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Abstract 

Vertical Navigation is of great importance for safe aircraft navigation and guidance, 

which have been for decades based on standard pressure altitude to support the deter-

mination of aircrafts flight levels. This altitude is obtained from airborne pressure 

measurements performed by barometers and is referenced to the International Standard 

Aatmosphere Mean Sea Level isobar surface.  

Standard pressure altitude deviates from true geodetic altitude, that is the one used 

by GNSS and referenced to an Earth’s reference ellipsoid, up to several hundreds of me-

ters for aircrafts flying at typical civil aviation cruise altitudes.  

Accurate and reliable geodetic altitude navigation is necessary and critical for airport 

vicinities operations and for new applications like Urban Air Mobility or Alternative 

Positioning Navigation applications. Although Inertial Navigation Systems and Global 

Navigation Satellite Systems are able to provide geodetic altitude estimation, both kinds 

of navigation systems show normally poorer performances in vertical navigation than in 

the horizontal one. 

First, this thesis investigates the accuracy in the computation of geodetic altitude 

from a corrected pressure altitude computed with barometric pressure and external 

weather data. This computation method is herein shown to remarkably reduce the devi-

ation of the standard pressure altitude from the true geodetic altitude. 

Secondly, this work derives two robust error models to support the use of barometric 

pressure measurements for safe geodetic altitude navigation. The first overbounding 

model is suitable for the use in snapshot (i.e., single-epoch) algorithms. The second dy-

namic overbounding model is suitable to be included in sequential estimators and in 

those applications where the time correlation of the pressure measurements must be 

properly taken into account. 

The evaluation of the accuracy obtained in computing geodetic altitude from the cor-

rected pressure altitude as well as the analysis of the residual error models is obtained 

by the use of data gathered during more than 20 flight hours performed with the Das-

sault Falcon 20-E5 aircraft within a DLR flight tests campaign. 
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1 Introduction 
Vertical navigation is crucial in aviation to ensure safe aircraft vertical separation 

and safe estimation of distance from the ground or other obstacles. Traditionally, verti-

cal separation between airplanes is enabled via the use of standard pressure altitude and 

the concept of flight levels, which is strictly related to the former [1, 2]. 

Airborne barometric measurements are used within Air Data Systems to provide an 

altitude above the International Standard Atmosphere’s (ISA) mean sea level (MSL) 

isobar. This altitude is referred to as standard pressure altitude.  

By referring to this isobar, which is defined by a constant value, it is enough for ver-

tical separation to be successful that barometers onboard different airplanes provide ac-

curate pressure measurements. Anyway, the more the actual MSL pressure and temper-

ature differ from the ones assumed by the ISA, the more the standard pressure altitude 

will differ from the true geodetic altitude. 

When flying at lower altitudes than cruise flight altitudes, it is of interest also to 

have reliable information about the distance from ground or other obstacles. For this 

purpose, vertical navigation is in these circumstances based on corrected pressure alti-

tude [3, 4, 5]. This kind of pressure altitude is obtained by trying to account for the ac-

tual pressure and temperature values at MSL and also for a different evolution of tem-

perature with altitude than the one assumed within the standard pressure altitude 

equation.  

Even in this case, remarkable differences between the values of pressure altitude and 

the ones of true geodetic altitude are to be expected. This is due to the fact that these 

two altitudes differ both in regard to their references and their scales and that the at-

mosphere does not behave as it is assumed to do by the ISA model. Pressure altitude is 

referenced to an isobar, which is the ISA MSL in the case of standard pressure altitude, 

while geodetic altitude’s reference is the Earth’s ellipsoid. The scales are the geopoten-

tial and the geometric one for pressure and geodetic altitude, respectively. 

Apart from pressure altitude, pressure measurements may also be used, along with 

wind and aircraft velocity measurements and temperature measurements, to produce 

geometric altitude above MSL with an iterative algorithm, known as the Blanchard al-

gorithm [6, 7].  

 

1.1 Motivation 

In the vicinities of airports, geodetic altitude navigation is crucial for precision ap-

proaches and automatic landing. It has also been shown that accurate vertical infor-
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mation is fundamental to support APNT horizontal positioning [8]. Furthermore, new 

UAV applications will need geodetic altitude information for air traffic management in 

the vicinity of cities to sustain a broad range of Urban Air Mobility use cases. Addi-

tionally, the accuracy obtained with pressure altitude, when directly used as geodetic 

altitude, is not enough to satisfy geodetic requirements in new Performance Based Nav-

igation (PBN) or vertical requirements of UAVs.  

Navigation algorithms based on INS integration with GNSS are able to provide geo-

detic altitude information. Anyway, the inherent instability of the INS vertical channel 

[9] and the poorer performances of GNSS in vertical navigation [10] than in the horizon-

tal one, along with the numerous threats to GNSS integrity, reduce the accuracy of 

their provided geodetic altitude information. 

Other aiding navigation subsystems are therefore needed to provide robust back-ups 

to INS&GNSS systems. Given the robustness of their measurements, barometers may be 

listed among these aiding subsystems for geodetic altitude navigation. The use of baro-

metric altimeters for this purpose, anyway, requires rigorous conversions to geodetic al-

titude by considering the differences in reference and scale. 

In scientific literature, work related to the translation of both altitudes obtained from 

pressure measurements—pressure altitude and altitude from the Blanchard algorithm—

to geodetic altitude can be found [11, 12, 13]. This previous research, anyway, generally 

lacks rigorous translations to geodetic altitude and/or does not consider the possibility 

of using external weather data in the pressure altitude equation. 

Additionally, some of the previous work focuses on the integration of pressure alti-

tude into multi-sensor navigation algorithms [14, 15, 16]. The methodologies to obtain 

robust models for the pressure altitude errors, i.e., for its deviations from true geodetic 

altitude, are rarely mentioned and it may be assumed that tuning approaches are fol-

lowed.  

Furthermore, simulations are often considered in previous research, meaning that re-

alistic errors are not necessarily always portrayed. 

 

1.2 Objectives 

This thesis intends to fill these technology gaps by, first, assessing the accuracy of 

the two aforementioned methods to obtain geodetic altitude from airborne pressure 

measurements at typical civil aviation altitudes. This is done via a careful conversion 

both with respect to the differences in scale and reference. 

In particular, regarding the option featuring pressure altitude, this work has the goal 

of analyzing the effect of extensive use of external weather data on the thereby comput-

ed corrected pressure altitude.  

Additionally, this thesis aims at performing a rigorous error modeling of the residual 

errors in the geodetic altitude obtained from the corrected pressure altitude. This is a 

necessary step for future integration of this altitude information in navigation algo-

rithms. In particular, the goals are to derive an overbounding error model for snapshot 

algorithms—used for example within APNT applications—and one for sequential esti-

mator algorithms, used for the integration with, e.g., INS/GNSS-based navigation sys-
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tems. 

Finally, this thesis analyzes how the weather data would be considered when at-

tempting to integrate this geodetic altitude in an exemplary sequential estimator. 

 

1.3 Thesis Structure 

Chapter 2 summarizes the most relevant theory underlying this work and in particu-

lar presents in mathematical terms the different concepts associated to altitude in air-

craft navigation. 

In Chapter 3, a selection of the relevant scientific literature is reviewed, in order to 

identify the path this thesis proceeds along. 

Chapter 4 describes the methodologies adopted in this work to obtain geodetic alti-

tude from pressure measurements via the Blanchard algorithm and through the correct-

ed pressure altitude. 

Chapter 5 focuses on the test flights which provided the data this thesis’s analyses 

are based on. Additionally, it explains the flight tests’ processing that needed to be per-

formed before applying the aforementioned methodologies. The results of the latter are 

presented and discussed in Chapter 6. 

Chapter 7 describes how to compensate for the aircraft dynamics effects on the geo-

detic altitude obtained from the pressure altitude corrected with weather data. In this 

chapter, the methodology employed to model the residual geodetic altitude errors for 

snapshot navigation algorithms is presented. This chapter also includes the results of 

the presented methodology. 

Chapter 8 presents the procedure to model the residual errors for sequential naviga-

tion estimators and describes how to consider the external weather data within an ex-

emplary sequential estimator. The results of this methodology are shown and discussed 

in the same chapter. 

The thesis is concluded with Chapters 9 and 10, which provide this work’s conclu-

sions and future prospects, respectively. 

Appendices A, B and C provide additional theory concepts related to this work. 
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2 Altitude Definitions 
This chapter provides a summary of the most relevant theory underlying this work. 

First, the different definitions associated to the concept of altitude are given in Section 

2.1. Then, pressure altitude and its corrections are described in Sections 2.2 and 2.3. 

The Blanchard’s algorithm for altitude computation follows in Section 2.4.  

 

2.1 Geoid, Ellipsoid and Altitude Scales 

In navigation, the Earth’s surface, which is actually irregular, may be assumed to be 

as an oblate ellipsoid of revolution, with the equatorial diameter being longer than the 

line connecting the geographic poles. Two examples of Earth’s ellipsoidal models are the 

Geodetic Reference System 1980 (GRS80) and the World Geodetic System 1984 

(WGS84). Both models have their origins in the Earth’s center of mass, but they pro-

vide slightly different values for the equatorial and polar radii [9].  

In this work, the WGS84 model is used, since this is also the model employed by 

GPS [9]. A further reason for this choice is that the European Centre for Medium-

Range Weather Forecasts (ECMWF) provides weather data referenced in the horizontal 

plane with respect to the WGS84 [17, 18], as will be explained in Section 4.1. 

The geodetic altitude (or height) ℎ is the distance from a given point to the ellipsoi-

dal surface along the normal to this surface, as shown in Figure 2.1. In this thesis, a 

positive value of ℎ corresponds to a location in outside the ellipsoid whilst the opposite 

is true for a negative value of ℎ. 

 

Figure 2.1: Geodetic Altitude, Orthometric and Geoid Height (based on [9]) 

Another kind of altitude is the orthometric altitude, denoted by 𝐻. Since its defini-

tion is strictly connected to the geoid surface, the concept of the geoid shall be intro-
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duced.  

The geoid is a model of the Earth’s surface defined as the equipotential surface of the 

Earth’s gravity field—the sum of gravitational and centrifugal acceleration fields—

which best fits, in a least squares sense, global mean sea level (MSL) [19]. Since water 

tends to maintain a constant and in particular the lowest achievable potential energy, it 

is expected that the geoid almost coincides with the mean sea level. This is the level of 

the oceans averaged over the tide cycle. Indeed, the geoid offsets from the actual mean 

sea level are within 1 meter [9]. 

 The distance from a point to the geoid surface along the normal to this surface is 

called orthometric altitude or altitude (or height) above mean sea level,  often shortened 

to altitude AMSL. It is related to the geodetic altitude through 

𝐻 ≈ ℎ−𝑁(𝐿, 𝜆) , (2.1) 

where 𝑁  denotes the geoid undulation (or height), that is the altitude of the geoid ref-

erenced to the ellipsoidal surface, being this positive when the geoid surface at the cur-

rent location is outside the ellipsoid. The geoid undulation, which is a function of lati-

tude, 𝐿, and longitude, 𝜆, ranges worldwide between approximately 105 and 85 meters 

and takes, exemplarily, the value of 46 meters in Oberpfaffenhofen, Germany. 

The worldwide inhomogeneity of geodetic undulation is due to inhomogeneous distri-

bution of the gravity potential on the ellipsoid surface. This, in turn, is caused by the 

changing value of the centrifugal potential with latitude and the heterogeneous distribu-

tion of Earth’s mass, that is responsible therefore for a heterogeneous gravitational po-

tential. In Figure 2.2, geoid undulations obtained from the Earth Geopotential Model 

1996 (EGM96) are shown.  

 

Figure 2.2: Geoid Undulations from the EGM96 

As expressed by Equation (2.1), the conversion between orthometric and geodetic al-

titude is approximated rather than exact, because, at a given location, the normal to 

the geoid is not necessarily aligned with the normal to the ellipsoid. This can be seen in 
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Figure 2.1. 

Geodetic and orthometric altitude are both geometric altitudes, meaning that their 

scale is geometric. In general, that the scale of the altitude of a point with respect to a 

reference surface is geometric, indicates that its values correspond to what would be 

read on a hypothetical ruler connecting the point to the surface along the normal to 

that surface. This concept is therefore quite much self-explained and intuitive and its 

definition may appear as superfluous. Nevertheless, it is needed to be pointed out in or-

der to distinguish it from the geopotential altitude scale, which is a key concept in 

weather sciences. 

The geopotential altitude scale is the scale of the geopotential altitude above MSL, 

that is the virtual altitude of a point above MSL obtained when taking into account the 

geographic and vertical effects of gravity anomalies [20]. Put in other words, the geopo-

tential altitude AMSL is a measure of the specific potential energy at the corresponding 

geometric altitude at a given location [21]. In order to provide a mathematical definition 

for this concept, the gravity potential Ф, at a given latitude, longitude and orthometric 

altitude—with the MSL as reference—shall be defined: [20] 

Φ(𝐿, 𝜆,𝐻) = ∫ 𝑔
𝐻

0

(𝐿, 𝜆, 𝑧)𝑑𝑧  , (2.2) 

 

where 𝑔 is the acceleration due to gravity and is a function of position.  

As a result, the geopotential is merely a function of position and does therefore not 

depend on atmospheric quantities. Equivalently, a surface of constant geopotential var-

ies with latitude, longitude, and altitude only [20].  

Geopotential altitude AMSL, 𝑍g
msl , is then defined as [20] 

 

𝑍𝑔
𝑚𝑠𝑙(𝐿, 𝜆,𝐻) =

Φ(𝐿, 𝜆,𝐻)

𝑔0
=
1

𝑔0
∫ 𝑔(

𝐻

0

𝐿,𝜆, 𝑧)𝑑𝑧  , (2.3) 

 

where 𝑔0 is the average MSL acceleration due to gravity, also called standard gravity 

acceleration, and takes the value 9.80665 ms-2. As a result, the geopotential altitude 

AMSL at a given location will be larger than the corresponding orthometric altitude if 

the local gravity acceleration is higher than the standard one, whereas at MSL both al-

titudes will be zero [20].  

Because of the difficulty of solving this integral, a relatively simple model for gravity 

may be introduced in Equation (2.3) to allow for an analytical solution. This model is 

based on the Somigliana model, which provides the value of normal gravity at the 

Earth’s ellipsoidal surface, denoted by 𝛾, as a function of latitude [20]: 

 

𝛾(𝐿) =
𝑅𝑒 𝛾𝑒cos

2 𝐿+ 𝑅𝑝𝛾𝑝 sin
2 𝐿

√𝑅𝑒
2 cos2 𝐿 +𝑅𝑝

2 sin2 𝐿
  . (2.4) 

 

In Equation (2.4), 𝑅e = 6378137.0 m and 𝑅p = 6356752.3142 m denote the WGS84 

equatorial and polar radii, respectively, while 𝛾e =9.7803253359 ms-2 and 𝛾p = 
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9.8321849378 ms-2 are the equatorial and polar gravity accelerations at the ellipsoidal 

surface, respectively. 

Because of numerical issues, Equation (2.4) may be simplified to [22] 

 

𝛾(𝐿) = 𝛾𝑒
1 + 𝑘 sin2 𝐿
√
1 − 𝑒2 sin2𝐿

  , (2.5) 

with 

𝑘 =
𝑅𝑝𝛾𝑝
𝑅𝑒𝛾𝑒

− 1 , (2.6) 

and the first eccentricity of the ellipsoid being defined as [9] 

𝑒 = √1 −
𝑅𝑝

2

𝑅𝑒
2
  . (2.7) 

 

This simplified version of the Somigliana formula is the official WGS84 Ellipsoidal 

Gravity Formula [22]. Upon this surface gravity model, a model for normal gravity 

above the ellipsoid can be formulated by upward continuing 𝛾 by means of a truncated 

Taylor series expansion [23]. Under this approximation, the formula given in the 

WGS84 standard for normal gravity above the ellipsoid 𝛾h, is [23]: 

 

𝛾ℎ(𝐿, ℎ) = 𝛾(𝐿) [1 −
2

𝑅𝑒

(1 + 𝑓 +𝑚 − 2𝑓 sin2𝐿)ℎ + 
3

𝑅𝑒
2
 ℎ2] , (2.8) 

whereby the positive direction is the one pointing downward along the geodetic nor-

mal to the ellipsoid. 

In Equation (2.8), 𝑓 denotes the ellipsoid’s flattening, defined as [9] 

𝑓 =
𝑅𝑒 −𝑅𝑝

𝑅𝑒

  , (2.9) 

while 𝑚 is a constant given by 

𝑚 =
Ω2𝑅𝑒

2𝑅𝑝

𝐺𝑀
  , (2.10) 

with Ω and 𝐺𝑀 being the Earth’s angular velocity and gravitational constant, respec-

tively. 

In an analogous way to how Geopotential altitude AMSL, 𝑍g
msl , was defined in 

Equation (2.3), geopotential height above the Earth’s ellipsoid, 𝑍g
wgs84, may be defined 

as [20] 

𝑍g
𝑤𝑔𝑠84(𝐿, ℎ) =

1

𝑔0
∫ 𝛾ℎ(

ℎ

0

𝐿, 𝑧)𝑑𝑧  . (2.11) 

 

Inserting Equation (2.8) in Equation (2.11) allows for an analytical solution of the 

integral in the latter equation, thus yielding [20]:  

 

𝑍g
𝑤𝑔𝑠84(𝐿, ℎ) =

𝛾(𝐿)

𝑔0
ℎ [1 −

ℎ

𝑅𝑒

(1 + 𝑓 +𝑚− 2𝑓 sin2 𝐿) + 
ℎ2

𝑅𝑒
2
 ]  . (2.12) 
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Figure 2.3 shows the difference between geodetic altitude, ℎ, and 𝑍g
wgs84 as a func-

tion of latitude and geodetic altitude for latitudes ranging from -90° to 90° and for geo-

detic altitudes ranging from 0 to 40 km.  

Being the reference of these two altitude definitions the same, i.e., the WGS84 sur-

face, this figure expresses the difference between the geometric and the geopotential 

scale. As an example, the difference between these two scales at 11 km above Ober-

pfaffenhofen (Germany) is approximately 16.3 m. 

 

Figure 2.3: Difference between geometric and geopotential altitudes above WGS84 

(reproduced with the same style adopted in [20]) 

In order to convert geopotential altitude above the ellipsoid, 𝑍g
wgs84, to geopotential 

altitude above the geoid (i.e., MSL), 𝑍g
msl , which is the altitude typically employed in 

atmospheric sciences [20], the following equation may be used: 

𝑍𝑔
𝑚𝑠𝑙(𝐿, 𝜆,𝐻) = 𝑍g

𝑤𝑔𝑠84(𝐿, ℎ) − 𝑍g
𝑤𝑔𝑠84(𝐿,𝑁(𝐿, 𝜆)) , (2.13) 

where the second term on the right side of the equation is the geopotential altitude, 

above the ellipsoid, of the geoid undulation [20]. The relevance of this conversion in the 

present work is due to the fact that the altitude information provided by ECMWF is 

given in terms of geopotential altitude AMSL [17]. 

 

Having defined the concepts of geoid, ellipsoid, geodetic altitude, altitude AMSL and 
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geopotential scale, it is beneficial to visualize them in a single grid, as it is done in Ta-

ble 2.1. This way, the different altitude definitions given in the previous paragraphs 

may be distinguished according to two categories: the scale and the reference. 

It is noted that when the scale is not explicitly mentioned, the scale will be consid-

ered to be geometric throughout this Theis. Furthermore, if no attribute at all is explic-

itly given for altitude, it is to be intended that the mentioned altitude is the geodetic 

one. 

Another row will be added to this table in the next sections, in order to visualize the 

relationships of pressure altitude—to be defined in Section 2.2—with the aforemen-

tioned altitude definitions.  

 

 

Table 2.1: Different altitude definitions 

 

2.2 Pressure Altitude 

Barometric altimeters are devices which have been for decades widely used in avia-

tion for converting barometric pressure measurements in altitude information, as pre-

sented in Section 2.2.2. The principle of this conversion lies on the atmospheric model 

which is briefly derived and explained in Section 2.2.1. 

 

2.2.1 Atmospheric Model for Pressure Altitude 

Since the atmosphere is static with respect to the Earth, it is subject to gravity too 

[24]. The air static equilibrium is expressed by the hydrostatic equation, which provides 

a relationship between vertical change of static air pressure d𝑝, acceleration due to grav-

ity 𝑔, air density 𝜌, and change in altitude AMSL 𝐻: 

d𝑝 = −𝜌𝑔 d𝐻 . (2.14) 

Approximating the atmosphere as a perfect gas, then the perfect gas law relates stat-

ic air pressure to air density and static air temperature, 𝑇 , as: 

𝑝 = 𝜌
𝑅∗𝑇

𝑀0

= 𝜌𝑅𝑑𝑟𝑦𝑇   . (2.15) 
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In Equation (2.15), 𝑅∗ denotes the universal gas constant and 𝑀0 is the standard sea 

level molar mass of the air, as it is obtained from the perfect gas law when using the 

ISA standard MSL values for pressure, density, and temperature, i.e., 𝑝0, 𝜌0 and respec-

tively [24]. The quantity derived from 𝑅∗ and 𝑀0, denoted by 𝑅𝑑𝑟𝑦 , is called specific 

gas constant of dry air. The values of these constants are given  in Table 7.1 [24]. 

 

ISA Constants Values 

𝑝0 101.325 × 103 Pa 

𝜌0 1.225 kg m−1 

𝑇0 288.15 K 

𝑀0 28.96442 kg kmol−1 

𝑇1 216.65 K 

𝛼 6.5 K km−1 

𝑅𝑑𝑟𝑦 287.05287 J kg−1K−1 

𝑅∗ 8314.32 J kmol−1K−1 

Table 2.2: ISA Constants 

Solving Equation (2.15) for density, and substituting this formulation of Equation  

(2.15) in Equation (2.14), yields the following: 

d𝐻 = −
𝑅𝑑𝑟𝑦𝑇

𝑔𝑝
d𝑝 . (2.16) 

When considering the effects of humidity, this equation changes slightly to [25] 

d𝐻 = −
𝑅𝑑𝑟𝑦𝑇𝑉
𝑔𝑝

d𝑝 , (2.17) 

where 𝑇V denotes the “virtual” temperature, which is related to temperature through 

[25] 

𝑇V  = 𝑇 (1 + 𝜖𝑞) . (2.18) 

In Equation (2.18), 𝑞 denotes the specific humidity, i.e., the mass of water vapor per 

kilogram of moist air, and the constant 𝜖 is defined as [25] 

𝜖 =
𝑅𝑣𝑎𝑝

𝑅𝑑𝑟𝑦

− 1 , (2.19) 

where the constant 𝑅𝑣𝑎𝑝, that is equal to 461.51 J kg−1K−1, denotes the specific gas 

constant of water vapor [25]. 

By differentiating Equation (2.2),  Equation (2.16) may be rewritten as [25] 

dΦ = −
𝑅𝑑𝑟𝑦𝑇

𝑝
d𝑝 . (2.20) 

Considering Equation (2.3), Equation (2.20) may in turn be rewritten as  

𝑑𝑍𝑔
𝑚𝑠𝑙𝑔0 = −

𝑅𝑑𝑟𝑦𝑇

𝑝
d𝑝 . (2.21) 

In order to analytically solve the differential Equation (2.21), some useful simplifica-

tions for the temperature evolution with altitude are given by the ISA model [13, 24]. In 



20  

particular, the ISA divides Earth’s atmosphere in 8 layers of different ranges of geopo-

tential altitude AMSL, from -5 to 80 km [24]. 

 As in the present work, only the geopotential altitude AMSL range between 0 and 

20 km is relevant, the equations for evolution of temperature with altitude will be given 

herein only for the two layers comprised in this range: 

𝑇𝐼𝑆𝐴  = 𝑇0 − 𝛼𝑍𝑔
𝑚𝑠𝑙  ,                           0 < 𝑍𝑔

𝑚𝑠𝑙 ≤ 11 km  ; 

 

𝑇𝐼𝑆𝐴  = 𝑇1              ,                         11 ≤ 𝑍𝑔
𝑚𝑠𝑙 < 20 km  , 

(2.22) 

 

where the values of 𝛼, known as the temperature lapse rate, and of 𝑇1 are given in Ta-

ble 2.2. 

Inserting this model into Equation (2.21) yields 

 

𝑑𝑍𝑔
𝑚𝑠𝑙𝑔0 = −

𝑅𝑑𝑟𝑦(𝑇0 − 𝛼𝑍𝑔
𝑚𝑠𝑙)

𝑝
d𝑝   ,                  0 < 𝑍𝑔

𝑚𝑠𝑙 ≤ 11 km  ; 

𝑑𝑍𝑔
𝑚𝑠𝑙𝑔0 = −

𝑅𝑑𝑟𝑦𝑇1
𝑝

d𝑝                  ,                11 ≤ 𝑍𝑔
𝑚𝑠𝑙 < 20 km  . 

(2.23) 

 

Finally, integrating along 𝑍𝑔
msl from a certain reference geopotential altitude AMSL, 

𝑍g,ref
msl , both expressions of Equation (2.23) results in 

 

𝑍𝑔
𝑚𝑠𝑙 =

𝑇𝑟𝑒𝑓
𝛼

[
 
 1 − (

𝑝

𝑝𝑟𝑒𝑓
)

𝑘𝑅𝑑𝑟𝑦
𝑔0

]
 
 + 𝑍𝑔,𝑟𝑒𝑓

𝑚𝑠𝑙      ,          0 < 𝑍𝑔
𝑚𝑠𝑙 ≤ 11 km  ; 

  

𝑍𝑔
𝑚𝑠𝑙 = 11km −

𝑇11𝑘𝑚𝑅𝑑𝑟𝑦

𝑔0
ln(

𝑝

𝑝11𝑘𝑚
)   ,            11 ≤ 𝑍𝑔

𝑚𝑠𝑙 < 20 km  , 

(2.24) 

 

where 𝑇ref and 𝑝ref  denote the temperature and pressure at 𝑍g,ref
msl , respectively, while 

𝑇11𝑘𝑚 and 𝑝11𝑘𝑚 denote the temperature and pressure at 11 km of geopotential altitude 

AMSL. 

 

2.2.2 Barometric Altimeters, Standard Pressure Altitude 

and Flight Levels 

 In aviation, barometric altimeters  are used to convert static air pressure measure-

ments, 𝑝̃, into altitude information, based on the first of the two expressions of Equa-

tion (2.24). More in detail, this altitude information is called standard pressure (or bar-

ometric) altitude, which is denoted by 𝑍p,std when the reference is the ISA standard 

MSL. This means that 𝑍g,ref
msl  = 0, 𝑇ref = 𝑇0 and 𝑝ref  = 𝑝0, resulting in [26] 

 

𝑍𝑝,𝑠𝑡𝑑 =
𝑇0
𝛼
[
 
 1 − (

𝑝̃

𝑝0
)

𝑘𝑅𝑑𝑟𝑦
𝑔0

]
 
   . (2.25) 
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Therefore, standard pressure altitude represents an estimate for the altitude above 

the 𝑝0 isobar surface [26] and the more the actual values of pressure and temperature at 

MSL at the current location deviate from their corresponding ISA values, the more 

𝑍p,std deviates from the true geopotential altitude AMSL. As a result, significant error 

when approximating the true altitude AMSL may arise and account for a 10% of the 

truth [6, 11]. An update version of Table 2.1 including standard pressure altitude is 

shown in Table 2.3. 

 

 

Table 2.3: Different altitude definitions, with pressure altitude 

Furthermore, even if the actual MSL values at the current aircraft’s horizontal (i.e., 

latitude-longitude) location for temperature and pressure were to be used instead of the 

ISA values in the computation of pressure altitude, this would still differ from the true 

geopotential altitude AMSL. This is due to the inherent approximation of the true at-

mosphere behavior that the ISA model for temperature introduces. Indeed, in reality 

temperature does not necessary everywhere decrease from 𝑇0 with altitude in a linear 

way with the temperature lapse rate 𝛼. 

 The expression “temperature effect” refers to the errors due to the real non-standard 

temperature evolution with altitude [27]. Physically, these errors stem from the fact 

that temperature causes a contraction or dilatation of the separation between the isobar 

surfaces along the vertical.  

As a result, when the atmospheric temperature is higher than in the ISA standard 

atmosphere, barometric altimeters underestimate the true geopotential altitude AMSL,  

whereas the opposite is true in the case of a warmer-than-ISA atmosphere [26]. The 

temperature effects in the former case, which are referred to as cold (or low) tempera-

ture effects are of course more dangerous when flying at low heights above ground, as 

they lead the pilot to underestimate the altitude above ground and/or other obstacles 

[27, 28]. 

 The temperature effect’s errors’ magnitude is generally reduced when choosing as 
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reference temperature the actual MSL temperature over its ISA standard corresponding 

value, 𝑇0. This is due to the fact that this way the modeled temperature evolution with 

altitude is generally closer to the truth. 

This temperature effect’s error with respect to the true geopotential altitude AMSL 

adds up to the difference between the geometric and the geopotential scales when trying 

to approximate the true orthometric altitude with pressure altitude. This is shown in a 

qualitative way, i.e., out of scale, in Figure 2.4.  

Finally, in the approximation of true altitude, i.e., true geodetic altitude, with pres-

sure altitude, the geoid undulation at the current location adds up to the error. So, in 

the evaluation of the deviation pf standard pressure altitude from geodetic altitude from 

e.g., GPS, one needs to consider all these different effects. 

 

Nevertheless, standard pressure altitude is extensively used in aviation in order to 

enable safe aircraft vertical separation, rather than precise altitude information [9, 26, 

29]. Indeed, for two airplanes both using the standard ISA MSL isobar as reference, the 

only factors that may provide two airplanes with two different standard pressure alti-

tudes are their respective pressure measurement. 

 

 

Figure 2.4: Pressure altitude deviation from true altitude AMSL 

Flight levels are a concept, strictly connected to pressure altitude, used to ensure safe 

vertical separation in a straightforward way. A flight level is defined as a surface of con-

stant barometric pressure which is related to the ISA standard MSL pressure, 𝑝0, and is 

separated from other such surfaces by specific pressure intervals [2, 24]. A flight level 

indicates therefore a pressure, rather than an altitude. Each flight level is stated with 

the letters “FL” followed by three digits that represent hundreds of feet, while being a 

multiple of 500 ft. As an example, FL 350 represents a barometric altimeter indicating 

35000 ft [2].  

Flight regulation authorities command a switch from flight-level-based guidance (i.e., 

standard-pressure-altitude-based), to an altitude-AMSL-based one when flying above a 

certain transition altitude.  This has different values, depending on the country and/or 
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airport [30, 31, 32]. In northern America, for example, the transition altitude is 18000 ft 

(5486 m) [30, 33]. An indication of altitude AMSL through barometric altimeters is pos-

sible through a correction, sometimes referred to as “baro-correction” [26], which is the 

focus of Section 2.3. 

The transition level is the lowest FL available for use above the transition altitude 

and it also depends on the county and/or airports and/or the pressure measured at the 

airport or base station. Only above the transition level, altitude information is given in 

terms of flight levels [1]. 

 

The relationships between true orthometric altitude, the ISA standard MSL isobar, 

and other isobars corresponding to given flight levels are shown in Figure 2.5, which 

depicts aircrafts flying at different flight levels (out of scale). This figure also shows that 

flight levels surfaces, i.e., isobar surfaces, are necessarily parallel to the MSL surface. 

 

 

Figure 2.5: Flight levels (based on the figure given in [34]) 

 

2.3 Corrected Pressure Altitude 

In Section 2.3.1, a correction procedure for increasing pressure altitude’s accuracy in 

approximating true orthometric altitude or true altitude above ground is presented. 

This procedure, which actually consists in two different sub-options, is sometimes re-

ferred to as “baro-correction” [26].  

Section 2.3.2 discusses some procedures for compensating temperature effects, which 

were introduced in Section 2.2.2. 
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2.3.1 Baro-corrected Pressure Altitude 

There are two different options for a baro-correction of standard pressure altitude, 

which are typically performed in aviation [2, 24, 26]. The correction ΔZc provided in 

both cases is computed as  

ΔZc =
𝑇0
𝛼
[
 
 1 − (

𝐵𝐶𝑐
𝑝0

)

𝑘𝑅𝑑𝑟𝑦
𝑔0

]
 
    (2.26) 

and is subtracted from the standard pressure altitude to yield the baro-corrected pres-

sure altitude, 𝑍p,c [26]: 

𝑍𝑝,𝑐 = 𝑍𝑝,𝑠𝑡𝑑 − ΔZc  (2.27) 

The baro-correction in the pressure domain, 𝐵𝐶c, may be of the “QNH” or “QFE” 

kind [26]. In the former case, the subscript c in Equations (2.26) and (2.27) is substitut-

ed by the subscript QNH, in the latter by QFE.  

The QNH correction applied on a barometric altimeters on an aircraft will cause the 

barometric altimeter to read the reference airport’s (or another kind of base’s) altitude 

AMSL when the aircraft is on the runway [3, 26]. Therefore, in the nearness of the air-

port, the QNH corrected pressure altitude, 𝑍p,QNH, approximates to a higher level of 

accuracy the true orthometric altitude than the standard pressure altitude does. The 

QNH correction in pressure domain, i.e., 𝐵𝐶QNH, which evolves with time for a given 

airport, is sent regularly within the METAR transmission from the airport to the air-

planes in the surroundings [35]. 

The difference between QNH correction and the QFE one, is that when the latter is 

applied on a barometric altimeters on an aircraft on the reference airport’s runway, this 

will lead the barometric altimeter to read zero altitude. Therefore, in the nearness of the 

airport, the QFE corrected pressure altitude, 𝑍p,QFE, provide an approximation of the 

altitude above ground [3].  

 

As anticipated in Section 2.2.2, below the transition altitude, flight management au-

thorities command to shift from the standard pressure altitude (or Flight level, see Sec-

tion 2.2.2) to a baro-corrected one [5, 36]. This is done in order to still maintain vertical 

separation between airplanes in the surroundings—the same correction is applied to all 

airplanes—while ensuring a better estimation of the distance from the ground. More in 

detail, the baro-correction is in most cases of the QNH kind, although in some countries 

and/or airports aircraft vicinity operation are performed based on the QFE approach 

[37, 38].  

The QNH and QFE baro-correction are also referred to as QNH and QFE altimeter 

(pressure) settings, whereas the setting providing standard pressure altitude is also 

known as QNE altimeter setting [3, 5, 36]. 

Figure 2.6 integrates the concepts depicted in Figure 2.4 by additionally illustrating 

in a qualitative way (i.e., out of scale) the relationships between the various aforemen-

tioned pressure-altitude related concepts. It shall be noted that, unlike they are repre-
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sented in Figure 2.6, the various pressure-altitude-related altitudes may also overesti-

mate the true altitude above MSL (or above the runway). This depends on the actual 

atmospheric pressure and temperature values at MSL (or at the runway) and on their 

evolution with altitude. 

The 𝐵𝐶𝑄𝑁𝐻 sent by an airport is obtained by projecting the 𝐵𝐶𝑄𝐹𝐸 to sea level ac-

cording to ISA and therefore regardless of the real temperature structure of the atmos-

phere [3, 26]. Since barometric altimeters use ISA, they will indicate orthometric alti-

tude correctly at the airport, and more in particular at the airport’s point that was set 

as the reference for the 𝐵𝐶𝑄𝑁𝐻 computation. At other altitudes, but on the same lati-

tude-longitude location, the indicated altitude is most likely to be erroneous, depending 

on the real temperature of the atmosphere [3].  

Therefore, depending on the vicinity of the aircraft to the airport on the horizontal 

plane and in the vertical channel and also on the spatial changes in atmospheric pres-

sure and temperature, QNH-corrected may be more or less accurate in approximating 

true orthometric altitude than pressure altitude computed with actual MSL values. In 

Figure 2.6, whereby the aircraft is currently at the same airport’s latitude-longitude lo-

cation., QNH-corrected pressure altitude is shown to be more accurate. 

 

 

Figure 2.6: Pressure altitude corrections 

 

2.3.2 Temperature Correction for Minimum Safe Altitudes 

Minimum Safe Altitude/Height (MSA) is a generic expression adopted in aviation to 

address an altitude below which it is not safe fly due to the presence of terrain or other 

obstacles [39].  

In [5], different methods for providing corrections for temperature effects, introduced 

in Section 2.2.2, are briefly presented. In particular, these methods are meant for adjust-

ing MSA when the ambient temperature on the surface is “much lower” than that pre-

dicted by the ISA.  

 For example, for temperatures above -15°C, an approximate correction is the 4% 

height increase for every 10°C below that one predicted by the ISA at the altimeter set-
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ting source, be it the MSL for QNE/QNH or the airport for QFE. Other corrections for 

cold temperature effects are tabulated in altitude-temperature grids [5].  

 

Since these corrections do not have the goal of increasing pressure altitude’s accuracy 

in approximating true altitude AMSL, rather to enable safe vertical separation from ob-

stacles in a conservative way, their analysis is not in the scope of this work.  

They have been briefly mentioned in the current section for the sake of completeness, 

since, along with the baro-corrections, these are the altimeter corrections the pilot is 

responsible for [5]. 

 

2.4 Blanchard Altitude 

The Blanchard algorithm is an additional way of compensating for non-standard at-

mosphere when obtaining altitude information from pressure measurements. Anyway, 

unlike the corrections presented in 2.3, the measurements of other quantities are needed 

apart from pressure. 

The Blanchard algorithm provides altitude information through the numerical inte-

gration of an equation resulting from the addition to Equation (2.16) of a correction 

term accounting for the wind influence [7, 11]. This equation is  

 

𝑑𝐻 = −
𝑅𝑑𝑟𝑦𝑇

𝑔𝑝
𝑑𝑝 +

𝑉𝑔𝑉𝑤𝑐
𝑔

2𝛺 sin𝐿 𝑑𝑡 , (2.28) 

 

where d𝑡 is the infinitesimal time interval during which an object performs the infinites-

imal altitude variation d𝐻, by keeping a velocity along the ground of modulus 𝑉g [7]. 

The latter quantity is also known as groundspeed. In Equation (2.28), 𝑉wc denotes the 

component of wind velocity perpendicular to the ground track and it is positive when 

the wind is from the right with respect to the direction of the velocity along the ground 

[7]. This quantity is referred to as cross-wind speed [11]. Finally, Ω denotes the Earth’s 

rotation rate, in terms of rad/s. 

In particular, the Blanchard algorithm consists in the solution of Equation (2.28) by 

trapezoidal integration [11, 29]: 

 

𝐻𝐵,𝑖 = 𝐻𝐵,𝑖−1 −
𝑅

2
(
𝑇𝑖̃
𝑔𝑖 𝑝̃𝑖

+
𝑇𝑖̃−1

𝑔𝑖−1𝑝̃𝑖−1
)(𝑝̃𝑖 − 𝑝̃𝑖−1) +      

                          

                  + 𝛺(
𝑉𝑔̃,𝑖𝑉𝑤̃𝑐,𝑖 𝑠𝑖𝑛𝐿𝑖

𝑔𝑖
+
𝑉𝑔̃,𝑖−1𝑉𝑤̃𝑐,𝑖−1 𝑠𝑖𝑛𝐿𝑖−1

𝑔𝑖−1
)(𝑡𝑖 − 𝑡𝑖−1)  , 

(2.29) 

 

where 𝑝̃i, 𝑇ĩ, 𝑉g̃,i and 𝑉w̃c,i denote the pressure, temperature, groundspeed, and cross-

wind speed measurements, respectively at the i-th iteration. The remaining terms, i.e. 

𝑔i, 𝐿i and 𝑡i are the local gravity acceleration approximation, the latitude estimate and 

the time at the same iteration, respectively. 
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Since an approximation for the gravity acceleration is computed at each step as a 

function of altitude and latitude, and it is not assumed to be constant and equal to its 

standard MSL value—as it is done in the pressure altitude equation instead—the output 

of Blanchard’s algorithm is an orthometric altitude. For this reason, this altitude, which 

is referred to as Blanchard altitude [11, 12, 13] is herein denoted with the capital “h”, in 

accordance with the nomenclature introduced in Section 2.1. Additionally, the subscript 

“B” is used to denote the Blanchard algorithm. 

In particular, the local gravity acceleration at the i-th iteration is computed from the 

Blanchard altitude at the previous iteration, i.e., at the (i-1)-th iteration, and the lati-

tude estimate at the i-th iteration as [6, 11] 

𝑔𝑖 = 𝑔𝐴 + 𝑔𝐵 sin
2𝐿𝑖−1 + 𝑔𝐶𝐻𝐵,𝑖−1 . (2.30) 

In Equation (2.30), 𝑔A = 9.780250907 m s-2, 𝑔B = 0.051799217 m s-2 and 𝑔C = –

3.0877321·10-6 s-2. 

 

Given the fact that Blanchard altitude is based on a recursive algorithm, it needs to 

be initialized. Since it is an orthometric altitude, the initial altitude should correspond 

to the base orthometric altitude, e.g., the take-off airport’s altitude AMSL, as it was 

done in [11]. 

 

As it is likely to be the case, measurements about the wind perfomed by aircraft Air 

Data Systems (ADS), are expressed in terms of the modulus of the wind velocity and its 

direction with respect to the north. From this information, the east and north compo-

nents of the wind velocity, 𝑣𝑤𝐸 and 𝑣𝑤𝑁  may be easily computed [40]. These wind com-

ponents, in turn, may be used to calculate the product between groundspeed and cross 

wind speed—which appears in the Blanchard algorithm—in alternative way as 

𝑉𝑔𝑉𝑤𝑐 = −𝑣𝑎𝑁𝑣𝑤𝐸 + 𝑣𝑎𝐸𝑣𝑤𝑁  , (2.31) 

where 𝑣𝑎𝑁  and 𝑣𝑎𝐸 denote the east and north components of the aircraft velocity [11]. 

 

The limitations of this algorithm are two.  The first stems from the fact that it re-

quires an initialization, so the output degrades with the time passed and the horizontal 

distance covered after the initialization.  

The second limitation consists in the fact that the first term of algorithm requires 

pressure variations (𝑝̃i − 𝑝̃i−1) to take the effects of the temperature variations into ac-

count. This means that from this first term no correction can be computed when the 

aircraft is at constant barometric altitude such as in cruise flight, i.e., when it flies on a 

given flight level [26]. 
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3 State of the Art of Pressure Altitude 

Integration in Navigation Algo-

rithms 

3.1 Integrated Flight Level Guidance 

Standard pressure altitude has been traditionally used in third-order control loops to 

damp the inherent instability of the vertical channel of Inertial Navigation Systems 

(INS) [6, 26, 29], also called Inertial Reference systems (IRS). Such a control loop, in 

which the gains are chosen based on tuning, is exemplarily shown in Figure 3.1. It shall 

be noted that in such control loops, the input to the loop from the barometric altimeter 

is the standard pressure altitude and not a corrected one [26]. 

 

 

Figure 3.1: 3rd order control loop for baro-inertial altitude computation [26] 

The damped inertial altitude is in this case referred to as baro-inertial altitude and, 

as the standard pressure altitude, it is referenced to a surface related to air, i.e., the 

standard MSL isobar surface. As such, it is not referenced to a surface related to the 

Earth, e.g., the geoid or a reference ellipsoid [26]. 

This loop’s output is therefore strictly related to the concept of flight level guidance, 

as discussed in Section 2.2.2.  
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Since this thesis focuses on geodetic altitude information from pressure measure-

ments, and not on traditional flight level guidance, integration options as the one illus-

trated by Figure 3.1 are not in the scope of this thesis. 

 

 

3.2 Integrated Geodetic Altitude Navigation 

Work related to the translation of barometric pressure altitude to geodetic altitude 

within integrated navigation algorithms can be found in the literature. 

 In [14], the geoid undulation at the current location is added to the pressure altitude 

before using this within a GPS least-square estimator to provide 3D positioning. The 

approach was applied in an urban environment, for a relatively short time. It is not 

specified aboard what vehicle or person the navigation unit was installed. Most likely, 

low altitudes have been here considered a valid reason to neglect the difference in alti-

tude scale between pressure and GPS altitudes.  

 

A snapshot algorithm coupling baro-altimeter and DME is considered in [16]. The re-

sults presented by the authors are based on simulations and not on data gathered dur-

ing actual flight tests. Furthermore, it is not stated what leads the author to choose a 

specific value for the standard deviation of the barometric altimeter’s errors. Finally, it 

is not declared whether the barometric altimeter measurements originate are standard 

or corrected pressure altitudes. 

Similarly, in [9] the author provides a model  for the integration of standard pressure 

altitude measurements within multi-sensor KF-based navigation systems. In particular, 

both a bias and a scale factor term due to uncorrected reference pressures and uncor-

rected sensors are incorporated as augmented states. Anyway, the system models of 

these augmented states are not declared. It neither is stated whether this measurement 

model would be suitable for corrected pressure altitude measurements. 

 

The integration of a barometric altimeter with INS and INS&GNSS with various 

KF-based estimators has been simulated in [41], whereby the simulation scenario has 

not been precisely declared. Furthermore, the values of the parameters, e.g., system 

noise and measurement noise variances are not stated either.  

The measurement model used in that work for the barometric altimeter features a 

bias with a first-order Gauss-Markov Process structure. This bias is incorporated in the 

states vector as an augmented state (see Appendix C). Finally, it is not declared wheth-

er barometric altimeter’s output is the standard pressure altitude or a corrected pres-

sure altitude. 

 

In [15], an adaptive data fusion algorithm is proposed for the integration of a baro-

metric altimeter with GPS, whereby the errors between the barometric altimeter’s out-

put and the true altitude are assumed to be normally distributed.  

Unlike in [41], in [15], the barometric altimeters outputs are computed via the pres-

sure altitude equation with different references, depending on the simulation case. In 
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one simulation case, the ISA standard MSL values are used as references. In the second 

simulation case, constantly changing pressure and temperature values are used as refer-

ences.  

The simulation scenario is the variation of an aircraft’s altitude from 10894 m to the 

sea level approximately. The true altitude is assumed to coincide here to the (standard) 

pressure altitude in both simulation cases, while the barometric altimeters output and 

also the GPS altitude output are both assumed to deviate from the truth in a normally 

distributed way. This means that the geoid undulations and the difference between ge-

ometric and geopotential altitude are neglected. 

In [15], finally, the (integer) values assumed for measurement noise variances for the 

GPS and the baroaltimeter altitude measurements are backed neither by error modeling 

procedures, nor by referencing other sources. 

 

A confidence model for barometric altimeters is described in [42]. The authors define 

the barometric altimeter’s error as the difference between true altitude and pressure al-

titude. The pressure altitude is computed using as references the pressures and tempera-

tures recorded by meteorological  stations. In [42], when computing the baroaltimeter’s 

errors, in the cases in which the true altitude is given by GPS, the geoid undulations 

are compensated for, whereas the difference between the two altitude scales are not. 

The authors then compute what would be the barometric altimeter’s error at a spe-

cific location when computing altitude by using as references the meteorological data of 

a stations lying up to several hundreds of kilometers away.  

The confidence model consists in a linear model between the standard deviation of 

barometric altimeter’s errors and the distance from the stations.  

In the simulation within [42], the standard deviation provided by the model relative 

to a barometric altimeter measurement at a given distance from a given station is then 

used as the confidence level for the baroaltimeter within a WAAS (Wide Area Augmen-

tation System) estimation algorithm. In this, the baroaltimeter is treated as a virtual 

satellite with a known clock bias and located directly overhead at the user’s location. 

Time-correlated error sources are therefore not covered by this model. Also, the pres-

sure measurements assumed in this work could be much different from the ones meas-

ured aboard an aircraft, which may be corrupted by flight dynamics effect, among oth-

ers.  

 

In [43] vertical protection levels for UAVs (Unmanned Aerial Vehicles) using GPS 

and baroaltimeters is proposed. Using experimental data, a statistical error bound of a 

barometric altimeter’s measurement is defined. This error bound is then used within a 

WLS (weighted least square) RAIM for the baroaltimeter’s integration with GPS.  

The barometric altimeter’s output was computed with the pressure altitude equation, 

using as references the pressure and temperature provided by the nearest weather sta-

tion. More in detail the measurements were performed by keeping the measuring unit at 

a constant orthometric altitude of approximately 100 m, for 18 hours. The baroaltime-

ter’s error is in that work bounded by a normal distribution.  

It is highlighted that using as references the aforementioned weather data provided a 
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great improvement in the baroaltimeter’s accuracy at estimating the true orthometric 

altitude. By deriving the  overbounding model the difference between the geopotential 

and the geometric scales was not considered, probably because of the considerably low 

altitude AMSL. 

 

Recapitulating, in the available literature, the differences between the altitude refer-

ences together with the differences in the scales are rarely considered simultaneously. 

Moreover, the KF parameters used to model the barometric measurements are rarely 

mentioned and one assumes that traditional tuning approaches are followed. Additional-

ly, simulations are often considered, which means that realistic errors are not necessarily 

always portrayed.  

Finally, the available literature generally addresses the modeling of standard pressure 

altitude or pressure altitude. When corrected pressure altitude is considered, the correc-

tions are not performed based on an interpolation of multi-level weather data, as it is 

instead done in this thesis, as will be described in Section 4.1. 

 

This work aims at covering the empty spaces left by the available literature in this 

field. This is done by, first, assessing the accuracy of two different methods to obtain 

geodetic altitude from pressure measurements aboard an aircraft and, secondly, by seek-

ing the corresponding error models. The latter ones have to be properly determined, 

quantified, and bounded, so that the integrity of the vertical channel estimation can be 

guaranteed and safe vertical navigation ensured. 
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4 Geodetic Altitude from Pressure 

Measurements 
This chapter is devoted to the description of the procedures employed for the compu-

tation of accurate geodetic altitude from the available test flights’ data, potentially 

combined with external weather data.  

In this work, two methods for obtaining altitude information from, among others, 

pressure measurements are employed. In particular these two methods are applied to 

the central portions (see Section 5.2) of the nine test flights presented in Section 5.  

 

In the first method, at any flight trajectories’ point, a so-called weather-corrected 

pressure altitude is computed from the pressure measurements and weather data on iso-

bar surfaces provided by the European Union’s Copernicus Programme [17]. This is a 

geopotential altitude referenced to the MSL, which means that in order to obtain a geo-

detic altitude, a shift in reference must be accompanied by a scale conversion. This is 

shown in Figure 4.1 with a blue arrow. 

 

 

Figure 4.1: Altitudes Scheme 

In the second method, described in Section 4.2, pressure, temperature, and aircraft’s 

and wind velocity measurements are used at each trajectory’s point to produce altitude 

information via the Blanchard algorithm.  

Since the output of this algorithm is an orthometric altitude profile, i.e., a geometric 

altitude AMSL, geoid undulations along the trajectory need to be added to it to provide 

a geodetic altitude profile. This corresponds to shifting the reference from the MSL to 
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the reference ellipsoid, as it is shown in Figure 4.1 with a green arrow. 

 

 These two methods are schematically and yet more in detail depicted in Figure 4.2, 

where the computation of standard pressure altitude is also shown. The color code for 

the arrows is the same as in Figure 4.1. 

 

 

Figure 4.2: Methodology for computing geodetic altitudes from FMS measurements 

and weather data 

 

4.1 Geodetic Altitude from ERA5 Weather-

corrected Pressure Altitude 

 

4.1.1 Weather-corrected Pressure Altitude 

In this work, the phrase “weather-corrected pressure altitude” is used to refer to the 

aircraft’s pressure altitude which can be obtained by entering into Equation (2.24)—as 

the reference values—the actual pressure and temperature at the aircraft’s horizontal 

location and at the geopotential altitude AMSL they are referred to. 

In particular, when the aircraft is estimated to be flying below 11 km of geopotential 

altitude AMSL, the second of the two expressions of Equation (2.24) is used and the 

actual pressure and temperature values at 11 km are used.  

Equation (2.24) is repeated here with some slight formal changes in order to high-

light the outputs and inputs of the correction procedure explained in the previous para-

graphs of this section: 
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𝑍𝑝,𝑤 =
𝑇𝑟𝑒𝑓
𝛼

[
 
 1 −(

𝑝̃

𝑝𝑟𝑒𝑓
)

𝑘𝑅𝑑𝑟𝑦
𝑔0

]
 
 + 𝑍𝑔,𝑟𝑒𝑓

𝑚𝑠𝑙   ,             0 < 𝑍𝑔̂
𝑚𝑠𝑙 ≤ 11 km  ; 

 

𝑍𝑝,𝑤 = 11km −
𝑇11𝑘𝑚𝑅𝑑𝑟𝑦

𝑔0
ln(

𝑝̃

𝑝11𝑘𝑚
)   ,          11 ≤ 𝑍𝑔̂

𝑚𝑠𝑙 < 20 km  , 

(4.1) 

 

where 𝑍p,w denotes the weather-corrected pressure altitude, 𝑝̃ is the airborne barometer 

pressure measurement, and 𝑍𝑔̂
𝑚𝑠𝑙 denotes the aircraft’s estimated geopotential altitude 

AMSL. 

 That this pressure altitude computation is weather-corrected partially means that 

when 𝑍p,w is used to approximate the aircraft’s orthometric altitude, it does not show 

the errors that 𝑍p,std shows due to the fact that is referenced to an isobar (the ISA MSL 

isobar) which can be relatively much detached from the MSL. 

 The further meaning of the “weather-corrected” attribute, is that the errors’ magni-

tudes due to the temperature effect, introduced in Section 2.2.2, are reduced. Indeed, 

the Section 2.2.2 ’s example of using the actual MSL values as references during a flight 

is a special case of weather-corrected pressure altitude. 

 

The actual weather quantities’ values (or at least good estimates thereof) which may 

be used as references may for example be obtained from numerical weather predictions 

(NWP) or climate (also referred to as atmospheric or weather) reanalysis.  

More in detail, weather data may be provided on global or local latitude-longitude 

grids and on various vertical levels. An interpolation between these grid points and po-

tentially also between the levels may then be used to extract the estimates of the need-

ed pressure and temperature values at the aircraft’s horizontal locations and/or altitude 

or at 11 km.  

Indeed, an interpolation of weather data is actually of crucial importance in the 

methodology of this work and is therefore presented in detail in Section 4.1.2. 

 

A further correction may be achieved by considering the effects of humidity in pres-

sure altitude computation. In order to take humidity into account, being this another 

weather quantity that may be obtained from NWP or climate reanalysis, one may refer 

to Equations from (2.17) to (2.19).  

Just as Equation (2.24) is obtained from the differential Equation (2.16) by analyti-

cally solving it based on the ISA model for temperature, the following equation is ob-

tained from Equation (2.17): 

  

𝑍𝑔
𝑚𝑠𝑙 =

𝑇𝑉 ,𝑟𝑒𝑓
𝛼

[
 
 1 − (

𝑝

𝑝𝑟𝑒𝑓
)

𝑘𝑅𝑑𝑟𝑦
𝑔0

]
 
 + 𝑍𝑔,𝑟𝑒𝑓

𝑚𝑠𝑙     ,        0 < 𝑍𝑔
𝑚𝑠𝑙 ≤ 11 km  ; 

 

𝑍𝑔
𝑚𝑠𝑙 = 11km −

𝑇𝑉 ,11𝑘𝑚𝑅𝑑𝑟𝑦

𝑔0
ln(

𝑝

𝑝11𝑘𝑚
)  ,        11 ≤ 𝑍𝑔

𝑚𝑠𝑙 < 20 km  . 

(4.2) 
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The virtual temperature at the given reference altitude and at 11 km, 𝑇V,ref and 

𝑇V,11km, respectively, that appear in Equation (4.2), are obtained from 𝑇ref and 𝑇11km, 

according to Equations (2.18) and (2.19).  

In the same fashion Equation (2.24) has been rewritten as Equation (4.1), Equation 

(4.2) may be finally rewritten as 

 

𝑍𝑝,𝑤,ℎ =
𝑇𝑉 ,𝑟𝑒𝑓
𝛼

[
 
 1 − (

𝑝̃

𝑝𝑟𝑒𝑓
)

𝑘𝑅𝑑𝑟𝑦
𝑔0

]
 
 + 𝑍𝑔,𝑟𝑒𝑓

𝑚𝑠𝑙      ,      0 < 𝑍𝑔̂
𝑚𝑠𝑙 ≤ 11 km  ; 

 

𝑍𝑝,𝑤,ℎ = 11km −
𝑇𝑉 ,11𝑘𝑚𝑅𝑑𝑟𝑦

𝑔0
ln (

𝑝̃

𝑝11𝑘𝑚
)   ,       11 ≤ 𝑍𝑔̂

𝑚𝑠𝑙 < 20 km  , 

(4.3) 

 

whereby 𝑍p,w,h denotes the weather-and-humidity-corrected pressure altitude. 

 

4.1.2 Weather-correction with Interpolated Weather Data 

Weather-corrected pressure altitude 𝑍𝑝,𝑤 is computed by inserting, as references, in 

the first expression of Equation (4.1) the pressure and temperature provided by weather 

data at the aircraft’s latitude, longitude, and geopotential altitude AMSL. Additionally, 

weather-corrected pressure altitude at geopotential altitudes AMSL  higher than 11 km, 

is computed with the second expression in Equation (4.1). In this second expression, the 

pressure and temperature provided by weather data at 11 km of geopotential altitude 

AMSL are needed. 

In this work, weather data is obtained from Copernicus, the European Union’s Earth 

observation programme, which provides various climate datasets. These are managed by 

the European Centre for Medium-Range Weather Forecasts (ECMWF) within the con-

text of the Copernicus Climate Change Service (C3S).  

In particular, weather data is extracted from the ECMWF ERA5 climate reanalysis 

on pressure levels. This provides data for numerous atmospheric quantities on 37 pres-

sure levels from 1000 to 1 hPa, i.e., on isobar surfaces. Data is given at each UTC full 

hour since 12:00 a.m. of January 1, 1979, on a global regular latitude-longitude grid 

having a 0.25° resolution [17]. Figure 4.3 summarizes this in a schematic way.  

This climate dataset can be therefore visualized as a four-dimensional (4D) grid. For 

each of the points of this 4D grid, among the various quantities, the temperature, the 

geopotential altitude AMSL and the specific humidity are reported.  

 

In order to obtain the temperature and pressure at the current aircraft’s location, 

multidimensional interpolation of the ERA5 data is necessary. In the present work it 

was performed with the true trajectory profile, being this obtained from the available 

test flight’s data, as described in Section 5.1.  
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Figure 4.3: ERA5 weather data structure scheme and the aircraft’s position at a cer-

tain location and time 

The interpolation is performed linearly in the horizontal plane and in time, whereas 

there is a distinction for the interpolation along the vertical. Indeed, the interpolation is 

done linearly for temperature, whereas it is performed linearly in the logarithm of pres-

sure, since it is known that pressure decreases approximately exponentially with increas-

ing altitude [25, 44].  

It was observed that, for the flight trajectories considered in this work (see Section 

5.1), it was enough to consider only the 23 lowest pressure levels, i.e. the 23 pressure 

levels whose corresponding isobar surfaces are closer to the MSL surface. These levels 

range from 1000 to 200 hPa and the difference between adjacent levels is constant and 

equal to 25 hPa. Only below 100 hPa, the spacing between consecutive levels is not 

constant anymore and actually decreases progressively. 

 

More in detail, at any flight trajectory’ instant, the temperature and the geopotential 

altitude AMSL of each isobar are linearly interpolated to the  trajectory’s horizontal 

position and UTC time. This results in a two-dimensional (2D) matrix, both for 

temperature and for geopotential altitude AMSL, in which one dimension’s length is 

equal to the number of trajectory time instants and the other dimension’s length is 23.  

For the interpolation in the horizontal plane, the latitude and longitude referenced to 

the WGS84 ellipsoid, have to be used. Indeed, as already mentioned in Section 2.1, in 

the horizontal plane, the ERA5 weather data is referenced with respect to the WGS84 

[11, 12]. 

Regarding the details of the interpolation in the vertical channel, at any flight 

trajectory’ instant, the above mentioned 2D temperature matrix, whose corresponding 

geopotential altitudes AMSL are contained in the other aforementioned 2D matrix, is 

linearly interpolated to the aircraft’s geopotential altitude AMSL. This yields 𝑇ref .  

Since the second expression of Equation (4.1) requires pressure and temperature at 

𝑍g
msl = 11 km, temperature is also interpolated to 𝑍g

msl = 11 km, yielding 𝑇11km. 

Moreover, the natural logarithms of the 23 isobars’ pressures, through the matrix of 

the geopotential altitudes AMSL, are linearly interpolated to the current aircraft’s 

geopotential altitude AMSL. By evaluating the exponential function, with the base 

being Euler's number, the pressure at the current aircraft’s position, i.e., 𝑝ref , is 
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obtained. Similarly to what was said in the previous paragraphs about 𝑇11km, pressure is 

also logarithmically interpolated to 𝑍g
msl = 11 km, yielding 𝑝11km. 

The interpolations are all performed with the MATLAB® function interpn. 

 

It shall be noticed that the aircraft’s geopotential altitude AMSL used for the 

interpolation is computed applying Equations (2.12) and (2.13). The geoid undulations 

are obtained from the EGM96 model, which provides data with a raster at a 15’×15’ 

(latitude × longitude) resolution, through the MATLAB® function geoidheight. 

Although this function also allows to obtain geoid undulations from the newer and more 

accurate EGM2008 model, which has a higher resolution (2.5’×2.5’) with respect to the 

EGM96, the EGM96 is chosen. This choice is due to the fact that the ERA5 data [17] is 

referenced in the vertical channel to the EGM96 Geoid [18].  

 

With this interpolated weather data and pressure measurement, as said in the 

beginning of this section, Equation (4.1) yields an altitude 𝑍𝑝,𝑤 whose scale and 

reference are the geopotential one and the MSL, respectively.  

To convert this altitude to a geodetic altitude two steps are necessary: one for the 

scale conversion and one for the reference shift.  

First, Equation (2.13) should be reverted to obtain 𝑍g
𝑤𝑔𝑠84. Secondly, this should be 

entered in Equation (2.12), which should then be reverted to obtain the geodetic 

altitude ℎ. Anyway, since Equation (2.12) cannot be analytically solved for ℎ, a 

numerical solution could be used. Since the variation of 𝑍g
𝑤𝑔𝑠84(𝐿, ℎ) with ℎ is relatively 

small, another option to obtain ℎ from 𝑍g
𝑤𝑔𝑠84(𝐿, ℎ) with a relatively small error but in 

a fast way could be to analytically compute 𝑍g
𝑤𝑔𝑠84(𝐿,𝑍g

𝑤𝑔𝑠84) with Equation (2.12) and 

to obtain an approximation ℎ∗ of ℎ with 

ℎ ≈ ℎ∗ = [𝑍g
𝑤𝑔𝑠84 − 𝑍g

𝑤𝑔𝑠84(𝐿, 𝑍g
𝑤𝑔𝑠84)] + 𝑍g

𝑤𝑔𝑠84 . (4.4) 

This yields satisfactory results because for the altitude ranges considered in this work 

ℎ −𝑍g
𝑤𝑔𝑠84(𝐿, ℎ) ≈ 𝑍g

𝑤𝑔𝑠84 − 𝑍g
𝑤𝑔𝑠84(𝐿, 𝑍g

𝑤𝑔𝑠84) . (4.5) 

Indeed, connsidering a latitude 𝐿 of 47° and a geodetic altitude ℎ of 11 km, which 

yield a 𝑍g
𝑤𝑔𝑠84(𝐿, ℎ)  of 10.9827 km, and thus a difference ℎ − 𝑍g

𝑤𝑔𝑠84(𝐿, ℎ) of 17.30 m, a 

difference 𝑍g
𝑤𝑔𝑠84 − 𝑍g

𝑤𝑔𝑠84(𝐿,𝑍g
𝑤𝑔𝑠84) of 17.246 m is obtained. 

Nevertheless, in the present work, the difference ℎ −𝑍g
𝑤𝑔𝑠84(𝐿, ℎ) for all trajectories’ 

points was computed from the GPS data and then added to the 𝑍g
𝑤𝑔𝑠84 obtained from 

the weather-corrected pressure altitude to finally obtain a geodetic altitude.  

Since this difference is relevant in Section 8.1.2, a function is here introduced to refer 

to it in a faster way: 

Δ𝑠𝑐𝑎𝑙𝑒(𝐿, ℎ) ∶= ℎ − 𝑍g
𝑤𝑔𝑠84(𝐿, ℎ) . (4.6) 

 

To consider humidity in the pressure altitude computation, one may follow the 

procedure presented in the previous praragraphs of this section,  with the difference of 
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using Equation (4.3) instead of Equation (4.1), to compuute 𝑍𝑝,𝑤,ℎ.  

Since Equation (4.3) also features humidity, this option requires to perform the 

additional step of of interpolating the specific humidity to the aircraft’s latitude and 

longitude and at the aricraft’s altitude or at 11 km of geopotential altitude AMSL.  

The interpolation of humidity to obtain 𝑞11km and 𝑞ref , is done in an analogous way 

to the interpolation of temperature, as this is described in the previous paragraphs of 

this section. 

It was observed that the consideration of humidity, while increasing the 

computations’ complexity, showed no apparent improvement in approximating the true 

geodetic altitude. For this reason, this geodetic altitude compuation option is neglected 

in the next sections of this thesis and was here mentioned for the sake of completeness. 

 

4.2 Geodetic Altitude from Blanchard Altitude 

As can be seen from Equation (2.29), in order to compute Blanchard altitude, i.e., 

orthometric altitude via the Blanchard algorithm, temperature and aircraft’s and wind 

velocity measurements are needed in addition to pressure measurements. As explained 

in Section 5.1, static air temperature measurements are provided within the available 

test flight’s data.  

In order to compute the product 𝑉𝑔𝑉𝑤𝑐 within Equation (2.29) at each iteration, 

Equation (2.31) is used, which means that the north and east components of the aircraft 

velocity, i.e. 𝑣𝑎𝑁  and 𝑣𝑎𝐸 , respectively, need to be known. In this work, these compo-

nents are obtained from the available test flight’s data, as described in Section 5.3. 

Apart from the aircraft’s north and east velocity components, according to Equation 

(2.29), also the north and east velocity components of the wind—denoted by 𝑣𝑤𝑁  and 

𝑣𝑤𝐸—are needed. Like the aforementioned aircraft’s velocity components, in this work, 

the required wind velocity components are obtained from the test flight’s data. This is 

described in in Section 5.3 too. 

Regarding the computation of local gravity within the algorithm according to Equa-

tion (2.30), this was based on the latitude values contained in the GPS post-processed 

data. In a real-time implementation, anyway, the latitude given by the IRS may be 

used instead, as this is in most cases provided at a higher rate with respect to the lati-

tude from GNSS systems.  

The use of measurements from the IRS, that is a navigation subsystem that does not 

need any external information to function, complies with one of the strengths of the 

Blanchard’s algorithm. This consists in the fact that, unlike the weather-corrected pres-

sure altitude method, the Blanchard algorithm does not need any external information 

to provide altitude information. Indeed, the quantities that are needed within this algo-

rithm may all be provided by airborne measurements, such as the IRS ones. 

The implementation of the Blanchard algorithm which was described in the previous 

paragraphs of this section is herein referred to as the Blanchard algorithm with FMS 

data. 

 

A different implementation of the same algorithm is investigated within this work as 
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well. This is based on the use of the temperatures 𝑇ref and pressures 𝑝ref  which are ob-

tained via the interpolation of the ERA5 weather data. Furthermore, for this peculiar 

usage of the Blanchard algorithm, the required wind velocity components are obtained 

from the ERA5 dataset too. Indeed, the ERA5 climate reanalysis provides also the 

north and east wind velocity components on pressure levels. The interpolation of these 

quantities is therefore performed analogously to the interpolation of temperature and 

specific humidity, which is described in Section 4.1. This Blanchard algorithm imple-

mentation is herein referred to as the Blanchard algorithm with ERA5 data, in order to 

distinguish it from the Blanchard algorithm with FMS data. 

 

In the Blanchard algorithm with ERA5 data, humidity can be taken into account 

too. The consideration of humidity in the Blanchard algorithm consists in a small modi-

fication—based on Equations (2.17) and (2.18)—of Equation (2.28) to: 

 

𝑑𝐻 = −
𝑅𝑑𝑟𝑦𝑇𝑉
𝑔𝑝

𝑑𝑝 +
𝑉𝑔𝑉𝑤𝑐
𝑔

2𝛺 sin𝐿 𝑑𝑡 , (4.7) 

 

where the virtual temperature 𝑇𝑉  replaces the static air temperature 𝑇 . Practically, this 

translated to the use of  𝑇𝑉 ,𝑟𝑒𝑓 , which was introduced in Section 4.1.1, instead of 𝑇𝑟𝑒𝑓 .  
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5 Test Flights Data Preprocessing 
Section 5.1 presents the test flights which provided the data this thesis’s analyses are 

based on. In Section 5.2, the focus is on the procedure for reverse-engineering the pres-

sure measurements which were carried out during the flights and used to provide the 

available pressure altitude data. The steps needed to produce the wind and aircraft’s 

velocity components required by the Blanchard algorithm are described in Section 5.3. 

 

5.1 Test Flights  

The nine test flights which were analyzed in the present work were performed with 

DLR’s Dassault Falcon 20-E5 in 2018 between the 9th and the 13th of July. The flights 

took place mostly in Bavaria, as can be seen in Figure 5.1, in which the trajectories’ 

projections on the Earth’s surface are shown for the sake of completeness. 

Each flight is given an identifying code with the following format: DDX, where DD is 

the day of July the flight was performed. Regarding X, this is either “a” or “b”, with the 

former denoting the chronologically first of the potentially two flights of the same day.  

The start and end times of each flight are listed in Table 5.1. The geodetic altitude 

profiles of these flights are shown in Figure 5.2, where each flight is separated by the 

neighboring flights with black vertical dashed lines. On the x-axis the UTC time of the 

day each flight took place is shown. 

 

Flight identification code 
Start 

(UTC time) 

End 

(UTC time) 
Day 

09a 05:59:48 09:20:17 9 July 2018 

09b 10:45:35 13:00:43 9 July 2018 

10a 05:52:07 07:54:06 10 July 2018 

10b 10:14:44 13:16:40 10 July 2018 

11a 08:05:56 10:30:21 11 July 2018 

12a 05:35:46 08:40:01 12 July 2018 

12b 12:20:06 13:48:28 12 July 2018 

13a 05:01:09 08:26:51 13 July 2018 

13b 10:11:16 12:28:33 13b July 2018 

Table 5.1: Flights’ durations  

 

The data which was used to generate Figure 5.1 and Figure 5.2 is GPS post-
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processed data which was provided by the DLR Flight Experiments (FX) Facility. It 

contains, among others, the GPS time and the aircraft’s position, both in terms of car-

tesian components in the Earth-Centered-Earth-Fixed (ECEF) frame and in terms of 

curvilinear coordinates, i.e., latitude, longitude, and (geodetic) altitude. 

 

 

Figure 5.1: Test flights’ trajectories’ projections on the Earth’s surface (blue) and 

Oberpfaffenhofen airport (red) 

The FX facility also provided FMS (Flight Management System) data for each 

flight. This set of data contains, among others, the FMS time, i.e., UTC time in seconds 

after the midnight of the flight’s day, the Inertial Reference System (IRS) data and the 

Air Data Computer (ADC) data. More in detail, the IRS (also known as Inertial Navi-

gation System, shortened to INS) contains the aircraft’s velocity components, attitude 

angles and in particular the pitch angle, which is quite relevant within this work, as will 
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be explained in Section 7.1.  

 

 

Figure 5.2: Test flights’ altitude profiles 

 

The ADC data contains, along with other quantities, the calibrated airspeed, the 

static air temperature, the true airspeed, the pressure altitude, and the Mach number. 

A further subset of the FMS data is the Flight Management Computer (FMC) data, 

which contains the wind angle and wind speed.  

The static pressure measurements which were needed to compute the standard pres-

sure altitude were performed by the static pressure ports shown in Figure 5.3. 

 

 

Figure 5.3: DLR’s Dassault Falcon 20-E5’s static pressure ports, circled in green 

 

Since the GPS data is provided at a frequency of 5 Hz, it was linearly interpolated to 

match the 10 Hz frequency of the FMS data, in order to use as much data as possible 

within this work. A list of the quantities which were made available by the DLR FX 

Facility and which were relevant within the present work is given in Table 5.2. 
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Parameter in FMS Data in GPS post-processed data 

North velocity component X  

South velocity component X  

Vertical velocity component X  

Latitude X X 

Longitude X X 

Baro-inertial altitude X  

Standard pressure altitude X  

Geodetic altitude  X 

Wind angle X  

Wind speed X  

Pitch angle X  

UTC Time after midnight X  

GPS Time  X 

Calibrated air-speed (CAS) X  

Static air temperature 

(SAT) 
X  

Mach number X  

True air-speed (TAS) X  

Groundspeed X  

Table 5.2: Summary of available data (X stands for available) 

 

5.2 Pressure Measurements Retrieval 

It may be assumed that the reported pressure altitude in the ADC data was comput-

ed according to the standard altitude equation, i.e., Equation (2.25).  By reversing this, 

the pressure measurements may be retrieved. Anyway, first it needs to be made sure 

that no particular jumps appear in the pressure altitude during airport vicinity flight 

phases, since this jumps may indicate a pressure altitude correction of the kind de-

scribed in Section 2.3.1.  

By visualizing the three available altitude sets of data, i.e., GPS, IRS, and pressure 

altitude for any flight, it can be noticed that the IRS and pressure altitude appear to 

almost coincide at any time.  This is shown in Figure 5.4 for flight “11a”.  However, 

when plotting in the same figure the deviation of these two altitudes from the GPS one, 

an offset between them during the initial and terminal flight phases can be seen, as it 

clearly shown in Figure 5.5. In this figure, the vertical dashed red lines contain the 

flight portion in which IRS and pressure altitude are almost the same. The same dashed 

lines are also shown in Figure 5.4. 
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Figure 5.4: Flight “11a” ’s GPS altitude and FMS altitudes 

 

Figure 5.5: Flight “11a” ’s FMS altitudes deviations from GPS altitude 

The sudden “detachment” of the pressure altitude from the IRS altitude towards the 

end of the flight, as well as the sudden “attachment” short after take-off, allow to infer 

that at those time instants the setting for the pressure altitude computation has been 

changed from QNH to QNE and vice versa, respectively. The IRS altitude, instead, is 

thought to have been damped uninterruptedly through the standard pressure altitude 

throughout the whole flight, as it is described in Chapter 3. Unfortunately, the standard 

pressure altitude is not given in the available data in the time portions outside of the 

dashed red lines. 
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If the standard pressure altitude had been reported for the whole flight duration, one 

may compute the QNH baro-correction in pressure domain, 𝐵𝐶QNH, by computing 

ΔZQNH with Equation (2.27), inserting it into Equation (2.26) and inverting this. Any-

way, this still may be done by considering the IRS altitude as the standard pressure al-

titude. The 𝐵𝐶QNH computed this way is shown in Figure 5.6, along with the standard 

MSL pressure, 𝑝0.  

 

 

Figure 5.6: Flights “11a” ‘s guessed QNH baro-correction in pressure domain  

The QNH baro-correction in pressure domain retrieved this way is not constant—it  

actually seems to be noisy—due to the fact that the IRS altitude does not really coin-

cide with the actual standard pressure altitude. The actual 𝐵𝐶QNH, nevertheless, is 

thought to have been constant for at least long-time intervals, since METAR transmis-

sion often take place hourly [45, 46].  

If the true 𝐵𝐶QNH were to be exactly known, and not just roughly estimated as pre-

viously described, it would allow for the retrieval of the actual pressure measurements 

performed by the aircraft’s barometer in these portions of the flight outside the dashed 

red lines. Nevertheless, pressure measurements may be retrieved from the pressure alti-

tude for the main portion of the flight, during which one can be confident that the re-

ported pressure altitude corresponds to standard pressure altitude. 

For the two remaining portions of the flight, an estimation of the mean value may be 

performed, in order to approximate the actual 𝐵𝐶QNH and therefore the actual pressure 

measurements during those portions. This would provide more data for low-altitude 

analyses but was not performed within this work and remains as an option for future 

usages of these test flight’s data. 

For these reasons, further analyses of this flight are done within its central—and 

longest—portion. 

Apart from this way, pressure measurements may be also retrieved with a second 
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method, from the calibrated airspeed CAS and the Mach number, based on the theory 

presented . This is done by reverting Equation (A.4) to obtain impact pressure and in-

serting this in Equation (A.3), which, after being reverted, provides the static air pres-

sure. 

According to Equation (A.1), the Mach number may also be computed from the true 

airspeed, 𝑇𝐴𝑆, divided by the speed of sound, which in turn can be computed through 

Equation (A.2) with the static air temperature measurements provided within the FMS 

data. However, the Mach number computed this way is found not to coincide with the 

Mach number in the FMS data, as shown in Figure 5.7. 

 

 

Figure 5.7: Flights “11a” ‘s reported and computed Mach number values, during the 

central flight portion 

Therefore, depending on which Mach number values are used, this more articulated 

second method provides different pressures. Furthermore, as compared with the pres-

sures obtained by reverting the pressure altitude equation, they appear to be much nois-

ier, as shown in Figure 5.8. 
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Figure 5.8: Flights “11a” ‘s differently retrieved pressure measurements, during the 

central flight portion 

The findings of the analysis of flight “11a” about the pressure altitude detachment 

from the IRS altitude were found to comply with the analyses of all flights, although 

the detachment/attachment were found to happen at different altitudes, depending on 

the flight. Moreover, also the findings about this flight’s Mach number differences and 

the differences in the retrieved pressures were found to comply with the analyses of all 

flights, as shown in Figure 5.9 and Figure 5.10, respectively.  

For this reason, it was chosen to focus on each flight’s central portion and to consid-

er the pressures obtained from the pressure altitudes on that portion as the actual pres-

sure measurements. 
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Figure 5.9: Reported and computed Mach number values, during each flight’s central 

portion 

 

Figure 5.10: Differently retrieved pressure measurements, during each flight’s central 

portion 
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5.3 Wind and Aircraft’s Velocity Components 

Computation from Available Data 

The north and east aircraft velocity components, together with the downward-

pointing velocity component along the vertical to the ellipsoid, 𝑣𝑎𝐷, build up the 3D 

vector expressing the velocity with reference to the ECEF-frame and resolved along the 

axes of the current NED frame: 

𝐯𝑒𝑏
𝑛 = (

𝑣𝑎𝑁
𝑣𝑎𝐸
𝑣𝑎𝐷

). (5.1) 

 

A North-East-Down (NED) frame—denoted by the superscript 𝑛—is a local naviga-

tion frame, which means its origin always coincides the position of the navigating vehi-

cle. As its name suggests, the axes of an NED frame are aligned with the topographic 

directions, i.e., the north, east and downward directions, at the origin’s location. More 

in particular, in practical applications, the frame may be centered in a peculiar point of 

the navigating vehicle or of a component of the navigation system [9]. 

  

In the IRS data, 𝑣𝑎𝑁  and 𝑣𝑎𝐸 are reported. Anyway, in this work, the north and east 

components of aircraft’s velocity were derived from the GPS position data too. First, 

the ECEF-referenced velocity resolved along the ECEF axes, denoted by 𝐯𝑒𝑎
𝑒 , was com-

puted by numerically differentiating the aircraft’s cartesian GPS position, denoted by 

𝐫𝑒𝑎
𝑒 , through a symmetric difference quotient scheme. This means that the ECEF-

referenced velocity vector at the k-th time instant—in which case it is denoted by 

𝐯𝑒𝑎,𝑗
𝑒 —is computed with 

𝐯𝑒𝑎,𝑗
𝑒 ≈

𝐫𝑒𝑎,𝑗+1
𝑒 − 𝐫𝑒𝑎,𝑗−1

𝑒

2Δ𝑡
 , 𝑗 = 2, 3, … , 𝑁 − 1 , (5.2) 

where Δ𝑡 denotes the time interval between two consecutive time instants and N de-

notes the total number of instants. The velocity vector at the first and last time instant, 

𝐯𝑒𝑎,1
𝑒  and 𝐯𝑒𝑎,𝑁

𝑒  were chosen to coincide with 𝐯𝑒𝑎,2
𝑒  and 𝐯𝑒𝑎,𝑁−1

𝑒  , respectively. 

From 𝐯𝑒𝑎
𝑒 , 𝐯𝑒𝑎

𝑛  was computed with 

𝐯𝑒𝑎,𝑗
𝑛 = 𝐂𝑒,𝑗

𝑛 𝐯𝑒𝑎,𝑗
𝑒       𝑗 = 1, 2, … , 𝑁 , (5.3) 

where the coordinate transformation matrix is [9] 

  

𝐂𝑒
𝑛 = (

−sin 𝐿 cos 𝜆 −sin 𝐿 sin 𝜆 cos 𝐿
− sin 𝜆 cos 𝜆 0

−cos 𝐿 cos 𝜆 −cos 𝐿 sin 𝜆 − sin 𝐿
) . (5.4) 

 

The north and east velocity components from the GPS position numerical differenti-

ation showed to be relatively highly in accordance with their already available IRS 

counterparts. Anyway, because of the differentiation and because of the general low fre-

quency of the available data,  𝐯𝑒𝑎
𝑒  and thus 𝐯𝑒𝑎

𝑛  from the GPS position data were found 

to be too noisy.  
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In order to prevent a smoothing procedure to have unpredictable effects on 

Blanchard altitude, in this work it was chosen to employ the 𝑣𝑎𝑁  and 𝑣𝑎𝐸 components 

which are available in the IRS data as the ultimate ones. However, Blanchard altitude 

computed with the IRS velocity components showed practically no difference with re-

spect to the Blanchard altitude computed with the velocity components obtained from 

the GPS position. 

 

The north and east wind velocity components were computed based on the wind 

speed 𝑉𝑤 and wind angle 𝜓𝑤, provided within the FMC data. The wind angle, which 

increases clockwise from the North-pointing axis when viewed from above, is the mete-

orological wind direction, that is the direction from which the wind blows [40].  

The two sought wind velocity components can be computed from the horizontal wind 

speed 𝑉𝑤ℎ with the following expressions [40]: 

𝑣𝑤𝑁 = −𝑉𝑤ℎ cos 𝜓𝑤   , 

𝑣𝑤𝐸 = −𝑉𝑤ℎ sin 𝜓𝑤   , 
(5.5) 

which reflect the relationships shown in Figure 5.11. 

 

 

Figure 5.11: Horizontal wind velocity components 

Assuming that the given the wind speed 𝑉𝑤 coincides with the horizontal wind speed 

𝑉𝑤ℎ allowed therefore for a straightforward computation of 𝑣𝑤𝑁  and 𝑣𝑤𝐸 . This assump-

tion had to be mentioned, since it is unclear whether the given wind speed really is just 

the horizontal speed or it also includes the vertical wind velocity component. Even in 

the case that the given wind speed is the modulus of the 3D wind vector, one may still 

assume that the wind speed almost coincides with the horizontal wind speed most of the 

time. This is due to the fact that the vertical wind velocity component is much lower 

than the two horizontal ones [47, 48].  
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6 Geodetic Altitude Computation Re-

sults 
Section 6.1 presents the results of the methodology described in Section 4.1 for the 

computation of geodetic altitude from weather-corrected pressure altitude applied on 

the nine different test flights presented in Chapter 5. 

 In Section 6.2, the results of the methodology described in Section 4.2 for the computa-

tion of geodetic altitude from Blanchard altitude applied to the same flights are pre-

sented 

As anticipated in Section 5.2, the results of the two methodologies refer to the cen-

tral portion of each flight, i.e., in the portion where one can be confident that the re-

trieved pressure measurements coincide with the actual pressure measurements. 

 

6.1 Geodetic Altitude from ERA5 Weather-

corrected Pressure Altitude 

In Figure 6.1, the deviation from the true geodetic altitude of the pressure altitude 

reported in the FMS data is shown in black. The deviation of the weather-corrected 

pressure altitude is shown in light blue in the same figure. The color code of Figure 6.1, 

as well as of the other figures in this section, is in accordance with the color code adopt-

ed in Figure 4.2 for the different blocks representing each a different kind of altitude. 

It is clear that the geodetic altitude form the Blanchard algorithm approximates with 

a higher accuracy the true geodetic altitude than the standard pressure altitude.  

By comparing the standard pressure’s deviations with the true geodetic altitude pro-

files—shown in Figure 6.2—it can be seen that these deviations increase with increasing 

flight altitude, generally. Such a trend can also be seen in the weather-corrected pres-

sure altitude deviations. In Figure 6.1 a peculiar shape of the deviations of the standard 

pressure altitude, which can be noticed partially also in the deviations of the other alti-

tude, can be seen. A reason for this is given in the next paragraph. 

As said in Section 2.2.2, vertical aircraft guidance is based on flight levels, which 

means that aircrafts at cruise altitudes fly on isobar surfaces. These can be more or less 

detached from surfaces of constant geodetic altitude. In flight 09a, e.g., the detachment 

of the isobar corresponding to the Flight Level at the highest cruise altitude is approxi-

mately constant along that flight portion, as can be seen in Figure 6.1. In flight 10a, 

instead, the isobar surface during the cruise had a varying offset with respect to the 

true geodetic altitude along the flight. This is likely to be due to the fact that flight 10a 
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is the one in which the aircraft reached the maximal horizontal distance from the air-

port, as can be seen in Figure 5.1. This in turn, means that this flight is the one during 

which the aircraft had the highest chances of  flying across regions of different pressure 

vertical distribution. 

 

 

Figure 6.1: Deviation from GPS altitude of the weather-corrected and the standard 

pressure altitudes, during each flight’s central portion 

 

Figure 6.2: Test flights’ altitude profiles, during the central flight portions 

Proceeding along the blue arrow in Figure 4.1 and Figure 4.2, the consideration of 
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the geoid undulations, which consists in a shift of the reference to the WGS84 ellipsoid, 

enables a further improvement in the approximation of the true geodetic altitude. This 

can be seen in Figure 6.3, where the deviation of weather-corrected pressure altitude 

referenced to the WGS8e ellipsoid is shown in blue. The deviation still shows some level 

of modulation with the true geodetic altitude itself. 

 

 

Figure 6.3: Deviation from GPS altitude of the weather-corrected pressure altitude, 

with and without the reference shift to the WGS84 surface, during each flight’s central 

portion 

By applying the next step of the methodology represented by the blue arrow, i.e., the 

conversion of the altitude scale, the deviations are further reduced, generally. This is 

shown in Figure 6.4. Here, the deviation of weather-corrected pressure altitude refer-

enced to the WGS8e ellipsoid and in the geometric scale is shown in dark blue.  

Being the weather-corrected pressure altitude referenced to the WGS8e ellipsoid and 

in the geometric scale nothing but the geodetic altitude from the weather-corrected 

pressure altitude, its deviation from the true geodetic altitude may now be referred to as 

errors in the geodetic altitude.  

These errors show a lower level of modulation in comparison with the deviations of 

the previous figures of this section.  
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Figure 6.4: Deviation from GPS altitude of the WGS84-referred weather-corrected 

pressure altitude, before and after the scale conversion, during each flight’s central por-

tion 

6.2 Geodetic Altitude from Blanchard Altitude 

In this work, the Blanchard altitude was computed at each time instant in which the 

needed quantities are to be found in or computed from the available test flights’ data. 

The errors in the geodetic altitude obtained from the Blanchard altitude with FMS data 

are shown in green in Figure 6.5. In the same figure, the deviation of the standard pres-

sure altitude is shown in black. The color code is here in accordance with the color code 

adopted in Figure 4.2.  

The geodetic altitude from the Blanchard algorithm appears to be more accurate in 

the approximation of the true geodetic altitude. Anyway, in some flights (flights 12a 

and 13a, especially) a drifting tendency of the errors in the geodetic altitude obtained 

via the Blanchard algorithm can be noticed.  These drifts were expected, because of the 

iterative nature of the Blanchard algorithm, as described in Section 4.2. 

 

The second term of the Blanchard algorithm’s equation, i.e., the one involving the 

velocity measurements, is herein referred to as the wind term. To show its effect on the 

altitude computation, Figure 6.6 is presented.  
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Figure 6.5: Deviation from GPS altitude of the geodetic altitude from “Blanchard al-

titude” and the standard pressure altitude, during each flight’s central portion 

In Figure 6.6, the errors in the geodetic altitude obtained from the Blanchard algo-

rithm without the wind term are shown in magenta. In this case, the errors appear larg-

er in some flights’ portions and smaller in other.  

 

 

Figure 6.6: Deviation from GPS altitude of geodetic altitude from “Blanchard alti-

tude, with and without the wind-term during each flight’s central portion 
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Figure 6.7 shows the errors in the geodetic altitude from the Blanchard altitude ob-

tained using as pressure, temperature, and wind velocity measurements the pressure, 

virtual temperatures and wind velocity obtained from the ERA5 weather data. As in 

Figure 6.6, in Figure 6.7, the errors in the geodetic altitude obtained with and without 

the wind term are plotted in green and magenta, respectively. In both cases the ob-

tained geodetic altitudes with the ERA5 weather data approximate the true geodetic 

altitude in a more accurate way with respect to their counterparts obtained with the 

FMS measurements. 

 

Figure 6.7: Deviation from GPS altitude of geodetic altitude from “Blanchard alti-

tude” using ERA5 data and considering humidity, with and without the wind-term, dur-

ing each flight’s central portion 

Figure 6.7 shows that when using ERA5 weather data the consideration of the wind 

term within the Blanchard algorithm yields better results in terms of accuracy with re-

spect to the true geodetic altitude. This, along with the generally better performance of 

the Blanchard algorithm with ERA5 data than with FMS  measurements,  may indicate 

that the ERA5 data is more accurate than the FMS measurements. 

The use of ERA5 data also allows to use the specific humidity, that is not provided 

in the FMS measurements, to compute the virtual temperature that is then used within 

the Blanchard algorithm. When not considering the effect of humidity, the accuracy 

achieved by the Blanchard algorithm with the ERA5 data is lower, as shown in Figure 

6.8. 

In Figure 6.9, the deviations from the true geodetic altitude of the three different al-

titude outputs of the flow diagram in Figure 4.2 are shown. These are the standard 

pressure altitude (in black), the geodetic altitude obtained from the Blanchard algo-

rithm using the FMS measurements (in green), and the geodetic altitude from the 

weather-corrected pressure altitude (in blue). The color code corresponds to the one of 
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Figure 4.2. It is clear that the overall best option for approximating the true geodetic 

altitude is the third option. This is therefore the only geodetic altitude computation op-

tion that is considered in the remaining chapters of this thesis. 

 

 

Figure 6.8: Deviation from GPS altitude of geodetic altitude from “Blanchard alti-

tude” using ERA5 data, with and without the consideration of humidity, during each 

flight’s central portion 

 

Figure 6.9: Comparison of the deviations from the GPS altitude, during each flight’s 

central portion 
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7 Modeling of Weather-corrected Pres-

sure Altitude Errors for Snapshot 

Algorithms 
This chapter describes the procedure employed for the modeling of the best geodetic 

altitude computation method, i.e., the one based on weather-corrected pressure altitude, 

for geodetic altitude navigation snapshot algorithms. 

First, in Section 7.1, an empirical model is derived to compensate for the effects in-

duced by the aircraft’s pitch attitude on the errors in the geodetic altitude from weath-

er-corrected pressure altitude. 

Section 7.2 focuses on the required modeling of the residual altitude errors for Snapshot 

algorithms. 

The results of the procedure presented in this chapter are presented and discussed in 

Section 7.3. 

 

7.1 Mitigation of the Aircraft Dynamics Effects on 

the Altitude Errors 

The errors in the geodetic altitude from the Blanchard algorithm, that is denoted 

by ℎ𝐵, may be defined as 

𝐸𝐵 = ℎ− ℎ𝐵 , (7.1) 

where ℎ is the true geodetic altitude, that is the altitude reported in the post-processed 

GPS data. Analogously, the errors in the geodetic altitude from the weather-corrected 

pressure altitude, that is denoted by ℎ𝑤, are defined as 

𝐸𝑤 = ℎ− ℎ𝑤 . (7.2) 

Peculiar relationships of 𝐸𝐵 and 𝐸𝑤 with respect to many different flight mechanics 

quantities were visually looked for. Among these quantities, there are some which were 

to be found in the available flight data and others which were computed based on the 

former ones and/or on weather data. These quantities are: the NED velocity compo-

nents; the bank, pitch, and yaw angles; the angle of attack and the angle of sideslip; 

altitude; Mach number and true airspeed. 

The errors in the geodetic altitude from the Blanchard algorithm were not found to 

be visually correlated to any of the aforementioned quantities. In contrast, 𝐸𝑤 showed 
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an approximately linear relationship with respect to the pitch angle. The inflow direc-

tion into the pressure ports, shown in, may be responsible for this.  

A linear model was found through the MATLAB® function robustfit, which 

produces robust multiple linear regressions, by using the bisquare (also known as 

biweight) fitting weight function. In particular, the outputs of the MATLAB® function 

robustfit are the two paremeters needed for the definition of the linear model, i.e. its 

offset 𝐵 and the slope 𝐴, defined such that 

𝑦 = 𝐴 𝜃 + 𝐵 . (7.3) 

where 𝜃 is the aircraft’s pitch angle. 

To evaluate the performance of this linear regression, its results were compared with 

the outputs of linear regressions using other weight functions, such as the Cauchy’s, the 

Andrews’s, the Welsch’s weight functions, and others. All of these options produced 

almost the same results.  

Having a model, expressed by Equation (7.3), for the pitch-induced effects on ℎ𝑤, 

this can be used to obtain a generally more accurate geodetic altitude. This altitude, 

denoted by ℎ𝑤,𝜃, is referred to as the pitch-compensated geodetic altitude from weather-

corrected pressure altitude. Another, still long, name which in this thesis is used to refer 

to this altitude is geodetic altitude from pitch-compensated, weather-corrected pressure 

altitude. This other name does not reflect that the pitch compensation is done in the 

geodetic altitude domain, instead in the pressure altitude one. Anyway, this name is 

sometimes used in this thesis to first highlight the fact that this altitude is a geodetic 

one. 

This so-called pitch-compensation is applied as follows 

ℎ𝑤,𝜃 = ℎ + 𝑦. (7.4) 

As it will be shown in Section 7.3, the pitch-compensation is able to reduce the devi-

ation from the true geodetic altitude. 

 

7.2 Residual Errors’ Modeling for Snapshot Algo-

rithms 

In a hypothetical integration of the considered geodetic altitude measurements, i.e., 

ℎ𝑤,𝜃,  within a snapshot (i.e., single-epoch) algorithm, an overbounding distribution of 

the residual errors would be needed.  This distribution may be a gaussian distribution, 

for instance. 

In this work, based on [49], two different overbounding gaussian distributions are 

first obtained. One of them bounds the residual errors’ distribution on the distributions’ 

left-hand side and the other bounds the right-hand side. The computation of the two 

overbounding gaussian distributions’ parameters is performed via the MATLAB® 

Toolset which was used by the authors of [49] and which is available at [50]. 

By selecting the mean with the largest absolute value and the largest standard devia-

tion among the mean values and the standard deviations of the two overbounding 
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gaussian distributions, a third overbounding gaussian distribution is obtained. This is 

the gaussian distribution which overbounds the whole residual errors’ distribution. 

 

7.3 Results of the Residual Errors’ Mitigation and 

Modeling 

The distribution of the errors in the geodetic altitude with respect to the pitch 

attitude angle is shown in Figure 7.1 for each of the nine different investigated flights. 

The distribution appears to be approximately linear. The corresponding linear model 

obtained via linear regression is shown in Figure 7.2.  

The two parameters defining the model obtained by using the bisquare fitting weight 

function are found to be A ≅ 140 m rad−1 ≅ 2.44 m deg−1 and B ≅ −14.5 m. 

 

 

Figure 7.1: Distribution of the errors of the geodetic altitude from the weather-

corrected pressure altitude versus the pitch angle, during each flight’s central portion 

This almost linear relationship between the altitude errors and the pitch attitude is 

reflected in an approximately linear relationship between the pitch attitude and the de-

viation of the barometric pressure and the ERA5 interpolated pressure. This is shown in 

Figure 7.3. The corresponding linear model is shown in this figure for the sake of com-

pleteness. 
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Figure 7.2: Linear model for the errors of the geodetic altitude from the weather-

corrected pressure altitude versus the pitch angle, during each flight’s central portion 

 

 

Figure 7.3: Linear model for the deviation of the barometric pressure and the inter-

polated ERA5 pressure versus the pitch angle, during each flight’s central portion 

After applying, via Equation (7.4), the compensation for the errors induced by the pitch 

attitude, the residual errors are found to be generally shifted closer to the zero and the 

magnitudes of their spikes are found to be generally lower, as shown in Figure 7.4. The 

number itself of the spikes is visually shown to be decreased. 
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Figure 7.4: Altitude errors, with and without pitch-compensation, for all flights, dur-

ing the central flight portions 

The statements in the previous paragraph regarding the improvement in the errors’ 

distribution is further reflected by Figure 7.5, in which the histograms of the errors be-

fore and after the so-called pitch-commendation are shown. 

 

 

Figure 7.5: Altitude errors’ distribution, with and without pitch-compensation, for all 

flights, during the central flight portions 

The mean and the standard deviation of the errors in geodetic altitudes after the 
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pitch-compensation are 0.1 and 4.1 m. Their counterparts before the pitch-compensation 

are -4.6 and 6.4 m, instead.  

 

The altitude errors after the application of the linear model compensation are re-

ferred to as the residual (altitude) errors. The cumulative density functions (CDFs) of 

the right-hand side part of the residual errors’ distribution and the related overbound-

ing gaussian distribution are shown in Figure 7.6. The gaussian distribution shows to be 

actually overbounding the errors’ distribution for quantile values larger than zero. 

 

 

Figure 7.6: CDF of the right-hand side part of the errors’ distribution and of the re-

lated overbounding gaussian distribution, for all flights, during the central flight por-

tions 

The counterpart of Figure 7.6, i.e., the CDF bounding on the left-hand side, is shown 

in Figure 7.7. 

The parameters defining the two bounding standard deviations are summarized in 

Table 7.1. The single overbounding gaussian distribution is then the one defined by a 

mean of 1.0717 m and standard deviation of 14.9362 m, respectively. 

 

Parameter Right-hand side Left-hand side 

Mean [m] 1.0717 −0.527 

Standard Deviation [m] 9.9738 14.9362 

Table 7.1: Mean and standard Deviation of the two gaussian distributions bounding 

the tow hand sides of the residual errors’ distribution 
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Figure 7.7: CDF of the left-hand side part of the errors’ distribution and of the relat-

ed overbounding gaussian distribution, for all flights, during the central flight portions 
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8 Modeling of Weather-corrected Pres-

sure Altitude Errors for Sequential 

Algorithms 
In this chapter, an exemplary sequential estimator for the integration of the geodetic 

altitude from the weather-corrected pressure altitude with INS&GNSS is presented. 

Throughout this chapter, the geodetic altitude after the pitch-compensation, described 

in Chapter 7, is considered. 

It shall be noted that no estimator algorithm has been implemented within this 

work. This example is given in order to highlight what would be a viable error modeling 

of the considered geodetic altitude measurements for sequential estimators. This may 

also be useful for sequential estimators of different kinds that may be designed and im-

plemented in future work. The error modeling is described in Section 8.1.1. 

The measurement model and measurement noise variance related to these geodetic 

altitude measurements’ integration are shown to be depending on the external weather 

data in Sections 8.1.2 and 8.1.3. 

The results of the procedures presented in this chapter are illustrated and discussed 

in Sections 8.2 to 8.4. 

 

8.1 Error Model Considerations Needed  for the 

Integration in a Sequential Estimator 

The computed altitude which is the best at approximating  the true geodetic altitude 

is the pitch-compensated geodetic altitude obtained from weather-corrected pressure 

altitude ℎ𝑤,𝜃. This section describes the methodology for its integration within a loosely-

coupled (LC) Kalman Filter for vertical positioning. For the sake of shortness, in this 

section, the aforementioned computed altitude is simply referred to as the processed 

baroaltimeter altitude and is denoted by ℎ𝑏, i.e. 

ℎ𝑏 = ℎ𝑤,𝜃 . (8.1) 

The LC KF-based estimation algorithm within which the processed baroaltimeter al-

titude could be integrated may be of the kind described in Section B.3, whereby various 

navigation aiding subsystems, e.g., GNSS, enter their own computed navigation solution 

component to the estimator, in an error-state implementation.  

The aiding subsystem that comprises the barometric altimeter is supposed to provide 
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the estimator with the processed baroaltimeter altitude. It is therefore assumed that a 

computer within this subsystem applies all the required transformations to convert pres-

sure measurements into the processed barometric altitude before this subsystem’s out-

put enters the estimator. In particular, before actually entering the KF algorithm, the 

INS altitude is subtracted from the processed baroaltimeter altitude, as it described in 

Section B.3 for a generic altimeter.  

A flow diagram representing such a navigation system aboard an airplane is shown in 

Figure 8.1, in which the aiding subsystems, as well as the INS, are enclosed in blue rec-

tangles with rounded corners.  

 

Figure 8.1: Potential flow diagram for processed baroaltimeter altitude integration  

In this figure, the processed baroaltimeter altitude is denoted by ℎ̃𝑏, while the INS 

navigation solution is denoted by ℎ̃. The attitude angles, i.e., bank, pitch and yaw an-

gles are denoted by 𝜙, 𝜃 and 𝜓, respectively. The vectors 𝐩 and 𝐯 denote position and 

velocity instead, which additionally feature the subscript 𝐺 in the case they are output 

by the GNSS aiding subsystem. In this figure, also the standard and the baro-corrected 

pressure altitude are shown. They enter the FMS in order to be used for vertical separa-

tion between airplanes. 

 

As can be seen from this figure, in this hypothetical integration, the interpolation of 

weather data in order to provide references for the weather-corrected pressure altitude 

computation is done with the position delivered by the INS. The position is also used 

within the barometric altimeter subsystem’s computer for assessing the geoid undula-

tions and the difference between the geometric and geopotential altitude scales. This 

computer also takes as input the pitch angle to apply the pitch-compensation. 

Anyway, this figure only represents an example of possible integration in real time. 

In the present work, post-processed GPS data has been used for the interpolation of the 
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weather data and computation of the geoid undulation, as well as of the difference be-

tween geometric and geopotential altitude scales during past flights. Accordingly, the 

weather data which is interpolated is obtained from a climate reanalysis and not from 

and a weather forecast, as it should be in a real-time implementation. 

The present example represents an integration which could be used to increase the 

accuracy to which a trajectory may be reconstructed in a post-processing.  

 

Within this context, the residual deviation of the processed baroaltimeter altitude is 

modeled as an augmented state. This is described in Section 8.1.1, based on Section B.3.  

In Section 8.1.2, the measurement model for the integration of processed baroaltime-

ter altitude is explained. A computation of the associated measurement noise variance is 

then proposed in Section 8.1.3. 

 

8.1.1 Dynamic Modeling of the Residual Errors as System 

Noise 

The errors in the processed baroaltimeter altitude ℎ𝑏 may be integrated in a KF-

based estimator as the sum of a bias term and another dynamic bias term with a time-

discrete first-order GMP. A similar modeling is to be found in [41], as described in Sec-

tion 3.2. 

In order to do so, first, the mean error of the baroaltimeter altitude is computed and 

considered as the fixed bias, for each one of the investigated test flights. The PSD of the 

errors about the mean error is then plotted, for each flight. By visualizing the PSD of 

all flights in the same axes, an overbounding GMP may be found, as it is shown in Sec-

tion 8.2.  

An example of a discrete-time stationary first-order GMP overbounding a time-

correlated process in the PSD domain is shown in Figure 8.2. Theory about this kind of 

GMPs is given in Appendix C. 

By looking at Equation (C.5), it can be seen that for such a GMP, the PSD reaches 

its highest value, denoted by 𝑆𝑚𝑎𝑥 , at 𝜔 → 0, or, equivalently, at 𝑓 → 0. This can also 

be observed from the red curve in Figure 8.2. Choosing a value for 𝜏 , and therefore for 

𝛼, Equation (C.5) may be reverted, with 𝜔 = 0, to obtain the standard deviation 𝜎 for 

the overbounding GMP from the maximum PSD of the actual process 𝑆𝑚𝑎𝑥 : 

𝜎 = √
𝑆𝑚𝑎𝑥(1 − 𝛼)

(1 + 𝛼)Δ𝑡
 (8.2) 

 

With the chosen value of 𝜏  and the thereby computed 𝜎, the PSD of the looked for 

GMP for a certain frequency range may be computed with Equation (C.5). By plotting 

this PSD in the same axes of the PSD plot of the actual process, it can be assessed 

whether or not the found GMP does effectively overbound the actual process. If not, the 

value of 𝜏  shall be changed and the newly resulting 𝜎 computed, till an overbounding 

GMP is found. This is therefore an iterative procedure. 
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Figure 8.2: Example of PSD overbounding of a time-correlated process with a GMP 

When this procedure was applied to the processed baroaltimeter altitude errors of 

each investigated flights, an overbounding GMP for all flights was sought by consider-

ing as 𝑆𝑚𝑎𝑥 the maximum PSD among all flights.  

High peaks in the PSD at low frequencies for all flights were found at common fre-

quencies, which are thought to be related to aircraft dynamics effects. These peaks dis-

appear when evaluating the PSD on the altitude plateaus of each flight.  

By altitude plateau, a flight portion where the given altitudes, i.e., the pressure alti-

tude and the GPS one, are approximately constant. It may be therefore inferred that 

the aforementioned peaks are due to some effects taking place during phases of altitude 

variations. 

 For this reason, it was chosen to consider only these portions and to apply the 

aforementioned procedure to these portions.  

As a result, this modeling of the processed baroaltimeter altitude may be applied on-

ly on flight portions where altitude is approximately constant, such as in cruise flight. 

The results of this procedure are shown in Section 8.2. 

 

8.1.2 Measurement Model 

The measurement model of processed baroaltimeter altitude within a LC KF-based 

estimator is formulated based on Equation (B.28) and on the example presented in Sec-

tion B.3. Assuming an error-state KF-based estimator, with the state vector being  

𝐱 = (
𝐱𝐼𝑁𝑆
𝐱𝑏
⋮
),    𝐱𝐼𝑁𝑆 =

(

  
 
𝛿𝐿
𝛿𝜆
𝛿ℎ
⋮ )

  
 
,  (8.3) 

the measurement matrix partition related to the baroaltimeter aiding subsystem would 

be of the following kind  
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𝐻𝑏,𝑗 = (
𝜕𝑧𝑏
𝜕𝛿𝐿

𝜕𝑧𝑏
𝜕𝛿𝜆

𝜕𝑧𝑏
𝜕𝛿ℎ

𝜕𝑧𝑏
𝜕𝐱𝑏

𝟎)
𝐱=𝐱̂𝑗

−

. (8.4) 

As described in the previous section, the augmented states of the baroaltimeter sub-

system, which are denoted by 𝐱𝑏, may be a static bias 𝑏𝑏,𝑠 and a dynamic bias 𝑏𝑏,𝑑, 

whereby the latter may be assumed to have a first-order stationary GMP structure: 

𝐱𝑏 = (
𝑏𝑏,𝑠
𝑏𝑏,𝑑

) . (8.5) 

 

Analogously to the example of Section 2.7.3, the KF measurement from the 

baroaltimeter subsystem is 

𝑧𝑏 = ℎ̃𝑏 − ℎ̃ . (8.6) 

Due to the fact that  ℎ̃𝑏 is nothing else but ℎ̃𝑤,𝜃 and considering the conversion from 

pressure altitude to geodetic altitude described in Section 4.1 and the pitch-

compensation of Section 7.1, it follows that 

 

ℎ̃𝑏 =
𝑇𝑟𝑒𝑓
𝛼

[
 
 1 −(

𝑝̃

𝑝𝑟𝑒𝑓
)

𝑘𝑅𝑑𝑟𝑦
𝑔0

]
 
 + 𝑍𝑔,𝑟𝑒𝑓

𝑚𝑠𝑙  + Δ𝑠𝑐𝑎𝑙𝑒(𝐿, ℎ) + 

               + 𝑍g
𝑤𝑔𝑠84(𝐿,𝑁(𝐿, 𝜆)) +𝐴 𝜃 + 𝐵 + 𝑏𝑏,𝑠 + 𝑏𝑏,𝑑 ,            

 

if 0 < 𝑍𝑔̂
𝑚𝑠𝑙 ≤ 11 km  ; 

 
 

ℎ̃𝑏 = 11km −
𝑇11𝑘𝑚𝑅𝑑𝑟𝑦

𝑔0
ln (

𝑝̃

𝑝11𝑘𝑚
)+Δ𝑠𝑐𝑎𝑙𝑒(𝐿, ℎ) + 

               +𝑍g
𝑤𝑔𝑠84(𝐿,𝑁(𝐿, 𝜆)) + 𝐴 𝜃 + 𝐵 + 𝑏𝑏,𝑠 + 𝑏𝑏,𝑑  ,         

 

if 11 ≤ 𝑍𝑔̂
𝑚𝑠𝑙 < 20 km  . 

 

(8.7) 

 

Then, since 

ℎ = 𝑍𝑔,𝑟𝑒𝑓
𝑚𝑠𝑙  + 𝑍g

𝑤𝑔𝑠84(𝐿,𝑁(𝐿, 𝜆)) +Δ𝑠𝑐𝑎𝑙𝑒(𝐿, ℎ) , (8.8) 

the first of the expressions of Equation (8.7) can be rewritten as 

ℎ̃𝑏 =
𝑇𝑟𝑒𝑓
𝛼

[
 
 1 −(

𝑝̃

𝑝𝑟𝑒𝑓
)

𝑘𝑅𝑑𝑟𝑦
𝑔0

]
 
 + ℎ+ 𝐴 𝜃 + 𝐵 + 𝑏𝑏,𝑠 + 𝑏𝑏,𝑑  , 

 

if 0 < 𝑍𝑔̂
𝑚𝑠𝑙 ≤ 11 km  ; 

(8.9) 

 

Considering that 𝑇𝑟𝑒𝑓 , as well as 𝑍𝑟𝑒𝑓 , 𝑇11𝑘𝑚 and 𝑍11𝑘𝑚 all depend on the position 

and taking Equation (8.9) into account, Equation (8.6) can be further developed to 
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𝑧𝑏 =
𝑇𝑟𝑒𝑓 (𝐿, 𝜆, ℎ)

𝛼
[
 
 1 − (

𝑝̃

𝑝𝑟𝑒𝑓(𝐿, 𝜆, ℎ)
)

𝑘𝑅𝑑𝑟𝑦
𝑔0

]
 
 + 

+ℎ+ 𝐴 𝜃 + 𝐵 + 𝑏𝑏,𝑠 + 𝑏𝑏,𝑑 − ℎ̃,        

 

if 0 < 𝑍𝑔̂
𝑚𝑠𝑙 ≤ 11 km  ; 

 

 

𝑧𝑏 = 11km −
𝑇11𝑘𝑚(𝐿, 𝜆, ℎ)𝑅𝑑𝑟𝑦

𝑔0
ln(

𝑝̃

𝑝11𝑘𝑚(𝐿, 𝜆, ℎ)
) +Δ𝑠𝑐𝑎𝑙𝑒(𝐿, ℎ) + 

+𝑍g
𝑤𝑔𝑠84(𝐿,𝑁(𝐿, 𝜆)) + 𝐴 𝜃 + 𝐵 + 𝑏𝑏,𝑠 + 𝑏𝑏,𝑑 − ℎ̃  ,   

 

 11 ≤ 𝑍𝑔̂
𝑚𝑠𝑙 < 20 km  . 

(8.10) 

 

Considering Equations (B.30) and (8.8), Equation (8.29) may be further rewritten as 

 

𝑧𝑏 =
𝑇𝑟𝑒𝑓(𝐿̃ − 𝛿𝐿, 𝜆̃ − 𝛿𝜆, ℎ̃ − 𝛿ℎ)

𝛼
  

      

[

  
 
1−(

𝑝̃

𝑝𝑟𝑒𝑓(𝐿̃ − 𝛿𝐿, 𝜆̃ − 𝛿𝜆, ℎ̃ − 𝛿ℎ)
)

𝑘𝑅𝑑𝑟𝑦
𝑔0

]

  
 
+ 

+𝐴 𝜃 + 𝐵 + 𝑏𝑏,𝑠 + 𝑏𝑏,𝑑 − 𝛿ℎ  ,               

 

if 0 < 𝑍𝑔̂
𝑚𝑠𝑙 ≤ 11 km  ; 

 

 

𝑧𝑏 = 11km −
𝑇11𝑘𝑚(𝐿̃ − 𝛿𝐿, 𝜆̃ − 𝛿𝜆, ℎ̃ − 𝛿ℎ)𝑅𝑑𝑟𝑦

𝑔0
   

             ln(
𝑝̃

𝑝11𝑘𝑚(𝐿̃ − 𝛿𝐿, 𝜆̃ − 𝛿𝜆, ℎ̃ − 𝛿ℎ)
) −𝑍g̃

𝑤𝑔𝑠84 + 

+𝐴 𝜃 + 𝐵 + 𝑏𝑏,𝑠 + 𝑏𝑏,𝑑   ,                  

 

if 11 ≤ 𝑍𝑔̂
𝑚𝑠𝑙 < 20 km  . 

 

(8.11) 

 

The first of the derivatives in Equation (8.4) can therefore be computed with the 

chain rule as 

𝜕𝑧𝑏
𝜕𝛿𝐿

=
𝜕𝑧𝑏
𝜕𝑇𝑟𝑒𝑓

𝜕𝑇𝑟𝑒𝑓
𝜕𝛿𝐿

+
𝜕𝑧𝑏
𝜕𝑝𝑟𝑒𝑓

𝜕𝑝𝑟𝑒𝑓
𝜕𝛿𝐿

  ,    0 < 𝑍𝑔̂
𝑚𝑠𝑙 ≤ 11 km ; 

 
𝜕𝑧𝑏
𝜕𝛿𝐿

=
𝜕𝑧𝑏

𝜕𝑇11𝑘𝑚

𝜕𝑇11𝑘𝑚
𝜕𝛿𝐿

+
𝜕𝑧𝑏

𝜕𝑝11𝑘𝑚

𝜕𝑝11𝑘𝑚
𝜕𝛿𝐿

  ,   11 ≤ 𝑍𝑔̂
𝑚𝑠𝑙 < 20 km .  

(8.12) 
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In an analogous way can the second of the derivatives in Equation (8.4) be comput-

ed. The third derivative, instead, is something more articulated: 

𝜕𝑧𝑏
𝜕𝛿ℎ

=
𝜕𝑧𝑏
𝜕𝑇𝑟𝑒𝑓

𝜕𝑇𝑟𝑒𝑓
𝜕𝛿ℎ

+
𝜕𝑧𝑏
𝜕𝑝𝑟𝑒𝑓

𝜕𝑝𝑟𝑒𝑓
𝜕𝛿ℎ

 − 1 ,   

if  0 < 𝑍𝑔̂
𝑚𝑠𝑙 ≤ 11 km ; 

 

𝜕𝑧𝑏
𝜕𝛿ℎ

=
𝜕𝑧𝑏

𝜕𝑇11𝑘𝑚

𝜕𝑇11𝑘𝑚
𝜕𝛿ℎ

+
𝜕𝑧𝑏

𝜕𝑝11𝑘𝑚

𝜕𝑝11𝑘𝑚
𝜕𝛿ℎ

+
𝜕𝑧𝑏

𝜕𝑍̃g
𝑤𝑔𝑠84

𝜕𝑍g̃
𝑤𝑔𝑠84

𝜕𝛿ℎ
 ,

if 11 ≤ 𝑍𝑔̂
𝑚𝑠𝑙 < 20 km . 

(8.13) 

 

The third term on the right side of the second expression of Equation (8.13) may be 

approximated to 

𝜕𝑧𝑏

𝜕𝑍g̃
𝑤𝑔𝑠84

𝜕𝑍g̃
𝑤𝑔𝑠84

𝜕𝛿ℎ
= −

𝜕𝑧𝑏

𝜕𝑍g̃
𝑤𝑔𝑠84

𝜕𝑍g̃
𝑤𝑔𝑠84

𝜕ℎ
= −(−1)

𝜕𝑍g̃
𝑤𝑔𝑠84

𝜕ℎ
≈ −(−1)1 = 1 (8.14) 

 

In Equation (8.12) (or (8.13)) the derivatives expressing the dependency of 𝑧𝑏 on 

𝑇𝑟𝑒𝑓 , 𝑝𝑟𝑒𝑓 , 𝑇11𝑘𝑚 and 𝑝11𝑘𝑚 can be easily computed based on the fact that 

𝜕𝑧𝑏
𝜕𝜁

=
𝜕ℎ̃𝑏
𝜕𝜁

=
𝜕𝑍𝑝,𝑤
𝜕𝜁

 , 𝜁 = {𝑇𝑟𝑒𝑓 , 𝑝𝑟𝑒𝑓 , 𝑇11𝑘𝑚 , 𝑝11𝑘𝑚} ,  
(8.15) 

where 

 

𝜕𝑍𝑝,𝑤
𝜕𝑇𝑟𝑒𝑓

=
1

𝛼
[
 
 1 − (

𝑝̃

𝑝𝑟𝑒𝑓
)

𝑅𝑑𝑟𝑦𝛼
𝑔0

]
 
   , 

 

𝜕𝑍𝑝,𝑤
𝜕𝑝𝑟𝑒𝑓

=
𝑇𝑟𝑒𝑓𝑅𝑑𝑟𝑦

𝑝̃ 𝑔0
(
𝑝̃

𝑝𝑟𝑒𝑓
)

𝑅𝑑𝑟𝑦𝛼
𝑔0

+1

 ,  

(8.16) 

and 
𝜕𝑍𝑝,𝑤
𝜕𝑇11𝑘𝑚

= −
𝑅𝑑𝑟𝑦

𝑔0
 ln (

𝑝̃

𝑝11𝑘𝑚
)   , 

 
𝜕𝑍𝑝,𝑤
𝜕𝑝11𝑘𝑚

=
𝑇11𝑘𝑚𝑅𝑑𝑟𝑦

𝑝11𝑘𝑚 𝑔0
               . 

(8.17) 

 

What is left is then to compute 𝜕𝜁 𝜕𝛿𝐿⁄ , 𝜕𝜁 𝜕𝛿𝜆⁄  and 𝜕𝜁 𝜕𝛿ℎ⁄ , with 𝜁 =

{𝑇𝑟𝑒𝑓 , 𝑝𝑟𝑒𝑓 , 𝑇11𝑘𝑚 , 𝑝11𝑘𝑚}, whereby it can be noticed that 

𝜕𝜁

𝜕𝛿𝜒
= −

𝜕𝜁

𝜕𝜒
,    𝜒 = {𝐿, 𝜆 , ℎ} . (8.18) 

 

The WGS84 spatial gradients of 𝑇𝑟𝑒𝑓 , 𝑝𝑟𝑒𝑓 , 𝑇11𝑘𝑚 and 𝑝11𝑘𝑚 need therefore to be 

computed. Since, as described in Section 4.1, these quantities are obtained by interpo-

lating weather datasets, their derivatives cannot be computed analytically. Instead, they 
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are computed through multidimensional interpolation as well.  

This articulated procedure is described in the following paragraphs. 

 

8.1.2.1 Computation of the ERA5 Weather Data Spatial Gradients  

As anticipated, the gradients at a given point (and time) of a flight trajectory are 

computed based on multidimensional interpolation, similar to the one described in Sec-

tion 4.1.  

Before being able to interpolate, anyway, it is necessary to produce four-dimensional 

(4D) arrays for the gradients themselves. The structure of these 4D arrays needs to be 

similar to the structure of the arrays provided by the ERA5 dataset for temperature 

and geopotential altitude, as these are described in Section 4.1. 

In particular, the arrays to be built based on the ERA5 weather data are six, with 

one for each of the following quantities: 𝜕𝑝𝐸𝑅𝐴 𝜕𝐿⁄ , 𝜕𝑝𝐸𝑅𝐴 𝜕𝜆⁄ , 𝜕𝑝𝐸𝑅𝐴 𝜕ℎ⁄ , 𝜕𝑇𝐸𝑅𝐴 𝜕𝐿⁄ , 

𝜕𝑇𝐸𝑅𝐴 𝜕𝜆⁄ , 𝜕𝑇𝐸𝑅𝐴 𝜕ℎ⁄ , where 𝑝𝐸𝑅𝐴 and 𝑇𝐸𝑅𝐴 denote the pressures and temperature 

contained in the ERA5 data. These allow for the computation of the three-dimensional 

spatial gradients of 𝑇𝑟𝑒𝑓  and 𝑝𝑟𝑒𝑓 . 

As explained in Section 4.1, in the ERA5 dataset on pressure levels, the temperature 

𝑇𝐸𝑅𝐴 and the geopotential altitude AMSL are given, indeed, on pressure levels. Thus, 

in order to numerically compute the 𝜕𝑝𝐸𝑅𝐴 𝜕𝐿⁄  and the 𝜕𝑝𝐸𝑅𝐴 𝜕𝜆⁄  arrays, a 4D array 

for pressure on altitude levels must be built.  

These height levels have been chosen to be 23 global surfaces of constant geopoten-

tial altitude AMSL, ranging from 0 to 11500 m. The number 23 was chosen as this is 

also the umber of the considered pressure levels in in Section 4.1. This choice was taken 

also because it simplified the algorithm needed for the gradients’ interpolation, which is 

described in the following paragraphs. 

 

A 4D array is generated in which, for each of the 23 altitude levels, the correspond-

ing geopotential altitudes AMSL of that level around the world are given. The entries of  

these 4D arrays are the same for each hour, since geopotential altitude AMSL depends 

only on latitude, longitude, and altitude. 

Analogously, a 4D array is generated for the pressure levels, in which, for each of the 

23 pressure levels, the pressure of that level at the given hour is assigned to all the en-

tries. This way—for each of the discrete latitudes, longitudes, and UTC hours of these 

4D arrays—based on the geopotential altitudes AMSL given in the ERA5 dataset on 

pressure levels, the pressure can be logarithmically interpolated to the isoaltitude sur-

faces. This interpolation yields the needed 4D array for pressure on altitude levels, 

which is denoted by 𝑝𝐸𝑅𝐴,𝑍 . 

Again, as said in Section 4.1, this multidimensional interpolation, as well as the other 

ones which are described in the next paragraphs, are all done with the MATLAB® 

function interpn. 

It shall be noted that this newly defined 4D array is actually not the ideal choice to 

then produce the 𝜕𝑝𝐸𝑅𝐴 𝜕𝐿⁄  and the 𝜕𝑝𝐸𝑅𝐴 𝜕𝜆⁄  arrays, because for that we would like 

to have pressures on surfaces of constant geodetic altitude. Anyway, given the already 
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relatively high complexity and computational effort of the used algorithm, the presented 

method was assumed to be accurate enough for the present work. 

 

In the following paragraphs, 𝑛𝐿, 𝑛𝜆 denote the number of discrete latitudes and lon-

gitudes on the regular global grid of the ERA5 dataset, described in Section 4.1. The 

number of UTC hours for which (the hourly) data is given in the 4D arrays extracted 

from the ERA5 data store is denoted by 𝑛ℎ𝑜𝑢𝑟𝑠. 

 

To numerically compute the 4D array 𝜕𝑝𝐸𝑅𝐴 𝜕𝐿⁄  the following is done: 

 

𝜕𝑝𝐸𝑅𝐴
𝜕𝐿

|
 𝜆𝑟,ℎ𝑠,ℎ𝑜𝑢𝑟𝑡

=
diff(𝑝𝐸𝑅𝐴,𝑍 |𝜆𝑟,ℎ𝑠,ℎ𝑜𝑢𝑟𝑡)

0.25°𝜋/180
 ,   

 

 𝑟 = {1, . . , 𝑛𝜆}, 𝑠 = {1, . . ,23}, 𝑡 = {1, . . , 𝑛ℎ𝑜𝑢𝑟𝑠} . 

(8.19) 

 

In this section, being 𝐮 = [𝑢1,… , 𝑢𝑖,… , 𝑢𝑁  ] 
𝑇 a generic vector, the function diff is de-

fined as the function that performs the following operation: 

diff(𝐮) = [𝑢2 − 𝑢1,… , 𝑢𝑖 −𝑢𝑖−1,… , 𝑢𝑁 −𝑢𝑁−1 ] 
𝑇 .   (8.20) 

Analogously, for 𝜕𝑝𝐸𝑅𝐴 𝜕𝜆 ⁄  

 

𝜕𝑝𝐸𝑅𝐴
𝜕𝜆

|
 𝐿𝑢,ℎ𝑠,ℎ𝑜𝑢𝑟𝑡

=
diff(𝑝𝐸𝑅𝐴,𝑍 |𝐿𝑢,ℎ𝑠,ℎ𝑜𝑢𝑟𝑡)

0.25°𝜋/180
 ,   

 

 𝑢 = {1, . . , 𝑛𝐿}, 𝑠 = {1, . . ,23}, 𝑡 = {1, . . , 𝑛ℎ𝑜𝑢𝑟𝑠} . 

(8.21) 

 

By using the notation 𝑃𝐿 to refer to the considered ERA5 23 pressure levels, the 4D 

array 𝜕𝑝𝐸𝑅𝐴 𝜕ℎ ⁄ is computed with  

 

𝜕𝑝𝐸𝑅𝐴
𝜕ℎ

|
 𝐿𝑢,𝜆𝑟,ℎ𝑜𝑢𝑟𝑡

=
diff(𝑃𝐿)

diff(𝑍𝐸𝑅𝐴|𝐿𝑢,𝜆𝑟,ℎ𝑜𝑢𝑟𝑡)
 ,   

 

 𝑢 = {1, . . , 𝑛𝐿}, 𝑟 = {1, . . , 𝑛𝜆}, 𝑡 = {1, . . , 𝑛ℎ𝑜𝑢𝑟𝑠} , 

(8.22) 

 

where 𝑍𝐸𝑅𝐴 denotes the ERA5 4D array of geopotential altitudes AMSL on the 23 

pressure levels. 

To compute the gradients of the ERA5 temperature, the step of interpolating tempera-

ture on isoaltitude surfaces is not necessary and the 4D arrays of the gradients are com-

puted as follows: 

𝜕𝑇𝐸𝑅𝐴
𝜕𝐿

|
 𝜆𝑟,𝑃𝐿𝑣,ℎ𝑜𝑢𝑟𝑡

=
diff(𝑇𝐸𝑅𝐴|𝜆𝑟,𝑃𝐿𝑣,ℎ𝑜𝑢𝑟𝑡)

0.25°𝜋/180
 ,   

 

 𝑟 = {1, . . , 𝑛𝜆}, 𝑣 = {1, . . ,23}, 𝑡 = {1, . . , 𝑛ℎ𝑜𝑢𝑟𝑠} , 

(8.23) 
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𝜕𝑇𝐸𝑅𝐴
𝜕𝜆

|
 𝐿𝑢,𝑃𝐿𝑣,ℎ𝑜𝑢𝑟𝑡

=
diff(𝑇𝐸𝑅𝐴|𝐿𝑢,𝑃𝐿𝑣,ℎ𝑜𝑢𝑟𝑡)

0.25°𝜋/180
 ,   

 

 𝑢 = {1, . . , 𝑛𝐿}, 𝑣 = {1, . . ,23}, 𝑡 = {1, . . , 𝑛ℎ𝑜𝑢𝑟𝑠} , 

(8.24) 

and, 

𝜕𝑇𝐸𝑅𝐴
𝜕ℎ

|
 𝐿𝑢,𝜆𝑟,ℎ𝑜𝑢𝑟𝑡

=
diff(𝑇𝐸𝑅𝐴|𝐿𝑢,𝜆𝑟,ℎ𝑜𝑢𝑟𝑡)

diff(𝑍𝐸𝑅𝐴|𝐿𝑢,𝜆𝑟,ℎ𝑜𝑢𝑟𝑡)
 ,   

 

 𝑢 = {1, . . , 𝑛𝐿}, 𝑟 = {1, . . , 𝑛𝜆}, 𝑡 = {1, . . , 𝑛ℎ𝑜𝑢𝑟𝑠} . 

(8.25) 

 

Having now the six required 4D arrays, the interpolations to the flight trajectories’ 

time, latitude, longitude, and altitude is possible. In other words, the three-dimensional 

spatial gradients of 𝑇𝑟𝑒𝑓  and 𝑝𝑟𝑒𝑓  can be computed. 

Regarding the computation of the spatial gradients of 𝑇11𝑘𝑚 and 𝑝11𝑘𝑚, it is assumed 

that their derivatives with respect the geodetic altitude, ℎ, is zero. This is actually not 

necessarily true, since 𝑇11𝑘𝑚 and 𝑝11𝑘𝑚 are defined as the temperature and pressure at 

𝑍𝑔
𝑚𝑠𝑙 = 11 km and not at ℎ = 11 km. This approximation reduces the problem to com-

pute the horizontal spatial gradients of 𝑇11𝑘𝑚 and 𝑝11𝑘𝑚, i.e., their derivatives with re-

spect to latitude and longitude.  

The ERA5 pressure and temperature, i.e., the 4D arrays 𝑝𝐸𝑅𝐴 and 𝑇𝐸𝑅𝐴 are used to 

interpolate the pressure and temperature to 𝑍𝑔
𝑚𝑠𝑙 = 11 km for all the considered hours 

and on the global surface. This interpolation is similar to the one described in the pre-

vious paragraphs to obtain the 4D array for pressure on altitude levels, which was de-

noted by 𝑝𝐸𝑅𝐴,𝑍 . The difference is that, instead of interpolating the pressure and tem-

perature to many different altitude levels, they are now interpolate to just one altitude 

level, i.e., 𝑍𝑔
𝑚𝑠𝑙 = 11 km. The arrays obtained with this interpolation are therefore tri-

dimensional and are denoted as 𝑝𝐸𝑅𝐴,11𝑘𝑚 and 𝑇𝐸𝑅𝐴,11𝑘𝑚.  

To obtain the 3D array of the derivative of 𝑇𝐸𝑅𝐴,11𝑘𝑚 with respect to latitude, the 

procedure represented by Equation (8.26) is followed. 

 

𝜕𝑇𝐸𝑅𝐴,11𝑘𝑚
𝜕𝐿

|
 𝜆𝑟,ℎ𝑜𝑢𝑟𝑡

=
diff(𝑇𝐸𝑅𝐴,11𝑘𝑚|𝜆𝑟,ℎ𝑜𝑢𝑟𝑡)

0.25°𝜋/180
 ,   

 

 𝑟 = {1, . . , 𝑛𝜆},, 𝑡 = {1, . . , 𝑛ℎ𝑜𝑢𝑟𝑠} . 

(8.26) 

 

Analogously, for the 3D array of the derivative of 𝑇𝐸𝑅𝐴,11𝑘𝑚 with respect to latitude 

the procedure represented by Equation (8.29) is followed. 

 

𝜕𝑇𝐸𝑅𝐴,11𝑘𝑚
𝜕𝜆

|
 𝐿𝑢,ℎ𝑜𝑢𝑟𝑡

=
diff(𝑇𝐸𝑅𝐴,11𝑘𝑚|𝐿𝑢,ℎ𝑜𝑢𝑟𝑡)

0.25°𝜋/180
 ,   

 

 𝑢 = {1, . . , 𝑛𝐿}, 𝑡 = {1, . . , 𝑛ℎ𝑜𝑢𝑟𝑠} . 

(8.27) 
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The procedure to obtain the 3D arrays of the derivatives of 𝑝𝐸𝑅𝐴,11𝑘𝑚 with respect 

to latitude and longitude is similar to the one related to 𝑇𝐸𝑅𝐴,11𝑘𝑚. 

Having these four 3D arrays—𝜕𝑝𝐸𝑅𝐴,11𝑘𝑚 𝜕𝐿⁄ , 𝜕𝑝𝐸𝑅𝐴,11𝑘𝑚 𝜕𝜆⁄ , 𝜕𝑇𝐸𝑅𝐴,11𝑘𝑚 𝜕𝐿⁄ , 

𝜕𝑇𝐸𝑅𝐴,11𝑘𝑚 𝜕𝜆⁄ —a final interpolation to the trajectory’s latitude, longitude and time 

yields the two-dimensional spatial gradients of 𝑇11𝑘𝑚 and 𝑝11𝑘𝑚. 

 

8.1.3 ERA5 Weather Data Uncertainty Propagation 

The ERA5 climate reanalysis employs weather observations where possible. Based on 

such observations, this climate reanalysis uses a Numerical Weather Prediction (NWP) 

model to produce the estimates of meteorological quantities in the past in a temporally 

and spatially continuous way. The data is then given at 4D grid points, as described in 

Section 4.1. Like in a weather forecast, this method results in uncertainties in the data 

[17, 18]. 

More in detail, these uncertainties mostly take into account the physical parametri-

zations of the NWP model, the sea surface temperature and random uncertainties in the 

measurements. Moreover, the resulting uncertainties do not consider systematic model 

errors and are uncorrelated [17, 18]. 

Uncertainty estimates in the quantities provided in the ERA5 climate reanalysis on 

pressure levels are produced through a 10-member Ensemble of Data Assimilations 

(EDA) system [17, 18].   

These uncertainty estimates are then provided in the ERA5 climate reanalysis on the 

same pressure levels, but with a different time resolution and a different spatial resolu-

tion on the horizontal plane. Indeed, the global regular latitude-longitude grid, on which 

the uncertainties are provided every three UTC hours, has a resolution of 0.5° [17, 18].  

The reason for lower resolution is that ECMWF does not afford from a computation-

al point of view to run EDAs with the same resolution of the ERA5 weather data pro-

duction system. Nevertheless, ECMWF affirms that a higher resolution EDA would 

probably not provide enough supplementary information for the higher computational 

costs to be justified [17, 18]. 

 In [18] it is recommended not to take the uncertainties values at face value, alt-

hough they are declared useful to provide a relative  uncertainties’ estimate in terms of 

temporal and spatial distribution. That said, still in [18], ECMWF’s authors state that 

this lower resolution dataset can be used for ERA5 uncertainty estimation.  

 

In this work, the uncertainty in the weather data is propagated to the pressure alti-

tude domain to produce an uncertainty in the processed baroaltimeter altitude. This 

uncertainty may then be used as the value for the corresponding measurement noise 

covariance matrix, which in this case degenerates into a scalar, as described in Section 

B.3. 

In the same way ERA 5 temperature was interpolated—as described in Section 4.1—

the uncertainty in ERA5 temperature is interpolated to the flight trajectories’ time, 

latitude, and longitude and at the trajectories’ altitude or at 𝑍g
msl = 11 km to yield 

𝜎𝑇 ,𝑟𝑒𝑓  and 𝜎𝑇 ,11𝑘𝑚. 
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 Uncertainty in pressure is obtained in a something more articulated way. The un-

certainty in the ERA5 geopotential altitude AMSL is interpolated in the time and the 

horizontal space domains to produce a 2D matrix with the same dimensions of the ones 

described in Section 4.1. This matrix is referred to as the matrix of the geopotential 

altitudes AMSL uncertainties and contains the uncertainty in this quantity at each 

point along the trectory and at each of the 23 pressure levels. 

 One may then sum or deduct this matrix to or from the 2D matrix of the 

geopotential altitudes AMSL described in Section 4.1. Both options of considering the 

uncertainties in the ERA5 geopotential altitudes AMSL may then be used within a 

logarithmic interpolation analogous to the one described in Section 4.1.  

The result of this interpolation is then an uncertainty-affected pressure along the 

flight trajectories. The absolute value of the difference between the pressure and the 

uncertainty-affected pressure along the flight trajectories is then assumed to be the 

pressure uncertainty.  

The aforementioned option of deducting the matrix of the geopotential altitudes 

AMSL uncertainties from the corresponding matrix of geopotential altitudes AMSL was 

found to produce slightly higher (up to 3.7 %) pressure uncertainties with respect to the 

option of adding the two matrices. Because of this work’s interest in a worst-case sce-

nario, the first option is the one which was chosen for uncertainty propagation. The 

output of the procedure described in this paragraph is then the pressure uncertainty 

along the flight trajectories and is denoted by 𝜎𝑝,𝑟𝑒𝑓 . 

Analogously to what said in the previous paragraph and in Section 4.1, by logarith-

mically  interpolating the pressure levels to 𝑍g
msl = 11 km, then the pressure uncertainty 

along the flight trajectories but at 𝑍g
msl = 11 km is obtained and is denoted by 𝜎𝑝,11𝑘𝑚. 

For this interpolation, the difference between the matrix of the geopotential altitudes 

AMSL uncertainties and the matrix of the geopotential altitudes AMSL is used too. 

Having described how the uncertainties for the ERA5 temperature and pressure 

𝜎𝑇 ,𝑟𝑒𝑓 , 𝜎𝑇 ,11𝑘𝑚, 𝜎𝑝,𝑟𝑒𝑓  and 𝜎𝑝,11𝑘𝑚, assumed as standard deviations, are obtained, the 

remaining part of this section focuses on their propgation. 

Considering Equation (4.1), the propagated uncertainty in 𝑍𝑝,𝑤, denoted by 𝜎𝑍𝑝𝑤, is 

computed as 

 

𝜎𝑍𝑝𝑤 =√(
𝜕𝑍𝑝,𝑤
𝜕𝑇𝑟𝑒𝑓

𝜎𝑇 ,𝑟𝑒𝑓)
2

+(
𝜕𝑍𝑝,𝑤
𝜕𝑝𝑟𝑒𝑓

𝜎𝑝,𝑟𝑒𝑓)
2

+ 2
𝜕𝑍𝑝,𝑤
𝜕𝑇𝑟𝑒𝑓

𝜕𝑍𝑝,𝑤
𝜕𝑝𝑟𝑒𝑓

𝜎𝑇𝑝,𝑟𝑒𝑓     , 

 

if  0 < 𝑍𝑔̂
𝑚𝑠𝑙 ≤ 11 km  ; 

 𝜎𝑍𝑝𝑤 = 

= √(
𝜕𝑍𝑝,𝑤
𝜕𝑇11𝑘𝑚

𝜎𝑇 ,11𝑘𝑚)
2

+ (
𝜕𝑍𝑝,𝑤
𝜕𝑝11𝑘𝑚

𝜎𝑝,11𝑘𝑚)
2

+ 2
𝜕𝑍𝑝,𝑤
𝜕𝑇11𝑘𝑚

𝜕𝑍𝑝,𝑤
𝜕𝑝11𝑘𝑚

𝜎𝑇𝑝,11𝑘𝑚 , 

 

if  11 ≤ 𝑍𝑔̂
𝑚𝑠𝑙 < 20 km  ; 

 

(8.28) 

with 
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𝜎𝑇𝑝,𝑟𝑒𝑓 = 𝜌𝑟𝑒𝑓  𝜎𝑝,𝑟𝑒𝑓  𝜎𝑇 ,𝑟𝑒𝑓           , 

𝜎𝑇𝑝,11𝑘𝑚 = 𝜌11𝑘𝑚 𝜎𝑝,11𝑘𝑚 𝜎𝑇 ,11𝑘𝑚  , 
(8.29) 

 

where 𝜌𝑟𝑒𝑓  denotes the correlation coefficient between 𝑇𝑟𝑒𝑓  and 𝑝𝑟𝑒𝑓  and, analogously, 

𝜌11𝑘𝑚 denotes the correlation coefficient between 𝑇11𝑘𝑚 and 𝑝11𝑘𝑚. These correlation 

coefficients are computed with the MATLAB® function corrcoef. The partial deriva-

tives in Equation (8.28) are computed with Equations (8.16) and (8.17). 

The uncertainty 𝜎𝑍𝑝𝑤 in the weather-corrected pressure altitude 𝑍𝑝,𝑤 is in this work 

used as the measurement noise standard deviation. Equivalently, 𝜎𝑍𝑝𝑤 is used as the 

square root of the only element of the measurement noise covariance matrix associated 

to the baroaltimeter navigation subsystem.  

 

8.2 Results of the Residual Errors Dynamic Model-

ing 

The altitude errors about the mean error, for each flight, are shown in Figure 8.3.  

The PSDs of these errors are shown in Figure 8.4  

 

 

Figure 8.3: Altitude errors minus the mean error of each flight, during the central 

flight portions 
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Figure 8.4: Power Spectral Density of the altitude errors minus the mean error of 

each flight, during the central flight portions 

In Figure 8.4, the PSD spikes, which are mentioned in Section 8.1.1, can be noticed. 

Because of the PSD spikes, as anticipated in Section 8.1.1, the PSDs are analyzed only 

on the altitude plateaus, which are 22 The standard pressure altitude and the true geo-

detic altitude during these flight portions are shown in Figure 8.5 and Figure 8.6, re-

spectively. 

 

 

Figure 8.5: Standard pressure altitude on the altitude plateaus within the central 

flight portions 
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Figure 8.6: GPS altitude on the altitude plateaus within the central flight portions 

As can be seen from these Figure 8.5 and Figure 8.6, flight 10a shows a peculiar geo-

detic altitude development along its main plateau, i.e., the one shown in violet. The rea-

son for this stems from what is written about this flight in Section 6.1. 

The residual errors on the altitude plateaus are shown in Figure 8.7. Their counter-

parts about the mean error on each plateau are shown in Figure 8.8. 

 

 

Figure 8.7: Altitude errors on the altitude plateaus within the central flight portions 
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Figure 8.8: Altitude errors minus the mean error of each altitude plateau within the 

central flight portions 

The mean errors on the plateaus range from approximately −4.83 to 7.05 m. 

The PSDs of the residual errors about their mean values on the altitude plateaus are 

shown in Figure 8.9, in which no particularly high peak in the high-frequency-region can 

be seen in the PSDs. This allows for a relatively tight bound via a first-order GMP.  

 

 

Figure 8.9: Power Spectral Density of the altitude errors minus the mean error of 

each altitude plateau within the central flight portions 
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The overbounding GMP is found to be defined by a time constant 𝜏 ≅ 25 s and q 

standard deviation 𝜎 ≅ 7.96 m.  

 

8.3 Spatial Gradients of the ERA5 Weather Data  

The spatial gradient of the ERA5 pressure along the investigated flights’ trajectories 

is shown in Figure 8.10. In particular, the derivative of pressure with respect to geopo-

tential altitude AMSL is shown in the upper plot in this figure. The derivative with re-

spect to latitude and longitude are shown in the middle and lower plots, respectively. 

By comparing the variation of pressure with altitude with the true geodetic altitude 

profiles depicted in Figure 6.2, a clear correlation between these two quantities may be 

noticed. Regarding the peculiar shape of the curve representing the derivative of pres-

sure with latitude, this may be explained with what is written about this flight in Sec-

tion 6.1. 

Figure 8.11 shows the spatial gradient of the ERA5 temperature along the investi-

gated flights’ trajectories. Considering the upper plot in this figure, it can be seen that 

the values of the temperature derivative with respect to the geopotential altitude AMSL 

appear to be quite in accordance with the value that the ISA assigns to this derivative 

for geopotential altitudes AMSL between 0 and 11 km. This value is the temperature 

lapse rate, introduced in Section 2.2.1 and equal to 6.5 K km−1, taken with sign minus.  

 

 

Figure 8.10: Spatial gradient of the ERA5 pressure, interpolated to the test flights’ 

trajectories, during the central flight portions 

By comparing the aforementioned plot with the true geodetic altitude profiles depict-

ed in Figure 6.2, it can be seen that, generally, the absolute value of temperature varia-

tion with altitude decreases with increasing altitude. This is actually shown not to be 

the case for flights 09a and 12b.  
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Figure 8.11: Spatial gradient of the ERA5 temperature, interpolated to the test 

flights’ trajectories, during the central flight portions 

This tendency for the other flights is in accordance with what the ISA implies. In-

deed, according to the ISA, after decreasing linearly with altitude until Zg
msl = 11 km, 

the atmospheric temperature keeps the constant value of 216.65 K until Zg
msl = 20 km. 

Since the actual temperature profile is unlikely to be so unsteady, it may be inferred 

that the magnitude of the temperature derivative’s with respect to altitude gradually 

decreases when approaching geopotential altitudes close to 11 km. 

The derivatives of the ERA5 pressure at Zg
msl = 11 km with respect to latitude and 

longitude along the test flights’ trajectories are shown in the upper and lower plot, re-

spectfully, of Figure 8.12. 
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Figure 8.12: Derivatives of the ERA5 pressure at Zg
msl=11km with respect to latitude 

and longitude, interpolated to the horizontal projections of the test flights’ trajectories, 

during the central flight portions 

 

Analogously to Figure 8.12, the derivatives of the ERA5 temperature at Zg
msl =

11 km with respect to latitude and longitude along the test flights’ trajectories are 

shown in Figure 8.13. 

 

 

Figure 8.13: Derivatives of the ERA5 temperature at Zg
msl=11km with respect to lat-

itude and longitude, interpolated to the horizontal projections of the test flights’ trajec-

tories, during the central flight portions 
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8.4 Results of ERA5 Uncertainty Propagation 

The uncertaintites in the ERA5 pressure and temperature along the trajectories of 

the considered flights are shown in the upper and lower plots, respectfully, of Figure 

8.14. 

 

 

Figure 8.14: Uncertainties in the ERA5 pressure and temperature, interpolated to the 

test flights’ trajectories, during the central flight portions 

Analogously to Figure 8.14, the uncertaintites in the ERA5 pressure and temperature 

at Zg
msl=11km along the test flights’ trajectories are shown in Figure 8.15. 
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Figure 8.15: Uncertainties in the ERA5 pressure and temperature at Zg
msl=11km, in-

terpolated to the horizontal projections of the test flights’ trajectories,  during the cen-

tral flight portions 

The propagation of this uncertainty in the pressure altitude domain along the flight 

trajectories, that is performed through Equation (8.28), is shown in Figure 8.16. 

 

 

Figure 8.16: Propagated weather-corrected pressure altitude uncertainty during the 

central flight portions 





91  

9 Conclusions 
This work assesses the accuracy in the approximation of true geodetic altitude that is 

achieved by two different methods of obtaining geodetic altitude from, among others, 

airborne pressure measurements.  

One of these two geodetic altitude computation methods relies on the Blanchard al-

gorithm for orthometric altitude computation. The consideration of the geoid undula-

tions allows for a conversion from orthometric altitude to geodetic altitude. 

The second method is based on the pressure altitude equation, in which external 

weather data is entered as reference. This pressure altitude is in this thesis referred to 

as the weather-corrected pressure altitude. Weather data is extracted from the ECMWF 

ERA5 climate reanalysis [17] via a multidimensional interpolation, i.e., by interpolating 

in the horizontal and vertical space domains and in the time domain. The interpolation 

is done through the true trajectory, which was provided by post-processed GPS data. 

The consideration of the geoid undulations and the difference between the geopoten-

tial and geometric altitude scales enables a conversion from the weather-corrected pres-

sure altitude to geodetic altitude. 

This work shows that the geodetic altitude obtained from the weather-corrected 

pressure altitude is more accurate in comparison with the geodetic altitude obtained 

from the Blanchard algorithm. Only the former is therefore considered in the sections of 

the thesis which deal with the error modelling of the geodetic altitude measurements. 

 

This thesis derives a linear model relating the errors in the geodetic altitude obtained 

with the weather-corrected pressure altitude to the aircraft pitch attitude angle. This 

allows to reduce the absolute value of the mean error in the geodetic altitude measure-

ments, as well as the errors’ standard deviation. Indeed, the mean and the standard de-

viation of the residual errors in geodetic altitudes after the so-called pitch-compensation 

are 0.1 and 4.1 m. Their counterparts before the pitch-compensation are -4.6 and 6.4 m, 

instead.  

A gaussian distribution overbounding the residual geodetic altitude errors’ distribu-

tion is found. This may be suitable for integrated navigation applications based on 

snapshot algorithms in which these geodetic altitude measurements could be incorpo-

rated. 

A first-order GMP is herein derived to model the residual geodetic altitude errors on 

the altitude plateaus, i.e., on the flight portions during which the altitude is approxi-

mately constant. This model may be employed when incorporating these geodetic alti-

tude measurements in integrated navigation systems based on sequential estimators. 

Such a navigation systems is provided as an example in this thesis. Within this example 
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it is also shown how the weather data would be considered in the measurement model 

and measurement noise standard deviation. 

 

Apart from the aforementioned GPS post-processed data, the analyses of this thesis 

are based on measurements recorded by the Flight Management System during more 

than 20 flight hours performed with the Dassault Falcon 20-E5 aircraft within a DLR 

flight tests campaign. The fact that the investigated flights covered a broad spectrum of 

altitudes allowed to properly address the impact of altitude within the presented meth-

odology and derived error model parameters. 
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10 Outlook 
As explained in Section 5.2, because of the unavailability of the actual pressure 

measurements carried out during the investigated flights, the analyses performed within 

this thesis are based on retrieved pressure measurements.  

This means that the original pressure measurements may be actually more or less 

different with respect to these retrieved ones. Some smoothing and some corrections 

may indeed have been performed during the flights before the raw pressure measure-

ments were entered to the ADC to compute the standard pressure altitudes. This may 

of course have had some unexpected effects on the results of this work’s analyses. In 

order to avoid these effects, future investigations should be carried out based on the ac-

tual pressure measurements. This would require a new structuring of the DLR software 

storing real-time airborne measurements. 

 

The weather data that was employed within this work is obtained from the ERA5 

climate reanalysis on pressure levels, as described in Section 4.1. Improvements in the 

approximation of the true geodetic altitude may be achieved by using ERA5 weather 

reanalysis on model (a.k.a. hybrid) levels [25].  

The model levels are defined in such a way that, the closer to the Earth’s surface, 

the more they follow the orography. Conversely, the farther away from the Earth’s sur-

face, the more they represent isobar surfaces. The ERA5 reanalysis is given on (up to) 

137 model levels and there are 64 levels from a 1013.25 hPa to approximately 200 hPa. 

This means that, in comparison to the 23 pressure levels from 1000 to 200 hPa, the res-

olution in the vertical channel is higher than in the ERA5 on pressure levels. 

 

In this work, the obtained geodetic altitude measurements are compared to the GPS 

post-processed altitude to assess their accuracies. In doing so, the lever arm between the 

GPS antenna and the pressure ports is ignored. Therefore, an improvement in the accu-

racy assessment may be made possible by considering this lever arm. 

 

The gaussian distribution described in Chapter 7 for the overbounding of the residual 

geodetic altitude errors may in future be employed for incorporating the corresponding 

geodetic altitude measurements in integrated navigation systems based on Snapshot al-

gorithms. This would allow to assess the robustness of this bounding. In case this was 

guaranteed, a tighter bounding error model may be found with, e.g., unimodal distribu-

tions. 

Analogously, the efficacy of the dynamic error modeling based on a first-order GMP 
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described in Chapter 8 may be tested within an integrated navigation system based on 

a sequential estimator. This may be, for example, similar to the example proposed in 

Chapter 8.  

Further research may be needed to find the reason for the low-frequency peaks in the 

PSDs of the residual geodetic altitude errors during climbing and descending flight 

phases, which are shown in Chapter 8. This may then ultimately allow for an efficient 

modeling of the residual errors in these flight phases too. 

 

Error models similar to the ones derived for the geodetic altitude obtained from the 

weather-corrected pressure altitude may in future be derived for the geodetic altitude 

obtained from the Blanchard algorithm too. 
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A. Further ADC Equations 
 

The equations for standard pressure altitude and the ones for baro-correction, i.e., 

Equations from (2.25) to (2.27), are typically implemented within Air Data Computers 

(ADC), that are software component of Air Data Systems (ADS) [51].  

This appendix presents some of the other equations which are traditionally part of 

ADCs that are relevant in this work. Since these equations are, as said, relevant and yet 

not so crucial as the equations related to the various concepts related to altitude, these 

equations will not be demonstrated. 

The Mach number, 𝑀 , is defined as the ratio between the aircraft’s true airspeed, 

𝑇𝐴𝑆, that is the modulus of the velocity vector with respect to the wind vector, and the 

speed of sound 𝑐𝑠 [51]:  

𝑀 =
𝑇𝐴𝑆

𝑐𝑠
 , (A.1) 

In turn, the speed of sound in the air, for normal conditions of pressure and tempera-

ture, is related to temperature through [51]  

𝑐𝑠 =√1.4 𝑅𝑑𝑟𝑦𝑇  . (A.2) 

The subsonic Mach equation relates the Mach number to impact pressure, 𝑞𝑐, and 

static air pressure 𝑝—that in this thesis as well as commonly is simply called air pres-

sure—as 

𝑞𝑐
𝑝
+ 1 = (1+

𝑀

5
)
7/2

 , (A.3) 

whereby impact pressure, that in an ADS is usually measured with a differential pres-

sure transducer,  is the difference between total and static air pressure [51]. 

Calibrated is a further quantity typically computed by ADCs according to the fol-

lowing equation: 

𝐶𝐴𝑆 = 𝑐𝑠0 √5[(
𝑞𝑐
𝑝
+ 1)

2/7

− 1]  , (A.4) 

 

where 𝑐𝑠0 is the standard MSL speed of sound, meaning the speed of sound obtained by 

inserting the ISA standard MSL into Equation (A.2). 
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B. Kalman Filtering 
 

In this appendix, the working principles of Kalman filtering, and in particular of a 

Loosely-coupled Kalman Filter, are presented.  

Kalman filtering is employed in navigation for integration (or fusion) of various nav-

igation subsystems and calibration of INS [9]. The Kalman filter was developed by R. E. 

Kaman for time-discrete linear systems [52]. This version of the Kalman filter is herein 

referred to as the conventional one and it is described in Section B.1.  

Due to the fact that in navigation the systems are often non-linear, Section B.2 fo-

cuses on one of the Kalman filter versions capable of handling such systems [9], i.e., the 

Extended Kalman filter (EKF).  

In Section B.3, a KF with an error-state implementation and a Loosely-Coupled ar-

chitecture is presented. 

 

B.1 Conventional Kalman Filter 

The Kalman filter components can be grouped in five main blocks: the algorithm it-

self, the measurement model, the measurements and covariances associated to them, the 

system model, the system states and their covariances [9].  

The state vector 𝐱 contains the system states, which estimated by the Kalman filter 

algorithm. The covariance matrix 𝐏—described in Section B.1.2—contains the covari-

ances associated to the state vector’s estimates. Section B.1.1 is devoted to the system 

model, which describes how the system states evolve with time. 

In Section B.1.4, the measurement vector 𝐳, which is the collection of simultaneous 

measurements of some system properties, is presented. The measurement model—

presented in Section B.1.3—describes the dependency of this vector on the state vector 

𝐱 [9]. The measurement vector is affected by measurement noise too. In Kalman filter-

ing, this noise is assumed to be white and its distribution is often assumed to be gaussi-

an, with a given variance [9]. The covariances associated to the various measurement 

noise components appear in the measurement noise covariance matrix 𝐑, as described 

in Section B.1.4. 

The system model is affected by noise too, in the sense that such noise embodies un-

known states’ fluctuations which make the states differ over time from their system 

model-based predictions. This has the consequence that the states’ variances need to be 

increased over elapsed time to take into account these unknown variations. Regarding 

the measurement noise, in Kalman filtering system noise is assumed to be of white na-
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ture and it is generally modeled to be gaussian [9]. Such assumptions are a remarkable 

limitation of Kalman filtering, as they do not find a general justification, and are yet 

necessary. 

Section B.1.5 is devoted to the Kalman filter algorithm, which via the measurement 

vector and the system and measurement model attains optimal states’ estimates. In-

deed, it can be shown that the Kalman filter provides optimal estimation performance, 

i.e., that the sum of the mean-square errors in all states’ estimates is minimal [52]. This 

is true whenever the system is linear and the measurement as well as the system noise 

are white and gaussian.  

In order to compensate for the limitations stemming from these assumptions and 

thus to overbound the real system’s behavior, enough noise must be modeled [9]. 

An Kalman filter algorithm’s iteration may be divide into two phases: the propaga-

tion phase and the measurement update. In the former, the states and the error covari-

ance matrix are forwarded in time according to the system model, while in the latter, 

they are corrected by the measurements. 

These main Kalman filter components of are presented in a mathematical way in 

turn in the next sections. 

 

B.1.1 System Model 

According to the Kalman filter assumptions, the time derivatives of the state vector 

𝐱 is a linear functions of the state vector itself and of the white system noise vector 𝐰𝑠: 

                        𝐱̇(𝑡) = 𝐅(𝑡)𝐱(𝑡) + 𝐆(𝑡)𝐰𝑠(𝑡)  , 
(B.1) 

where 𝐅(𝑡) and 𝐆(𝑡) are the system matrix and the system noise distribution matrix at 

time 𝑡, respectively [9]. Each of the elements of 𝐰𝑠 represents an independent random 

noise source whose distribution is additionally assumed to be of the zero-mean symmet-

ric kind, such as the Gaussian distribution [9]. The application of the expectation opera-

tor E(∙) to Equation (B.1) yields [9] 

                        E(𝐱̇(𝑡)) =
𝜕

𝜕𝑡
𝐱̂(𝑡) = 𝐅(𝑡)𝐱̂(𝑡)   , (B.2) 

with the caret ^ denoting the estimate. The expectation of 𝐰𝑠(𝑡) is zero, owing to 

the fact that the system noise sources are assumed to have a zero mean.  

It can be shown that the approximated solution of the differential Equation (B.2), 

assuming 𝐅 to be constant over the interval 𝜏𝑠, provides the state vector estimate at 

time 𝑡 in dependency of the state vector estimate at a time 𝑡 − 𝜏𝑠 [9]: 

𝐱̂(𝑡) ≈ exp(𝐅(𝑡)𝜏𝑠) 𝐱̂(𝑡 − 𝜏𝑠) . 
(B.3) 

In the case of a time-invariant system model, the approximation is exact. The dis-

crete Kalman filter models the current states’ estimates as linearly dependent on their 

previous values: 

𝐱̂𝑗
− = 𝚽𝑗−1𝐱̂𝑗−1

+  (B.4) 
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with 

𝐱̂𝑗 ∶= 𝐱̂(𝑡𝑗) 

𝐱̂𝑗−1 ∶= 𝐱̂(𝑡𝑗 − 𝜏𝑠)     , 

𝚽𝑗−1 ∶= exp(𝐅𝑗−1𝜏𝑠) 

(B.5) 

 

where the subscript 𝑗 denotes the Kalman filter iteration [9] and the superscript –

denotes a quantity at the end of the propagation phase. In contrast, the superscript + 

denotes a quantity after the measurement update phase has ended. 

Assuming that data is available at the time interval 𝜏𝑠 extrema, that is at 𝑡𝑗 and 

𝑡𝑗−1, but not between them, then 𝐅𝑗−1 may be computed as 1
2
(𝐅(𝑡) + 𝐅(𝑡 − 𝜏𝑠)). The 

matrix 𝚽𝑗−1, known as the transition matrix, is usually computed by means of a power-

series expansion of 𝐅 [9]. 

Similarly to the states estimates, the true states 𝐱𝑗 may be expressed as functions of 

their previous values by integrating (B.1) over 𝜏𝑠: 

𝐱𝑗 = 𝚽𝑗−1𝐱𝑗−1 + 𝚪𝑗−1𝐰𝑠,𝑗−1 , (B.6) 

where 𝐅(𝑡) and 𝐆(𝑡) are assumed constant over 𝜏𝑠 [9] and 𝐰𝑠,𝑗−1 and 𝚪𝑗−1 denote the 

discrete system noise vector and the discrete system noise distribution matrix, respec-

tively. Their products is 

 

𝚪𝑗−1𝐰𝑠,𝑗−1 = ∫ exp (𝐅𝑗−1(𝑡𝑗 − 𝑡
′))𝐆𝑗−1𝐰𝑠(𝑡

′)d𝑡′
𝑡𝑗

𝑡𝑗−𝜏𝑠

 , (B.7) 

 

where 𝐆𝑗−1 is calculated analogously to the computation of 𝐅𝑗−1 [9]. 

 

B.1.2 State Vector and Covariance 

A Kalman filter may estimate absolute system properties—such as the position, in 

navigation—or errors in the system’s measurements, like the position measurement from 

an INS. The former case is referred to as total-state implementation, while the latter as 

error-state implementation.  

The difference between the true state vector and its estimate is known as state vec-

tor residual 𝛿𝐱 : 

𝛿𝐱 = 𝐱 − 𝐱̂ . (B.8) 

In an error-state implementation, 𝛿𝐱 denotes the residual errors in the system after 

the state estimates have been employed to correct it [9]. The error covariance matrix 𝐏 

is the covariance of the state vector: 

𝐏 = E((𝐱̂ − 𝐱)(𝐱̂ − 𝐱)T) = E(𝛿𝐱𝛿𝐱T) . (B.9) 
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B.1.3 Measurement Model 

The measurement vector 𝐳(𝑡) is assumed by the conventional Kalman filter to be lin-

early dependent, via the measurement matrix 𝐇, both on the state vector 𝐱(𝑡) and the 

white measurement noise vector 𝐰𝑚: 

𝐳(𝑡) = 𝐇(𝑡)𝐱(𝑡) + 𝐰𝑚(𝑡) . 
(B.10) 

The corresponding discrete-time equation is [9] 

𝐳𝑗 = 𝐇𝑗𝐱𝑗 +𝐰𝑚,𝑗 . (B.11) 

 

B.1.4 Measurement Vector and Covariance 

With 

𝐡(𝐱) =𝐇𝐱 , (B.12) 

the measurement innovation 𝜹𝐳− may be defined as 

𝜹𝐳− = 𝐳 − 𝐡(𝐱̂−) . (B.13) 

This quantity is therefore difference between the measurement vector and its predic-

tion, whereby the latter is obtained from 𝐡 evaluated in the state vector estimates at 

the end of the propagation phase, 𝐱̂−. 

Owing to their definition, measurement innovations consists of both the state estima-

tion errors’ propagation and the measurement errors which are uncorrelated with the 

states’ estimates. In the Kalman filter, it is assumed that these measurement errors be-

long to a zero-mean distribution, generally assumed to be Gaussian, i.e., uncorrelated in 

time. The noise covariance matrix is defined as 

𝐑 = E(𝐰𝑚𝐰𝑚
T) , (B.14) 

which means that the 𝑖th diagonal element of 𝐑 is the 𝑖th measurement vector compo-

nent’s variance. 

 

B.1.5 Kalman Filter Algorithm 

The algorithm that is described in this section pertains to an open-loop Kalman filter 

implementation. In this kind of implementation, no component of state vector estimate 

is fed-back to the system as it is done, instead, in a closed-loop implementation to cor-

rect the system itself [9]. This algorithm consists of ten steps, as depicted in Figure B.1. 

In the 1st step, the transition matrix 𝚽𝑗−1 is calculated according to Section B.1.1. In 

the 2nd step, the system noise covariance matrix 𝐐𝑗−1 is computed. This matrix is de-

fined as  

𝐐𝑗−1 = E(𝚪𝑗−1𝐰𝑠,𝑗−1𝐰𝑠,𝑗−1
T 𝚪𝑗−1)  (B.15) 
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and, usually, the 𝐐 matrix is designed after a tuning process. 

In the 3rd step, the states’ estimate are forwarded in time according to Equation 

(B.4). In the 4th step, the error covariance matrix is forwarded too, with [9] 

𝐏𝑘
− = 𝚽𝑗−1𝐏𝑗−1

+ 𝚽𝑗−1
T +𝐐𝑗−1  . (B.16) 

The 5th step consists in the computation of the elements of the measurement matrix 

𝐇𝑗. In the 6th step, computation of the measurement noise covariance matrix 𝐑𝑗, which, 

analogously to the system noise covariance matrix, is usually modeled by the Kalman 

filter designer through tuning [9]. 

The 7th step involves the Kalman gain matrix 𝐊𝑗 calculation. This matrix embodies 

the weights of the new information provided by the measurements for the update of the 

state estimates and of the error covariance matrix. The expression for the Kalman gain 

matrix is obtained through the minimization of  the error in the estimates 𝐱̂𝑗
+ by mini-

mizing the trace of 𝐏𝑗
+ with respect to the Kalman gain matrix itself [52]. 

 

 

Figure B.1: Schematics of the main Kalman filter algorithm (based on [9]), with 

Propagation phase (red) and Measurement update phase (green) 

In the 8th step the measurement vector 𝐳𝑗 is formulated based on the raw measure-

ments coming from the sensors  

Finally, in the 9th and 10th steps, the states’ estimates 𝐱̂𝑗
−  and the error covariance 

matrix 𝐏𝑗
−, respectively, are updated. It can be shown that the update equations of 𝐱̂𝑗

− 

and 𝐏𝑗
− are, respectively, [9] 

𝐱̂𝑗
+ = 𝐱̂𝑗

− +𝐊𝑗𝜹𝒛𝑗−1
−  (B.17) 

and  

𝐏𝑗
+ = (𝐈 −𝐊𝑗𝐇𝑗)𝐏𝑗

− . (B.18) 
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B.2 Extended Kalman Filter 

When neither the system nor the measurement model can be assumed to be linear, 

nonlinear versions of the Kalman filter, such as the extended Kalman filter (EKF) shall 

be used [9]. The EKF features the nonlinear functions 𝐟(𝐱) and 𝐡(𝐱) instead of the 𝐅 

and 𝐇. In this KF version, the time continuous system model is expressed by 

𝐱̇(𝑡) = 𝐟(𝐱(𝑡), 𝑡) + 𝐆(𝑡)𝐰𝑠(𝑡) . (B.19) 

From this, the propagation equation of the states’ estimates can be obtained [9] as 

 

𝐱̂𝑗
− = 𝐱̂𝑗−1

+ +∫ 𝐟(𝐱̂(𝑡′), 𝑡′)d𝑡′
𝑡𝑗

𝑡𝑗−𝜏𝑠

  , (B.20) 

 

and, by assuming 𝐟  constant over 𝜏𝑠, (B.20) may be simplified as [9] 

𝐱̂𝑗
− = 𝐱̂𝑗−1

+ + 𝐟(𝐱̂𝑗−1
+ , 𝑡𝑗)𝜏𝑠 . (B.21) 

In the EKF the absolute values of the errors in the states’ estimates is assumed to be 

way smaller than the magnitudes of the state vector itself. This enables a linear model 

for the state vector residual [9]: 

𝜹𝐱̇(𝑡) = 𝐅(𝑡)𝜹𝐱(𝑡) +𝐆(𝑡)𝐰𝑠(𝑡) , (B.22) 

whereby the system matrix is linearized about the state vector estimate. In the time-

discrete domain, this corresponds to: 

𝐅𝑗−1 =
𝜕𝐟(𝐱, 𝑡𝑘)

𝜕𝐱
|
𝐱=𝐱̂𝑗−1

+

. (B.23) 

The time continuous measurement model is given by 

𝐳(𝑡) = 𝐡(𝐱(𝑡), 𝑡) + 𝐰𝑚(𝑡)  
(B.24) 

and the measurement innovation is  

𝜹𝐳𝑗
− = 𝐳𝑗 − 𝐡(𝐱̂𝑗

−, 𝑡𝑗) , (B.25) 

whereby the measurement vector at time 𝑡𝑗 is 

𝐳𝑗 = 𝐡(𝐱𝑗, 𝑡𝑗) + 𝐰𝑚𝑗 . (B.26) 

The more the states’ estimates have converged to the true state vector, the smaller 

the magnitude of the measurement innovation [9]. Therefore, a linear model may be 

formulated for the relationship between the measurement innovations and the state vec-

tor [9]: 

𝜹𝐳𝑗
− ≈ 𝐇𝑗𝜹𝐱𝑗

− +𝐰𝑚𝑗 , (B.27) 

with  
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𝐇𝑗 =
𝜕𝐡(𝐱, 𝑡𝑗)

𝜕𝐱
|
𝐱=𝐱̂𝑗

−

= 
𝜕𝐳(𝐱, 𝑡𝑗)

𝜕𝐱
|
𝐱=𝐱̂𝑗

−

. (B.28) 

 

B.3 Loosely-coupled, Error-state Architecture 

In a loosely coupled integration architecture each navigation subsystem enters its 

own computed navigation solution, or at least its own computed component of the nav-

igation solution, to the fusing Kalman filter-based estimator, which may be for example 

the Extended Kalman Filter. By navigation solution, generally the three components, 

each, of position and velocity are meant, while a navigation solution component is here-

in used to refer to one of the components of position or velocity. In the case of an altim-

eter, the delivered navigation solution component is the third component of the posi-

tion, provided the position is expressed in terms of latitude, longitude, and altitude. 

GNSS is generally capable to provide a full navigation solution, i.e., a tridimensional 

position measurement and a tridimensional velocity measurement, instead. Depending 

on the use case, the expression “navigation solution” may comprise also the states need-

ed for a description of attitude [9]. 

More in particular, in the case of an error-state implementation, what actually enters 

the estimator is the deviation of this navigation solution component from its counter-

part generated by the reference navigation subsystem, which  is often an INS. This fu-

sion architecture is schematically represented in Figure B.2. 

Formally speaking, the state vector 𝐱 contains the reference navigation subsystem’s 

error states, denoted by 𝐱𝑅𝑒𝑓 , and the states of each aiding subsystem, 𝐱𝑠𝑢𝑏,𝑖, known as 

augmented states. As the reference navigation subsystem is often an INS, the subscript 

𝑅𝑒𝑓 is changed to 𝐼𝑁𝑆. With 𝑛 aiding subsystems, the state vector is 

 

𝐱 =

(

  
  
  

𝐱𝐼𝑁𝑆
𝐱𝑠𝑢𝑏,1
𝐱𝑠𝑢𝑏,2
⋮

𝐱𝑠𝑢𝑏,𝑛)

  
  
  

 . (B.29) 

 

The vector 𝐱𝐼𝑁𝑆 comprises the error in the navigation solution and potentially also 

some states for the biases and/or scale factors of the IMU (Inertial Measurement Unit) 

Similarly, 𝐱𝑠𝑢𝑏,𝑖 consists of the biases/scale factor errors of the i-th subsystem that are 

desired to be estimated. Indeed, error states do not necessitate to be estimated for each 

navigation subsystem [9].  

In the case the position is given in terms of altitude, longitude and altitude, the error 

states for the position are  

𝛿𝐩 = (
𝛿𝐿
𝛿𝜆
𝛿ℎ

) =

(

  
𝐿̃ − 𝐿 

𝜆̃ − 𝜆

ℎ̃ − ℎ )

   (B.30) 

where ~ denotes a measured quantity.  
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Figure B.2: Loosely coupled, error-state integration architecture in navigation (based 

on [9]) 

Getting back to the example of an altimeter as aiding system, whereby the general 

subscript 𝑠𝑢𝑏, 𝑖  is substituted by 𝑎, the corresponding component of the Kalman filter 

measurement vector is the difference between the altitude measured by the altimeter 

and its counterpart measured by the INS: 

𝑧𝑎 = ℎ̃𝑎 − ℎ̃  (B.31) 

The measurement innovation is then 

δ𝑧𝑎
− = ℎ̃𝑎 − 𝛿ℎ̂𝑎

− − ℎ̂−  , (B.32) 

where 𝛿ℎ̂𝑎
− is the Kalman filter -estimated error in the altimeter’s measurement, which 

may be potentially computed from 𝐱𝑏, if some states of this subsystem are among the 

KF augmented states. If, for example, just a static bias 𝑏𝑏 of the aforementioned altime-

ter was to be estimated, then 𝛿ℎ̂𝑎
− would coincide with this bias. The third term in 

Equation (B.32) denotes the altitude in the predicted navigation solution. 

At a given KF iteration, the measurement matrix portion corresponding to the al-

timeter is then [9] 

𝐻𝑎,𝑗 = (
𝜕𝑧𝑎
𝜕𝐱𝐼𝑁𝑆

𝟎
𝜕𝑧𝑎
𝜕𝐱𝑎

𝟎)
𝐱=𝐱̂𝑗

−

. (B.33) 

 

Regarding the KF system model, it is known that INS and GNSS do not interact 

within it. Indeed, their only interactions takes place in the measurement model. As a 

result, the overall system matrix F, the transition matrix 𝚽 and the system noise covar-

iance matrix 𝐐 can be partitioned in the following way: 

 

𝐅 = (
𝐅𝐼𝑁𝑆 𝟎

𝟎 𝐅𝐺
) , 𝚽 = (

𝚽𝐼𝑁𝑆 𝟎

𝟎 𝚽𝐺

) , 𝐐 = (
𝐐𝐼𝑁𝑆 𝟎

𝟎 𝐐𝐺

) , (B.34) 

 

with the subscript 𝐺 denoting the GNSS partitions [9].  
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In an analogous way, it may be assumed that in general, within a peculiar Kalman 

filter -based navigation system, all navigation subsystems interact with the INS only in 

the measurement model. For the system matrix, this would yield: 

 

𝐅 =

(

  
  
 
𝐅𝐼𝑁𝑆 …

𝟎 𝐅𝑠𝑢𝑏,1

𝟎      𝟎
𝟎      ⋮

⋮        𝟎
𝟎        …

  
⋱    𝟎
𝟎 𝐅𝑠𝑢𝑏,𝑛)

  
  
 
 , (B.35) 

 

and analogous shapes would result for the transition and the system noise covariance 

matrices. 

It may also be assumed that there is no correlation between the measurement noise 

sources of the various aiding subsystems. This would result in the measurement noise 

covariance matrix being partitioned as: 

 

𝐑 =

(

  
𝐑𝑠𝑢𝑏,1 … 𝟎

⋮ ⋱ 𝟎
𝟎 𝟎 𝐑𝑠𝑢𝑏,𝑛)

   . (B.36) 

 

If for the i-th navigation subsystem only a state is added to the KF state vector as 

an augmented state, then the 𝐅𝑠𝑢𝑏,𝑖 partition of 𝐅, degenerates into a scalar. In particu-

lar, if this augmented state corresponds, e.g., to a bias assumed to be static, i.e., with-

out a known time variation, then 𝐅𝑠𝑢𝑏,𝑖 = 0. This, in turn, according to what is said in 

Section B.1.1, yields 𝚽𝑠𝑢𝑏.𝑖 = 1.  

Moreover, if the i-th navigation subsystem always provides a one-dimensional meas-

urement, its corresponding 𝐑 matrix’s partition, i.e., 𝐑𝑠𝑢𝑏,𝑖, is a scalar. 
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C. Gauss-Markov-Process Structure for 

Augmented States 
 

The time correlation structures of realistic sensor errors may have complex struc-

tures. In order to model them within practical applications, Gauss-Markov Processes are 

often adopted both due to their modeling accuracy and to their simple two-parameters 

formulation. Furthermore, such models can be integrated in a KF by state augmenta-

tion without great complexity [53]. 

In a KF-based navigation systems, the dynamic components of accelerometers’ and 

gyros’ biases should be modeled, as augmented states within 𝐱𝐼𝑁𝑆 , as exponentially 

fixed-variance 1st-order Markov processes, also known as 1st-order Gauss-Markov pro-

cesses [9]. In general. In many systems, such as satellite-based or INSs, some sources of 

time-correlated sensor errors can be well modeled with stationary 1st-order Gauss-

Markov processes (GMP) [53].   

A stationary time-continuous first-order GMP 𝑎, with a gaussian noise component, is 

given by [53] 

𝑎̇(𝑡) = 
1

𝜏
𝑎(𝑡) +√

2𝜎2

𝜏
𝑤(𝑡) ,    with 𝑤(𝑡)~𝑁(0,1),  (C.1) 

where 𝑁(0,1) denotes a gaussian (or normal) distribution with zero mean and a stand-

ard deviation of 1. The GMP standard deviation and correlation time constant (also 

known as time constant)—denoted by 𝜎 and 𝜏 , respectively—are such that 𝜎 ∈  ℝ ≥ 0 

and 𝜏  ∈  ℝ > 0. Anyway, since sensor outputs are often processed via digital computers, 

discrete-time first-order GMPs may be used to model sensor errors. Such a GMP can be 

expressed as: 

𝑎𝑛 =  𝛼𝑎𝑛−1 +√𝜎
2(1 − 𝛼2)𝑤𝑛 ,       with 𝑤𝑛(𝑡)~𝑁(0,1) , 

(C.2) 

where 𝛼 = 𝑒
−Δ𝑡
𝜏   and Δ𝑡 is the time interval between two successive time instants, i.e.,  

Δ𝑡 = 𝑡𝑛 − 𝑡𝑛−1 [53]. 

When in a KF-based estimator, such as the one presented in the current section, the 

i-th aiding subsystem features only one augmented state, like a dynamic bias, and this 

is modeled as a discrete-time stationary first-order GMP, then from (C.5) it follows that 

𝚽𝑠𝑢𝑏,𝑖 = 𝛼𝑠𝑢𝑏,𝑖 . (C.3) 

In Equation (C.3), α𝑠𝑢𝑏,𝑖 = exp(−Δ𝑡/τ𝑠𝑢𝑏,𝑖), Δ𝑡 is the time interval between two 
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successive KF iterations and τ𝑠𝑢𝑏,𝑖 is the time constant of the GMP used for the model-

ing of the i-th subsystem’s augmented state. Additionally, in this case it may be shown 

that [9] 

𝐐𝑠𝑢𝑏,𝑖 = 𝜎𝑠𝑢𝑏,𝑖
2 (1 − 𝛼𝑠𝑢𝑏,𝑖

2 ) . (C.4) 

When the values of the two parameters of this GMP model are uncertain, misleading 

error estimation within the KF can arise. Realistic and conservative values are therefore 

needed to upper bound the estimation errors when system noise sources can be modeled 

with a GMP structure [53]. Indeed, it is shown that one can upper bound the true KF 

estimation error covariance if the Power Spectral Density (PSD) of the system error 

model overbounds the one of the actual sensor errors for all frequencies [54].  

In this work, a barometric altimeter’s dynamic bias is integrated in a state vector as 

an augmented state with GMP structure. Values for the corresponding standard devia-

tion and time constant are obtained by overbounding the PSD of this dynamic bias, as 

it is described in Section 8.1.1. In this regard, it is useful to write the expression for the 

PSD, denoted by 𝑆, of a time-discrete stationary first-order GMP: 

 

𝑆(𝜔) =  
𝜎2Δ𝑡(1 − 𝛼2)

1 + 𝛼2 − 2𝛼 cos(𝜔Δ𝑡)
 (C.5) 

 

where 𝜔 is the angular frequency, which is defined as 𝜔 = 2𝜋𝑓 , with 𝑓 denoting the line-

ar frequency [53]. 
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