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Assembly of a Coreset of Earth Observation Images
on a Small Quantum Computer

Soronzonbold Otgonbaatar, Mihai Datcu, Fellow, IEEE

Abstract—Satellite instruments monitor the Earth’s surface
day and night, and as a result, the size of Earth observation
(EO) data is dramatically increasing. Machine Learning/Deep
Learning (ML/DL) techniques are employed routinely to ana-
lyze and process these big EO data, and one well-known ML
technique is a Support Vector Machine (SVM). An SVM poses
a quadratic programming problem, and quantum computers
including quantum annealers (QA) as well as gate-based quantum
computers promise to solve an SVM more efficiently than a con-
ventional computer; training the SVM by employing a quantum
computer/conventional computer represents a quantum SVM
(qSVYM)/classical SVM (cSVM) application. However, quantum
computers cannot tackle many practical EO problems by using
a qSVM due to their very low number of input qubits. Hence,
we assembled a coreset (‘“core of a dataset”) of given EO data
for training a weighted SVM on a small quantum computer.
The coreset is a small, representative weighted subset of an
original dataset, and its performance can be analyzed by using
the proposed weighted SVM on a small quantum computer in
contrast to the original dataset. As practical data, we use synthetic
data, Iris data, a Hyperspectral Image (HSI) of Indian Pine, and
a Polarimetric Synthetic Aperture Radar (PolSAR) image of San
Francisco. We measured the closeness between an original dataset
and its coreset by employing a Kullback-Leibler (KL) divergence
test, and in addition, we trained a weighted SVM on our coreset
data by using both a D-Wave quantum annealer (D-Wave QA)
and a conventional computer. Our findings show that the coreset
approximates the original dataset with very small KL divergence,
and the weighted qSVM even outperforms the weighted cSVM on
the coresets for a few instances of our experiments. As a side
result (or a by-product result), we also present our KL divergence
findings for demonstrating the closeness between our original
data (i.e., our synthetic data, Iris data, hyperspectral image, and
PoISAR image) and the assembled coreset.

Index Terms—coreset assembly, quantum Support Vector Ma-
chine, hyperspectral images, PoISAR images, quantum Machine
Learning.

I. INTRODUCTION

Remotely sensed images are used for EO and acquired by
means of aircraft or satellite platforms. The acquired images
from satellites are available in digital format and consist of
information on the number of spectral bands, radiometric reso-
lution, spatial resolution, etc. A typical EO dataset is big, mas-
sive, and hard to classify by using ML/DL techniques when
compared with conventional non-satellite images [1], [2]. In
principle, ML/DL techniques are a set of methods for recog-
nizing and classifying common patterns in a labeled/unlabeled
dataset [3], [4]. However, they are computationally expensive
and intractable to train big massive data. Recently, several
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studies proposed to use only a coreset (“‘core of a dataset”) of
an original dataset for training ML/DL methods and tackling
intractable posterior distributions via Bayesian inference [5],
[6], [7], even for a Support Vector Machine (in short, SVM)
[8]. The coreset is a small, representative weighted subset of an
original dataset, and ML/DL methods trained on the coreset
yield results being competitive with the ones trained on the
original dataset.

The concept of a coreset opens a new paradigm for training
ML/DL models by using small quantum computers [9], [10]
since currently available quantum computers offered by D-
Wave Systems (D-Wave QA) and by IBM quantum experience
(a gate-based quantum computer) comprise a very few quan-
tum bits (qubits) [11], [12]. In particular, quantum computers
promise to solve some intractable problems in ML/DL [13],
[14], [15], and to train an SVM even better/faster than a
conventional computer when its input data volume is very
small (“core of a dataset”) [16], [17]. Training ML/DL meth-
ods by using a quantum computer or by exploiting quantum
information is called Quantum Machine Learning (QML) [18],
and finding the solutions of the SVM on a quantum computer
is termed a quantum SVM (qSVM), otherwise classical SVM
(cSVM).

This work uses a D-Wave QA for training a weighted SVM,
and our method can be easily adapted and extended for a gate-
based quantum computer. The D-Wave QA has a very small
number of input qubits and a specific Pegasus topology for
the connectivity of its qubits [19], and it is solely designed
for solving a Quadratic Unconstrained Binary Optimization
(QUBO) problem [14], [20]. For practical EO data, there is
a benchmark and a demonstration example for training an
SVM with binary quantum classifiers when using a D-Wave
QA [21], [22]. Here, the SVM is a quadratic programming
problem considered as a QUBO problem. Furthermore, there
is a challenge to embed the variables of a given SVM problem
into the Pegasus topology (i.e., the connectivity constraint of
qubits), and to overcome this constraint of a D-Wave QA,
the authors of [21] employed a k-fold approach to their EO
data such that the size of variables in the SVM satisfies the
connectivity constraint of qubits of a D-Wave QA.

In this article, we construct the coreset of an original dataset
via sparse variational inference [6] and then employ this
coreset for training the weighted SVM by using a D-Wave
QA. Further, we train the weighted SVM, posed as a QUBO
problem, by using a D-Wave QA on the coreset instead of the
original massive data, and we benchmark our classification
results with respect to the weighted cSVM. As for practical
and real-world EO data, we use synthetic data, Iris data, a
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Fig. 1. Top (Left to Right): Synthetic data with two classes, and Iris data
with two classes (Iris Setosa, and Iris Versicolour) charachterized by two
features (sepal length, sepal width); Bottom (Left to Right): Indian Pine
HSI with 16 classes {1: Alfalfa, 2: Corn-notill, 3: Corn-mintill, 4: Corn, 5:
Grass-Pasture, 6: Grass-Trees, 7: Grass-Pasture-mowed, 8: Hay-windrowed, 9:
Oats, 10: Soybean-notill, 11: Soybean-mintill, 12: Soybean-clean, 13: Wheat,
14: Woods, 15: Building-Grass-Drives, 16: Stones-Steel-Towers}, and PoISAR
image of San Francisco with three classes.

Hpyperspectral Image (HSI) of Indian Pine, and a Polarimetric
Synthetic Aperture Radar (PolSAR) image of San Francisco
charachterized by its Stokes parameters [23].

Our paper is structured as follows: In Section II, we present
our datasets, and we construct the coresets of our datasets in
Section III. We introduce a weighted cSVM, and construct a
weighted qSVM for our experiments in Section IV. Then we
train the weighted qSVM on our coresets by using a D-Wave
QA, and demonstrate our results with respect to the weighted
¢SVM in Section V. Finally, we draw some conclusions in
Section VI.

II. OUR DATASETS

We use four different datasets, namely synthetic data, Iris
data, an Indian Pine HSI, and a PolSAR image of San Francisco
characterized by its Stokes parameters [23], [24], [25], [26].
The first two sets are used to understand the concept of a
coreset, and the implementation of a weighted SVM on their
coresets by using a D-Wave QA. Namely, we use the coresets
of the first two to set the internal parameters of a D-Wave QA
since the solutions generated by the D-Wave QA are affected
by those internal parameters (called annealing parameters).
The last two sets are employed as real-world EO data for
constructing their coresets and for training the weighted qSVM
on their coresets after the annealing parameters are set in a
prior (see Figure 1). In the next sections, we use a notation
“weighted gSVM” meaning that “training a weighted SVM
posed as a QUBO problem by using a D-Wave QA”.

A. Synthetic data

We generated synthetic data with two classes (X, Yn)
according to

TABLE I
THE TWO CLASSES OF SYNTHETIC AND IRIS DATA
Synthetic data Iris data
Classes {—1,+1} {setosa, versicolour}
Data size 100 100
TABLE II

THE TWO CLASSES OF THE INDIAN PINE HSI; {1, 2} REPRESENTS
{ALFALFA, CORN-NOTILL}, {2, 3} REPRESENTS { CORN-NOTILL,
CORN-MINTILL}, ETC.

Indian Pine HSI
Classes | {1,2} | {2,3} | {3,4} | {4,5} | {5,6} | {6,7}
Data size 295 452 214 144 243 758
TABLE III

THE TWO CLASSES OF OUR POLSAR IMAGE

PoISAR image of San Francisco
{urban area, sea water} | {vegetation, sea water}
61,465 61,465

Classes
Data size

sin ¢y, e’

Xn =Tn (COS “b") + <E> , oy e {-1,+1}, D)

where r, =1 if y, = —1, and r,, = 0.15 if y, = +1. ¢, is
linearly spaced in (0, 2] for each class, and €, €¥ are samples
drawn from a normal distribution with y = 0,0 = 1. We are
replicating the data already demonstrated for training an SVM
by using a D-Wave QA described in [27]. Moreover, we have
(Xn,Yn),n = 1,...,100 data points shown in Figure 1 Top
(Left) and in Table I.

B. Iris data

Iris data consist of three classes (Iris Setosa, Iris Versicolour,
and Iris Virginica), each of which has four features, namely
sepal length, sepal width, petal length, and petal width [24].
We consider a two-class dataset {Iris Setosa, Iris Versicolour}
with a size of 100 data points, and each class is characterized
by two features (sepal length, sepal width) shown in Figure 1
Top (Right) and Table I.

C. Indian Pine HSI

An Indian Pine HSI obtained by AVIRIS sensor has 16
classes, and each class is charachterized by 200 spectral bands
[25] (see Fig. 1 Bottom (Left)). For simplicity, we use only
two-classes (see Table II), and each class is charachterized
by two features instead of 200 spectral bands by exploiting
Principal Component Analysis (PCA) [22].

D. PolSAR image of San Francisco

Each pixel of our PolSAR image is characterized by a 2 x 2
scattering matrix as follows

_ (SHH

SVH

where the first index of s;;,4,j € {H,V'} represents the po-
larization state of the incident polarized beam, and its second

Ssvv

SHV) : )



index represents the polarization state of the reflected polarized
beam on targets [28], [29]. The off-diagonal elements of .S are
equal sy = sgy since our PolSAR image of San Francisco
is a fully-polarized PolSAR image obtained by a monostatic
radar.

The incident/reflected polarized beam can be represented by
its complex amplitude in a polarization basis {ﬁ , V} by

Ey = EyoH + EvoV. (3)

The complex amplitude vector can be expressed by a so-called

Jones vector
7_ (Eno | Errole’®
J = = ; . 4
(EVO> <|EV0|€Z¢V @
where ¢; are the phases of the polarized states. Further, the
scattering matrix S expressed in (2) is a mapping such that
T = SJi, 5)

where J;,J,. is an incident and a reflected Jones vector,
respectively. In matrix form, (5) can be re-expressed as

()= G o) (B) o
Eq sva syv ) \Eyo)

The intensity of the reflected Jones vector is defined by

J= (<E§10E1T;0> <E;10E\T/*o>) — (JHH JHV) (7)
(EvoEro)  (EvoEvy) Jva  Jvv
where (-) stands for spatial averaging with a window size 7x 7

pixels, and * for conjugation. Furthermore, we can re-express
this intensity by

S:Jp = Jy,

qo Jug + Jvv

o | _ | Jur—Jvv )
Q2 Jva +Jav

q3 i(Jav — Jvu)

where ¢q1, g2, and g3 are called Stokes vectors. We normalize
these Stokes vectors according to
a=2 =2 4=2 ©)
q0 qo0 q0
and the normalized q1, ¢2, and g3 are called Stokes parameters
[23].

Moreover, in this study, we use two classes for our PoISAR
image of San Francisco, and the two classes are {urban area,
sea water}, and {vegetation, sea water} shown in Figure 1
Bottom (Right) and in Table III. In addition, each class is
characterized by its Stokes parameters (qi, g2, q3) defined in

).

ITI. CORESETS OF OUR DATASETS

In Bayesian inference, a posterior density p(f|x) is written
for 0 parameters and for {(z;,¢;)}}¥, data points with its
labels ¢; by

(10)

p(f]x) = eXP{Zfz }Po

TABLE IV
CORESETS OF OUR DATASETS PRESENTED IN TABLE I-1II, AND THE
CLOSENESS BETWEEN THE ORIGINAL DATASET AND ITS CORESET IS
MEASURED BY KL DIVERGENCE.

Classes Data size | Coreset Size | KL divergence
{-1,+1} 100 20 0.008194
{setosa, versicolour} 100 22 0.053002
{1, 2} 295 79 0.573451
{2, 3} 452 56 0.003121
{3, 4} 214 33 0.000600
{4, 5} 144 41 0.017201
{5, 6} 243 41 0.001823
{6, 7} 758 125 0.492636
{urban area, sea water} 61,465 501 0.125072
{vegetation, sea water} 61,465 343 0.272749

where Z is a partition function, f;(#) is a potential function,
and po(6) is a prior. For big massive data, the estimation of
the posterior distribution is intractable, and hence, in practice,
a Markov Chain Monte Carlo (MCMC) method is widely used
to obtain samples from the posterior expressed by (10) [30].

To reduce the computational time of an MCMC method,
the authors of [5]-[7] proposed to run the MCMC method on
a small, weighted subset (i.e., coreset) of big massive data.
They derived a sparse vector of nonnegative weights w such
that only M < N are non-zero, where M is the size of
a coreset. Further, the authors proposed to approximate the
weighted posterior distribution and run the MCMC method
on the approximate distribution as follows:

N
mzmmm=A%m%§¥wwﬁm@.<m
We denote the full distribution of an original big massive
dataset as p; = p;(f|z). More importantly, this posterior
becomes tractable.

For assembling the coresets of our datasets presented in Ta-
ble I-III, we use an algorithm via sparse variational inference
for finding the sparse vector of nonnegative weights w and for
approximating the posterior distribution (11) proposed by [6].
Here, the sparse vector of nonnegative weights w is found by
optimizing a sparse variational inference problem:

W= rrhi]nDKL(pprl) st w>0, |wl|, <M, (12)
where 1 is an optimal sparse vector weight, and Dxy,(p.||p1)
is the Kullback-Leibler (KL) divergence which measures the

similarity between two distributions (smaller is better):

Pw
Z Pw IOg o
Y41

Moreover, the smaller value of the KL divergence test implies
that we estimate the parameters 6 in (11) by using the
assembled coreset yielding similar results in comparison to
the ones in (10) by using its original massive dataset. The
used code is available in [31].

DKL pprl (13)



We derived the optimal sparse vector weights w and the
coreset of our dataset such that

{(at)}ly = {(eoti i)}y,

where (z;,t;) represents an original dataset, while (¢;, t;, ;)
is our newly assembled coreset. In addition, we computed the
similarity between our datasets and the corresponding coresets
by using their KL divergences (see Table IV). Our results
show that our coresets are very small in size compared with
our original datasets, and the KL divergences between the
original dataset and our coresets is comparatively small in most
instances.

w; € Rzo, (14)

IV. WEIGHTED CLASSICAL AND QUANTUM SVMS ON
OUR CORESETS

A. Weighted classical SVMs

In the previous section, we assembled the coreset of our
original datasets shown in Table IV as

c; € RQ,

{(ci,ti, i)}y,

To train a weighted SVM for our coresets represented via
(15) by using a conventional computer, we express a weighted
SVM as

w; € RZO' (15)

-2

Zala]tt ik(ci,cj)

subject to 0 < a; < Ci,
and Zaiti =0,
i

where C; = w;C' is a regularization parameter, and k(-,-) is
the kernel function of the SVM [30]. This formulation of the
SVM is called a weighted cSVM [32]; sometimes it is called
a kernel-based weighted cSVM. The point ¢; with «; # 0 is
called a support vector.

After training the weighted cSVM, for a given test point
xz; € R2, the decision function for its class label is defined
by:

minimize H
(16)

a; € R,

t = sign [f(z:)] = sign lz aitik(ci,xe) +0|,  (17)

where sign(f(x:)) = 1if f(z:) > 0, sign(f(z:)) = -1
if sign(f(x:)) < 0, and sign(f(x:)) = O otherwise. The
decision boundary is an optimum hyperplane drawn by data
points such that f(z;) = 0 [30]. The bias b is expressed
following [27]:

> ai(Ci —

ai) ti -
> (G
The kernel-based weighted cSVM is a powerful technique

since the kernel function maps non-separable features to higher
dimensional separable features, and the decision boundary is

> ajtik(cs,ci)

b:
— ;)

(18)

less sensitive to outliers due to the weighted constraints C;
[271, [32]. Furthermore, the choice of the kernel function
has a huge impact on the decision boundary, and the types
of the kernel function are linear, polynomial, Matern, and a
radial basis function (rfb) [30]. A widely-used kernel is an rbf
defined by

rbf(c;, ¢j) = exp{—v”ci — cj||2}, (19)

where v > 0 is a parameter.

B. Weighted quantum SVMs

A weighted quantum SVM (in short, weighted qSVM) is
the training result of the weighted cSVM given in (16) on a
D-Wave QA. The D-Wave QA is a quantum annealer with a
specific Pegasus topology for the interaction of its qubits, and
it is specially designed to solve a QUBO problem:

(Z) = ZZiQiij, Ziy 25 € {0, 1}, (20)
,J

where z;, z; are called logical variables, and @;; includes a
bias term h; and the interaction strength of the logical variables
gi; [19]. Physical states of the Pegasus topology are called
physical variables, two-state qubits residing at the edges of the
Pegasus topology; a QUBO problem is also called a problem
energy. The D-Wave QA anneals (evolves) from an initial to
its final energy (problem energy) according to

H(T) =

(1 —&(T))Ho + &(T)H(z), (21)

where Hj is an initial energy, 7' is the annealing time in
microseconds, and e(T) is an annealing parameter in the range
of [0, 1].

Furthermore, to train the weighted qSVM on our coresets
by using a D-Wave QA, we pose the weighted cSVM with a
rbf kernel expressed by (16) and (19) as a QUBO problem.
Here, we duplicate the formulation for posing the weighted
c¢SVM as a QUBO problem in the article [27].

The variables of the weighted cSVM are decimal integers
when the ones of the QUBO problem are binaries. Hence, we
use a one-hot encoding form for the variables of the weighted
cSVM

K-1

= Z B*zgivk,  zrivs € {0,+1}
k=0

(22)

where K is the number of binary variables (bits), and B is the
base. We insert this one-hot encoding form into the weighted
c¢SVM given in (16), and formulate the second constraint of
(16) as a squared penalty term

2 2
<Zaiti> =0 — (ZB%KW@) =0. (23)
i ik

By using a Lagrange multiplier A, we transform our weighted
¢SVM into the QUBO problem (20)



. 1
minimize H(z) = 3 ZzKszKjHBkHtitjk(ci, cj)
ijkl

2
— Z B zgirk + A (Z BkZKi+kti>
ik ik
=Y ki wQrivh K5 112K 415
ikl
24)

where

1
QKith Kjtl = §B’c“titj(k(ci,cj) +A) — &0 BF. (25)

Note that the first constraint of (16) is satisfied automatically
since the one-hot encoding form given in (22) is always greater

than zero, and hence, the maximum value for each «; is given
by

K
C; =1; » B, (26)
k=1

For training the weighted qSVM, we concentrated on four
hyperparameters which are the parameter -y of the RBF ex-
pressed by (19), the number of binary bits K, the base B,
and the Lagrange multiplier A given in (24); thus, we used
the hyperparameters (v, K, B, A). For our applications, we set
these hyperparameters to (y = 16, K = 2, B = 2, A = 0) as
proposed by [27] since these settings of the hyperparameters
for the weighted qSVM generate competitive results with the
ones generated by the weighted cSVM. For setting the bias
defined in (18), we used the weighted cSVM.

In the next section, we train the weighted cSVM given in
(16) and the weighted qSVM expressed by (24) on our coresets
(see Table IV). In addition, we demonstrate how to program
a D-Wave QA for obtaining a good solution of (24) since the
solutions yielded by a D-Wave QA are greatly dependent upon
the embedding of the logical variables into their corresponding
physical variables, and the annealing parameters (annealing
time, number of reads, and chain strength) [33].

V. OUR EXPERIMENTS

In our experiments, we trained our weighted cSVM and our
weighted qSVM (models) on the coresets, and we tested our
models on the original datasets (see Table IV). In addition,
we set the hyperparameters of our weighted qSVM to (y =
16, K =2, B =2,\ =0), and for training (i.e., for setting of
the bias) of the weighted cSVM, we used the Python module
scikit-learn [34].

For defining the annealing parameters (annealing time,
number of reads, and chain strength) of a D-Wave QA, we first
ran quantum experiments on synthetic two-class data, and Iris
data. Then by leveraging these annealing parameters, we used
our real-world EO data (the Indian Pine HSI and the PolSAR
image of San Francisco) for evaluating our proposed method,
“by training the weighted qSVM on the coreset of our EO
data instead of a massive original EO data due to the small
quantum computer (D-Wave QA) with only few qubits”.

weighted cSVM weighted qSVM
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Fig. 2. Top: Synthetic two data; Bottom: Iris data. The visual results of our
experiments generated by the weighted cSVM given in (16) and weighted
qSVM expressed by (24). Our visual result demonstrates that our weighted
qSVM generalizes the decision boundary of a given dataset better than its
counterpart weighted cSVM.

A. Synthetic two-class data, and Iris data

For training the weighted qSVM expressed by (24), we
first experimented on our coresets of synthetic two-class data
and Iris data shown in Table IV in order to optimize the
annealing parameters (annealing time, number of reads, and
chain strength) of a D-Wave QA. In addition, we benchmarked
the classification results generated by the weighted qSVM
compared with the weighted cSVM. This had the advantage
that we could easily tune the anmnealing parameters and
visualize the generated results, both for quantum and classic
settings.
In Figure 2 (in Table V), we show our results for the
classification of synthetic two-class data and [Iris data. Our
results demonstrate that the weighted qSVM performs well in
comparison with the weighted cSVM for both coresets (often
better for Iris data).
To obtain these good solutions generated by our weighted
gSVM, we set the annealing parameters of the D-Wave QA
as follows:
o Annealing time: We controlled the annealing time by
an anneal schedule. The anneal schedule is defined
by the four series of pairs [T,e(T)] defined in (21).
We set the annealing schedule accordingly: [T,e(T)] €
{[0.0,0.0],[1.0,0.40], [19.0,0.40], [20.0, 1.0] }..

o Number of reads: 10000

¢ Chain strength: 50.

B. Indian Pine HSI, and PolSAR image of San Francisco

As real-world EO data, we used the coresets of an Indian
Pine HSI, and a PolSAR image of San Francisco for training
the weighted qSVM when setting the annealing parameters
of a D-Wave QA set as described above. Initially, we ran a
number of quantum experiments on our coresets. In Table V
we show the classification accuracy of our weighted gSVM



TABLE V
THE CLASSIFICATION ACCURACY OF THE WEIGHTED QUANTUM SVM (IN
SHORT, QACC), AND THE WEIGHTED CLASSICAL SVM (IN SHORT, CACC)
ON OUR CORESETS.

Classes Coreset Size | QACC | CACC
{—1,+1} 20 095 | 097
{setosa, versicolour} 22 0.99 0.98
(1.2} 79 096 | 096
{2.3} 56 070 | 0.70
(3. 4} 33 088 | 088
{4, 5} 41 078 | 078
{5, 6} 41 071 | 071
{6, 7} 125 092 | 090
{urban area, sea water} 501 0.99 0.98
{vegetation, sea water} 343 0.99 0.99

results in comparison with the ones yielded by the weighted
cSVM.

Our results explicitly demonstrate that the coresets obtained
via sparse variational inference are small and representative
subsets of our original datasets validated by their KL diver-
gences shown in Table IV. In addition, our weighted qSVM
generates its decision results with the same -classification
accuracy as for the weighted cSVM; in some instances, the
weighted qSVM outperforms the weighted cSVM. Further-
more, by exploiting the coresets, we reduced the computational
time of training with the weighted qSVM and the MCMC
method for inferring the parameters of the posterior distribu-
tion as proved theoretically and demonstrated experimentally
in [5] and [6].

VI. DISCUSSION

Quantum algorithms (e.g., Grover’s search algorithm) are
designed to process data in quantum computers, and they
are known to achieve quantum advantages over their conven-
tional counterparts. Motivated by these quantum advantages,
quantum computers based on quantum information science
are being built for solving some problems (or running some
algorithms) more efficiently than a conventional computer.
However, currently available quantum computers (a D-Wave
quantum annealer, and a gate-based quantum computer) are
very small in input quantum bits (qubits). A very specific
type of a quantum computer is a D-Wave quantum annealer
(QA); it is designed to solve a Quadratic Unconstrained
Binary Optimization (QUBO) problem belonging to a family
of quadratic programming problems better than conventional
methods.

For Earth observation, satellite images obtained from air-
craft or satellite platforms are massive and represent hard
heterogeneous data to train ML/DL models on a conventional
computer. As a practical and real-world EO dataset, we used
synthetic data, Iris data, a Hyperspectral Image (HSI) of Indian
Pine, and a Polarimetric Synthetic Aperture Radar (PolSAR)
image of San Francisco. One of well-known methods in
ML/DL is a Support Vector Machine (SVM): This represents a
quadratic programming problem. A global minimum of such
a problem can be found by employing a classical method.

However, its quadratic form allows us to use a D-Wave QA
for finding the solution of an SVM better than a conventional
computer. Thus, we can pose an SVM as a QUBO problem,
and we named an SVM-to-QUBO transformation as a quantum
SVM (qSVM). Then we can train the gSVM on our real-world
EO data by using a D-Wave QA. However, the number of the
physical variables of the qSVM is much larger than that of
the logical variables of a D-Wave QA due to the massive EO
data and the very few qubits.

Therefore, in our paper, we employed the coreset (“core of
a dataset”) concept via sparse variational inference, where the
coreset is a very small and representative weighted subset of
the original dataset. By assembling and exploiting the coreset
of synthetic data and Iris data shown in Table IV, we trained a
weighted qSVM posed as a QUBO problem on these coresets
in order to set the annealing parameters of a D-Wave QA. We
then presented our obtained visual results and the classification
accuracy of synthetic and Iris data in Figure 1 and in Table V,
respectively, in contrast to the ones of the weighted cSVM.
Our results show that the weighted qSVM is competitive in
comparison with the weighted cSVM — and for Iris data even
better than the weighted cSVM.

Finally, we assembled the coresets of our real-world EO
data (from an HSI of Indian Pine, and a PolSAR image of
San Francisco), and demonstrated the similarity between our
real-world EO data and its coreset by analyzing their KL
divergence. The KL divergence test proved that our coresets
are valid small and representative weighted subsets of our
real-world EO data (see Table IV). Then we trained the
weighted qSVM on our coresets by using a D-Wave QA to
prove that our weighted qSVM generates classification results
being competitive with the weighted cSVM in Table V. The
annealing parameters of the D-Wave QA were already defined
in the prior section. In some instances, one can see that our
weighted qSVM outperforms the weighted cSVM.

As an ongoing and a future work, we intend to develop
a novel method for assembling coresets with balanced la-
bels via sparse variational inference since currently available
techniques generate unbalanced labels. Further, we plan to
design hybrid quantum-classical methods for different real-
world EO problems. These hybrid quantum-classical methods
will perform a dimensionality-reduction of remotely-sensed
images (in the spatial-dimension) by using the established
methods, and will reduce the size of our training/test data by
using a coreset generating balanced labels when we process
these small datasets on a small quantum computer.
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