for all joints. All tasks are formulated with the
control input vector u in the following form:

di,des
!

= Diu. (7.10)

Here, di,des and Di denote the desired task space vector and the corresponding task
space mapping matrix of the i-th task, respectively.

7.3.1 Centroidal momentum task

According to Kajita et al. [15], the angular momentum l of a robot can be computed as

l = AG,l q̇, (7.11)

where AG,l denotes the part of the centroidal momentum matrix in Orin et al. [21], that
maps generalized joint velocities to the angular momentum l. Equation (7.11) is valid,
if the angular momentum is expressed in the CoM frame 0Hcom with the axis aligned
with the world frame, i.e.

0Hcom =


 I3×3

0x0,com

01×3 1


 , (7.12)

where 0x0,com denotes the CoM position in the world frame. An angular momentum
reference trajectory (lref l̇ref) can be tracked by the following controller

l̇des︸︷︷︸
τcom,des

= l̇ref − kl (l − lref) , (7.13)

which is stable for kl ≥ 0. However, for walking and running at moderate speeds, it is
an acceptable assumption to choose the reference angular momentum lref and its rate of
change l̇ref to be zero. This allows the desired torques τcom,des from (7.13) around the
CoM and the leg force Fleg,des on the CoM from (5.61) to be formulated in relation to
the control input vector u as follows


 Fleg,des

τcom,des




︸ ︷︷ ︸
dcom,des

=
[

06×nτ
comAρ

]

︸ ︷︷ ︸
Dcom

u, (7.14)

where nτ is the number of actuated joints in the robot and the matrix

comAρ = AdT
0Hcom

η∑

k=1

(
0Aρ,k

)
(7.15)

maps the vector of contact force magnitudes ρ to an external wrench in the CoM frame
0Hcom. It consists of two successive mappings, first from the contact forces ρ to spacial
wrenches via (7.5) and then by the adjoint transpose AdT

0Hcom
from the world frame to

the CoM frame (for details see [5]).
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7.3.2 Foot acceleration task

The foot reference trajectories derived in Section 6.1 can be tracked by the following
task space PD controller

ẍf,des = ẍf,ref − λf,1λf,2 (xf − xf,ref) + (λf,1 + λf,2) (ẋf − ẋf,ref) , (7.16)

where λf,1 and λf,2 are the desired eigenvalues of the foot tracking dynamics. To map
the foot accelerations to the selected optimization variables in u, the following velocity
transformation between task space and configuration space is considered:

0
hν̇0,f =




0ẋ0,f

0ω0,f


 = 0

hJ0,f q̇, (7.17)

where 0
hν̇0,f is the hybrid velocity introduced by Murray et al. [20], that combines the

translational velocity 0ẋ0,f and the spacial angular velocity 0ω0,f of the foot in a six-
dimensional vector. The hybrid Jacobian 0

hJ0,f of the foot maps the generalized joint
velocities q̇ to the hybrid velocity. Here, the spacial angular velocity 0ω0,f is chosen to
be zero such that the foot always remains parallel to the ground. This assumption still
yields satisfactory walking and running motions, however, in order to obtain a natural
and human-like gait pattern, the rotation of the foot plays an important but challenging
role, as for example rolling over the front edge of the foot significantly reduces the
actuability of the robot. The integration of foot orientation reference trajectories is part
of future work in this project.

By differentiating (7.17) the hybrid foot acceleration is obtained:

0
hν̇0,f = 0

hJ̇0,f q̇ + 0
hJ0,f q̈. (7.18)

With (7.16) the desired hybrid foot acceleration can be written as

0
hν̇0,f,des =


 ẍf,des

ω̇f,des


 , (7.19)

where ω̇f,des = 03×1. By setting 0
hν̇0,f = 0

hν̇0,f,des in (7.18), the foot acceleration task
can be written as a function of the control input vector u:

0
hν̇0,f,des − 0

hJ̇0,f q̇ − 0
hJ0,f q̈MB︸ ︷︷ ︸

df,des

= 0
hJ0,f Q
︸ ︷︷ ︸

Df

u, (7.20)

which provides the desired foot acceleration task vector df,des and the corresponding
task mapping matrix Df for the integration in the WBC framework.

7.3.3 Further tasks and task summary

Two more tasks, i.e. torso orientation and joint posture reference, are added to WBC
framework, whose desired accelerations 0ω̇0,torso,des and q̈post,des, respectively, can be
calculated similarly to foot acceleration tasks via PD controllers (for details see [5]).
Table 7.1 summarizes all task mapping matrices and task vectors used in the optimiza-
tion. Here, 0

ωJ0,torso is the angular Jacobian of the torso and 0
ωJ̇0,torso its time derivative,
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task task mapping matrix Di desired task vector di,des

centr. momentum
[

06×nτ
comAρ

]

 Fleg,des

τcom,des




foot tracking 0
hJ0,f Q 0

hν̇0,f,des − 0
hJ̇0,f q̇ − 0

hJ0,f q̈MB

torso orientation J0,torsoQ 0ω̇0,torso,des − 0
ωJ̇0,torsoq̇ − 0

ωJ0,torsoq̈MB

posture reference SpostQ q̈post,des − Spostq̈MB

regularization Inu×nu 0

Table 7.1: Summary of tasks for the whole-body controller displayed as task mapping matrices
Di and desired task vectors di,des (adapted from [14]).

equivalent to the angular component of 0
hJ0,f and 0

hJ̇0,f introduced in Section 7.3.2. The
matrix Spost selects the joints for the reference posture task. The regularization task
acts as a damping term in the optimization and penalizes high control inputs u. This
ensures good behavior in the case of singularities and also dampens the nullspace that
corresponds to the mapping of the linear contact forces to the contact wrenches (see
(7.5)).

7.4 Optimization via a quadratic program

The task errors Diu−di,des, obtained by reformulating (7.10), are used to write the cost
function G, which is minimized in the QP:

min
u

G = 1
2

∑
i

(
(Diu − di,des)

T Wi (Diu − di,des)
)

s.t. τ ≤ τ ≤ τ

0 ≤ ρ

. (7.21)

Here, Wi are diagonal weighting matrices for each task i and τ and τ denote the lower
and upper joint torque limits, respectively. The last inequality constraint ensures that
the contact force magnitudes and corresponding contact wrenches are feasible. The solu-
tion to (7.21) provides the optimal control input vector u∗ that trades off the individual
tasks depending on their weights and satisfies the torque limits and contact constraints.



Chapter 8

Whole-Body Simulation

Extending the existing simulation environment of the humanoid robot Toro, the ref-
erence trajectories from Chapters 5 and 6 are generated in Matlab and imported into
the Matlab Simulink model, which is linked to a simulation platform called OpenHRP
(Open Architecture Human-centered Robotics Platform) for visualization. It is a vir-
tual humanoid robot platform consisting of a multibody simulator with contact and
collision computation between arbitrary polyhedral objects [16]. Several simulations
are performed to test the performance of the proposed trajectory generation with the
whole-body controller introduced in Chapter 7. The results for a trajectory with five
gait sequences alternating between walking and running are presented below.
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Figure 8.1: Simulation of the humanoid robot Toro [8] following a trajectory consisting of five
consecutive gait sequences with 0.25 m step length, double support time TDS = 0.12 s and single
support time TSS = 0.6 s during walking and 0.4 m step length and stance time Ts = 0.12 s during
running.
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Fig. 8.1 shows the DCM and CoM reference trajectories compared to the estimated
values calculated in the whole-body simulation. Overall, the trajectories are tracked
well. The DCM and CoM tracking shows minimal deviations in the walking sequences
and slightly larger deviations in the running sequences. The DCM root-mean-square
tracking error denotes εξ,x = 6.3 mm, εξ,y = 2.9 mm and εξ,z = 12.1 mm in the respective
direction. The CoM tracking error results from the DCM error, but is with εx = 4.8 mm,
εy = 2.1 mm and εz = 10.0 mm slightly smaller than the DCM error due to smaller
variations of the CoM trajectory. The fast vertical dynamics during running causes with
εξ,z,max = 36.0 mm and εz,max = 23.2 mm the largest DCM and CoM tracking error,
respectively. It can be observed that the robot does not completely reach the desired
apex height during the flight phase.
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Figure 8.2: Reference and desired VRP trajectories. The VRP root-mean-square tracking error
denotes εv,x = 12.6 mm, εv,y = 5.8 mm and εv,z = 24.1 mm in the respective direction.

By looking at the desired VRP trajectory in Fig. 8.3 it can be seen that it deviates from
the reference VRP trajectory mostly in the flight phase. Influenced by the contact model
and a linear fade-in and fade-out of the contact condition for robustness, a slightly lower
force than required to achieve the desired apex height in the following flight phase can be
applied in the stance phase. Since no external force can be generated here, the deviation
exists for the entire flight phase, which significantly increases the mean tracking error.
For the same reason, there are also minor deviations in the horizontal components of
the desired VRP trajectory.

The right leg joint torques of the humanoid robot Toro during the same simulation are
displayed in Fig. 8.3. Due to the increased load in the running sequence, the torque
limits are disabled in the simulation. The joint torques are highest in the stance phases
highlighted in yellow. Especially in the short contact phase during running, the peak
torques in the hip pitch joint are significantly increased compared to humans. The
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Figure 8.3: Right leg joint torques of the humanoid robot Toro in simulation

torques in the knee and ankle joint are roughly comparable to the load during human
walking and running [2].

The increased torque in the hip most likely results from the relatively strong forward
flexion of the upper body during the stance phase of running (see Fig. 8.4 at t = 0.8 s).
Increasing the weighting of the torso orientation task in the QP can improve this slightly.
However, it does not have much influence in the stance phase and has the additional
disadvantage that the upper body returns to the upright position unnaturally fast after
the stance phase.

Fig. 8.4 shows the transition from walking to running of Toro in simulation for time
steps of 0.2 s, where the motion of the center of mass is approximated as a solid blue line
for walking and a dashed blue line for running. The single support time is TSS = 0.6 s
for walking and Ts = 0.2 s for running. The plot starts at the end of the last double
support phase of walking at 0 s. The transition of the gait algorithms occurs in the last
single support phase of walking. For this phase to have the same time as the previous
single support phase, the last single support time for walking TSS,last is calculated as

TSS,last = TSS − Ts, (8.1)

where TSS is the walking single support time and Ts is the stance time during running.
Here, the gait transition occurs at two-thirds of the last single support phase (0.4 s). The
robot then pushes off slightly to reach the desired apex height in the subsequent first
short flight phase. The first touchdown occurs at about 0.7 s. In the middle of the first
full stance phases of running at 0.8 s, the leg forces are at their maximum (see Fig. 6.7).
The following flight phase is longer than the first one because it has a longer ascending
part. At 1.0 s the robot is in full flight.

The transition from running to walking is shown in Fig. 8.5 and starts at 0 s in the
second to last flight phase. The single support and stance times are chosen as in the
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t = 0 s t = 0.4 st = 0.2 s t = 0.6 s

t = 0.8 s t = 1.2 st = 1 s t = 1.4 s

Figure 8.4: Time Series of the humanoid robot Toro [8] in simulation during the walk-to-run
(W2R) transition with CoM motion indicated (continuous line: walking, dashed line: running).

W2R transition in Fig. 8.4. The final touchdown of the running sequence takes place
at 0.4 s and the transition of the gait algorithms occurs one stance time Ts = 0.2 s later
at 0.6 s. The duration of the first single support phase of walking TSS,first is calculated
equivalently to (8.1) as

TSS,first = TSS − Ts, (8.2)

Thus, the robot is back in the first double support phase 0.4 s later at 1 s. Since the first
VRP of the walking sequence was chosen at the original walking height (∆zvrp above the
ground), the CoM trajectory converges to this value according to the naturally stable
CoM dynamics (3.2).
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t = 0 s t = 0.4 st = 0.2 s t = 0.6 s

t = 0.8 s t = 1.2 st = 1 s t = 1.4 s

Figure 8.5: Time Series of the humanoid robot Toro [8] in simulation during the run-to-walk
(R2W) transition with CoM motion indicated (continuous line: walking, dashed line: running).
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Chapter 9

Conclusion and Future Work

The goal of this work was to plan smooth and consistent transitions between walking
and running that enable faster locomotion speeds for humanoid robots. At first related
work and an overview of the existing trajectory generation algorithms from walking and
running were presented. By combining the two algorithms, a new trajectory generation
framework was developed that generates continuous trajectories for multiple walking and
running sequence and their transitions.

Due to the separate calculation of the horizontal and vertical components of the trajec-
tory in the running sequence, the trajectory generation was split into two parts, which
were calculated sequentially. First, the vertical dynamics were solved in a forward re-
cursion from one gait sequence to the next. Then, due to the coupling of different state
variables between walking and running, the complete trajectory in the horizontal direc-
tion was generated in a single matrix calculation. The assembly of the global matrix
equation was shown in detail.

The trajectory generation was evaluated for different design parameters that influence
the distribution of leg force over the foot. Furthermore, the applicability for different
ground characteristics i.e. walking and running over stepping stones was shown. The dif-
ferent control strategies for walking and running were unified by integrating the proposed
trajectory generation into an inverse dynamics based whole-body controller.

In the last chapter, the presented approaches were validated in simulations with the
humanoid robot Toro and stable transitions between walking and running were obtained.

Future research will focus on integrating the trajectory generation framework in the ex-
isting simulation environment in Matlab Simulink so that the trajectory is re-planned
online in each time step based on the current measured values and can thus react to
disturbances. Moreover, foot orientation reference trajectories will be planned and inte-
grated into the whole-body control framework to obtain a more natural and human-like
gait pattern. Furthermore, the gait parameters like stance times, apex height in the
flight phase and step length are adjusted depending on the current locomotion velocity
to also create a more natural gait pattern.

These future ideas, combined with the developed framework for generating consistent
trajectories, represent an important step toward robotic bipedal locomotion in experi-
ments with smooth transitions between standing, walking and running.
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