
1

Object Detection in Aerial Images:
A Large-Scale Benchmark and Challenges
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Abstract—In the past decade, object detection has achieved significant progress in natural images but not in aerial images, due to
the massive variations in the scale and orientation of objects caused by the bird’s-eye view of aerial images. More importantly, the lack
of large-scale benchmarks becomes a major obstacle to the development of object detection in aerial images (ODAI). In this paper,
we present a large-scale Dataset of Object deTection in Aerial images (DOTA) and comprehensive baselines for ODAI. The proposed
DOTA dataset contains 1,793,658 object instances of 18 categories of oriented-bounding-box annotations collected from 11,268 aerial
images. Based on this large-scale and well-annotated dataset, we build baselines covering 10 state-of-the-art algorithms with over 70
configurations, where the speed and accuracy performances of each model have been evaluated. Furthermore, we provide a uniform
code library for ODAI and build a website for testing and evaluating different algorithms. Previous challenges run on DOTA have attracted
more than 1300 teams worldwide. We believe that the expanded large-scale DOTA dataset, the extensive baselines, the code library
and the challenges can facilitate the designs of robust algorithms and reproducible research on the problem of object detection in aerial
images.

Index Terms—Object detection, remote sensing, aerial images, oriented object detection, benchmark dataset.
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1 INTRODUCTION

Currently, Earth vision (also known as Earth observation
and remote sensing) technologies enable us to observe the
earth‘s surface with aerial images with a resolution up to a
half meter. Although challenging, developing mathematical
tools and numerical algorithms is necessary for interpreting
these huge volumes of images, among which object detec-
tion refers to localizing objects of interest (e.g., vehicles and
ships) on the earth‘s surface and predicting their categories.
Object detection in aerial images (ODAI) has been an es-
sential step in many real-world applications such as urban
management, precision agriculture, emergency rescue and
disaster relief [1], [2]. Although extensive studies have been
devoted to object detection in aerial images and apprecia-
ble breakthroughs have been made [3]–[8], the task has
numerous difficulties such as arbitrary orientations, scale
variations, extremely nonuniform object densities and large
aspect ratios (ARs), as shown in Fig. 1.

Among these difficulties, the arbitrary orientation of
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objects caused by the overhead view is the main differ-
ence between natural images and aerial images, and it
complicates the object detection task in two ways. First,
rotation-invariant feature representations are preferred in
the detection of arbitrarily orientated objects, but they are
often beyond the capability of most of current deep neural
network models. Although the methods such as those de-
signed in [6], [9], [10] use rotation-invariant convolutional
neural networks (CNNs), the problem is far from solved.
Second, the horizontal bounding box (HBB) object representa-
tion used in conventional object detection [11]–[13] cannot
localize the oriented objects precisely, such as ships and
large vehicles, as shown in Fig. 1. The oriented bounding box
(OBB) object representation is more appropriate for aerial
images [4], [14]–[17]. It allows us to distinguish densely
packed instances (as shown in Fig. 3) and extract rotation-
invariant features [4], [18], [19]. The OBB object representa-
tion actually introduces a new object detection task, called
oriented object detection. In contrast with horizontal object
detection [8], [20]–[22], oriented object detection is a recently
emerging research direction and most of the methods for
this new task attempt to transfer successful deep-learning-
based object detectors pre-trained on large-scale natural
image datasets (e.g., ImageNet [12] and Microsoft Common
Objects in Context (MS COCO) [13]) to aerial scenes [18],
[19], [23]–[25] due to the lack of large-scale annotated aerial
image datasets.

To mitigate the dataset problem, some public datasets
of aerial images have been created, see e.g. [7], [15]–[17],
[26], but they contain a limited number of instances and
tend to use images taken under ideal conditions (e.g., clear
backgrounds and centered objects), which cannot reflect the
real-world difficulties of the problem. The recently released
xView [27] dataset provides a wide range of categories and
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Fig. 1. An example image taken from DOTA. (a) A typical image in DOTA consisting of many instances from multiple categories. (b), (c), (d), (e)
are cropped from the source image. We can see that instances such as small vehicles have arbitrary orientations. There is also a massive scale
variation across different instances. Moreover, the instances are not distributed ununiformly. The instances are sparse in most areas but crowded
in some local areas. Large vehicles and ships have large ARs. (f) and (g) exhibit the size and orientation histograms, respectively, for all instances.

contains large quantities of instances in complicated scenes.
However, it annotates the instances with HBBs instead of
the more precise OBBs. Thus, a large-scale dataset that has
OBB annotations and reflects the difficulties in real-world
applications of aerial images is in high demand.

Another issue with ODAI is that the module design
and the hyperparameter setting of conventional object de-
tectors learned from natural images are not appropriate
for aerial images due to domain differences. Thus, in the
sense of algorithm development, comprehensive baselines
and enough ablative analyses of models on aerial images are
required. However, comparing different algorithms is diffi-
cult due to the diversities in hardware, software platforms,
detailed settings and so on. These factors influence both
speed and accuracy. Therefore, when building the baselines,
implementing the algorithms with a unified code library
and keeping the hardware and software platform the same
is highly desirable. Nevertheless, current object detection
libraries, e.g., MMDetection [28] and Detectron [29], do not
support oriented object detection.

To address the above-mentioned problems, in this paper
we first extend the preliminary version of DOTA, i.e., DOTA-
v1.0 [14], to DOTA-v2.0. Specifically, DOTA-v2.0 collects
11, 268 aerial images from various sensors and platforms
and contains approximately 1.8 million object instances
annotated with OBBs in 18 common categories, which, to
our knowledge, is the largest public Earth vision object de-
tection dataset. Then, to facilitate algorithm developments
and comparisons with DOTA, we provide a well-designed
code library that supports oriented object detection in aerial

images. Based on the code library, we also build more
comprehensive baselines than the preliminary version [14],
keeping the hardware, software platform, and settings the
same. In total, we evaluate 10 algorithms and over 70 mod-
els with different configurations. We then provide detailed
speed and accuracy analyses to explore the module designs
and parameter settings in aerial images to guide future
research. These experiments verify the large differences in
object detector design between natural and aerial images
and provide materials for universal object detection algo-
rithms [30].

The main contributions of this paper are three-fold:

• To the best of our knowledge, the expanded DOTA is
the largest dataset for object detection in Earth vision.
The OBB annotations of DOTA not only provide a
large-scale benchmark for object detection in Earth
vision but also pose interesting algorithmic questions
and challenges to generalized object detection in
computer vision.

• We build a code library for object detection in aerial
images. This is expected to facilitate the development
and benchmarking of object detection algorithms in
aerial images with both HBB and OBB representa-
tions.

• With the expanded DOTA, we evaluate 10 repre-
sentative algorithms over 70 model configurations,
providing comprehensive analysis that can guide
the designs of object detection algorithms in aerial
images.
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The dataset, code library, and regular evaluation server
are available and maintained on the DOTA website1. It
is worth noting that the creation and use of DOTA have
advanced object detection in aerial images. For instance, the
regular DOTA evaluation server and two object detection
contests organized on the 2018 International Conference
on Pattern Recognition (ICPR’ 2018 with DOTA-v1.0)2 and
2019 Conference on Computer Vision and Pattern Recogni-
tion (CVPR’2019 with DOTA-v1.5)3 have attracted approx-
imately 1300 registrations. We believe that our new DOTA
dataset, with a comprehensive code library and an online
evaluation platform, will further promote the reproducible
research in Earth vision.

2 RELATED WORK

Well-annotated datasets have played an important role in
data-driven computer vision research [12], [13], [31]–[35]
and have promoted cutting-edge research in a number of
tasks such as object detection and classification. In this sec-
tion, we briefly review object detection datasets of natural
images and aerial images.

2.1 Datasets for Conventional Object Detection

As a pioneer, PASCAL Visual Object Classes (VOC) [11]
has held challenges on object detection from 2005 to 2012.
The computer vision community widely adopts PASCAL
VOC datasets and their evaluation metrics. Specifically,
the PASCAL VOC Challenge 2012 dataset contains 11, 530
images, 20 classes, and 27, 450 annotated bounding boxes.
Later, the ImageNet dataset [12] was developed and is an
order of magnitude larger than PASCAL VOC, containing
200 classes and approximately 500, 000 annotated bounding
boxes. However, non-iconic views are not addressed. Then
MS COCO [13] was released, containing a total of 328K
images, 91 categories, and 2.5 million labeled segmented
objects. MS COCO has on average more instances and cate-
gories per image and contains more contextual information
than PASCAL VOC and ImageNet. It is worth noticing that,
in Earth vision, the image size could be extremely large (e.g.,
20, 000 × 20, 000 pixels), so the number of images cannot
reflect the scale of a dataset. In this case, the pixel area would
be more reasonable when comparing the scale between the
datasets of natural and aerial images. Moreover, the large
images include more instances per image and contextual
information. Tab. 1 provides the detailed comparisons.

2.2 Datasets for Object Detection in Aerial Images

In aerial object detection, a dataset resembling MS COCO
and ImageNet both in terms of the image number and de-
tailed annotations has been missing, which becomes one of
the main obstacles to research in Earth vision, especially for
developing deep-learning-based algorithms. In Earth vision,
many aerial image datasets are prepared for actual demands
in a specific category, such as building datasets [7], [36], ve-
hicle datasets [8], [15], [16], [26], [37], [38], ship datasets [4],

1. https://captain-whu.github.io/DOTA/
2. https://captain-whu.github.io/ODAI/results.html
3. https://captain-whu.github.io/DOAI2019/challenge.html

TABLE 1
DOTA vs. general object detection datasets. C is short for the category.

BBox is short for bounding box, Avg. BBox quantity indicates the
average number of bounding boxes per image. For PASCAL VOC
(07++12), we count the whole PASCAL VOC 07 and training and

validation (trainval) set of PASCAL VOC 12. DOTA has a comparable
scale with the large-scale datasets for object detection in natural

images. Note that for the average number of instances per image,
DOTA surpasses the other datasets.

Dataset Classes Image
quantity

Megapixel
area

BBox
quantity

Avg. BBox
quantity

PASCAL VOC
(07++12) 20 21,503 5,133 52,090 2.42

MS COCO
(2014 trainval) 80 123,287 32,639 886,266 7.19

ImageNet
(2014 train) 200 456,567 82,820 478,807 1.05

DOTA-v1.0 15 2,806 19,173 188,282 67.10
DOTA-v1.5 16 2,806 19,173 402,089 143.73
DOTA-v2.0 18 11,268 107,133 1,793,658 159.18

[39], and plane datasets [17], [40]. Although some public
datasets [17], [41]–[44] have multiple categories, they have
only limited number of samples, which are hardly efficient
for training robust deep models. For example, NWPU [41]
only contains 800 images, 10 classes and 3, 651 instances.

To alleviate this problem, our preliminary work DOTA-
v1.0 [14] presented a dataset with 15 categories and 188, 282
instances, which the first time enables us to efficiently train
robust deep models for ODAI without the help of large-scale
datasets of nature images, such as MS COCO and ImageNet.
Later, iSAID [45] provided an instance segmentation exten-
sion of DOTA-v1.0 [14]. A notable dataset is xView [27],
which contains 1, 413 images, 16 main categories, 60 fine-
grained categories, and 1 million instances. Another dataset
DIOR [46] provided a comparable number of instances as
DOTA-v1.0 [14]. However, the instances in xView and DIOR
are both annotated by HBBs, which are not suitable for
precisely detecting objects that are arbitrarily oriented in
aerial images. In addition, VisDrone [47] is also a large-
scale dataset for drone images but focuses more on video
object detection and tracking. The image subset in VisDrone
for object detection is not very large. Furthermore, most of
the previous datasets are heavily imbalanced in favor of
positive samples, whose negative samples are not sufficient
to represent the real-world distribution.

As we stated previously [14], a good dataset for aerial
image object detection should have the following proper-
ties: 1) substantial annotated data to facilitate data-driven,
especially deep-learning-based methods; 2) large images to
contain more contextual information; 3) OBB annotation to
describe the precise location of objects; and 4) balance in
image sources, as pointed in [48]. DOTA is built considering
these principles (unless otherwise specified, DOTA refers to
DOTA-v2.0). Detailed comparisons of these existing datasets
and DOTA are shown in Tab. 2. Compared to other aerial
datasets, as we shall see in Sec. 4, DOTA is challenging due
to its tremendous object instances, arbitrary orientations,
various categories, density distribution, and diverse aerial
scenes from various image sources. These properties make
DOTA helpful for real-world applications.

2.3 Deep Models for Object Detection in Aerial Images
Object detection in aerial images is a longstanding problem.
Recently, with the development of deep learning, many

https://captain-whu.github.io/DOTA/
https://captain-whu.github.io/ODAI/results.html
https://captain-whu.github.io/DOAI2019/challenge.html
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TABLE 2
DOTA vs. object detection datasets in aerial images. HBB is horizontal bounding box, and OBB is oriented bounding box . CP is center point.

Dataset Source Annotation # of main
categories

Total # of
categories # of instances # of images Image

width Year

TAS [26] satellite HBB 1 1 1,319 30 792 2008
SZTAKI-INRIA [7] multi source OBB 1 1 665 9 ∼800 2012

NWPU VHR-10 [41] multi source HBB 10 10 3,651 800 ∼1000 2014
VEDAI [15] satellite OBB 3 9 2,950 1,268 512, 1024 2015
DLR 3k [16] aerial OBB 2 8 14,235 20 5616 2015

UCAS-AOD [17] Google Earth OBB 2 2 14,596 1,510 ∼1000 2015
COWC [37] aerial CP 1 1 32,716 53 2000−19,000 2016

HRSC2016 [4] Google Earth OBB 1 26 2,976 1,061 ∼1100 2016
RSOD [42] Google Earth HBB 4 4 6,950 976 ∼1000 2017

CARPPK [8] drone HBB 1 1 89,777 1,448 1280 2017
ITCVD [38] aerial HBB 1 1 228 23,543 5616 2018
LEVIR [43] Google Earth HBB 3 3 11,000 22,000 800−600 2018
xView [27] satellite HBB 16 60 1,000,000 1,413 ∼3000 2018

VisDrone [47] drone HBB 10 10 54,200 10,209 2000 2018
SpaceNet MVOI [36] satellite polygon 1 1 126,747 60,000 900 2019

HRRSD [44] multi source HBB 13 13 55,740 21,761 152−10569 2019
DIOR [46] Google Earth HBB 20 20 190,288 23,463 800 2019
iSAID [45] multi source polygon 14 15 655,451 2,806 800−13,000 2019
FGSD [39] Google Earth OBB 1 43 5,634 2,612 930 2020

RarePlanes [40] satellite polygon 1 110 644,258 50,253 1080 2020
DOTA-v1.0 [14] multi source OBB 14 15 188,282 2,806 800−13,000 2018

DOTA-v1.5 multi source OBB 15 16 402,089 2,806 800−13,000 2019
DOTA-v2.0 multi source OBB 17 18 1,793,658 11,268 800−20,000 2021

Fig. 2. Number of instances per image among DOTA and general object detection datasets. For PASCAL, ImageNet and MS COCO, we count
the statistics of 10,000 random images. As the images in DOTA are very large (20, 000 × 20, 000), for a fair comparison, we count the statistics of
10,1000 image patches with the size of 1024× 1024, which is also the size used for the baselines in Sec. 5.2. DOTA-v2.0 has a wider range of the
number of instances per image.

researchers in Earth vision have adapted deep object detec-
tors [49]–[53] developed for natural images to aerial images.
However, the challenges caused by the domain shift need to
be addressed. Here, we highlight some notable works.

Objects in aerial images are often arbitrarily oriented due
to the bird’s-eye view, and the scale variations are larger
than those in natural images. To handle rotation variations,
a simple model [9] plugs an additional rotation-invariant
layer into R-CNN [51] relying on rotation data augmenta-
tion. The oriented response network (ORN) introduces ac-
tive rotating filters (ARF) to produce the rotation-invariant
feature without using data augmentation, which is adopted
by the rotation-sensitive regression detector (RRD) [23]. The
deformable modules [54] designed for general object defor-
mation are also widely used in aerial images. The methods
mentioned above do not fully utilize the OBB annotations.
When OBB annotations are available, a rotation R-CNN (RR-
CNN) [55] uses rotation region-of-interest (RRoI) pooling
to extract rotation-invariant region features. However, RR-
CNNs [55] generate proposals by hand-crafted way. Then
the RoI Transformer [18] tries to use the supervision of
OBBs to learn RoI-wise spatial transformation. The later
S2A-Net [56] extracts spatially invariant features in one-
stage detectors. To solve the challenges of scale variations,
feature pyramids [19], [57] and image pyramids [24], [25]
are widely used to extract scale-invariant features in aerial
images. We evaluate the geometric transformation network

modules and geometric data augmentations in Sec. 6.1.

Crowded instances represented by HBBs are difficult to
distinguish (see Fig. 3). Traditional HBB-based non maxi-
mum suppression (NMS) will fail in such cases. Therefore,
these methods [18], [24], [25] use rotated NMS (R-NMS),
which require precise detections to address this problem.
Similar to text and faces detection in natural scenes, e.g. [23],
[58]–[60], precise ODAI can also be modeled as an oriented
object detection task. Most of the previous works [14], [23]–
[25], [61] consider it as a regression problem and regress
the offsets of the OBB ground truth relative to anchors
(or proposals). However, the definition of an OBB is am-
biguous. For example, there are four permutations of the
corner points in a quadrilateral. The Faster R-CNN OBB [14]
solves it by using a defined rule to determine the order
of points in OBBs. Work in [62] further uses the gliding
offset and obliquity factor to eliminate the ambiguity. The
circular smooth label (CSL) [63] transforms the regression of
angle as a classification problem to avoid the problem. Mask
OBB [64] and CenterMap [65] consider object detection as a
pixel-level classification problem to avoid ambiguity. Mask-
based methods converge more easily but have more floating
point operations per second (FLOPS) than regression-based
methods. We will give a more detailed comparison between
them in one unified code library in Sec. 6.1.1.

The final challenge is detecting objects in large images.
Aerial images are usually extremely large (over 20k × 20k
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pixels). Current GPU memory capacity is insufficient to
process large images. Downsampling a large image to a
small size would lose the detailed information. To solve this
problem [14], [16], the large images can be simply split into
small patches. After obtaining the results on these patches,
the results are integrated into large images. To speed up
inference on large images, these methods [20]–[22], [66] first
find regions that are likely to contain instances in the large
images and then detect objects in the regions. In this paper,
we simply follow the naive solutions [14], [16] to build
baselines.

2.4 Code Libraries for Object Detection
The development of object detection algorithms is a so-
phisticated process. In addition, there are too many design
choices and hyperparameter settings, which make compar-
isons between different methods difficult. Therefore, object
detection code libraries such as the Tensorflow Object De-
tection API [67], Detectron [29], MaskRcnn-Benchmark [68],
Detectron2 [69], MMDetection [28] and SimpleDet [70] are
developed to facilitate the comparisons of object detection
algorithms. These code libraries primarily use a modular
design, which makes it easy to develop new algorithms.
The current widely used settings, such as the training sched-
ule, are from Detectron [29]. However, these code libraries
mainly focus on horizontal object detection. Only Detec-
tron2 [69] has limited support for oriented object detection.
In our work, we enriched MMDetection [28] with several
crucial operators for oriented object detection and evaluated
10 algorithms for object detection in aerial images.

3 CONSTRUCTION OF DOTA
3.1 Image Collection
In aerial images, the resolution and a variety of sensors
are the factors that produce dataset biases [71]. To elimi-
nate these biases, we collect images from various sensors
and platforms with multiple resolutions, including Google
Earth, the Gaofen-2 (GF-2) Satellite, Jilin-1 (JL-1) Satellite,
and aerial images (taken by CycloMedia in Rotterdam). To
obtain the DOTA images, we first collected the coordinates
of areas of interest (e.g., airports or harbors) from all over
the world. Then, according to the coordinates, images are
collected from Google Earth, GF-2 and JL-1 satellites. For
the images from Google Earth, we cropped the patches that
contain instances of interest with sizes from 800 to 4000.
However, for the satellite and aerial images, we maintained
their original sizes. Large images can approach real-world
distributions, and also pose a challenge for finding small
instances [20]. In DOTA, the sizes of satellite and aerial
images are usually 29, 200 × 27, 620 and 7, 360 × 4, 912,
respectively.

3.2 Category Selection
We choose eighteen categories, plane, ship, storage tank, base-
ball diamond, tennis court, swimming pool, ground track field,
harbor, bridge, large vehicle, small vehicle, helicopter, roundabout,
soccer ball field, basketball court, container crane, airport and he-
lipad. We select these categories according to their frequency
of occurrence and value for real-world applications. The first

Fig. 3. Comparisons between HBB and OBB representations for
objects. (a) OBB representation. (b) HBB representation. The HBB
representation cannot distinguish rotated dense objects.

10 categories are common in the existing datasets, e.g., [16],
[17], [37], [41]. Other categories are added considering their
value in real-world applications. For example, we selected
“helicopter” as moving objects are of significant importance
in aerial images, and “roundabout” as it plays an essential
role in roadway analyses. It is worth discussing whether to
take “stuff” categories into account. There are usually no
clear definitions for the ”stuff” categories (e.g.harbor, airport,
parking lot), as shown in the Scene UNderstanding (SUN)
dataset [72]. However, their contextual information may be
helpful for object detection. Based on this idea, we select
the harbor and airport categories because their borders are
relatively easy to define and there are abundant harbor and
airport instances in our image sources.

3.3 Oriented Object Annotation

In computer vision, many visual concepts, such as region
descriptions, objects, attributes, and relationships, are al-
ways represented with bounding boxes, as shown in [73]. A
common representation of the bounding box is (xc, yc, w, h),
where (xc, yc) is the center location and w, h are the width
and height, respectively, of the bounding box. We call this
type of bounding box an HBB. The HBB can describe objects
well in most cases. However, it cannot accurately outline ori-
ented instances such as text and objects in aerial images. As
shown in Fig. 3, the HBB cannot differentiate crowd oriented
objects. The conventional NMS algorithm fails in such cases.
On the other hand, the regional features extracted from
HBBs are not rotation invariant. To address these problems,
we represent the objects with OBBs. In detail, an OBB is
denoted by {(xi, yi)|i = 1, 2, 3, 4}, where (xi, yi) denotes
the position of the OBB’s vertex in the image. The vertices
are arranged in clockwise order.

The most straightforward way to annotate an OBB is to
draw an HBB and then adjust the angle. However, since
there is no reference for HBBs, several adjustments in the
center, height, width and angle are usually needed to fit
an arbitrarily oriented object well. Clicking on physical
points lying on the object [74] could make crowd-sourced
annotations more efficient for HBBs, as these points are easy
to find. Inspired by this idea, we allow the annotators to
click four corners of the OBBs. For most categories, the
corners of the OBBs (e.g., tennis court and basketball court)
lie on or close to the objects (vehicles), however, there are
still some categories whose shapes are very different from
OBBs. For these categories, we annotate four key points
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TABLE 3
Statistics of the three image sources. We count the proportion of

images, instances and pixel area.

Image sources GF-2 and JL-1 Google Earth Aerial image
# of images 0.05 0.90 0.05

# of instances 0.10 0.76 0.14
Pixel area 0.62 0.22 0.16

lying on the object. For example, we annotate the planes
with 4 key points, representing the head, two wingtips, and
tail. Then we transfer the 4 key points to an OBB.

However, when using OBBs to represent objects, we
could obtain four different representations for the same
object by changing the order of the points. For ex-
ample, assume that (x1, y1, x2, y2, x3, y3, x4, y4) represents
an object, but we could represent the same object by
(x2, y2, x3, y3, x4, y4, x1, y1). For categories having differ-
ences between the head and tail (e.g., helicopter, large vehicle,
small vehicle, harbor), we carefully select the first point to
imply the “head” of the object. For other categories(e.g.,
soccer-ball field, swimming pool and bridge) that do not have
visual clues to determine the first point, we choose the top-
left point as the starting point.

Some examples of annotated patches are shown in Fig. 4.

4 PROPERTIES OF DOTA
4.1 Image Sources
We count the proportion of three image sources (Google
Earth, satellite and aerial images) in terms of the number of
images, number of instances and pixel area in Tab. 3. We can
see that the carefully selected Google Earth images contain
the majority of positive samples. Nevertheless, the nega-
tive samples are also important to avoid positive sample
bias [48]. The collected satellite and aerial images are close to
the real-world distribution and provide enough background
area.

4.2 Spatial Resolution Information
The ground sample distance (GSD), which indicates the
distance between pixel centers measured on Earth, has
potential usages. For example, it allows us to calculate the
actual sizes of objects, which can be used to filter mislabeled
or misclassified outliers since the object sizes of the same
category are usually limited to a small range. Furthermore,
we can conduct scale normalization [75] based on the priors
of the object size and GSD. In DOTA, GSDs of the satellite
images and aerial images are approximately 1m and 0.1m,
respectively, while the GSDs of Google Earth images range
from 0.1m to 4.5m.

4.3 Various Instance Orientations
Objects in the overhead view images have a high diversity
of orientations without the restriction of gravity. As shown
in Fig. 1 (g), the objects have equal probabilities of arbitrary
angles in [−π, π]. It is worthwhile to note that although
objects in scene text detection [76] and face detection [59]
also have many orientation variations, the angles of most
objects lie within a narrow range (e.g., [−π/2, π/2]) due to
gravity. The unique angle distributions of DOTA make it
become a good dataset for research on rotation-invariant
feature extraction and oriented object detection.

TABLE 4
Comparison of the instance size distributions of aerial and natural

images in some datasets.

Dataset 10-50 pixels 50-300 pixels >300 pixels
PASCAL VOC [11] 0.14 0.61 0.25

MS COCO [13] 0.43 0.49 0.08
NWPU VHR-10 [41] 0.15 0.83 0.02

DLR 3K [16] 0.93 0.07 0
DOTA-v1.0 [14] 0.57 0.41 0.02

DOTA-v1.5 0.79 0.2 0.01
DOTA-v2.0 0.77 0.22 0.01

4.4 Various Instances Pixel Sizes
Following the convention in [77], we use the height of an
HBB to measure the pixel size of the instance. We divide
all the instances in our dataset into three splits according
to their heights of HBBs: small, with range from 10 to
50, medium, with range from 50 to 300, and large, with
range above 300. Tab. 4 illustrates the percentages of these
three instance splits in different datasets. It is clear that the
PASCAL VOC dataset, NWPU VHR-10 dataset and DLR 3K
Munich Vehicle dataset are dominated by medium instances
or small instances.

MS COCO and DOTA-v1.0 have a good balance between
small instances and medium instances. DOTA-v2.0 has more
small instances than DOTA-v1.0. In DOTA-v2.0, some in-
stances that are approximately 10 pixels are annotated.

In Fig. 5, we also show the distribution of instances’ pixel
sizes for different categories in DOTA. This figure indicates
that the scales vary greatly both within and between cate-
gories. These large-scale variations among instances make
the detection task more challenging.

4.5 Various Instance ARs
The AR is essential for anchor-based models, such as Faster
R-CNN [53] and You Only Look Once (YOLOv2) [50]. We
use two kinds of ARs for all the instances in our dataset to
guide the model design namely, 1) the ARs of the original
OBBs and 2) the AR of HBBs, which are generated by
calculating the axis-aligned bounding boxes over the OBBs.
Fig. 6 illustrates the distributions of these two types of
aspect ratios in DOTA. We can see that instances vary
significantly in aspect ratio. Moreover, many instances have
a large aspect ratio in our dataset.

4.6 Various Instance Densities of the Images
The number of instances per image is an important property
for object detection datasets and varies largely in DOTA. It
can be very dense (up to 1000 instances per image patch),
or very sparse (only one instance per image patch). We
compare this property among DOTA and the general object
detection datasets in Fig. 1. The number of instances per
image in DOTA varies more widely than in natural image
datasets.

Different categories also have different density distribu-
tions. To give a quantitative analysis, for each instance, we
first measure the distance to the closest instance in the same
category. We then bin the distances into three parts, dense
[0, 10), normal [10, 50) and sparse [50,∞) (see Fig. 7). Fig. 7
shows that the storage tank, ship and small vehicle are top-3
dense categories.
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Fig. 4. Examples of annotated images in DOTA. We show three examples per category.

Fig. 5. Size variations for each category in DOTA. The sizes of different
categories vary in different ranges.
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Fig. 6. AR distributions of the instances in DOTA. (a) The ARs of the
OBBs. (b) The ARs of the HBBs.

4.7 DOTA Versions

The three versions of DOTA, i.e.DOTA-v1.0, DOTA-v1.5, and
DOTA-v2.0, are summarized in Table 5.
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dense[0, 10] normal[10, 50] sparse[50, ∞]

Fig. 7. Densities of the different categories. The density is measured by
calculating the distance to the closest instance.

4.7.1 DOTA-v1.0

DOTA-v1.0 contains 15 common categories, 2,806 images
and 188, 282 instances. The proportions of the training set,
validation set, and testing set in DOTA-v1.0 are 1/2, 1/6,
and 1/3, respectively.

4.7.2 DOTA-v1.5

DOTA-v1.5 uses the same images as DOTA-v1.0, but ex-
tremely small instances (less than 10 pixels) are also an-
notated. Moreover, a new category, ”container crane” con-
taining 402,089 instances in total is added. The number of
images and dataset splits are the same as those in DOTA-
v1.0. This version was released for the DOAI Challenge 2019
on Object Detection in Aerial Images in conjunction with
CVPR 2019.
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TABLE 5
Comparisons of the three versions of DOTA. We count the number of

instances for each category and dataset split.

DOTA-v1.0 DOTA-v1.5 DOTA-v2.0
Plane 14,085 14,978 23,930

BD 1,130 1,127 3,834
Bridge 3,760 3,804 21,433

GTF 678 689 4,933
SV 48,891 242,276 1,235,658
LV 31,613 39,249 89,353

Ship 52,516 62,258 251,883
TC 4,654 4,716 9,396
BC 954 988 3,556
ST 11,794 12,249 79,497

SBF 720 727 2,404
RA 871 929 6,809

Harbor 12,287 12,377 29,581
SP 3,507 4,652 20,095
HC 822 833 893
CC 0 237 3,887

Airport 0 0 5,905
Helipad 0 0 611

Total 188,282 402,089 1,793,658
Training 98,990 210,631 268,627

Validation 28,853 69,565 81,048
Test/Test-dev 60,439 121,893 353,346
Test-challenge 0 0 1,090,637

4.7.3 DOTA-v2.0
DOTA-v2.0 collects more Google Earth, GF-2 Satellite, and
aerial images. There are 18 common categories, 11,268 im-
ages and 1,793,658 instances in DOTA-v2.0. Compared to
DOTA-v1.5, it further adds the new categories of ”airport”
and ”helipad”. The 11, 268 images of DOTA-v2.0 are split
into training, validation, test-dev, and test-challenge sets.
To avoid the problem of overfitting, the proportion of the
training and validation sets is smaller than that of the test
set. Furthermore, we have two test sets, namely test-dev and
test-challenge, which are similar to MS COCO dataset [13].
The detailed splits are shown below:

• Training contains 1,830 images and 268,627 in-
stances. We will release both the images and ground
truths.

• Validation contains 593 images and 81,048 instances.
We will release both the images and ground truths.

• Test-dev contains 2,792 images and 353,346 in-
stances. We will release the images without ground
truths. For evaluation, one can submit the results to
the evaluation server that we built.4 The submission
for each team is limited to once a day to avoid
overfitting. All the DOTA-v2.0 experiments in this
paper are evaluated on test-dev.

• Test-challenge contains 6, 053 images and 1, 090, 637
instances. It will be only available during the contest.

5 BENCHMARKS

5.1 Evaluation Tasks and Metrics
The task of object detection is to locate and classify the
instances in images. We use two location representations
(HBB and OBB) in our paper. The HBB is a rectangular
region (x, y, w, h), and the OBB is an oriented rectangular
region (x, y, w, h, θ). Then, there are two tasks, detection
with HBB and detection with OBB. To be more specific, we

4. https://captain-whu.github.io/DOTA/evaluation.html

evaluate these methods on two kinds of ground truths: HBB
and OBB ground truths. We adopt the PASCAL VOC 07
metric [11] for the calculation of the mean average precision
(mAP). It is worthwhile to note that for the OBB task, the
intersection over union (IoU) is calculated between OBBs.

5.2 Implementation Details
In the previous benchmarks [14], the algorithms were im-
plemented with different codes and settings, which makes
these algorithms hard to compare in DOTA. To this end, we
implement and evaluate all the algorithms in one unified
code library modified from MMDetection [28].

Since large images cannot be directly fed to CNN-based
detectors due to the memory limitations, we crop a series of
1, 024×1, 024 patches from the original images with a stride
set to 824 (different from the previous stride of 512 [14]).
During inference, we first send the patches (same settings
as training) to obtain temporary results. Then we map the
detected results from the patch coordinates to the original
image coordinates. Finally, we apply NMS on these results
in the original image coordinates. We set the threshold of
NMS to 0.3 for the HBB experiments and 0.1 for the OBB
experiments. For multi-scale training and testing, we first
scale the original images to [0.5, 1.0, 1.5] and then crop the
images into patches of size 1, 024×1, 024 and a stride of 824.
We use 4 GPUs for training with a total batch size of 8 (2
images per GPU). The learning rate is set to 0.01. Except for
RetinaNet [78], which adopts the ”2×” schedule, the other
algorithms adopt the ”1×” [29] training schedule. We set the
number of proposals and maximum number of predictions
per image patch to 2,000 for all the experiments except when
otherwise mentioned. The other hyperparameters follow
those of Detecron [29].

5.2.1 Baselines with HBBs
We use two ways to build baselines for the HBB task.
The first way directly predicts the HBB results, while the
second way first predicts the OBB results and then converts
OBBs to HBBs. To directly predict the HBB results, we
use RetinaNet [78], Mask R-CNN, Cascade Mask R-CNN,
Hybrid Task Cascade and Faster R-CNN [53] as baselines.
For the OBB predictions, we will introduce the methods in
the following section.

5.2.2 Baselines with OBBs
Most of the state-of-the-art object detection methods are not
designed for oriented objects. To enable these methods to
predict OBBs, we build the baselines in two ways. The first
is to change HBB head to OBB Head, which regresses the
offsets of OBBs relative to the HBBs. The second is Mask
Head, which considers the OBBs to a coarse mask and
predicts the pixel-level classification from each RoI.

OBB Head To predict OBB, the previous Faster R-
CNN OBB [14] and Textboxes++ [61] modified RoI Head
of Faster R-CNN and the Anchor Head of the single-
shot detector (SSD), respectively, to regress quadrangles.
In this paper, we use the representation (x, y, w, h, θ) in-
stead of {(xi, yi)|i = 1, 2, 3, 4} for OBB regression. More
precisely, rectangular RoIs (anchors) can be written as B =
(xmin, ymin, xmax, ymax). We can also consider it a special

https://captain-whu.github.io/DOTA/evaluation.html
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OBB and rewrite it as R = (x, y,w, h, θ). For matching,
IoUs are calculated between the horizontal RoIs (anchors)
and HBBs of the ground truths for computational simplicity.
Each OBB, it has four forms: G = {gti|i = 1, 2, 3, 4}, where
gt1 = (xg, yg, wg, hg, θg), gt2 = (xg, yg, wg, hg, θg + π),
gt3 = (xg, yg, hg, wg, θg), and gt4 = (xg, yg, hg, wg, θg + π).
Before calculating the targets, we choose the best matched
ground-truth form. The index of the best matched form is
calculated by ξ = argmin

i
D(R, gti), where D is a distance

function, which could be Euclidean distance or another
distance function. We denote the best matched form by
gtξ = (xb, yb, wb, hb, θb). Then the learning target is calcu-
lated as

tx = (xb − x)/w, ty = (yb − y)/h,
tw = log(wb/w), th = log(hb/h), (1)
tθ = θb − θ

We then simply replace the HBB RoI Head of Faster R-
CNN and anchor head of RetinaNet with OBB Head and
obtain two models, called Faster R-CNN OBB and RetinaNet
OBB. We also modify the Faster R-CNN to predict both
the HBB and OBB in parallel, which is similar to Mask
R-CNN [79]. We call this model Faster R-CNN H-OBB. We
further evaluate the deformable RoI pooling (Dpool) and
RoI Transformer by replacing the RoI Align in Faster R-CNN
OBB. Then we have two models: Faster R-CNN OBB + Dpool
and Faster R-CNN OBB + RoI Transformer. Note that the RoI
Transformer used here is slightly different from the original
one. The original RoI Transformer uses the Light Head R-
CNN [80] as the base detector while we use Faster R-CNN.

Mask Head Mask R-CNN [79] was originally used for in-
stance segmentation. Although DOTA does not have pixel-
level annotation for each instance, the OBB annotations
can be considered coarse pixel-level annotations, so we can
apply Mask R-CNN [79] to DOTA. During inference, we
calculate the minimum OBBs that contain the predicted
masks. The original Mask R-CNN [79] only applies a mask
head to the top 100 HBBs in terms of the score. Due to the
large number of instances per image, as illustrated in Fig. 2,
we apply a mask head to all the HBBs after NMS. In this
way, we evaluate Mask R-CNN [79], Cascade Mask R-CNN
and Hybrid Task Cascade [81].

5.3 Codebase and Development Kit
In this section, we introduce the aerial object detection
code library 5 and development kit 6. To construct the
comprehensive baselines, we select MMDetection as the
fundamental code library since it contains rich object de-
tection algorithms and has the feature of modular design.
However, the original MMDetection [28] lacks the modules
to support oriented object detection. Therefore, we enriched
MMDetection with OBB Head as described in Sec. 5.2.2
to enable OBB predictions. We also implemented modules
such as rotated RoI Align and rotated position-sensitive
RoI Align for rotated region feature extraction, which are
crucial components in algorithms such as rotated region
proposal network (RRPN) [82] and RoI Transformer [18].

5. https://github.com/dingjiansw101/AerialDetection
6. https://github.com/CAPTAIN-WHU/DOTA devkit

These new modules are compatible with the modularly
designed MMDetection, so we can easily create new al-
gorithms for oriented object detection not restricted to the
baseline methods in this paper. We also provide a develop-
ment kit containing necessary functions for object detection
in DOTA, including:

• Loading and visualizing the ground truths.
• Calculating the IoU between OBBs, which is im-

plemented in a mixture of Python/C program. We
provide both the CPU and GPU versions.

• Evaluating the results. The evaluation metrics are
described in Sec. 5.1.

• Cropping and merging images. The original image
sizes in DOTA are very large. One can use our tools
to split the large size images into patches. The scale
and gap between patches are optional arguments.
After testing on the patches, we can use the tools
to map the results of patches to the original image
coordinates and apply NMS.

6 RESULTS

6.1 Benchmark Results and Analyses

In this section, we conduct a comprehensive evaluation
of over 70 experiments and analyze the results. First, we
demonstrate the baseline results of 10 algorithms on DOTA-
v.10, DOTA-v1.5 and DOTA-v2.0. The baselines cover both
two-stage and one-stage algorithms. For most algorithms,
we report the mAPs of HBB and OBB predictions, respec-
tively, except for RetinaNet and Faster R-CNN, since they
do not support oriented object detection. For algorithms
with only OBB heads (RetinaNet OBB, Faster R-CNN OBB,
Faster R-CNN OBB +DPool, Faster R-CNN OBB +RoI Trans-
former), we obtain their HBB results by transferring from
OBB as described in Sec. 5.2.1. For algorithms with both
HBB and OBB heads (Mask R-CNN, Cascade Mask R-CNN,
Hybrid Task Cascade*, and Faster R-CNN H-OBB), the HBB
mAP is the maximum of the predicted HBB mAP and the
transferred HBB mAP. It can be seen that the OBB mAP
is usually slightly lower than the HBB mAP for the same
algorithm since the OBB task needs a more precise location
than the HBB task.

Tab. 6 shows that the performance on DOTA-v1.0,
DOTA-v1.5 and DOTA-v2.0 are declining, indicating the
increased difficulty of the datasets. To give more detailed
comparisons of speed vs. accuracy, we evaluate all algo-
rithms at different backbones (as shown in Fig. 8). From
the speed-accuracy curve, the Faster R-CNN OBB + RoI
Transformer outperforms the other methods. To explore
the properties of DOTA and provide guidelines for future
research, we evaluate the module design and the hyper-
parameter setting. Then, we analyze the influence of data
augmentation in detail. Finally, we visualize the results to
show the difficulties of ODAI.

6.1.1 Mask Head vs. OBB Head
The OBB head tackles oriented object detection as a regres-
sion problem, while the mask head tackles oriented object
detection as a pixel-level classification problem. The mask
head more easily converges and achieves better results but

https://github.com/dingjiansw101/AerialDetection
https://github.com/CAPTAIN-WHU/DOTA_devkit
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TABLE 6
Baseline results on DOTA. For the evaluation of DOTA-v2.0, we use the DOTA-v2.0 test-dev set. The implementation details are described in 5.2.

All the algorithms in this table adopt the ResNet-50 with an FPN as backbone. The speed refers to the inference speed, which is reported for a
single NVIDIA Tesla V100 GPU on DOTA-v2.0 test-dev. The image size is 1, 024× 1, 024. Hybrid Task Cascade* means that the semantic branch

is not used since there are no semantic annotations in DOTA.

method speed (fps) DOTA-v1.0 DOTA-v1.5 DOTA-v2.0
HBB mAP OBB mAP HBB mAP OBB mAP HBB mAP OBB mAP

RetinaNet 16.7 67.45 - 61.64 - 49.31 -
RetinaNet OBB 12.1 69.05 66.28 62.49 59.16 49.26 46.68
Mask R-CNN 9.7 71.61 70.71 64.54 62.67 51.16 49.47

Cascade Mask R-CNN 7.2 71.36 70.96 64.31 63.41 50.98 50.04
Hybrid Task Cascade* 7.9 72.49 71.21 64.47 63.40 50.88 50.34

Faster R-CNN 14.3 70.76 - 64.16 - 50.71 -
Faster R-CNN OBB 14.1 71.91 69.36 63.85 62.00 49.37 47.31

Faster R-CNN OBB + Dpool 12.1 71.83 70.14 63.67 62.20 50.48 48.77
Faster R-CNN H-OBB 13.7 70.37 70.11 64.43 62.57 50.38 48.90

Faster R-CNN OBB + RoI Transformer 12.4 74.59 73.76 66.09 65.03 53.37 52.81
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Fig. 8. Results for different backbones. The algorithms are tested
on DOTA-2.0 test-dev. For each algorithm, we choose 3 different back-
bones (ResNet-50 with an FPN, ResNet-101 with an FPN and 64×4d
ResNeXt-101 with an FPN). Faster R-CNN-O means the Faster R-CNN
OBB in this work. RetinaNet-O means RetinaNet OBB. Dpool means the
Deformable RoI Pooling. RT means the RoI Transformer. The speeds
are tested on a single Tesla V100.

is more computationally expensive. Taking the results on the
DOTA-v2.0 test-dev set as an example, Mask R-CNN still
outperforms Faster R-CNN H-OBB by 0.57 points in OBB
mAP. Nevertheless, Mask R-CNN is slower than Faster R-
CNN H-OBB by 4 fps. Note that the process of transferring
the mask to the OBB is not considered here. Otherwise,
Mask R-CNN should be slower.

6.1.2 RoI Transformer vs. Deformable RoI Pooling
Geometric variations are still challenging in object detection.
In this part, we evaluate RoI Transformer and Dpool by
replacing RoI Align in Faster R-CNN OBB. We call these two
models Faster R-CNN OBB + RoI Transformer and Faster
R-CNN OBB + Dpool. Tab. 6 and Fig. 8 show that Dpool
improves the performance of Faster R-CNN OBB at most
times, while RoI Transformer performs better than Dpool.
This finding verifies that carefully designed geometry trans-
formation modules such as RoI Transformer are better than
general geometry transformation modules such as Dpool for
aerial images.

6.1.3 Excluding Small Instances
During the training on DOTA-v1.5 and DOTA-v2.0, many
extremely small instances will cause numerical instability.
For the experiments in DOTA-v1.5 and DOTA-v2.0, we set
a threshold to exclude too small instances. We try to explore
the influence of different thresholds on DOTA-v2.0. We filter
the small instances by two rules: 1) the area of instance
is below a certain threshold, and 2) max(w, h) is below a
threshold, where the w and h are the width and height,

TABLE 7
Results after excluding extremely small instances by different

thresholds in the DOTA-v2.0 experiments. There are 642,601 instances
before filtering.

# of filtered Instance Filtering strategy HBB mAP
99,317 area ≤ 50 and max(w, h) ≤ 10 51.08
157,287 area ≤ 80 and max(w, h) ≤ 10 51.35
158,629 area ≤ 80 and max(w, h) ≤ 12 50.71

respectively, of the corresponding HBB. The results in Tab. 7
show that small instances have little influence on the results.

6.1.4 Number of Proposals
The number of proposals is an important hyperparameter
in modern detectors. As mentioned before, the possible
number of instances in aerial images is quite different from
that in natural images. In DOTA, one 1, 024 × 1, 024 image
may contain more than 1,000 instances. There is no doubt
that the parameters that perform well for natural images are
not optimal for aerial images. Here we explore the optimal
settings for aerial images. As shown in Tab. 8, the number of
proposals with the highest performance for Faster R-CNN
OBB + RoI Transformer is 8,000. For Faster R-CNN OBB, the
increase in the mAP slows at approximately 8,000 proposals.
Furthermore, from 1,000 to 10,000 proposals, the improve-
ments in Faster R-CNN + RoI Transformer and Faster R-
CNN OBB are 2.2 and 1.39 points in mAP, respectively.
However, the increased number of proposals bring more
computation. Therefore, for the other experiments in this
paper, we choose 2,000 proposals. The optimal number of
proposals in DOTA is quite larger than that in PASCAL
VOC, where 300 is the optimal number. This finding con-
firms that the difference between aerial and natural images
is again massive.

6.1.5 Data Augmentation
In this section, we explore the influence of data augmen-
tation in detail. The experiments on data augmentation
are conducted on DOTA-v1.5. In [25], the authors used
data augmentation of multi-scale training and testing, as
well as rotation training. We follow the data augmentation
strategies in [25] and further conduct rotation testing. The
model we select is Faster R-CNN OBB + RoI Transformer.
We choose R-50-FPN as the backbone and adopt five data
augmentation strategies. The first is the high patch over-
lap. We change the overlap between patches from 200 to
512 since the large instances may be cut off at the edge.
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TABLE 8
Results using different number of proposals on DOTA-v2.0 test-dev. The speeds are tested on a single Tesla V100 GPU. The other settings are the

same with those in Tab. 6.
Method # of proposals 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Faster R-CNN OBB
+ RoI Transformer

OBB mAP (%) 51.72 52.81 52.81 53.24 53.29 53.51 53.70 53.94 53.93 53.92
HBB* mAP 52.56 53.37 53.37 54.63 54.86 55.07 55.08 55.09 55.08 55.06
speed (fps) 14.4 12.4 12.2 9.1 8.7 7.8 7.5 6.5 6 5.7

Faster R-CNN OBB
OBB mAP (%) 47.10 47.31 48.03 48.09 48.32 48.35 48.48 48.49 48.49 48.49

HBB* mAP 48.44 49.37 49.46 49.71 49.74 50.09 50.37 50.39 50.38 50.47
speed (fps) 15.8 14.1 12.5 11.9 10.9 9.9 9.3 9.1 8.4 7.8

TABLE 9
Data augmentation experiments on DOTA-v1.5. We use Faster R-CNN

OBB + RoI Transformer as baseline model. High overlap means an
overlap of 512 between patches. The baselines in Tab. 6 adopt an

overlap of 200.

Baseline Data augmentation
High overlap X X X X X

Multi scale Train X X X X
Multi scale test X X X
Rotation Train X X
Rotation Test X

OBB mAP 65.03 67.57 69.44 73.62 76.43 77.60
HBB mAP 66.09 67.94 70.63 74.63 77.24 78.88

The second and third are multi-scale training and testing,
respectively. We resize the original images by factors of
[0.5, 1.0, 1.5] and then crop the original images into patches
of size 1, 024 × 1, 024. The fourth is the rotation training.
For images with roundabouts and storage tanks, we rotate
the patches randomly by four angles [π/2, π,−π/2,−π].
For images with the other categories, we rotate the angle
randomly from [−π, π] continuously during training. The
last is rotation during testing, we rotate the images at four
angles ([0, π/2, π, 3π/2]). As shown in Tab. 9, both scale
and rotation data augmentations improve the performance
of object detection by a large margin, which is consistent
with the large scale and orientation variations in DOTA.
Furthermore, this baseline model already used a feature
pyramid network (FPN) and RoI Transformer. This indicates
that the FPN and RoI Transformer do not completely solve
the problem of scale and rotation variations, and geometric
modeling with CNNs is still an open problem.

6.1.6 Visualization of the Results
We show the performance of Faster R-CNN [53], Faster R-
CNN OBB, RetinaNet OBB, Mask R-CNN and Faster R-
CNN OBB + RoI Transformer on difficult scenes in Fig. 9:
1) The first row demonstrates densely packed large ve-
hicles. Faster R-CNN misses many instances due to the
high overlaps between neighboring large vehicles in the
HBBs. Those large vehicles are suppressed through NMS.
Faster R-CNN OBB, Mask R-CNN and Faster R-CNN OBB
+ RT perform well, while RetinaNet OBB has lower location
precision due to feature misalignment. 2) The second and
third rows show long shape instances with a large ARs.
These instances are self-similar, which means that each part
of the instance has a similar feature as the whole instance.
For example, the second row shows that all methods have
at least two predictions on a single bridge. The third row
also reveals this problem. There exist several predictions on
a single ship. 3) The second and third rows also indicate
that several different categories have very similar features.
Bridges are easily classified as airports and harbors while

the ships are easily to be classified as harbors and bridges.
4) The latest row shows the difficulty of detecting extremely
small instances (less than or approximately 10 pixels). The
recall of the extremely small instances is very low.

6.2 State-of-the-Art Results on DOTA-v1.0

In this section, we compare the performance of Faster R-
CNN OBB + RoI Transformer with the state-of-the-art al-
gorithms on DOTA-v1.0 [14]. As shown in Tab. 10, Faster R-
CNN OBB + RoI Transformer achieves an OBB mAP of 73.76
for DOTA-v1.0, and it outperforms all the previous state-of-
the-art methods except that proposed by Li et al. [25]. Note
that the method of Li et al. [25], SCRDet [24] and the image
cascade network (ICN) [19] all use multiple scales for train-
ing and testing to achieve high performance. The method of
Li et al. [25] further used rotation data augmentation during
training as described in Sec. 6.1.5. When using the same data
augmentation, we achieve an mAP of 79.82. It outperforms
the method of Li et al [25] by 3.46 points in OBB mAP and
1.96 points in HBB mAP. In addition, there is a significant
improvement in densely packed small instances. (e.g., the
small vehicles, large vehicles, and ships). For example, the
detection performance for the large vehicle category gains
an improvement of 12.18 points compared to the previous
results.

6.3 DOAI 2019 Challenge Results

DOTA-v1.5 has been used to hold the Challenge-2019 on
ODAI in conjunction with CVPR 2019 (DOAI 2019)7. There
were 173 registrations in total, 13 teams submitted valid re-
sults on the OBB Task, and 22 teams submitted valid results
on the HBB Task. Finally, team USTC − NELSLIP [85]
from University of Science and Technology of China re-
ceived first place in OBB Task and second place in the HBB
Task. The team pca lab [25] from Nanjing University of
Science and Technology received first place in the HBB Task
and second place in the OBB Task. We list the top 3 results
of the challenge for the OBB and HBB tasks in Tab. 11. The
detailed leaderboards for OBB and HBB tasks can be found
on the DOAI 2019 website8, including team information
such as members, institute and methods used. Note that the
top results are an ensemble of different models. However,
pca lab [25] reported one single model and achieved 74.9
in OBB mAP and 77.9 in HBB mAP. Data augmentations
such as multi-scale training, testing and rotation training are
adopted. Our best model with the same data augmentation
is 76.43 in OBB mAP and 77.24 in HBB mAP as shown in

7. https://captain-whu.github.io/DOAI2019/
8. https://captain-whu.github.io/DOAI2019/results.html

https://captain-whu.github.io/DOAI2019/
https://captain-whu.github.io/DOAI2019/results.html
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Fig. 9. Visualization of the results on DOTA-v2.0 test-dev. The five models are from the DOTA-v2.0 models in Tab. 6. The predictions with scores
above 0.1 are shown. The results illustrate the performance in cases of orientation variations, density variations, large ARs and small ARs.

TABLE 10
State-of-the-art results on DOTA-v1.0 [14]. The short names for categories are defined as: BD–Baseball diamond, GTF–Ground field track,

SV–Small vehicle, LV–Large vehicle, TC–Tennis court, BC–Basketball court, SC–Storage tank, SBF–Soccer-ball field, RA–Roundabout,
SP–Swimming pool, and HC–Helicopter. FR-O indicates the Faster R-CNN OBB detector, which is the previous official baseline provided by
DOTA-v1.0 [14]. ICN [19] is the image cascade network. The LR-O + RT means Light Head R-CNN + RoI Transformer. DR-101-FPN means
deformable ResNet-101 with an FPN. SCRDet means small, cluttered and rotated object detector. R-101-SF-MDA means ResNet-101 with

sampling fusion network (SF-Net) and multi-dimensional attention network (MDA-Net). RT means RoI Transformer. Aug. means the data
augmentation method described in Sec. 6.1.5. FR-O* means the re-implemented Faster R-CNN OBB detector in this paper, which is slightly

different from the FR-O [14] in the details.

OBB Results
method backbone Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor SP HC mAP

FR-O [14] R-101 79.42 77.13 17.70 64.05 35.30 38.02 37.16 89.41 69.64 59.28 50.30 52.91 47.89 47.40 46.30 54.13
ICN [19] DR-101-FPN 81.36 74.30 47.70 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23 68.16

LR-O + RT [18] R-101-FPN 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
SCRDet [24] R-101-SF-MDA 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

DRN [83] H-104 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23
Gliding Vertex [62] R-101-FPN 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02

CenterMap [65] R-101-FPN 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03
CSL [84] R-152-FPN 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17

Li et al. [25] R-101-FPN 90.41 85.21 55.00 78.27 76.19 72.19 82.14 90.70 87.22 86.87 66.62 68.43 75.43 72.70 57.99 76.36
S2A-Net [56] R-50-FPN 88.89 83.60 57.74 81.95 79.94 83.19 89.11 90.78 84.87 87.81 70.30 68.25 78.30 77.01 69.58 79.42
FR-O* + RT R-50-FPN 88.34 77.07 51.63 69.62 77.45 77.15 87.11 90.75 84.90 83.14 52.95 63.75 74.45 68.82 59.24 73.76

FR-O* + RT (Aug.) R-50-FPN 87.89 85.01 57.83 78.55 75.22 84.37 88.04 90.88 87.28 85.79 71.04 69.67 79.00 83.29 73.43 79.82
HBB Results

method backbone Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor SP HC mAP
ICN [19] DR-101-FPN 89.97 77.71 53.38 73.26 73.46 65.02 78.22 90.79 79.05 84.81 57.20 62.11 73.45 70.22 58.08 72.45

SCRDet [24] R-101-SF-MDA 90.18 81.88 55.30 73.29 72.09 77.65 78.06 90.91 82.44 86.39 64.53 63.45 75.77 78.21 60.11 75.35
CenterMap [84] R-101-FPN 89.70 84.92 59.72 67.96 79.16 80.66 86.61 90.47 84.47 86.19 56.42 69.00 79.33 80.53 64.81 77.33

Li et al. [25] ResNet101 90.41 85.77 61.94 78.18 77.00 79.94 84.03 90.88 87.30 86.92 67.78 68.76 82.10 80.44 60.43 78.79
FR-O* + RT R-50-FPN 88.47 81.00 54.10 69.19 78.42 81.16 87.35 90.75 84.90 83.55 52.63 62.97 75.89 71.31 57.22 74.59

FR-O* + RT (Aug.) R-50-FPN 87.91 85.11 62.65 77.73 75.83 85.03 88.18 90.88 87.28 86.18 71.49 70.37 84.94 84.11 73.61 80.75

Tab. 9. Ours is higher in OBB mAP and comparable in HBB
mAP.

7 CONCLUSION

ODAI is challenging. To advance future research, we in-
troduce a large-scale dataset, DOTA, containing 1,793,658

instances annotated by OBBs. The DOTA statistics show that
it can well represent the real world well. Then, we build
a code library for both oriented and horizontal ODAI to
conduct a comprehensive evaluation. We hope these exper-
iments can act as benchmarks for fair comparisons between
ODAI algorithms. The results show that hyperparameter
selection and module design of the algorithms (e.g., number
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TABLE 11
DOAI 2019 Challenge Results. CC is the container crane for short. The other abbreviations for categories are the same as those in Tab. 10. The

USTC-NELSLIP, pca lab and czh, AICyber are the top 3 participants in the OBB and HBB Tasks. The FR-O means Faster R-CNN OBB. RT
means the RoI Transformer. Aug. means the data augmentation method described in Sec. 6.1.5. Note that FR-O + RT and FR-O + RT (Aug.) are

single models, while others are ensembles of multiple models.

OBB results
team (method) Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor SP HC CC mAP

USTC-NELSLIP 89.19 85.32 57.27 80.86 73.87 81.26 89.5 90.84 85.94 85.62 69.5 76.73 76.34 76 77.84 57.33 78.34
pca lab 89.11 83.83 59.55 82.8 66.93 82.51 89.78 90.88 85.36 84.22 71.95 77.89 78.47 74.27 74.77 53.22 77.84

czh 89 83.22 54.47 73.79 72.61 80.28 89.32 90.83 84.36 85 68.68 75.3 74.22 74.41 73.45 42.13 75.69
FR-O + RT 71.92 76.07 51.87 69.24 52.05 75.18 80.72 90.53 78.58 68.26 49.18 71.74 67.51 65.53 62.16 9.99 65.03

FR-O + RT (Aug.) 87.54 84.34 62.22 79.77 67.29 83.16 89.93 90.86 83.85 77.74 73.91 75.31 78.61 77.07 75.20 54.77 77.60
HBB results

team (method) Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor SP HC CC mAP
pca lab 88.26 86.55 65.68 79.83 74.59 79.35 88.12 90.86 85.45 84.15 73.9 77.44 84.1 81.07 76.07 57.07 79.53

USTC-NELSLIP 89.26 85.6 59.61 80.86 75.2 81.13 89.58 90.84 85.94 85.71 69.5 76.34 81.7 81.84 76.53 57.09 79.17
AICyber 89.2 85.56 64.44 74.07 77.45 81.5 89.65 90.83 85.72 86.03 69.82 76.34 82.89 82.95 74.64 44.02 78.44

FR-O + RT 71.92 75.21 54.09 68.10 52.54 74.87 80.79 90.46 78.58 68.41 51.57 71.48 74.91 74.84 56.66 13.01 66.09
FR-O + RT (Aug.) 87.79 84.33 63.75 79.13 72.92 83.08 90.04 90.86 83.85 77.80 73.30 75.66 84.84 82.16 75.20 57.39 78.88

of proposals) for aerial images are very different from those
for natural images. It indicates that DOTA can be used as
a supplement to natural scene images to facilitate universal
object detection.

In the future, we will continue to extend the dataset,
host more challenges, and integrate more algorithms for
oriented object detection into our code library. We believe
that DOTA, challenges and code library will not only pro-
mote the development of object detection in Earth vision
but also pose interesting algorithmic questions for general
object detection in computer vision.
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