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Abstract. The homogeneous nucleation of ice in su-
percooled liquid-water clouds is characterized by time-
dependent freezing rates. By contrast, water phase transitions
induced heterogeneously by ice-nucleating particles (INPs)
are described by time-independent ice-active fractions de-
pending on ice supersaturation (s). Laboratory studies report
ice-active particle number fractions (AFs) that are cumula-
tive in s. Cloud models budget INP and ice crystal numbers
to conserve total particle number during water phase tran-
sitions. Here, we show that ice formation from INPs with
time-independent nucleation behavior is overpredicted when
models budget particle numbers and at the same time derive
ice crystal numbers from s-cumulative AFs. This causes a
bias towards heterogeneous ice formation in situations where
INPs compete with homogeneous droplet freezing during
cloud formation. We resolve this issue by introducing differ-
ential AFs, thereby moving us one step closer to more robust
simulations of aerosol–cloud interactions.

1 Introduction

A wide variety of macromolecular or proteinaceous, crys-
talline, glassy, and solid aerosol particles act as INPs in the
atmosphere and participate in the formation of cirrus or in the
glaciation of supercooled liquid-water clouds (Kanji et al.,
2017). Among the various modes of heterogeneous ice for-
mation, immersion freezing caused by INPs present within
a volume of supercooled liquid water is considered the most
relevant mode in mixed-phase clouds (Vali et al., 2015). Al-
ternative freezing modes include contact freezing, where ice
forms upon the collision of an INP with a cloud droplet, and

condensation freezing, where ice nucleates while the cloud
forms through cloud droplet activation. In conditions below
liquid-water saturation, deposition nucleation occurring in
the absence of liquid water has traditionally been considered
the most relevant heterogeneous ice formation mode (Vali
et al., 2015). Yet, there is increasing evidence that the loci
for ice nucleation on INP surfaces are pores in which wa-
ter gathers below water saturation through capillary conden-
sation (Marcolli, 2014; Kiselev et al., 2017; Holden et al.,
2019). Pore condensation and freezing (PCF) involves homo-
geneous ice nucleation within pores under cirrus conditions
(air temperature T < 233 K) and may occur heterogeneously
through immersion freezing in mixed-phase clouds at higher
temperatures (David et al., 2019; Marcolli, 2020).

In laboratory experiments, phase transitions from super-
cooled liquid water to ice are observed under controlled tem-
perature and relative humidity conditions during set observa-
tional times for ice detection (Cziczo et al., 2017). In experi-
ments employing droplet freezing techniques, ice nucleation
is detected in arrays of droplets deposited on a substrate. Re-
sults are normalized based on total droplet number, surface
area, or volume to obtain freezing spectra that are usually
reported in terms of cumulative ice-active fractions (Vali,
2019). Laboratory experiments using cloud or continuous-
flow chambers directly provide number fractions, φ, of ice-
activated or frozen particles from a sample of size N0 as a
function of ice supersaturation, s. These fractions vary be-
tween 0 at s = 0 (ice saturation) and 1 at sufficiently large s
and are cumulative, reflecting measurements in which the ice
nucleation ability of a given sample is probed at successively
increasing s values. The total number of ice crystals formed
up to a value of s is then determined via N0φ(s). In the case

Published by Copernicus Publications on behalf of the European Geosciences Union.



15214 B. Kärcher and C. Marcolli: Use of ice-active fractions in cloud models

of immersion freezing experiments, where an ensemble of
water droplets with immersed INPs is cooled, frozen frac-
tions are parameterized as a function of supercooling (tem-
perature, T ) instead of supersaturation such that differential
and cumulative AFs are functions of T instead of s.

During immersion freezing, ice nucleates over a wider
temperature range compared with homogeneous freezing of
pure water droplets (Peckhaus et al., 2016; Tarn et al., 2018).
Heterogeneous freezing curves become even broader when
a mixture of different INP types is investigated. Yet, when
one and the same droplet is repeatedly probed in freezing–
thawing cycles during refreeze experiments, freezing occurs
in a temperature range that is similarly narrow to that for ho-
mogeneous freezing (Kaufmann et al., 2017).

While the broad range of freezing temperatures observed
for an ensemble of droplets with immersed INPs can be
ascribed to the deterministic (time-independent) component
of freezing given by the characteristic freezing temperature
of nucleation sites, the much narrower spread of freezing
temperatures observed in refreeze experiments evidences the
stochastic (time-dependent) component on specific nucle-
ation sites. Therefore, purely deterministic formulations cor-
rectly encompass the broad variability of nucleation sites ev-
idenced in the freezing of particle/droplet ensembles, while
neglecting the variability due to stochastic nucleation on spe-
cific sites evidenced in refreeze experiments. Thus, applying
a deterministic description of immersion freezing in cloud
models is justified, as the stochastic component just induces
a minor modulation of the characteristic freezing tempera-
tures.

PCF is described by a deterministic parameterization as
well, as ice formation in this mode is determined by the
relative humidities required either for pore water condensa-
tion or ice growth with no stochastic component involved
when temperatures are well below the threshold for homoge-
neous freezing of supercooled solution droplets, which is the
case at cirrus temperatures (Marcolli, 2020; Marcolli et al.,
2021). At warmer temperatures, PCF is basically immersion
freezing in pores: both the pore filling and immersion freez-
ing process are described deterministically. For the contact
and condensation freezing modes, a deterministic description
is also appropriate. As the collision with INPs triggers the
glaciation of cloud droplets during contact freezing, the time
dependence of ice nucleation can be neglected. Similarly, the
time dependence of condensation freezing is determined by
the process of cloud droplet activation, and ice nucleation can
be considered immediate once the INP is immersed in water.

For these reasons, a formulation of AFs as φ(s) without
explicit time dependence is recommended for all modes of
ice formation initiated by INPs.

Figure 1. In a pool of N0 ice-nucleating particles, 1N ice crys-
tals form at ice supersaturation s, and 1N+ additional ice crystals
form at a higher value, s+. The resulting ice crystal numbers can
be directly predicted from time-independent, cumulative ice-active
fractions, φ, based on the original INP sample of size N0 (“no bud-
get” approach, black arrows labeled with φ). When already acti-
vated INPs are removed at s (“budget” approach, curved arrow), φ
can no longer be used at s+ because of the reduced sample size,
(N0−1N ). This study derives differential ice-active fractions, ϕ,
that can be applied to derive 1N+ from the smaller sample (blue
arrow).

2 Stating the issue

Treating ice formation as a deterministic process has impli-
cations for the use of s-cumulative AFs, φ, from laboratory
experiments in cloud models.

The following issue arises, as illustrated in Fig. 1: after
ice has formed on INPs at a given value of s > 0, the lat-
ter are budgeted (removed) to ensure that the same INPs are
no longer available for nucleation. With 1N newly formed
ice crystals, only (N0−1N) INPs are available for further
nucleation. The number of crystals formed in a succeed-
ing nucleation event at s+ > s must not be diagnosed from
(N0−1N)φ(s+), as the s-cumulative ice-active fraction is
based on a sample of N0 particles.

We may estimate the differential AF associated with the
step process s→ s+ (Fig. 1). By definition, the number
of INPs activating between s and s+ is given by (N0−

1N)ϕ(s+). Therefore, the number of unactivated INPs at s+
is given by the following rate equation:

N0−1N −1N+ = (N0−1N)− (N0−1N)ϕ(s+), (1)

yielding

ϕ(s+)=
1N+

N0−1N
. (2)
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The cumulative AF leads toN0φ(s+)=1N+1N+ and cor-
respondingly, N0φ(s)=1N . Therefore, 1N+ is given by

1N+ =N0
[
φ(s+)−φ(s)

]
=N01φ, (3)

and the differential AF belonging to the blue arrow in Fig. 1
is expressed solely in terms of the cumulative AF:

ϕ(s+)=
1φ

1−φ(s)
. (4)

In the initial step of ice activation, where s increases from
a value ≤ 0 to s > 0 for the first time, Eq. (4) simplifies to
ϕ(s)= φ(s), because φ(s ≤ 0)= 0.

As we show in Sect. 3, using cumulative instead of dif-
ferential AFs in the “budget” approach shifts the outcome
of the competition between homogeneous droplet freezing
and heterogeneous ice nucleation on INPs artificially towards
the latter. This competition is an important topic in cloud re-
search (Lohmann, 2017; Kärcher, 2017).

3 Solving the issue

We derive differential ice-active fractions (Sect. 3.1) and cor-
responding particle number budget equations (Sect. 3.2) for
phase transitions involving INPs with time-independent nu-
cleation behavior and the ice crystals formed from them. The
use of differential spectra derived from immersion freezing
experiments is discussed by Vali (2019).

3.1 Differential ice-active fractions

We define a sequence of ice supersaturation values, {sj }
(henceforth s-grid), with grid spacings 1sj = sj − sj−1 and
index j = 1, . . ., jmax, starting at s0 = 0 with φ(s0)= 0. To
derive differential AFs, it suffices to assume that sj values
increase.

We view φj ≡ φ(sj ) as the statistical outcome of many
identically prepared laboratory measurements. While φj de-
scribes the fraction of INPs that are ice-active within the
interval [0, sj ], the associated differential AF, ϕj , shall de-
scribe only those INPs that are ice-active within [sj−1, sj ].
Therefore, the probability that INPs remain unactivated at sj ,
(1−φj ), is given by the product of the probabilities for par-
ticles not activating in all intervals 1s` prior to sj , (1−ϕ`):

1−φj =
j∏
`=1
(1−ϕ`). (5)

ϕj (j > 1) is obtained by recursion (by definition, ϕ1 = φ1)
from the above equation as follows:

ϕj = 1−
1−φj∏j−1

`=1(1−ϕ`)
=

1φj

1−φj−1
, (6)

generalizing Eq. (4). Note that differential AFs depend on the
type of s-grid. Equation (6) tells us that ϕj equals the fraction

Figure 2. The cumulative AF (φ, black curve) and associated differ-
ential AFs (ϕ, blue curves) evaluated across three s-grids with con-
stant spacings: 1s = 0.01 (solid), 1s = 0.02 (dashed), and 1s =
0.05 (dot-dashed).

of INPs activated within 1sj in the “no budget” approach,
1φj = φj −φj−1, corrected by a factor accounting for the
removal of INPs that are ice-active below sj−1.

Depleting INPs from their reservoir after ice activation
as done in cloud models is equivalent to using smaller and
smaller samples in laboratory experiments. As a result, the
correct AFs to be used in such models, ϕ, are smaller than φ,
because the number of unactivated INPs remaining decreases
with increasing s. Using φ instead increases and biases the
number of INP-derived ice crystals. This unphysical effect is
to be avoided in models that budget INP and associated ice
crystal numbers.

We model cumulative AFs analytically using

φ(s)=
1
2

[tanh(z)+ 1] , z=
s− s∗

δs
, (7)

with the 50% activation point, s∗ (φ(s∗)= 0.5), and the slope
parameter, δs. Equation (7) allows us to conveniently fit mea-
sured cumulative AFs. For instance, Ullrich et al. (2017) pro-
vide φ for desert dust using an empirical parameterization
for the active site density, ns(s,T ): φdust = 1− exp(−nsA).
Evaluating this expression at T = 220 K and for a surface
area, A, of a spherical particle with 1 µm diameter, Eq. (7)
provides a reasonable fit with s∗ = 0.352 and δs = 0.0175
(Appendix A). A more realistic representation of ice activity
integrates φdust over a surface area distribution of dust parti-
cles, which would cause ice to form across a wider range of
s values, corresponding to a larger δs value. For illustration,
we apply Eq. (7) with s∗ = 0.35 and δs = 0.05.

Figure 2 depicts AFs based on Eqs. (6) and (7), evaluated
for a linear s-grid with various constant grid spacings, 1s:
sj = (j − 1)1s. Consistent with Eq. (6), ϕ approaches φ for
s� s∗ = 0.35, and ϕ is significantly lower than φ for s&s∗.
As 1s increases and comprises a greater range of s values,
differences between cumulative and differential AFs dimin-
ish, although at the cost of resolution.
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3.2 Particle budgets

In this section, we employ both a linear and sinusoidal s-grid
defined by

sj = (j − 1)1s, 1s > 0 (8)

sj = Aj
[
1+ sin(αj )

]
, Aj = 0.3exp

(
−
jmax− j

jmax− 1

)
,

αj = 2π · 12
j − 1
jmax− 1

−
π

2
, (9)

respectively, where 1s is a constant grid spacing. The lin-
ear grid (Eq. 8) describes a monotonically increasing super-
saturation history representing a single ice formation event
(s increases linearly due to adiabatic cooling for sufficiently
small, constant cooling rates). The wavy grid (Eq. 9) illus-
trates an idealized, non-monotonically rising supersaturation
history with rising amplitude envelope (set by Aj ), such as
encountered during gravity wave activity with alternating
cooling and heating cycles (controlled by αj ). Both trajec-
tories are shown in Fig. 3a and d.

To simplify the notation, j shall represent a dimensionless
time variable. We note that, in general, each grid representa-
tion, {sj }, is subject to its own temporal development. For ex-
ample, s might additionally be affected by latent heat release
or ice crystal growth. In cloud models, where grid spacing
and temporal evolution cannot be separated, {sj } is deter-
mined by the time steps needed to simulate ice formation.
The time steps may vary during the simulation depending on
accuracy requirements. The differential AFs from Eq. (6) are
then computed based on a variable s-grid.

We denote the number of ice crystals forming from INPs
that are ice-active at sj as Ni,j and the corresponding num-
ber of remaining (unactivated) INP as Na,j . We normalize
both variables by the initial number of INPs (at s = 0), N0:
ηi,j =Ni,j/N0, ηa,j =Na,j/N0 so that they are bounded by
zero and one. The equations governing the evolution (j ≥ 1)
in the time-independent (deterministic) nucleation frame-
work for both linear and wavy supersaturation histories with-
out budgeting particle numbers are given by

ηa,j = 1 (10)
ηi,j =max

{
ηi,j−1,φj

}
, (11)

with φj taken from Eq. (7) and ηi,0 = 0. By definition,
ηi,j values denote cumulative number concentrations. The
fact that ηa,j stays constant is consistent with the “no bud-
get” approach. For non-monotonically increasing supersatu-
ration,1sj take zero or negative values. The max{·} function
ensures that ice crystal numbers do not decrease when INPs
encounter a supersaturation lower than the highest previous
value. This reflects the deterministic nature of nucleation on
INPs and is in contrast with stochastic homogeneous ice nu-
cleation, where all particles of a given size nucleate ice with
the same probability determined by the freezing rate, irre-
spective of the supersaturation history.

When considering particle number budgets (see Sect. 2),
we use differential AFs:

ηa,j = ηa,j−1− ηa,j−1ϕj (12)
ηi,j = ηi,j−1+ ηa,j−1ϕj , (13)

with ηa,0 = 1. The ηa,j values diminish as ice formation
progresses while the total particle number, ηa,j + ηi,j , is
conserved (i.e., independent of j ). For non-monotonically
increasing supersaturation, we modify cumulative AFs by
φ̂j =max{φj ,φj−1} to evaluate ϕj . This ensures that φ̂j =
φj−1 stays constant, and ϕj = 0 when s values descend from
(j − 1) to j , as motivated above.

Results for both types of s-grids are presented in Fig. 3, as-
suming either 1s = 0.01 in Eq. (8) or variable grid spacing
with jmax = 101 in Eq. (9). For constant cooling (Fig. 3a–c),
s-cumulative, normalized ice crystal numbers ηi rise contin-
uously and INP numbers ηa stay constant in the “no bud-
get” approach. When ice crystals are budgeted, using the
cumulative AF overpredicts ηi , although INPs are removed
(ηa decreases). When cooling and heating periods alternate
(Fig. 3d–f), ηi again increases at the expense of ηa , but using
the cumulative AF together with budgeting ice crystals again
leads to an overprediction of ice crystal numbers.

The impact on cloud properties of wrongly using cumula-
tive AFs in specific simulations cannot be judged based on
the results shown in Fig. 3 alone. For example, in cirrus sim-
ulations, the change in total nucleated ice crystal numbers
is likely small in situations with efficient INPs (with large
dφ/ds near s∗) and high cooling rates, as most INPs will
activate straightaway and the time needed for s to increase
above the 50% activation level is short.

4 Applying ice-active fractions in models across scales

A number of models exist to study clouds. Specific cloud
processes such as nucleation are simulated in air parcel
models on the process level. Cloud-resolving models sim-
ulate formation and evolution of clouds with high resolution.
Cloud system-resolving models track the life cycles of clouds
on regional scales, better accounting for large-scale controls
but with poorer resolution and increased need for parameter-
izations of small-scale processes. Global models with coarse
resolution represent much of the atmospheric complexity, but
they represent clouds only by way of parameterization. In
all types of models, ice-forming aerosol particles and cloud
ice crystals may be represented by size-integrated properties,
such as total particle number, or contain explicit size infor-
mation via particle size distributions (PSDs). We compare
cumulative and differential AFs with size-resolved or size-
integrated INP representation using the example of soot par-
ticles as INPs.

Soot particles nucleate ice after processing in mixed-phase
clouds and aircraft contrails via PCF (Mahrt et al., 2020).
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Figure 3. Evolution of deterministic ice formation events driven by (a–c) constant cooling and (d–f) periodically oscillating cooling and
heating, as indicated by panels (a) and (d), which show ice supersaturation versus dimensionless time. Panels (b), (c), (e), and (f) show the
resulting evolution of (black) INP and (red) cumulated ice crystal numbers in a model without and with the budgeting of particle numbers
based on the cumulative AF from Eq. (7) with s∗ = 0.35 and δs = 0.05 and the associated differential AFs, respectively. The dashed curves
in the “budget” approach were obtained by wrongly using the cumulative AF so that the difference from the solid curves indicates the error
in simulated particle numbers.

Based on laboratory measurements, soot PCF predicts cumu-
lative AFs of soot aggregates as a function of s and mobility
diameter, D (Marcolli et al., 2021). We apply the soot PCF
framework to soot particles emitted by aircraft jet engines.
We model their PSD, F(D), using a lognormal function (nor-
malized to unity) with an average modal mobility diameter of
32 nm and geometric standard deviation of 1.82, represent-
ing average cruise conditions (Zhang et al., 2019). Defining
the size distribution of ice-active particles as φ(s,D) ·F(D),
size-integrated ice-active fractions (INP spectra, for short)
follow from

f (s)=

∞∫
0

φ(s,D)F (D)dD, (14)

with φ(s,D) taken from Marcolli et al. (2021).
Figure 4 shows size-resolved and size-integrated cumula-

tive and differential AFs of aircraft soot particles processed
in contrails (Kärcher et al., 2021). Size-resolved cumulative
AFs decrease strongly with mobility diameter from 400 to
100 nm and reduce to zero for D < 40 nm (not shown). As
the soot PSD peaks in the Aitken size range, size-integrated
ice activity is low (< 0.01) even at high ice supersaturation
(s = 0.5).

A general recommendation on how to include differential
AFs in models cannot be given, as this depends on details

of the numerical implementation of aerosol–cloud interac-
tions, especially in global models with long time steps where
INP budgets are affected by both microphysics and transport.
However, differential AFs are straightforward to implement
in cloud models when making use of the budget Eqs. (12)
and (13) in combination with Eq. (6). Cumulative AFs may
be used only in studies of single ice formation events, which
do not require the removal of INPs after nucleation, e.g., in
parameterizations and underlying parcel simulations.

5 Concluding remark

Water phase transitions in clouds induced by INPs with de-
terministic ice nucleation behavior are described by time-
independent AFs that are cumulative in ice supersaturation.
In prognostic cloud models, care must be taken to avoid the
simulation of multiple ice formation events from the same
particles. This is accomplished by the introduction of bud-
get equations for INPs and the ice crystals deriving from
them. While straightforward in the case of time-dependent
budget equations (suitable for stochastic freezing) contain-
ing source and sink terms for the number of aerosol particles
(or cloud droplets) and ice crystals, a similar approach is not
feasible in the case of INPs with singular ice nucleation be-
havior. We formulated differential AFs consistent with the
removal of such INPs after activation and introduced modi-
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Figure 4. (a) The cumulative (solid curves) and differential AFs (dashed curves) for contrail-processed aircraft soot particles with mobility
diameters of (orange) 400, (red) 200, and (blue) 100 nm. (b) The cumulative (solid) and differential (dashed) AFs integrated over a population
of contrail-processed aircraft soot particles with lognormal number size distribution parameters indicated in the legend. Differential AFs are
computed based on an s-grid with constant spacing 1s = 0.01.

fications that are necessary when ice supersaturation evolves
non-monotonically over time. We discussed the representa-
tion of ice activation in cloud models and showed that using
differential AFs prevents the overestimation of INP effects.
Finally, we demonstrated the importance of including INP
size information in estimations of AFs.

Our insights help improve cloud simulations and better un-
derstand the relative roles of natural and anthropogenic INPs
in determining coverage, lifetime, and radiative response of
mid- and high-level clouds.

Appendix A: Analytical representation of ice-active
fractions

The hyperbolic tangent chosen to represent φ allows one
to easily compare measured and parameterized s-cumulative
ice-active fractions and perform sensitivity studies. It is
based on only two parameters, s∗ and δs, with clear phys-
ical significance (Sect. 3.1). Here, we apply this function to
fit the activation curve from Ullrich et al. (2017) for monodis-
perse (1 µm) spherical dust particles using s∗ = 0.352 and
δs = 0.0175.

Figure A1 shows that Eq. (7) approximates the parame-
terization very well, especially in the crucial part around s∗,
where φ rises steeply from low to significant values. We pre-
sume that the hyperbolic tangent provides reasonable fits to
activation curves of other INP types as well, which show a
similar s dependence. We note that the parameter values suit-
able for monodisperse particles change when size-dependent

Figure A1. Comparison of an ice activation parameterization for
1 µm dust particles (black curve) with an analytical approximation
(blue).

cumulative ice-active fractions are integrated over a particle
size distribution.

In discussing deterministic ice formation (Sect. 3), we
have chosen a larger slope parameter, δs = 0.05. This spreads
ice activation over a larger range of s values (compare the
black curve from Fig. 2 with the blue curve from Fig. A1)
and helps illustrate the ice activation events shown in Fig. 3
more clearly.
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