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Abstract

In real-world applications, it is difficult to collect labeled samples, and supervised
learning methods rely on the quality of this labeled training data. Therefore, in this
research, a semi-supervised learning approach is developed in order to benefit from the
unlabeled samples that can be produced effortlessly. These semi-supervised methods
are built on a popular machine learning technique called support vector machine, which
is used to classify remote-sensing imagery in this thesis. Moreover, this work aims to
enhance the accuracy of the methods in settings with very few labeled samples and
deploy a constrained set of unlabeled samples with a self-learning strategy. Additionally,
the aim includes model evaluation for existing support vectors and virtual samples.
Moreover, the methodology is further extended with an active learning method. This
extension involves uncertainty visualizations in order to increase the model accuracy
by relabelling the uncertain samples in a prioritized way. To evaluate these models,
experimental results were obtained over the city of Cologne, Germany, and the Hagadera
Refugee Camp, Kenya from a very high spatial resolution multispectral data set. Results
from newly proposed methods showed favorable performance properties, especially
on the few labeled samples. Furthermore, the uncertainty of the models was compared
with the active learning extension, and this extension also increased the accuracy.
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1 Introduction

1.1 Motivation and problem statement

In the last decades, with the advent of high spatial and spectral resolution remote
sensing data, land cover classification applications have become one of the main
subjects in remote sensing (Lu et al,, 2016). Consequently, it triggered the development
of many methods to derive thematic classes from image data, and as an outcome,
supervised methods became one of the most preferred classification approaches
because of their robust and accurate information extraction properties (Geil et al.,
2019) Although it is overly challenging to determine the best method from numerous
of existing approaches for a classification problem, Support Vector Machines (SVM)
attracted attention regarding the classification of multispectral remote sensing images.
As a working principle, SVM set suitable hyperplanes on different classes of labeled
data and those samples are projected through a nonlinear transformation from input
space to a higher-dimensional space. In that space, support vectors (SV), which are
the samples closest to the separating surface, are determined in subject to the optimal
hyperplane that maximizes the margin (Geil et al., 2019; Burges, 1998). Therefore,
SVM showed excellent performance due to their, (i) ability to manage high-dimensional
feature space; (i) relevant generalization properties (iii); the uniqueness of the solution
(Tuia et al., 2009)

SVMs, as any other supervised method, rely on the quality of the labeled training data.
However, this constrains the training set and requires extensive manual efforts regarding
human-machine interaction. That is why active learning methods and semi-supervised
learning approaches which use unlabeled samples will benefit the classification results,
especially with respect to poorly sampled remote sensing applications (Izquierdo-
Verdiguier et al., 2012). It is here where we combine self-learning constraints on Virtual
Support Vector Machines (VSMV) with a semi-supervised approach to indicate useful
information about the underlying data distribution which eventually achieves higher
accuracies, especially with small amounts of training data.

1.2 Research identification
1.2.1 Research objectives

To eventually enhance the accuracy properties of the Virtual Support Vector Machines
with the self-learning (VSVM-SL) method in settings with very few labeled samples,
the goal is to deploy a constrained set of unlabeled samples for model learning and
for very high spatial resolution multispectral remote sensing images. As a result,
the training set which the model is learning will be enriched by informative unlabeled
samples. Those are jointly evaluated and selected with respect to existing support
vectors and virtual samples. In addition, the generation of spatial visualization for the
uncertainty of results is done by checking the distance of SVMs hyperplane from the
model and further monitoring how the uncertainty changes with the newly developed
methods. The spatial visualization will be displayed as land cover classification maps
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showing corresponding thematic uncertainty. Subsequently, these spatial visualizations
will benefit the active learning process by providing human-machine interaction on
relabeling uncertain samples in a prioritized way and will use those samples to relearn
the model and eventually obtain higher accuracies.

RQ1: To what extent does the new Virtual Support Vector Machines with self-learning
constraints on a semi-supervised scheme (VSVM-SL- Unlabeled Samples) method
provide better classification accuracy with few labeled samples when compared to
other/older methods such as SVM, VSVM, and VSVM-SL?

« Comparison analysis will be made between newly proposed semi-supervised
methods to previous methods by comparing overall and average accuracies,
kappa value, and F1 score.

* Line graphs will be used in order to see mean kappa values and overall accuracies
of the methods.

RQ2: Does visualizing the uncertainties of the models improve human-monitored active
learning approaches on relabeling uncertain samples?

+ Model quantifies the certainty of unlabeled samples by checking the distance
of SVM hyperplane and shows which land cover classes they belong to. Conse-
quently, this helps the user to label those uncertain samples and bring them back
to model.

* Therefore, a case study will be applied in order to assess the effects and overall
performance of relabeling with visualization of uncertainty on active learning. Ac-
curacy results of newly developed methods plus the uncertainty visualizations will
be compared to the results of newly developed methods without the uncertainty
visualizations.

1.3 Innovation aimed at

The innovation of the research aims at developing a semi-supervised classification
method based on a self-learning strategy. This will provide results with higher accuracy
on sparsely sampled remote sensing imageries and will be adaptable in the future to
the classification of hyperspectral data. These innovations are aimed at bringing a new
outlook with the extension and combination of methods on remote sensing and the
cartography fields.

10
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In future works, the same methodology can be applied for classifying hyperspectral data
within an adequate processing framework. Additionally, an active learning approach
with uncertainty visualizations can be integrated into all settings of the data sets.
Moreover, this approach can be further adapted to the supervised methods as well. At
last, a combination of the semi-supervised methods and active learning approach can
be integrated better in a collaborative learning scheme.

6 References

Bastin, L., P. F. Fisher, and J. Wood
2002. Visualizing uncertainty in multi-spectral remotely sensed imagery. Computers
& Geosciences, 28(3):337-350.

Bennett, K., A. Demiriz, et al.
1999. Semi-supervised support vector machines. Advances in Neural Information
processing systems, Pp. 368-374.

Blaschke, T.
2010. Object based image analysis for remote sensing. ISPRS journal of photogram-
metry and remote sensing, 65(1):2-16.

Bruzzone, L. and L. Carlin
2006. A multilevel context-based system for classification of very high spatial resolu-
tion images. IEEE transactions on Geoscience and Remote Sensing, 44(9):2587-2600.

Bruzzone, L., M. Chi, and M. Marconcini
2006. A novel transductive svm for semisupervised classification of remote-sensing
images. IEEE Transactions on Geoscience and Remote Sensing, 44(11):3363-3373.

Burges, C. J.
1998. A tutorial on support vector machines for pattern recognition. Data mining and
knowledge discovery, 2(2):121-167.

Cortes, C. and V. Vapnik
1995. Support-vector networks. Machine learning, 20(3):273-297.

Demir, B., C. Persello, and L. Bruzzone
2010. Batch-mode active-learning methods for the interactive classification of remote
sensing images. IEEE Transactions on Geoscience and Remote Sensing, 49(3):1014—
1031.

Ding, S., Z. Zhu, and X. Zhang
2017. An overview on semi-supervised support vector machine. Neural Computing
and Applications, 28(5):969-978.

Dépido, I., J. Li, P. R. Marpu, A. Plaza, J. M. B. Dias, and J. A. Benediktsson
2013. Semisupervised self-learning for hyperspectral image classification. IEEE
transactions on geoscience and remote sensing, 51(7):4032-4044.

Fernandez-Delgado, M., E. Cernadas, S. Barro, and D. Amorim
2014. Do we need hundreds of classifiers to solve real world classification problems?
The journal of machine learning research, 15(1):3133-3181.

65



Foody, G. M.
2009. On training and evaluation of svm for remote sensing applications. In Kernel
methods for remote sensing data analysis, Pp. 85-109. Wiley.

Foody, G. M. and A. Mathur
2004. A relative evaluation of multiclass image classification by support vector
machines. IEEE Transactions on geoscience and remote sensing, 42(6):1335-1343.

Geil}, C., P. A. Pelizari, L. Blickensdorfer, and H. Taubenbock
2019. Virtual support vector machines with self-learning strategy for classification of
multispectral remote sensing imagery. ISPRS journal of photogrammetry and remote
sensing, 151:42-58.

Geil, C., P. A. Pelizari, H. Schrade, A. Brenning, and H. Taubenbock
2017. On the effect of spatially non-disjoint training and test samples on estimated
model generalization capabilities in supervised classification with spatial features.
IEEE Geoscience and Remote Sensing Letters, 14(11):2008-2012.

Goodchild, M. F.
2008. Imprecision and spatial uncertainty.

Hughes, G.
1968. On the mean accuracy of statistical pattern recognizers. IEEE transactions on
information theory, 14(1):55-63.

Izquierdo-Verdiguier, E., V. Laparra, L. Gdmez-Chova, and G. Camps-Valls
2012. Encoding invariances in remote sensing image classification with svm. IEEE
Geoscience and Remote Sensing Letters, 10(5):981-985.

Kinkeldey, C.
2014. A concept for uncertainty-aware analysis of land cover change using geovisual
analytics. ISPRS International Journal of Geo-Information, 3(3):1122-1138.

Kinkeldey, C., J. Mason, A. Klippel, and J. Schiewe
2014. Evaluation of noise annotation lines: using noise to represent thematic uncer-
tainty in maps. Cartography and Geographic Information Science, 41(5):430-439.

Li, Y.-F. and Z.-H. Zhou
2014. Towards making unlabeled data never hurt. IEEE transactions on pattern analysis
and machine intelligence, 37(1):175-188.

Lu, X, J. Zhang, T. Li, and Y. Zhang
2016. A novel synergetic classification approach for hyperspectral and panchromatic
images based on self-learning. IEEE Transactions on Geoscience and Remote Sensing,
54(8):4917-4928.

Lucieer, A.
2004. Uncertainties in Segmentation and their Visualisation. PhD thesis, Utrecht
University and International Institute for Geo-Information Science....

Melgani, F. and L. Bruzzone
2004. Classification of hyperspectral remote sensing images with support vector
machines. IEEE Transactions on geoscience and remote sensing, 42(8):1778-1790.

66



Mountrakis, G., J. Im, and C. Ogole
2011. Support vector machines in remote sensing: A review. ISPRS Journal of
Photogrammetry and Remote Sensing, 66(3):247-259.

Murphy, C. E.
2015. Intellectual highlighting of remote sensing imagery for betterimage map design.
In Proc. 27th Int. Cartographic Conf.

Pan, C., J. Li, Y. Wang, and X. Gao
2018. Collaborative learning for hyperspectral image classification. Neurocomputing,
275:2512-2524.

Song, X., Z. Duan, and X. Jiang
2012. Comparison of artificial neural networks and support vector machine classifiers
for land cover classification in northern china using a spot-5 hrg image. International
Journal of Remote Sensing, 33:3301-3320.

Tuia, D. and J. Munoz-Mari
2012. Learning user’s confidence for active learning. IEEE Transactions on Geoscience
and Remote Sensing, 51(2):872-880.

Tuia, D., F. Ratle, F. Pacifici, M. F. Kanevski, and W. J. Emery
2009. Active learning methods for remote sensing image classification. IEEE Trans-
actions on Geoscience and Remote Sensing, 47(7):2218-2232.

Tuia, D., M. Volpi, L. Copa, M. Kanevski, and J. Munoz-Mari
2011. A survey of active learning algorithms for supervised remote sensing image
classification. IEEE Journal of Selected Topics in Signal Processing, 5(3):606—617.

Ul Haq, Q. S, L. Tao, F. Sun, and S. Yang
2011. A fast and robust sparse approach for hyperspectral data classification us-
ing a few labeled samples. IEEE Transactions on Geoscience and Remote Sensing,
50(6):2287-2302.

Volpi, M., D. Tuia, F. Bovolo, M. Kanevski, and L. Bruzzone
2013. Supervised change detection in vhr images using contextual information and
support vector machines. International Journal of Applied Earth Observation and
Geoinformation, 20:77-85.

Wang, X. and P. M. Pardalos
2014. A survey of support vector machines with uncertainties. Annals of Data Science,
1(3-4):293-309.

67



