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Knowledge on the key structural characteristics of exposed buildings is crucial for accurate risk
modeling with regard to natural hazards. In risk assessment this information is used to interlink
exposed buildings with specific representative vulnerability models and is thus a prerequisite to
implement sound risk models. The acquisition of such data by conventional building surveys is
usually highly expensive in terms of labor, time, and money. Institutional data bases such as
census or tax assessor data provide alternative sources of information. Such data, however, are
often inappropriate, out-of-date, or not available. Today, the large-area availability of
systematically collected street-level data due to global initiatives such as Google Street View,
among others, offers new possibilities for the collection of in-situ data. At the same time,
developments in machine learning and computer vision - in deep learning in particular - show
high accuracy in solving perceptual tasks in the image domain. Thereon, we explore the potential
of an automatized and thus efficient collection of vulnerability related building characteristics. To
this end, we elaborated a workflow where the inference of building characteristics (e.g., the
seismic building structural type, the material of the lateral load resisting system or the building
height) from geotagged street-level imagery is tasked to a custom-trained Deep Convolutional
Neural Network. The approach is applied and evaluated for the earthquake-prone Chilean capital
Santiago de Chile. Experimental results are presented and show high accuracy in the derivation of
addressed target variables. This emphasizes the potential of the proposed methodology to
contribute to large-area collection of in-situ information on exposed buildings.
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