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Abstract
Due to the continuous digitalization of our society, distributed and web-based applica-
tions become omnipresent and making them more secure gains paramount relevance. Deep
learning (DL) and its representation learning approach are increasingly been proposed for
program code analysis potentially providing a powerful means in making software systems
less vulnerable. This systematic literature review (SLR) is aiming for a thorough analysis
and comparison of 32 primary studies on DL-based vulnerability analysis of program code.
We found a rich variety of proposed analysis approaches, code embeddings and network
topologies. We discuss these techniques and alternatives in detail. By compiling commonal-
ities and differences in the approaches, we identify the current state of research in this area
and discuss future directions. We also provide an overview of publicly available datasets in
order to foster a stronger benchmarking of approaches. This SLR provides an overview and
starting point for researchers interested in deep vulnerability analysis on program code.
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1 Introduction

With the continuous digitalization of our society, an increasing number of software and
IT systems is used every day. Known vulnerabilities defined as “weakness in an informa-
tion system, system security procedures, internal controls, or implementation that could be
exploited by a threat source” (National Institute of Standards and Technology 2020) are con-
stantly increasing. To illustrate the problem, the number of recorded vulnerabilities in the
NIST National Vulnerability Database grew from 14,500 records in 2017 to 17,300 records
in 2019 (National Vulnerability Database 2020). As distributed and web-based applications
are omnipresent in many areas today, making them more secure gains paramount rele-
vance. Furthermore, addressing security, by preventing and fixing vulnerabilities, early in a
development process saves high costs analogous to failure prevention and fixing in general,
which associated costs substantially rise in later development stages (Kumar and Yadav
2017).

Machine learning and especially deep learning (DL) methods gained importance in many
research and application domains. In software engineering, e.g., deep learning is used for
analysis and prediction based on software development artifacts, such as commits, issues,
documentation, description, and, of course, program code. Thereby, program code can be
either compiled object code or source code as written in a programming language. Models
can be trained for different purposes, such as approximate type inference, code completion,
and bug localization (Allamanis et al. 2018). One particular application of deep learning on
program code is vulnerability analysis. The analysis is typically realized as binary classi-
fication, distinguishing vulnerable from non-vulnerable program code, or as a multi-class
classification, additionally distinguishing the type of a vulnerability. These types typically
follow the CWE (Common Weakness Enumeration) categorization system by The MITRE
Corporation (2020).

This systematic literature review explicitly focuses on vulnerability analysis using deep
learning approaches by detecting patterns in source code or object code. We identify a set
of 32 relevant primary studies proposing deep vulnerability analysis of source and object
code. The aim of the proposed methods is detecting known types of vulnerabilities in unseen
program code rather than discovering new types of vulnerabilities. We briefly discuss the
evolution from shallow networks to deep learning for this application. Further, we com-
pare and contrast proposed methods considering a typical deep learning pipeline, ranging
from data gathering, pre-processing, learning to evaluation. Finally, we provide rich discus-
sions on code embeddings, network topologies, available datasets, and future trends in this
area. Our results are relevant for researchers in security and software engineering, support-
ing them in finding new research directions and in conducting their ongoing research. The
systematic and concise overview of deep learning approaches to vulnerability analysis on
program code will also be helpful for beginners in this research area, as they can use our
analysis as a guide in this complex and diverse field and in the tremendously growing list
of machine learning literature.

The remaining sections of the paper are organized as follows: Section 3 provides a gen-
eral overview of deep learning on code. Section 4 introduces our research questions and the
methodology of this systematic review. In Section 5 we present and discuss findings per
research question. We discuss trends and future directions in Section 6 and consider threats
to validity in Section 7. Finally, Section 8 concludes the survey.
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2 RelatedWork

Surveys on similar topics can already be found in the literature, and we will discuss them
below. We would like to emphasize that in this work we distance from older, existing studies
that use machine learning methods or code metrics, but not deep networks.

The survey by Allamanis et al. (2018) compares models for the domain of machine learn-
ing on code with various applications and discusses the naturalness of code. One application,
he investigates is bug or code defect detection. The security of software could suffer as the
number of bugs increases, but vulnerability detection in particular are the security-related
bugs, which an attacker can exploit. The authors refer to deep learning methods as third
wave of machine learning and consider them future work. The survey by Ucci et al. (2019)
categorizes malware analysis methods by the use of machine learning techniques. Our work
also covers the analysis of object code but especially vulnerabilities written by an engineer
rather than detecting malicious code infiltrated by an attacker. Besides supervised learning
methods, they also include unsupervised learning, which is common for abnormal behavior
or code like malware. Lin et al. (2020) published a similar work on source code based vulne-
rability detection by deep learning. Our work covers partly the same primary studies, but our
work discusses in addition the analysis of object code and the differences of the underlying
deep learning architecture while this work focuses on deep neural networks. Computer secu-
rity issues investigated by deep learning is the topic of the work by Choi et al. (2020). Their
range of covered topics is much broader. Program analysis is one sub-area, which is discussed
in this work in more detail. Similar to this work, Berman et al. (2019) consider deep learning
techniques for the whole cyber-security domain as application. They have a much broader
view than software. Even more broader is the selection of (Guan et al. 2018) with a spectrum
of technical security issues. Ferrag et al. (2020) looks into network attack scenarios with deep
learning for intrusion detection. Network security and software security are different fields
with unequal requirements to the analysis. The survey by Ghaffarian and Shahriari (2017)
focuses on vulnerability detection similar to our survey, but at the time of publication, deep
learning was not yet used for this application and the author considers it a future direction.
Nevertheless, we recommend new researchers in this field to read this publication because
it covers anomaly detection and software metrics more in detail than we do. Similarly, Jie
et al. (2016)’s survey reviews publications based on traditional machine learning methods.

3 Deep Vulnerability Analysis on Code

Deep learning (DL) is a subarea of machine learning, specifically concerned with the analy-
sis of complex data using multi-layer neural network topologies. DL algorithms are suitable
for supervised as well as unsupervised learning tasks and have been demonstrated useful
for the analysis of program code. Current applications on program code are various, includ-
ing malware identification via anomaly detection (Le et al. 2018; Cakir and Dogdu 2018),
prediction of method names and types (Alon et al. 2019; Hellendoorn et al. 2018), semantic
code search (Cambronero et al. 2019), and classification of vulnerable program code, which
is the focus of this survey. While traditional machine learning employs manually crafted
features, created in a step known as feature engineering, DL advances the machine learning
concept towards representation learning, i.e., automatically extracting and learning features
from the raw input data (LeCun et al. 2015). Given sufficient and representative training
data, this methodological advancement allows for superior analysis results and removes
the dependence on subject matter experts for defining features in often rather subjective
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processes. For text analysis, including program code, feature engineering has been non-
trivial making DL an especially welcome technique (Gao et al. 2018 , [S1]).

Vulnerabilities are a subset of all software defects that may exist in a program code (Shin
and Williams 2013) and the focus of deep vulnerability analysis is not finding new types of
vulnerabilities but rather detecting a known type in new and unseen program code. To illus-
trate this explanation and our discussion in the later sections, we introduce an example of
vulnerable source code suffering from an integer overflow (cp. Listing 1). The source code,
written in C, operates based on a user input provided via a command line argument. This
argument is being converted into an unsigned long integer (32bit) using the strtoul()
function. The resulting value is passed on to a test()-function expecting an unsigned
integer (16bit) as input. Inputs larger than the 16bit range, e.g., n > 1, 073, 741, 823, result
in an integer overflow on the three highlighted positions in the source code. An integer over-
flow is categorized as vulnerability type CWE-190 and may lead to overwriting of the stack
if the size of the buffer is allocated smaller than the amount of data copied into it (cp. line
6 of Listing 1). The CWE aggregates vulnerabilities to classes and sub-classes, e.g., buffer
access with incorrect length value (CWE-805) being a subcategory of improper restriction of
operations within the bounds of a memory buffer or buffer overflow (CWE-119). In addi-
tion, CVEs (Common Vulnerabilities and Exposures) describe where an instance of a CWE
has been discovered, e.g., CVE-2017-1000121 reports an integer overflow (CWE-190)
found in Webkit. Such a vulnerability as in this example is hard to find for a developer by
hand. A traditional static application security testing method (SAST) can hardly find over-
flows since there is no way to check automatically whether the calculation was performed
correctly. A study by Russell et al. (2018) ([S2]) shows higher detection rates for a deep
learning based approach in comparison to the SAST tools Clang, Flawfinder and CppCheck.

Traditional program analysis for finding vulnerabilities is based upon logical rule-based
inference systems and heuristics. While having advantages, e.g., strong analysis soundness
or completeness guarantees, these methods usually suffer from the undecidability of the
underlying analysis problems and approach this problem using approximations of program
behavior and sophisticated heuristics. Machine learning and in particular DL provides an
orthogonal approach by focusing on statistical properties of software under the assumption
that programs are written by humans and therefore follow regular patterns and code idioms
(Pradel and Chandra 2021) (cp. naturalness hypothesis (Hindle et al. 2012; Allamanis et al.
2018)). In this way, DL methods for vulnerability analysis can better handle the often fuzzy
patterns of software vulnerabilities and integrate natural text, such as comments and iden-
tifier names, into the analysis, which is usually omitted in traditional program analysis
(Pradel and Chandra 2021). Furthermore, considering their statistical nature, DL methods
also promise to cope better with the not well-defined characteristics of software vulnerabil-
ities, which becomes apparent when considering the often reported high numbers of false
positives for traditional program analysis (Johnson et al. 2013; Christakis and Bird 2016).
The typical training pipeline of a DL model consists of four major phases: data gathering,
pre-processing, learning and evaluation (cp. Fig. 1). Below, we provide a brief overview of
each of these phases.

Fig. 1 A typical deep learning pipeline for vulnerability analysis
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#include <stdio.h>
#include <stdlib.h>

void test(unsigned int n) {
int *buf, i;
buf = malloc(n * sizeof *buf); /*vulnerable*/
if(!buf) return;
for(i = 0; i < n; i++)

buf[i] = i; /*vulnerable*/
while(i-- > 0)

printf("%x ", buf[i]); /*vulnerable*/
printf("\n");

free(buf);
}

int main(int argc, char **argv) {
int n;
if(argc != 2) return 1;
n = strtoul(argv[1], 0, 10);
test(n);
return 0;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Listing 1 Source code example into-bad1.c of Zou et al.’s dataset [S14]

Data Gathering Phase Essential to the prediction quality of a DL model is the availability
of rich and representative training data. Supervised training methods additionally require
high-quality labeled training samples in large quantities. Fortunately, software forges like
GitHub1 are an unprecedented source of data exploitable for DL on program code due to
their increasing popularity and widespread usage for collaborative software development.
However, project selection and data filtering play a vital role in separating large numbers of
redundant and toy projects from projects containing production code and being well suited
for training (Lopes et al. 2017; Kalliamvakou et al. 2014). A difficulty in using real pro-
gram code is the typically large imbalance of vulnerable vs. non-vulnerable code in software
projects. Therefore, often also synthetic program code is used to overcome the limited avail-
ability of labeled code samples and their strong imbalance. The most costly step in preparing
a training set is labeling. Many vulnerability analysis approaches therefore employ labels
produced by a static code analysis tool. As an alternative to assembling training data from
scratch, already existing datasets can be used.

Pre-Processing Phase In the pre-processing phase, code samples are prepared and poten-
tially annotated for the subsequent learning phase (cp. Fig. 1). While a major benefit of DL
is representation learning, program code analysis still typically includes a certain amount
of feature engineering, e.g., by annotating type information along the code. Extracted code
samples are translated into single token statements or graphs by means of a specific parser
or lexer for the respective source or object code. The generated tokens or graphs are further
processed into numeric vectors by means of an encoding or embedding.

Learning Phase In this phase, the pre-processed training data is used to train a DL model
towards performing a vulnerability analysis of program code (cp. Fig. 1). Typically, a binary

1https://www.github.com

https://www.github.com
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vulnerable vs. non-vulnerable or multi vulnerability type classification is being trained.
Deep neural networks and their training process do not only consist of parameters auto-
matically optimized in the training procedure, but also of many hyper-parameters with
substantial impact on the performance of the resulting model. A validation step with careful
hyper-parameter optimization is essential for training well-performing models (Komer et al.
2014). To ensure independent training, validation and evaluation results, training datasets
are typically split into three respective parts. The majority of the dataset should be used for
training with a typical proportion of the three splits being, e.g., 80:10:10.

Evaluation Phase Once training has converged, the resulting model will be evaluated with
the independent evaluation split of the dataset or with additional datasets and benchmarks.

4 Methods

In order to identify a set of relevant primary studies to answer our research questions, we
apply Kitchenham and Charters’ four step guidelines for conducting reviews in software
engineering: (1) defining research questions and selection criteria, (2) carrying out a com-
prehensive and exhaustive search for primary studies according to the criteria, (3) extracting
data from the primary studies, and (4) answering the research questions with the gained data
in a suitable presentation.

4.1 Research Questions

We conduct a systematic literature review on published research in the field of vulnerability
analysis of program code using DL methods and thereby aim to answer the following six
research questions:

RQ1 Data demographics: How has machine learning based vulnerability analysis
evolved over time?

Motivation: This question aims to overview the development of this research field
including a timeline of presented concepts and a categorization of primary studies.

RQ2 Training data: How are training sets constructed and how are they structured?
Motivation: This question aims to study the utilized training data in detail, their

sizes, their class balance, and their methods of construction.
RQ3 Code representation and encoding: How is program code made accessible to

machine learning models for training?
Motivation: This question aims to study program code pre-processing, represen-

tations and encodings, also with respect to granularity and arrangement of code
samples.

RQ4 Proposed and studied models: Which neural network topologies are used and
how do they differ?

Motivation: This question aims to emphasize the details of the utilized DL
topologies and to compare their advantages and disadvantages.

RQ5 Evaluation of proposed models: How are proposed models being evaluated?
Motivation: This question aims to discuss and compare the evaluation of pro-

posed approaches, their performance and the suitability of utilized metrics for
evaluation.
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RQ6 Model generalizability: Are proposed methods generalizable to new and
unseen projects?

Motivation: This question aims to discuss the ability to transfer trained models
to other software projects and to reuse trained models when training a model for a
new problem.

4.2 Study Selection Process

For the search process, we use databases of computer science publishers and synoptic search
engines (cp. Table 1). In a first step, we queried a combined pattern of search terms S1
AND S2 AND S3 AND S4 across the databases, where

S1 = (vulnerabilit* OR security);
S2 = (analysis OR assessment OR detection OR discovery OR identification OR predic-

tion);
S3 = (“deep learning” OR “machine learning” OR supervised); and
S4 = (code OR “byte code” OR “program code” OR “object code” OR “source code” OR

software).

For databases 2–5, we were not able to query the entire search pattern at once since the
search engine did not support all necessary operators. In these cases, we constructed individ-
ual queries containing only one term per group S1–S4 each and subsequently concatenated
results. Table 1 shows the total number of retrieved results per database. In a second step,
we filtered retrieved publications based on title and abstract applying a set of selection cri-
teria (cp. Table 2). Retrieved results were sorted by databases’ own relevance criterion and
we terminated the search after 20 successive non-relevant publications due to the high num-
ber of results for databases 2–5. In a third step, we carefully read all remaining publications,
evaluated our selection criteria again and only accepted primary studies not already in our
set. Eventually, we performed an iterative snowballing search through each studies’ refer-
ences as listed in the publication, and citations retrieved through Google Scholar. With this
procedure, we retrieved an additional four primary studies resulting in a total of 32.

Table 1 Queried databases and search engines

Database — Results −→

Retrieved Filtered Accepted

1 IEEE Xplore® 505 31 18

2 ACM Digital Library 4,325 23 4

3 Elsevier ScienceDirect® 9,229 27 3

4 Springer Digital Library 4,182 7 0

5 Google Scholar ≈ 12,000 39 2

6
Thomson Reuters
Web of ScienceTM 540 6 0

7 Scopus 177 10 1

Snowballing – – 4

Total ≈ 31,000 143 32
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Table 2 Applied selection criteria for primary studies

A publication must be . . .

– published in a journal, conference proceeding or a repository for computer science publications,

– written in English,

– proposing a deep learning approach,

– analyzing object or source code, and

– focusing on pattern-based vulnerability analysis.

4.3 Dataset Collection

We also collected datasets useful for researchers that want to evaluate their own vulnera-
bility analysis approaches. We mainly identified these datasets through manual search. We
started with the referenced and released datasets across the primary studies. Furthermore, we
performed a manual search on Google Scholar, GitHub, and GitLab. We focused on datasets
that either directly contain program code or link program code in an external repository and
are accompanied by labels referring to vulnerable program code parts. If a primary study
did not directly link a utilized dataset or a given link was broken, we manually searched for
the download location or a mirror thereof.

5 Discussion

In order to get an overview of relevant keywords and their importance in the field of vulner-
ability analysis of program code we created a word cloud across all selected primary studies
(cp. Fig. 2). The word cloud reflects the most prominent terms, i.e., vulnerability, deep
learning, and (source) code, also reflecting and confirming our selection criteria. Further-
more, it shows that a function is an important concepts for analysis of code and that neural
network, features, and data (source) are especially relevant terms when applying deep learn-
ing methods. In the following subsections, we discuss the results that we retrieved from the
primary studies in order to answer the research questions outlined in Section 4.1.

5.1 RQ1: Data Demographics

The application of deep learning methods has substantially increased across many research
disciplines in the last years. We observe a similar trend also for vulnerability analysis of
program code (cp. Fig. 3). Figure 3 presents a timeline depicting the evolution of vulnerabil-
ity analysis approaches that employ machine learning. We connect primary studies with an
arrow if the latter references the former and proposes its improvement. The progression in
this figure can be distinguished into three stages based on the proposed methods: traditional
machine learning methods (shaded white), shallow learning neural networks (shaded light
orange), and deep learning neural networks (shaded dark orange). Initial studies propos-
ing traditional machine learning for vulnerability analysis were published in 2014, while
first approaches proposing deep learning were published in 2017. Current research almost
entirely focuses on deep learning approaches, as the increase in studies per year shows. This
trend is accompanied by increasing complexity of the software as well as size of the software
projects since DL can better process complex information. Traditional machine learning has
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Fig. 2 Word cloud generated from the 32 primary studies

often only one processing layer, which cannot abstract meaningful patterns from the under-
lying complex data. The advantage of DL are successive abstraction layers for filtering
important information and classifying the code snippet to the correct category. We further
observe that authors who beforehand proposed traditional machine learning techniques later
proposed DL methods. Note that this is not a complete overview of traditional machine
learning-based work done in this area. We refer the reader to related surveys mentioned in
Section 2.

5.2 RQ2: Training Data

The training of a deep neural model to perform a classification task requires a substantial
amount of data representing the classes to be distinguished. Deep neural networks not only
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Fig. 3 Evolution of approaches over time. Studies with an incoming arrow explicitly state that they build on
the connected previous work or build upon their own previous work

train network layers performing the final classification task, but also a cascade of additional
layers that extract the most relevant features for performing this task. This approach has been
demonstrated to be superior for many tasks, but also means that the selection of suitable
training data is crucial. A relevant factor is the representativeness of training data for the
task to be solved. Below, we discuss individual attributes of training data to be considered
when performing vulnerability analysis.

Size and composition of the dataset In order to not only train a shallow classifier, but also
a cascade of problem-specific feature extractors, deep neural networks require substantially
more training data. That means the size of the training dataset influences the performance
of a trained model. Especially when training deep models on source code, a large number of
training examples are needed to generalize from developer-specific code idioms. Further-
more, a dataset should be representative for the intended application domains (Dam et al.
2018, [S3]), e.g., operating systems or web applications, and accordingly combine vulnera-
bility samples across the different domains. Figure 4 shows a histogram of dataset sizes used
across the primary studies. We found that sizes greatly vary from under 10k to more than 1M
samples per study. While we observe a trend towards larger studies for DL on source code,

Fig. 4 Number of samples in the evaluated datasets (30 primary studies report dataset size)
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e.g., compare the frequently used public Github archive dataset containing around 182,000
software projects amounting to a size of 3 TB (Markovtsev and Long 2018), this trend is
not visible for vulnerability analysis yet (cp. Fig. 4).The largest available dataset contains
roughly 1M samples (Russell et al. 2018, [S2]). For the training, validation and testing pro-
cedures, these datasets are split into shares, with primary studies reporting the following
splitting ratios: 8:1:1, 7:1:2, and 6:2:2 (cp. Section 5.5).

Synthetic training data An alternative to real training data is the generation of synthetic
code. A potential benefit is the chance to generate representatives of vulnerabilities that only
rarely occur and are therefore hard to find in reality. For example, Pechenkin et al. (2018)
([S4]) use a random generator, but do not publish their implementation. In fact, we did not
find a single synthetic code generator for vulnerabilities that would be publicly available or
even open-sourced. Studies show that there remains a gap between synthetic samples and
real-world samples. Russell et al. (2018) ([S2]) found that precision substantially dropped
when they analyzed real test samples with a model solely trained with synthetic samples. A
potential strategy can be mixing real and synthetic samples to gain the benefits of a larger,
balanced training set without sacrificing on representativeness. Li et al. (2018) ([S5]) and
Zou et al. (2019) ([S23]) applied this strategy successfully. Studies containing synthetic
samples often use subsets of the SARD dataset (Li et al. (2021) [S7], Zheng et al. 2019)
[S8]). The software assurance reference dataset (SARD) created and published by the NIST
institute (Black 2018) contains synthetic code samples (cp. Table 4 in the Appendix).

Generating labels Today, deep vulnerability analysis is almost solely approached in a
supervised manner, i.e., all primary studies use training sets accompanied by labels. A
label annotates a code entity as belonging to one or multiple of the classes to be distin-
guished. For a binary classifier, these would be vulnerable and non-vulnerable, while a
more sophisticated approach could, e.g., use enumerated weaknesses (CWE) as classes Niu
et al. 2020([S21]). In contrast, unsupervised optimization would train a model to discover
and cluster input data automatically according to attributes like vulnerability. While such
an approach would have a fundamental benefit by operating without the need for labels, the
variability of program code makes training a successful unsupervised approach hard and a
future exercise. Labeling a dataset theoretically means that an expert reviews a given code-
base and identifies vulnerable parts. This approach is unrealistic when aiming for a large
dataset as required for the training of deep models. An alternative source of labels, often
retrievable in an automated manner, are vulnerability collections, e.g., CVE reports in the
(National Vulnerability Database 2020), and three primary studies apply this strategy. When
discovered in an open-source project, listed CVEs can be traced back to the respective code
location. Note that a CVE can be associated with a CWE, but this is not necessary and
thus not always the case. By analyzing the code versioning system and issue tracker, further
information, such as the vulnerability-fixing code change or the introduction of the vulner-
ability can also be extracted. Harer et al. propose another automated labeling approach by
utilizing static code analysis tools (Harer et al., 2018, [S9]). However, static analysis will
only discover what is captured by the applied rule set and a model trained on the analysis’
results will essentially approximate this rule set. The authors argue that a pessimistic anal-
ysis aiming for high recall, could ease a later manual labeling by reducing the amount of
code to be evaluated. Nguyen et al. (2019) ([S10]) propose a semi-automated approach by
clustering code samples before labeling. Various authors argue that a better labeled dataset
would facilitate higher accuracy of their proposed approach and aim to create these in the
future (Russell et al. (2018) [S2], Li et al. (2018) [S5], Li et al. (2021) [S7]).
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Scope of labels The granularity of a training sample must not necessarily be the same as
the the scope of an associated label. Li et al. (2021) ([S7]) argue that the labeling should be
as accurate as possible, optimally on line-of-code level, but automated labeling processes
often do not provide this fine-grained information (see above).

Label balance An ideal training represents classes in a balanced manner to the model. In
contrast, an imbalanced training typically has negative effects on a model’s performance
as the model implicitly learns the distribution of classes. When trying to distinguish very
rare classes like vulnerable code from very dominant classes like non-vulnerable code, it
can be a safe and easy to learn strategy for a model to always predict the dominant class
while still reaching high accuracy. When considering vulnerability analysis on software
projects, this imbalance is naturally given as software typically contains large parts that
are non-vulnerable. Figure 5 shows the distribution of vulnerable and non-vulnerable train-
ing samples used by the 20 primary studies reporting this information. We observe highly
varying proportions of 1% to 52% vulnerable samples per studied dataset. Thereby, 1% of
known vulnerable code more realistically reflects the situation in software projects today,
but constitutes a highly imbalanced datasets; while values beyond 40% constitute an almost
balanced dataset better suited for training. We argue that active measures should be taken to
reach a balanced training set. Simple strategies, long known from traditional machine learn-
ing, are over- and under-sampling. Over-sampling means that samples of the minority class
appear more than once in the training set to counter-balance the dominant class. Three stud-
ies apply this strategy (Liu et al., 2020, [S11]). A drawback, however, is that over-sampling
does not actually make the training set richer in terms of new and unseen samples. Under-
sampling refers to reducing the samples of all classes to the amount of samples in the least
represented class. This strategy is applied by Li et al. (2019) ([S12]). The drawback of this
strategy is that the overall training set may become substantially smaller resulting in insuf-
ficient data for training a generalizing model not over-fitted to the training set. A trade-off
is using both, under-sampling and over-sampling as used by Cui et al. (2018) ([S13]), Cui

Fig. 5 Division of vulnerable and non-vulnerable samples across datasets of the primary studies (20 studies
report the distribution)
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et al. (2019) ([S14]). A variant proposed by Liu et al. (2019) ([S15]) is fuzzy oversampling
meaning that existing data is enriched by synthetic examples through modifications of the
feature vector. Another strategy, also in combination with the ones above, is utilizing an
objective function that considers and weighs the imbalance during the training process and
was applied by Fang et al. (2019) [S16], Lin et al. (2019) [S17], Russell et al. (2018) [S2].

Vulnerabilities A majority of 22 primary studies build their datasets upon known vulnera-
bility categories, 19 studies utilize the CWE types of (The MITRE Corporation 2020) and
3 studies utilize CVE alarms (National Vulnerability Database 2020), while 10 studies use
program code samples merely labeled as vulnerable or non-vulnerable. Figure 6 provides
an overview across the most common utilized vulnerabilities. The common CWE catego-
rization is divided into classes and sub-classes, so one CWE can be contained in another
CWE. We found the most common analyzed CWE to be CWE-119 “Improper Restriction
of Operations within the Bounds of a Memory Buffer”, a parent category of the classic
buffer overflow. Often, this CWE occurs in combination with CWE-399, the parent cate-
gory of all resource management errors. Both vulnerability types are typically introduced
through multiple statements, making a pattern-based detection an appropriate approach.
Other investigated CWE-types are OS command injection (CWE-78), e.g., SQL injec-
tion, improper input validation (CWE-20), and NULL pointer dereference (CWE-476). We
aggregate roughly 50 other CWE types that solely occur in a single study in Fig. 6. We also
observed that authors not necessarily classify all vulnerability types available in their uti-
lized datasets but sometimes rather chose to train a binary classifier distinguishing merely
between vulnerable and non-vulnerable code.

Benchmark datasets Benchmark datasets are essential when comparing results of com-
peting approaches and for researchers that want to develop new and improved approaches.
Across the primary studies and through an additional search (cp. Section 4.3), we discov-
ered 20 datasets publicly available for benchmarking (cp. Table 4). Most of the datasets
provide samples as source code mostly written in one programming language (considering
C and C++ as one language), except for SARD that mixes C/C++ and Java and VulinOSS
that includes various languages. One dataset (No. 19), contains pre-processed object code
as numeric vectors. Twelve datasets contain real source code collected from free/libre open
source software (FOSS) projects, while three are solely comprised of synthetic samples and
the remaining five are mixed. The synthetic examples are usually derived as a subset of the

Fig. 6 Common vulnerabilities utilized in the datasets of the primary studies
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SARD dataset or with methods like fuzzing from real-world examples. One sample in these
datasets typically spans one method or one file. All datasets contain either binary labels
(vulnerable vs. non-vulnerable) or multi-class labels typically corresponding to CWEs or
CVEs annotating multiple tokes, a statement, a method or a whole file.

5.3 RQ3: Code Representation and Encoding

With this research question we explore how primary studies represent and encode pro-
gram code for making it suitable as input when training a deep model. Table 3 provides an
overview across all 32 primary studies in terms of input data, program code representation
and the trained model. When discussing this research question, we specifically refer to the
table’s first five columns.

Granularity of training samples When training on program code, a fundamental decision
is the granularity in which to represent the code to the model. Granularity thereby refers
to the extent of one training sample rather than the input granularity of a trained model
which may be smaller, e.g, for sequentially trained recurrent networks. Typical granularities
range from statement to file. In general, granularity should be chosen so that a code entity
provides sufficient characteristic information for classifying it as potentially vulnerable or
not. Thereby, an example for a vulnerability on statement level is an incorrect conversion
between numeric types (CWE-681), while storing sensitive data in a mechanism without
access control (CWE-921) can typically only be identified when analyzing multiple meth-
ods together. Given only this observation, one might consider coarse-grain code entities as
universally suitable. However, there are also benefits in processing more fine-grained code
entities. Splitting a code base into smaller entities results in more training data, which is
typically beneficial for the performance of a deep model. Furthermore, if the vulnerable part
is small and constitutes only a fraction of a code entity, it is harder to train a model towards
identifying this small portion of characteristic information. The first column of Table 3
refers to the code granularity chosen by the primary studies. Primary studies operate: on
single statements; on multiple statements, either consecutive statements or program slices;
on single methods; or on file-level containing multiple methods. The table shows that stud-
ies often focus on multi-statement and method-level granularities and we observe a trend
towards more fine-grained analysis in more recent studies potentially to provide users with
more precise results (Li et al. (2020) [S18], Zou et al. (2019) [S23]). Source code functions
by nature differ a lot in their size, so aggregating functions by combining several semanti-
cally related statements to an intermediate non-executable code can help to adjust the length
of very long code fragments (Li et al. 2021, [S7]). An interesting approach is function inlin-
ing where method calls within one method are replaced by the code of the other function
resulting in a wider scope of the vulnerability analysis (Liu et al. (2020) [S11], Li et al.
(2019) [S19]). We observe correlations between the vulnerability type to be identified (cp.
Fig. 6) and the sample granularity for analysis: SQL injections (CWE-89) are identifiable on
statement-level granularity, while a buffer-overflow related vulnerability (CWE-119, CWE-
121, CWE-122 etc.) typically assembles over multiple statements and at least requires this
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granularity for identification. One study (Li et al. 2021, [S7]) proposes differing input and
output granularities. Their pipeline receives samples on program level as input and classifies
on program slices.

Code format and language The second column “Code format” of Table 3 refers to whether
a study analyzes object code or source code and lists the analyzed programming languages
for primary studies analyzing source code. A majority of 22 primary studies analyze source
code, stemming from code written in seven different programming languages. The most
often analyzed programming languages are C and C++ possibly due to their wide usage
for developing core functionality of connected systems. The languages’ versatility and
low-level features offer many possibilities for software developers but also allow introduc-
ing many vulnerabilities, accordingly C and C++ are considered among the most insecure
programming languages (Michaud and Painchaud 2008). Although, other languages like
Python and PHP should prevent some vulnerabilities on byte-operation level, they may
allow other vulnerabilities and their libraries may also still be vulnerable, e.g., for buffer
overflows (National Vulnerability Database 2014), due to the fact that they are, e.g., written
in C. PHP, JavaScript and SQL are commonly used for developing web-applications and are
vulnerable to code-injections, such as SQL injections (CWE-89). Li et al. (2019) ([S12])
aim to predict the vulnerability of methods written in C++ and Python. Since they solely
analyze method names, a joint model for both programming languages could be trained. A
potential reason for focussing primarily on source code for analysis is its richer represen-
tation containing, e.g., method names, variables names, comments that can be exploited,
also in combination with other data sources, such as documentation and issue tracker infor-
mation, for a vulnerability analysis. Harer et al. (2018) ([S9]) evaluated source code vs.
object code for vulnerability analysis and their results in terms of higher ROC AUC and PR
AUC for source code support this assumption (cp. Section 5.5). However, several primary
studies focusing on source code confess that they aim to expand their work to object code,
arguing that a vulnerability analysis may not only be conducted by developers but also by
consumers of proprietary software that is not open-sourced (Li et al. (2018) [S5], Lin et al.
(2019) [S17], Dam et al. (2018) [S3], Liu et al. (2019) [S15]). The processing of object code
typically starts from binary files that are translated with a dis-compiler, such as IDA Pro
or Capstone, into machine instructions or assembler code. Liu et al. (2020) ([S11]) com-
pile the source code to object code and disassemble the object code to combine both views
for analysis. While object code abstracts from the programming language, it is architecture-
specific meaning that instructions can differ across hardware platforms, which potentially
complicates analysis (Pechenkin et al. (2018) [S4], Demidov and Pechenkin et al. (2018)
[S20]).

Intermediate code representation There exist multiple strategies for how to prepare pro-
gram code for training of a model (cp. column “Representation” of Table 3). Primary studies
use formats that range from the given plain code to more complex representations, e.g.,
abstract syntax tree (AST), control flow graph (CFG), program dependence graph (PDG),
as known from compilers or static analysis tools. More recent approaches even introduce
customized formats, such as the Attributed Control Flow Graph (ACFG), the Code Property
Graph (CPG) or a graph combined of several of the former Xiaomeng and Pechenkin et al.
(2018) ([S22]). The intermediate transformation of code into a graph representation is often
proposed as code is not executed linearly like text but in branches and conditions prefer-
ably reflected in a graph representation. Which graph is most suitable depends on the type
of vulnerability to be analyzed (Zhou et al. 2019, [S23]). For example, program or system
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dependence graphs represent control as well as data dependencies within code executions
making it helpful to detect resource management vulnerabilities (e.g., CWE-399). More
than half of the primary studies (19) use at least one graph representation or combine several
graphs into one meta-graph, suggesting that treating code as graph or tree is suitable for deep
vulnerability analysis. Also a combination of input granularities has been proposed in order
to combine features of multiple abstractions. Dam et al. (2018) ([S3]) took the same feature
set in a local pooling and a global clustering and combine both into a classifier, while Zhou
et al. (2019) ([S23]) combine a node embedding and a graph embedding encoding one code
granularity into the edges and the other into the nodes of the same graph. Adding semantic
information during the pre-processing of code, e.g., by annotating token types, can improve
analysis performance (Abaimov and Bianchi, 2019, [S24]), so that there is no need to learn
this information from the training data. Including such additional knowledge is proposed as
future work in various primary studies (Lin et al. (2019); Li et al. (2019), Li et al. (2019)).

Serialization The fourth column “Serial.” of Table 3 refers to the serialized features from
the intermediate representation that are used as input to the deep model. For plain source
code, this is often a word sequence created by a lexer, while object code is often disas-
sembled into a sequence of instructions. Graphs are typically translated into paths, e.g.,
execution paths, or traversed by a depth first search (DFT). These features need to be fur-
ther translated into numeric sequences that can be processed by a neural network. This step
is called encoding.

Encoding program code A neural network expects a n-dimensional vector of numerical
values representing a program code sample to be trained or analyzed. This necessitates a
transformation of program code given in one representation, e.g., text or graph, into this
numerical representation. Ideally, this transformation should preserve all relevant informa-
tion for the given task, e.g., similar tokens are assigned similar numerical representations
(Chen and Monperrus 2019). There are various ways for encoding program code (cp. col-
umn “Encoding” of Table 3). A simple approach is building a dictionary and enumerating
each token to be encoded in a sparse vector of binary values containing a single one at the
position of the given token. This form of encoding is called one-hot encoding and is applied
by ten primary studies. A numerical encoding is similar to that and assigns every word a
consecutive number. Cui et al. (2019) ([S14]) propose a more exotic form of encoding by
reading tokens of object code bit-wise and representing 8 bits as a pixel in a grayscale image,
thereby, gaining the ability to use a standard convolutional neural network as frequently
applied for computer vision tasks. Li et al. (2019) ([S19]) compared a numeric encoding and
a one-hot encoding and found the latter to yield higher accuracy at the cost of an increased
training time.

Word embeddings A more advanced encoding is an embedding, e.g., learning a trans-
formation of sparse natural language data into a dense, low-dimensional representation. In
recent years, several successful embeddings for text, e.g., word2vec (Mikolov et al. 2013),
Glove (Pennington et al. 2014), and Fasttext (Bojanowski et al. 2017), have been proposed.
The most wide-spread of these embeddings is word2vec (Mikolov et al. 2013), which pre-
dicts a word based on its context words (CBOW) or a context word based on the target word
(skip-gram). Nine primary studies use word2vec, but not all specify whether they used the
CBOW or the skip-gram version. Important parameters of an embedding are vocabulary
size and the dimension of the embedding. Unfortunately, only five primary studies mention
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these parameters. Duan et al. (2019) ([S25]) found that a vocabulary size of 128 and an
embedding dimension of 144 worked best for them.

Graph embeddings Word embeddings, such as word2vec, only embed tokens and thereby
neglect known dependencies among them. In contrast, graph embeddings aim to encode
tokens as well as their dependencies into a dense, low-dimensional representation. Given the
graphical nature of program code, graph embeddings appear to be a more suitable encod-
ing. Five primary studies propose graph embeddings: the Graph-GRU (GGRU) studied by
Zhou et al. (2019) ([S23]), the graph convolutional network (GCN) (Kipf and Welling 2017)
studied by Cheng et al. (2019) ([S26]), and the structure2vec framework proposed by Dai
et al. (2016) and studied for vulnerability analysis by Xu et al. (2017) ([S27]) and Gao et
al. (2018) ([S1]). Additionally, Duan et al. (2019) ([S25]) propose the Doc2vec embedding,
which is based on word2vec and was originally developed to embed whole documents. The
authors use Doc2vec to encode a CFG’s nodes, representing tokens, and additionally encode
a CFG’s edges into a feature tensor. Cheng et al. (2019) ([S26]) compared their GCN graph
embedding with a token-based one-hot encoding on a dataset with labeled business logic
errors (CWE-840). They found that the graph embedding outperformed the token-based
encoding in terms of F-measure and area under the ROC.

5.4 RQ4: Proposed and StudiedModels

The aim of this research question is exploring the model topologies proposed by the dif-
ferent primary studies and their characteristics (cp. column “Model topology” of Table 3).
Figure 8 illustrates the distribution of network topologies proposed by the primary studies
with quantities referring to the usage across the typically multiple performed experiments
per study.

Extent of vulnerability analysis Figure 7 provides an overview of the attempted vulner-
ability analysis per primary study in terms of vulnerability classes to be distinguished. A
majority of 28 primary studies perform binary classification, e.g., differentiating vulnerable
from non-vulnerable program code samples. Merely four primary studies aim to distinguish
multiple vulnerability types and select 5 to 40 classes to be identified and differentiated.

Recurrent topologies Primary studies predominantly propose recurrent neural networks
(RNN) for performing vulnerability analysis of program code (cp. red pie in Fig. 8). Recur-
rent network topologies maintain a memory of previously seen input data by incorporating
the previous state of hidden units when computing an updated state. This property makes
recurrent topologies especially suitable for sequential data of variable input length as given
when analyzing program code. RNNs have been first proposed by Hopfield (1982) and since
been evolved substantially. A main driver in this evolution is a problem called vanishing
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Fig. 7 Extend of the evaluated classification problem across primary studies

gradients, existing for all deep neural networks but becoming especially relevant for recur-
rent topologies exposed to long sequences of input data. A major improvement in mitigating
the vanishing gradient problem are gated recurrent topologies that allow the model to learn
and control which previous information shall be maintained and which other information
can be discarded. Gated topologies appear in two main flavors: (1) long short term memory
networks (LSTM) (Hochreiter and Schmidhuber 1997) and (2) gated recurrent units (GRU)
(Cho et al. 2014); with the latter being essentially a simplification of the former in order to
reduce necessary parameters and thereby training time. Systematic comparisons of LSTMs
and GRUs found that none is superior in general, but both showed problem-specific ben-
efits (Zheng et al., 2019, [S8]), Li et al. (2019). In this meta-study, we observe the same

Fig. 8 Proposed model topologies across primary studies grouped into recurrent, feedforward or combined
topologies
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trend with eight primary studies applying LSTMs in their experiments, and seven propos-
ing GRUs. RNNs face another potential shortcoming due to their sequential processing.
They can, within a sequential input, only reason about the input data that they have been
exposed to so far and not the remaining part of the input. This problem becomes relevant
for encoder-decoder (aka sequence to sequence) problems like translating text from one
language into another since output is produced synchronous to the input. The solution is a
bidirectional topology consisting of two RNNs (e.g., BiRNN, BiLSTM or BiGRU) that pro-
cess the sequence simultaneously from both sides and to combine their current hidden states
per step upon inference. When performing a classification task on full input sequences,
however, typically only the last hidden state, representing the whole sequence, is used for
the classification. Vulnerability analysis is such a classification problem and one should not
expect substantial benefits from bidirectional topologies. However, 11 primary studies uti-
lize a BiLSTM, 3 use a BiGRU and 1 uses a vanilla BiRNN. Li et al. (2021) ([S7]) found that
bidirectional LSTMs (BiLSTM) and GRUs (BiGRU) slightly outperformed their unidirec-
tional equivalents (e.g., LSTM and GRU) reducing error rates by some tenth of percentage
points for accuracy, precision and F-measure Zheng et al. (2019) and Li et al. (2021) ([S8],
[S7]). In the study of Fang et al. (2019) ([S16]), BiLSTM and LSTM perform similarly hav-
ing their largest divergence in 1.3 % F-measure in one experiment. One study even found
that a vanilla BiRNN outperformed BiLSTM and BiGRU topologies on their dataset (Zheng
et al., 2019, [S8]). Another powerful concept proposed to overcome the vanishing gradi-
ent problem of long inputs in RNNs is attention. It allows a network to learn which former
inputs and their respective hidden states are more and which are less relevant for a given
task. Attention has been considered by two primary studies (Zhou et al. 2019 [S23], Liu et
al. (2020) [S11]). The authors found that using attention resulted in a 14% higher F-measure.

Deep recurrent topologies The column “Depth” in Table 3 refers to the number of neural
network layers employed in a model topology. We counted the main layers of the best per-
forming model topology (marked bold in column “Topology”) excluding layers that do not
directly contribute to the representation learning ability of a topology, such as embedding,
dropout, and classifier layers. Eight primary studies utilize only one main layer, while oth-
ers propose up to six RNN layers. Li et al. (2018) ([S5]) studied the influence of topology
depth in terms of BiLSTM layers. They found that two to three BiLSTM layers yield the
highest F-measure and that topologies beyond six layers drastically dropped in terms of F-
measure. Deep BiLSTM layers also performed best in terms of highest F-measure in Li et
al., (2019, [S12]). While inputs are typically processed sequentially, e.g., layer by layer, in
these deep topologies, also skip connections and short circuit branches have been studied
(Duan et al. 2019, [S25]).

Feedforward topologies In contrast to recurrent topologies, feed forward topologies are
designed for processing all inputs at once. Fully connected neural networks, also known
as dense networks or multilayer perceptron (MLP), have connections among all neurons of
two successive layers. This fully connected nature makes them ideal classifiers often used in
combination with other feedforward or recurrent topologies. However, fully connectedness
also goes along with large numbers of parameters making them computationally expen-
sive and memory intensive and therefore hard to scale in depth and width. A specific form
of feedforward network is the convolutional neural network (CNN) that uses convolution
operations, which aggregate units in the same spatial region and operate with substan-
tially less parameters. CNNs were originally developed for processing n-dimensional arrays
(Fukushima et al. 1983) and primary studies frequently propose them in comparison to
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RNNs. Hybrid topologies, proposed by five primary studies, combine feedforward layers
with recurrent layers. However, Wu et al. (2017, [S28]) found that a CNN yielded higher
accuracies than a hybrid topology in their study. The depth, number of hidden layers, and
width, e.g., number of neurons per layer, of feedforward topologies vary greatly and are typ-
ically chosen in an empirical manner (Abaimov and Bianchi 2019, [S24], Yan et al. 2018
[S29]). In contrast to recurrent topologies, feed forward topologies, including CNNs, expect
a static input size. However, samples in the respective datasets typically vary in length and
may be longer or shorter than the expected input size of the model. A standard strategy to
handle these mismatches is padding shorter inputs with a fix value and truncating longer
inputs to the expected input size of the network. This strategy has, e.g., been applied by
Wu et al. (2017); Li et al. (2021); Lin et al. (2019). This strategy still leaves the problem
of deciding how large the input of the model shall be, e.g., simply choosing the size of
the largest training sample does not guarantee that test data will not contain a larger sam-
ple, while truncating to samples average length means that potential relevant information
will be cut away. Cui et al. (2019) ([S14]) evaluated various input lengths for a CNN and
found that models performed better on larger input vectors at the cost of increasing resource
consumption for training.

Topologies for graph processing The majority of primary studies transform their interme-
diate program code graphs into input sequences or matrices. However, five studies employ
a topology that can directly operate on graphs as input. In these studies, the graph is pro-
cessed in the embedding layer of the respective network (cp. Section 5.3). The structure2vec
framework (used by two studies Xu et al. 2017; Gao et al. 2018) iteratively creates an
embedding to be further processed in a fully connected network, the Graph-GRU uses a
specific recurrent layer, and the GCN uses a specific convolutional layer as first process-
ing layer operating on graphical input data. Authors found the Graph-GRU network to be
superior when compared to a BiLSTM network with an attention mechanism (Zhou et al.
2019, [S23]). The encoded graph tensor proposed by Duan et al. (2019) ([S25]) uses several
convolutional layers for processing. Both networks employ further convolutional and max-
pooling layers following the initial embedding to reduce feature dimensionality and several
fully connected layers for the final classification task.

Representation learning vs. similarity-based search A majority of 30 primary studies
propose an approach that is called representation learning meaning that a model is trained
towards identifying and extracting the relevant information from input data and then per-
forming a classification. This classification is realized by an algorithm applied in the last
or penultimate layers of the trained model. The most common classifier consists of one or
several fully connected neural network layers (FC) (cp. column “Output” of Table 3). Alter-
native classification approaches are Random tree (RT) and random forest (RF). Random
trees try to find the best splitting feature or predictor from a randomly selected subset of
features at each node. Random forests use decision trees with a randomly sampled subset
of the full dataset.

In contrast to representation learning, there exists the possibility to solely extract and
potentially store relevant features of known vulnerability instances and to compare these
“signatures” with each new sample that is analyzed. This approach is called similarity-based
search since it essentially constitutes a comparison of feature vectors where similar ones
are considered a match. Similarity-based search is less computationally intensive than rep-
resentation learning since only the feature extractor is needed, which can often be reused
from a related task. For example, a pre-trained word embedding may be used as a feature
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extractor for source code. However, the drawback of this approach is that no abstraction of
the analyzed concept will be learned. Similarity-based search may still be worthwhile when
no sufficient training data or computational resources are available. Two studies propose a
similarity-based analysis (Gao et al. (2018) [S1], Xu et al. (2017) [S27]). Gao et al. pro-
pose a cross-platform binary vulnerability analysis based on the structure2vec embedding
(Gao et al. 2018, [S1]). Their model computes an embedding vector per object code file
to be analyzed as well as for each vulnerability to be detected. Vulnerabilities are retrieved
from the CVE database (National Vulnerability Database 2020) and their implementation
is derived from the Genious-tool by Feng et al. (2016). The actual analysis is then merely
a vector comparison, computed as cosine similarity, between all files and all vulnerability
embeddings. Dam et al. (2018) ([S3]) propose deep learned features to compare methods
of different software projects. A LSTM is trained on code snippets represented as token
sequence and output vectors which represent the distribution of semantics of a code token.
The vectors of all code tokens are saved in a codebook as so-called global features and can
be compared to others by a centroid assignment.

Minimizing generalization error Data augmentation techniques can help to increase the
generalization performance and robustness of a trained model, feedforward as well as recur-
rent, by adding plausible deviations to the training data, e.g., changes to code samples (Cui
et al. (2018) [S13], Cui et al. (2019) [S14]), or adding noise (Li et al. 2019, [S12]). An alter-
native and complementary approach to improve generalization performance and to prevent
over-fitting of a model is adding a dropout mechanism (Li et al. (2018) [S5], Fang et al.
(2019) [S16]). Models with Dropout randomly disable connections among neurons during
training forcing the model to compensate for the missing connections and thereby becom-
ing more robust. The Dropout ratio refers to the proportion of connections to be randomly
disabled. Figure 9 shows that 16 primary studies apply dropout with ratios ranging from
20% to 50%, with 50% being to most common choice.

Fig. 9 Extend of dropout within
studies using the concept
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Fig. 10 Used evaluation metrics in the primary studies

Hyper-parameter optimization The adaptation of deep learning methods to a given prob-
lem is essential for their performance, but only a quarter of the studies (7 out of 32) perform
and describe a systematic hyper-parameters optimization, e.g., a grid search (Cheng et al.
2019[S26]).

5.5 RQ5: Evaluation of ProposedModels

This research question explores the evaluation of the proposed approaches. The basis for the
evaluation is the availability of ground truth labels (cp. column “Ground truth” of Table 3)
that we discuss in Section 5.2 and that serves not only in the supervised training process
but also as ground truth for computing evaluation metrics. The last column “Artifacts” of
Table 3 provides links to code and datasets of the primary studies if available.

Quality of the evaluation The training and also the evaluation can only be as precise as
the utilized labels. There are several difficulties in generating a sufficient and high-quality
amount of training and evaluation samples (cp. Section 5.2). For example, labels may not
reflect the ground truth due to mistakes in the labeling process. To test the quality of their
evaluation, Li et al. (2020) ([S18]) tried to identify vulnerabilities in projects without known
ground truth. They labeled 200 program files manually for a qualitative evaluation and used
mediocre results by manually checking only false positives as subset. This emphasizes the
need to pay great attention to the labeling process and inv esting as a community into high-
quality benchmarks.

Metrics We collected the metrics used across all reported experiments of the primary
studies (cp. Fig. 10). An often reported metric is accuracy measuring the closeness of a mea-
surement to the true value (International Organization for Standardization 2020). While 18
primary studies report accuracy, it is not a proper evaluation metric for imbalanced datasets,
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such as many of those evaluated by these studies (cp. Figure 5). In a typical evaluation pro-
cedure, a dataset is divided into training, validation, and test splits. That is the test split
inherits the imbalance of the overall dataset resulting in a situation where the more domi-
nantly trained classes are also more dominantly tested. This leads to an overly high accuracy
neglecting the performance for minority classes, in our case vulnerable code samples. A
simple solution is computing an accuracy per class first and to average those accuracies
into a so-called class-averaged accuracy. Three primary studies have reported this metric.
Other appropriate metrics for evaluating unbalanced datasets are precision, recall and the
F-measure, a weighted mean of the former. One or multiple of these measures are reported
by 25 primary studies. Precision area under curve (PR AUC) is deviated from the precision
recall curve. The receiver operating characteristic (ROC) AUC is the area under the curve
of true positive rate as a function of false positive rate. The precision recall curve high-
lights the skewed data, while the ROC curve concentrates more on the performance (Branco
et al. 2016). With ROC, the imbalance is not taken into account. The measure describes
the proportion between TPR and FPR. These metrics are ratios of correctly and incorrectly
predicted samples and are calculated independently on one side of the confusion matrix
meaning that class skew does not influence them (Fawcett 2006). Testing time reported by
three studies aims to compare resource usage when applying a previously trained model
in production. Matthews correlation coefficient (MCC) is a reliable statistical rate, because
all four confusion matrix categories are used equally in its calculation (Chicco and Jurman
2020). MCC is also invariant to class swapping in contrast to the F-measure, which varies
when binary classes are accidentally renamed (Chicco and Jurman 2020). This metric is
only used once. For a multi-class problem, the confusion matrix between all the vulnerabil-
ity types is meaningful. For the use case of vulnerability detection, MCC and the confusion
matrix are good working measures for binary classification rather than using accuracy and
F-measure (Chicco and Jurman 2020). Note that trusting only one measure is often not
meaningful, one should always consider several metrics.

Cross-validation For evaluation, more than half of the studies use cross-validation, either
as 1-fold, 5-fold or 10-fold cross-validation. Thereby, the number of folds refers to the
number of completely repeated training processes, e.g., a 10-fold cross-validation means 10
completely trained models. Twenty primary studies apply such a cross validation strategy,
while twelve do not explicitly describe or mention it.

Comparative evaluation Since studies use varying datasets and varying proportions of vul-
nerable to non-vulnerable examples, we could not compare their raw results to one another.
To still be able to contrast studies’ approaches, column “Topology” of Table 3 highlights the
best performing model topology across a study’s experiments in bold. Li et al. (2019)’s study
compares a large set of topologies for vulnerability analysis, e.g., FCNN, CNN, LSTM,
GRU, BiLSTM, and BiGRU. The comparative study is performed on a dataset of 126 CWE-
types represented by 811 security-related C/C++ library function calls (Li et al. 2021, [S7]).
The authors found that bidirectional recurrent networks (e.g., BiLSTM and BiGRU) trained
on source code accompanied by data and control dependencies (c.p. Section 5.3) resulted in
the highest precision and F-measures, but closely followed by feedforward networks (e.g.
FCNN and CNN). In total, eight primary studies compare recurrent and feedforward topolo-
gies in their experiments. Four of these found recurrent topologies to be superior, while the
other identified feedforward topologies as superior for code analysis. Approaches for graph
processing use both types of topologies, e.g., Graph-GRUs are based on recurrent GRU
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layers, while GCNs are based on feedforward CNN layers. We conclude that both topology
types are suitable for code analysis.

5.6 RQ6: Model Generalizability

Cross-project learning Cross-project learning refers to training a model with program code
stemming from one set of software projects, while later analyzing program code from new
and unseen projects. To successfully train a generalizing model, typically a substantial
amount of representative training data stemming from various projects and many develop-
ers is needed. There are manifold levels of generalization in this context that can make a
model wider applicable, but also harder to train, e.g., differing application domains or dif-
fering development methodologies. Among the primary studies, 18 train and test solely with
code samples from one and the same project or generated by the same synthetic sample
generator, while seven train on multiple datasets but do not explicitly separate projects for
testing. The remaining seven primary studies propose cross-project learning (cp. Fig. 11)
in different approaches. While ten primary studies approach cross-project learning solely
from a dataset perspective (Russell et al. 2018, [S2]), e.g., training on multiple projects and
testing on others, there are also two studies that propose a specific set of “global” features
for cross-project learning (Dam et al. (2018) [S3], Zou et al. (2019) [S6]). Global features
shall represent some broader semantics about several program slices as high-level view,
while local features shall represent individual statements. Lin et al. (2018) ([S30]) com-
pared cross-project learning methods (Li et al. (2019) [S12], Li et al. (2020) [S18], Lin et al.
(2018) [S30], Nguyen et al. 2019 [S10], Pechenkin et al. (2018) [S4]). Similar to cross-
project learning is cross-version learning proposed by Dam et al. (2018) ([S3]), where the
progression over time is the main subject of investigation and new code is introduced in
later versions.

Transfer learning Transfer learning refers to a two-stage training procedure originally
developed for increasing performance on problems with limited training data. In a first step,

Fig. 11 Consideration of cross-project prediction
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a model is pre-trained with a larger, similar dataset to convergence. In a second step, this
pre-trained model is taken and then trained with the actual dataset in a procedure called fine-
tuning. Thereby, depending on the available training data in the actual dataset, a stronger or
softer fine-tuning in terms of retrained parameters and update strength, i.e., learning rate,
is chosen. This procedure is very popular for computer vision problems and recently also
became popular for natural language processing (Mou et al. 2016). Lin et al. (2018) ([S30])
compare transfer-learning methods and found that representations learned in this manner
are more effective than traditional code metrics. In a follow-up study, Lin et al. compared
a transfer-learned BiLSTM network with a BiLSTM network trained from scratch showing
that the former outperformed the latter in terms of precision and recall.

6 Trends and Future Directions

Better vulnerability differentiation Proposed methods should evolve from today’s pre-
dominant binary vulnerable vs. non-vulnerable classification to a vulnerability type classi-
fication or ranking (Harer et al. 2018, [S9]). The CWE catalog currently lists 839 individual
vulnerability types, while the most elaborate primary study merely aimed to distinguish
40 vulnerabilities. Primary studies acknowledge this shortcoming and plan to adopt their
works to more types of vulnerabilities (Xu et al. 2018 [S31], Wu et al. 2017 [S28], Fang et
al. (2019) [S16]) or to introduce patterns uncovering multiple types of vulnerabilities (Zou
et al. 2019, [S6]). CWE vulnerabilities are partly defined in taxonomic relationship, i.e.
more abstract parent CWEs and derived child CWEs. Note that CWEs are based on human-
defined categorization and may change from time to time. It may be helpful to exploit these
relationships for analysis and presentation of results, e.g., results with limited reliability
could be propagated to the parent class.

Object code analysis as fall back On the one hand, vulnerability analysis tools shall inten-
sively be used by software developers to make their source code more secure from the
beginning; and source code clearly is the richer information source containing, e.g., iden-
tifier names and comments. On the other hand, the ability to analyze binary files enables
an analysis of software for which source code is not publicly available. For example, secu-
rity experts, would be able to study a wide variety of software and users, could establish
more trust in their tools. Accordingly, the authors of multiple primary studies argue that in a
future extension they aim to expand their work towards object code Liu et al. (2020); Dam
et al. (2018); Li et al. (2018); Lin et al. (2019); Liu et al. (2019).

Utilizing unlabeled program code and additional data sources The success and popular-
ity of open-source software gives researchers access to unprecedented amounts of source
code written in different languages, targeting different domains and being of varying qual-
ity. Future studies should make more use of this valuable resource. Therefore, they have to,
however, overcome the problem of vulnerability labeling. Manual labeling whole projects
seems unfeasible and using other analysis approaches, such as static code analysis, will limit
labeled classes to the capabilities of the respective approach. A potential solution could be
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unsupervised approaches analyzing program code for uncommon and therefore potentially
vulnerable code constructs. Another direction that future studies should explore is utilizing
additional datasources upon program code analysis. These can be project-specific data-
sources, such as version control information, issue tracker information and requirements, in
order to identify atypical deviations from specifications and processes. Also general infor-
mation, such as discussion of programming questions on platforms like Stack Overflow or
security bulletins should be utilized.

Towards program code embeddings We found that primary studies use simple bag of
words approaches or word embeddings to encode their input data, typically a token stream.
These encodings are relatively simple to apply, but have substantial shortcomings. Bag of
words approaches neglect semantics among tokens. Word embeddings are able to capture
these semantics, but require training with a large representative corpus. When analyzing
program code, researchers can decide between (1) training their own embedding meaning
that they need to assemble a large corpus of program code or (2) reusing an actionable
embedding pretrained on large text corpora like Wikipedia meaning that the embedding
is not specifically trained to capture program code semantics. We argue that training
specific program code embeddings with large corpora of representative code is an open
research question that could substantially improve analysis results. Another shortcoming of
word2vec word embeddings is that they can only embed previously trained tokens. While
the grammar of a programming language is rather static, user defined identifiers like func-
tion and variable names can vary a lot and have an unlimited amount of neologisms (Chen
and Monperrus 2019). The FastText word embedding (Bojanowski et al. 2017) overcomes
this shortcoming by training not only the actual word but also its character n-grams, i.e.,
previously unseen words can still be encoded. The latter was not used in any primary study.

Other topologies for analyzing program code We found that primary studies prefer recur-
rent topologies over feedforward topologies in their experiments, which is motivated by the
fact that code is of sequential nature and variable length making recurrent topologies more
suitable than standard feedforward topologies including CNNs. However, even the most
advanced recurrent topologies suffer from two fundamental problems: (1) recurrence makes
their training in large parts sequential and therefore slow; and (2) long input sequences lead
to vanishing gradients in the training process. Feedforward Transformer topologies have
been proposed to analyze input data of variable length while overcoming these problems
(Parmar et al. 2017). Transformers employ sophisticated attention mechanisms and posi-
tional encodings to compensate for the missing recurrence and have been demonstrated to
substantially outperform RNNs in natural language processing regarding runtime and mem-
ory (Botha et al. 2017). We argue that Transformers should also be studied for vulnerability
analysis. Furthermore, we found little research on processing program code as graph omit-
ting the typical transformation into input sequences or matrices. A graphical representations
seems more natural for representing program code given the underlying control and data
flows. We argue that representing and analyzing program code in a graphical way should be
a major focus of future research.

Explainability of analysis results Despite its often unprecedented inference quality facil-
itating more precise analysis results, representation learning with deep neural networks is
also criticized as black box, nontransparent and hard to interpret (Selvaraju et al. 2017).
Explainability of model decisions is of high importance for vulnerability analysis in order to
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support developers in understanding and fixing discovered problems (Li et al. (2021) [S7],
Wu et al. 2017 [S28], Zhou et al. (2019) [S23], Lin et al. (2019) [S17]). An essential pre-
condition is having fine-grained analysis results, e.g., highlighting problematic code tokens
(Russell et al. , [S2]), rather than declaring an entire code sample vulnerable. For example,
layer relevance propagation, an explanation technique propagating the prediction of neural
networks layer-wise back to its inputs, could be utilized to report which tokens influenced
the current decision of a model (Warnecke et al. 2020). Such methods would allow high-
lighting the most problematic code locations to a user and to guide further inspection and
should be explored for vulnerability analysis (Zou et al. (2019) [S6], Li et al. (2019) [S12]).
As a future exercise it would also be interesting to deliver an actual explanation of how a
given code sample is vulnerable and how an identified weakness may be effectively fixed.

Cross-language and cross-architecture learning Cross-language learning is the abstrac-
tion of vulnerability patterns from a specific language in order to facilitate language-
agnostic vulnerability analysis of source code Zou et al. (2019) [S6], Dam et al. (2018)
[S3]). None of the primary studies approach vulnerability analysis in this manner. However,
it seems a relevant future research topic as it promises more versatile and universal mod-
els, and could uncover a more holistic view on vulnerability types, e.g., which are language
specific and which are language agnostic. A related concept is cross-architecture learning
aiming to abstract object-code from the architecture it was compiled for and producing mod-
els that are applicable to a wide variety of object code (Gao et al. (2018) [S1], Xu et al.
(2017) [S27]).

Towards usable analysis systems Methods should evolve from proprietary implemen-
tations on tailored datasets to end-to-end software analysis tools applicable in practice
and supporting software developers in the development of secure software. There is still
room for improvement of DL-based methods as well as SAST tools (Johnson et al. 2013;
Christakis and Bird 2016). An end-to-end software analysis tool shall be able to analyze
projects created in a large variety of programming languages and with differing develop-
ment methodologies. This includes delivering pre-trained models that generalize from a
specific software project and potentially also from an application domain. For the training
of such models a substantial and representative training corpus is needed.

7 Threats to Validity

Below, we discuss threats to the validity of our meta study grouped according to four com-
monly used categories: construct, internal, external, conclusion validity (Easterbrook et al.
2008).

The construct validity threats concern the relationship between the theory and the appli-
cation. We carefully defined our search terms and selection criteria according to Kitchenham
and Charters’s guidelines, but during construction of these we may have missed an impor-
tant keyword. We tried to mitigate this threat (i) by performing a search on Google Scholar
as meta search engine with richer and broader results; and (ii) by conducting a citation check
forward and backward on the primary studies identified up to this point. Furthermore, we
limited our meta-study to English-language publications as English is the common language
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for publishing in computer science. Moreover, this field is fast-evolving, so the number of
relevant studies can grow fast. At the time of completing this meta-study (May 2020), we
consider our survey complete.

The main threats to internal validity are author bias, author influence and the under-
standability of the written reports leading to a possible inaccuracy in data analysis and
extraction. To overcome the mentioned issues, we documented all executed steps in a proto-
col and re-checked these steps between the authors. Our search strategy included a filter on
publication title and abstract in an early phase of the study search process. We used a pre-
defined search string ensuring that we only searched for primary studies having their main
focus on vulnerability analysis in the deep learning field. Therefore, studies that propose a
more general deep learning on code classification approach with different classes than vul-
nerability types may have been excluded by this filter, but could be easily adapted to this
application. This is valid, because further work is needed for their adaption.

External validity refers to the representativeness of results. To overcome potential
threats in this direction, we used different representative publication repositories. Given the
fact that we study a relatively new field of research and there is not an enormous amount of
relevant papers, we restricted quality analysis of primary studies to a minimum. That means
that some primary studies are short papers and important details of their approaches are not
reported making it hard to fully compare them against others. Therefore, we had to infer
certain information during the data extraction process, but intensively discussed these cases
among the authors of this survey. Our discussion is not entirely complete due to this miss-
ing information. We would have liked to collect additional information on utilized models,
e.g., the number of tokens per input sample or the number of parameters per layer across
topologies.

Finally, conclusion validity involves the threat of deriving correct conclusions from
this literature review. We counteract to this by a discussion between the authors to reach
consensus for each conclusion. However, the reader could come to her own conclusion.

8 Conclusions

In this meta-study, we surveyed publications on deep learning assisted vulnerability analysis
of source code and object code. We present the evolution from traditional machine learning
to deep learning approaches for this application that took place in the last three to four years.
Training data forms the basis for the studies and was inspected in Section 5.2. We also pro-
vide different categorization schemata according to the studies’ input pre-processing and
the level of granularity in Section 5.3 to show the differences across the primary studies.
We compared studies regarding code representation, topology and evaluation correspond-
ing to the dataset structure. This work also advises which topology and evaluation metrics
are suitable for follow-up studies. Furthermore, we point out limitations of primary studies
and discuss future research directions, such as more extensive dataset labeling, cross-project
prediction, processing program code as graph, and providing explainable code analysis
results.

Appendix A: Datasets for Vulnerability Analysis
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