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ABSTRACT

Deep neural networks (DNNs) have become a powerful tool for image classification
tasks in recent years, being nowadays also relevant for safety-critical applications like
autonomous driving. Despite being highly accurate even for unknown images, the
existence of so-called “adversarial examples” nevertheless calls the robustness of DNNs
into question: These are slightly, but purposefully perturbed versions of natural images,
being only barely distinguishable from their unperturbed originals, but causing the DNN
to misclassify them.

In the scope of this work, two white-box attacks (Fast Gradient Sign Method, Projected
Gradient Descent) and a black-box attack (Boundary Attack) were implemented to create
the adversarial examples on the basis of images from the CIFAR-10 and the GTSRB
datasets. The trained DNNs, being based on the PreAct-ResNet-50 architecture, were
subsequently evaluated concerning their robustness against both adversarial and random
perturbations. Furthermore, two variants of adversarial training (using the Fast Gradient
Sign Method and the Stable Single Step algorithm, respectively) were implemented to
analyze, in how far such an adaption of the training process influences the robustness
and general accuracy of DNNs. Last, the loss landscapes of the differently trained DNNs
were investigated qualitatively.

The results show that the susceptibility to adversarial examples is highly data depen-
dent, with images from CIFAR-10 generally exhibiting a higher risk than those from
the GTSRB dataset. By contrast, random perturbations comparatively rarely led to mis-
classifications, regardless of the dataset considered. Moreover, Stable Single Step-based
adversarial training has proven to increase the robustness against adversarial examples
to a limited extent, but also slightly lower the accuracy for natural images. In general,
however, adversarial training led to insufficient robustness enhancements, for which
substantial overfitting of the trained DNNs was identified as the main reason.





ZUSAMMENFASSUNG

Tiefe neuronale Netze haben sich in den letzten Jahren zu einem mächtigen Werkzeug
für die Klassifizierung von Bildern entwickelt, sodass sie heutzutage auch für sicher-
heitskritische Anwendungen wie das autonome Fahren infrage kommen. Obwohl sie
auch bei unbekannten Bildern eine hohe Genauigkeit aufweisen, führt die Existenz so-
genannter „Adversarial Examples“ doch zu Zweifeln an der Robustheit der neuronalen
Netze. Denn solche Adversarial Examples sind nur leicht, auf spezielle Art und Weise
verrauschte Versionen von tatsächlichen Bildern, die praktisch nicht von den Originalen
zu unterscheiden sind, aber zu einer Fehlklassifizierung durch das DNN führen.

Im Rahmen dieser Arbeit wurden zwei White-Box-Attacken (Fast Gradient Sign Me-
thod, Projected Gradient Descent) und eine Black-Box-Attacke (Boundary Attack) imple-
mentiert, um Adversarial Examples auf der Grundlage von Bildern aus den Datensätzen
CIFAR-10 und GTSRB zu erzeugen. Die trainierten neuronale Netze, die auf der PreAct-
ResNet-50 Architektur basieren, wurden anschließend hinsichtlich ihrer Robustheit so-
wohl gegenüber zufälligem Rauschen als auch dem speziellen Rauschen von Adversarial
Examples untersucht. Darüber hinaus wurden zwei Varianten des „Adversarial Trainings“
(auf Basis der Fast Gradient Sign Method bzw. des Stable Single Step Algorithmus’) imple-
mentiert, um zu analysieren, inwieweit eine derartige Anpassung des Trainingsprozesses
die Robustheit und die allgemeine Genauigkeit der neuronalen Netze beeinflusst. Zuletzt
wurde die Form der Kostenfunktion für die unterschiedlich trainierten neuronalen Netze
qualitativ untersucht.

Die Ergebnisse zeigen, dass die Anfälligkeit für Adversarial Examples stark von den
zugrundeliegenden Daten abhängt; Bilder aus dem CIFAR-10 Datensatz wiesen im All-
gemeinen ein höheres Risiko auf als solche aus dem GTSRB Datensatz. Dagegen führte
zufälliges Rauschen vergleichsweise selten zu Fehlklassifizierungen, unabhängig von
dem betrachteten Datensatz. Ferner hat sich herausgestellt, dass Adversarial Training
unter Verwendung des Stable Single Step Algorithmus’ die Robustheit gegenüber Ad-
versarial Examples in einem begrenzen Rahmen erhöhen kann, aber zugleich in einem
leichten Genauigkeitsverlust gegenüber natürlichen Bildern resultiert. Im Allgemeinen
hatte Adversarial Training jedoch nur eine unzureichende Steigerung der Robustheit zur
Folge. Als Hauptursache hierfür wurde eine erhebliche Überanpassung der trainierten
neuronalen Netze identifiziert.
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1 INTRODUCTION

As a motivation to this work, imagine a future world where processes are automated
to a high extend. Imagine a future world, where computer systems are able to take
over decision-making from humans in certain application fields by the use of artificial
intelligence (AI).

In many cases, decision-making is at least partly based on visual information. For
example, think of self-driving cars that use cameras to recognize traffic signs and road
markings, or automated border control (ABC) systems that use them to verify the identity
of travelers at airports. Moreover, optical diagnosing systems are conceivable in the
healthcare sector, being able to detect a disease earlier than a doctor.

The applications mentioned have in common that they are all safety-critical, i.e.,
malfunction can cause severe economical or physical damage. While it would be utopian
to expect flawlessness without exception, the used AI systems nevertheless have to be
highly reliable. They must be robust against disturbance, both natural and intentional.
Otherwise, in particular the missing of the latter opens the way to fraud, blackmail and
harm in general.

In this work, deep learning as a promising AI approach for image classification tasks
is investigated in view of its robustness against perturbations of the input data.

1.1. BACKGROUND

During recent years, deep neural networks (DNNs) have become one of the most effective
and powerful tools in many machine learning use cases. Besides the domains of natural
language processing [1, 2] and speech recognition [3, 4], great progress has particularly
been made in image recognition [5–8]. DNNs nowadays achieve near-human accuracy
in image classification tasks, facilitating the application in aforementioned fields like
autonomous driving [9, 10] or medical diagnosing [11, 12] at least theoretically.

However, in 2014, Szegedy et al. [13] have indicated for the first time that the sole
performance measured on test datasets and even during inference may be fallacious.
Starting at natural images, they were able to create so-called adversarial examples – almost
imperceptibly perturbed versions of the originals –, which subsequently caused DNNs to
misclassify. Since then, the issue has been the subject of extensive research, with over
3000 scientific papers being published so far [14].
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Unfortunately, the problem could not be solved yet. Although various methods were in-
vented to increase the robustness against adversarial attacks, stronger attacking schemes
reliably broke the defenses [15, 16].

Furthermore, the development of effective defensive approaches is complicated by the
fact that adversarial examples tend to transfer across different DNNs with potentially
different architectures [13, 17]. While many attacking schemes require comprehensive
knowledge about the networks to be fooled, this also enables black-box attacks with
only limited knowledge [18]. Moosavi-Dezfooli et al. [19] even showed that there exist
so-called universal perturbations, which lead to misclassification when being applied to
the majority of natural images sampled from a task-specific distribution.

Goodfellow, Shlens, and Szegedy [20] were the first to propose incorporating adversar-
ial examples into the training dataset of a DNN. Provided a sufficiently strong method to
create the adversarial examples, this adversarial training turned out to be more effective
than other approaches that aim to enhance a network’s robustness [16, 21]. The idea is
the same as for the well-known data augmentation technique, where, e.g., affine transfor-
mations like rotation or scaling are applied to images from the training dataset, aiming
to increase the generalization ability of the network [22].

Last, in contrast to adversarial training, which can only provide empirical robustness,
there exist some certification techniques than can guarantee robustness under certain
conditions [23–25]. However, these are computationally expensive and only barely scale
to large state-of-the-art DNN architectures as well as high-dimensional data. In addition,
the conditions under which adversarial robustness can be guaranteed are relatively strict,
i.e., there are many adversarial examples that do not satisfy the conditions but are still
imperceptible to humans [26].

1.2. PROBLEM STATEMENT

As explained at the beginning, the progressive dissemination of DNNs and their potential
usage in safety-critical application fields increasingly require solutions for the lack of
robustness against adversarial perturbations. The extensive research efforts without
any groundbreaking success so far already indicate the high complexity of the problem.
Looking at the circumstances under which DNNs are trained in the domain of image
classification provides reasons for the apparent difficulty of robust training.

Consider a classification task of 28 px× 28 px grayscale images that depict handwritten
digits from zero to nine. A dataset that matches the described task is known as Modified
National Institute of Standards and Technology (MNIST) [27] in the literature. Since every
pixel is treated as a distinct dimension, this input space, which has to be separated into
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the ten classes, has already 784 dimensions. The input space that is spanned by higher
resoluted images with multiple color channels is even larger.

The training dataset that consists of image-class-pairs represents points in the input
space whose class affiliation is known. In practice, the size of the dataset in relation
to the dimensionality of the image data becomes problematic, as the volume of the
input space grows exponentially to its number of dimensions. In view of the typical
high-dimensionality of the input space, the available training data becomes sparse. For
example, the aforementioned MNIST dataset contains “only” 60 000 images, which is
literally nothing in a 784-dimensional space. Consequently, it is difficult to learn the
actual structure of the input space w.r.t. the classification task, i.e., the ideal separation of
the input space into classes, from the few given data. This issue is also known as curse of
dimensionality and was first described by Bellman [28] in 1961.

Nevertheless, DNNs achieve remarkable performance even for new data that was not
part of the training dataset, implying that the learned separation of the input space might
be partly correct. By contrast, the existence of adversarial examples points out clear
inadequacies and suffering from the curse of dimensionality. Adversarial training here
seems to be an inherent method to increase the robustness of the DNN against adversarial
perturbations, as it extends the training dataset specifically by the problematic samples.

In this work, we aim to work out the characteristics of adversarial examples on the one
hand and evaluate the effectivity of adversarial training on the other hand. Therefore,
we investigate both methods to create adversarial examples and to perform adversarial
training.

We first train a DNN with the PreAct-ResNet-50 architecture [5, 29] on the CIFAR-10
dataset [30] and the GTSRB dataset [31], respectively. In both cases, we create adversarial
examples and evaluate them for various generating algorithms, both qualitatively and
quantitatively. In particular, we differentiate between a white-box attack that has full
knowledge about the DNN as well as its parameters and a black-box-attack that has no
further knowledge, but can solely pass images to the classifier and receive the classifica-
tion result. Moreover, we study whether random perturbations that are comparable in
magnitude to the adversarial ones lead to misclassification as well.

Subsequently, we train the DNNs afresh, this time adversarially, considering different
variations of adversarial training. In the end, we compare the resulting DNN instances
in terms of adversarial robustness on the one hand and accuracy w.r.t. natural images
on the other hand. Last, we make some qualitative investigation of the loss landscape of
natural images in the input space, both for standardly and adversarially trained DNNs.
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1.3. MATHEMATICAL NOTATION

Unless otherwise indicated, mathematical notation in this work is defined as follows:

• Scalars are written in italics, either upper or lower case (e.g., 𝛼 or 𝑁 ).

• Vectors are written in bold face and lower case (e.g., a). In general, they are defined
as column vectors.

• Matrices and higher-rank tensors are written in bold face and upper case (e.g., A).

• For a vector a ∈ R𝑛, the notation 𝑎𝑖 with 𝑖 ∈ {1, 2, . . . , 𝑛} represents the i-th
component of a. Analogously, 𝐴𝑖, 𝑗 with 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑗 ∈ {1, 2, . . . ,𝑚} denotes
the component in the i-th row and the j-th column of the matrix A ∈ R𝑛×𝑚 . The
same holds for higher-rank tensors.

• For a vector a ∈ R𝑛 ,
∑

a is a short notation of
∑𝑛

𝑖=1 𝑎𝑖 .

• 0 ∈ R𝑛 and 1 ∈ R𝑛 denote the 𝑛-dimensional vectors that contain only zeros and
ones, respectively.

• All functions applied to a vector/matrix/tensor are generally applied element-wise,
unless otherwise specified.

• The notation 𝛿𝑖, 𝑗 =




1, for 𝑖 = 𝑗

0, for 𝑖 ≠ 𝑗

represents the Kronecker delta.

• Let 𝑓 : R𝑛 → R be a multivariate, scalar-valued function. Moreover, let such
𝑓 (𝑥 (1)1 , 𝑥 (1)2 , . . . , 𝑥 (1)𝑛1 , 𝑥

(2)
1 , 𝑥 (2)2 , . . . , 𝑥 (2)𝑛2 , . . . , 𝑥

(𝑚)
𝑛𝑚 ) with

∑𝑚
𝑖=1 𝑛𝑖 = 𝑛 be represented

by 𝑓 ∗(x(1), x(2), . . . , x(m)), where ∀𝑖 ∈ {1, 2, . . . ,𝑚} : x(i) =
(
𝑥 (𝑖)1 , 𝑥 (𝑖)2 , . . . , 𝑥 (𝑖)𝑛𝑖

)⊺
.

Then, the gradient of 𝑓 ∗ w.r.t. x(i) is defined as ∇x(i) 𝑓 ∗ =
(

𝜕𝑓

𝜕𝑥 (𝑖)1
,

𝜕𝑓

𝜕𝑥 (𝑖)2
, . . . ,

𝜕𝑓

𝜕𝑥 (𝑖)𝑛𝑖

)
.

• Let 𝑋 be a random variable with probability distribution 𝜌 . Then, E𝑋∼𝜌 (𝑋 ) denotes
the expected value of 𝑋 and V𝑋∼𝜌 (𝑋 ) denotes the variance of 𝑋 . In addition, given
an 𝑛-dimensional vector x ∈ R𝑛 , E(x) = 1

𝑛

∑
x and V(x) = 1

𝑛

∑𝑛
𝑖=1 (𝑥𝑖 − E(x))2

denote the mean and the variance of this vector’s components, respectively.

• The uniform distribution over the closed interval [𝑎, 𝑏] with 𝑎, 𝑏 ∈ R is denoted
by U(𝑎, 𝑏). Moreover, the Gaussian distribution with mean 𝜇 ∈ R and variance
𝜎2 ∈ R is denoted by N(𝜇, 𝜎2).
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1.4. OUTLINE

The remainder of this work is structured as follows:

Chapter 2 – Preliminaries: Here we give a basic background to the topics that are
covered in this thesis. That includes, e.g., how DNNs and their training work. Moreover,
we provide definitions and introduce notations being important for the rest of this work.

Chapter 3 – Materials and Methods: In this chapter, we list the concrete materials
and methods used in this work. This comprises the used datasets and DNN architecture as
well as special algorithms for the training of DNNs, the creation of adversarial examples
and the increase of DNNs’ robustness. Furthermore, we specify the experiments that are
conducted based on these materials and methods.

Chapter 4 – Results: This chapter contains the results of the previously specified ex-
periments.

Chapter 5 – Discussion: Here, we evaluate the results presented before and discuss
possible reasons why they turned out the way they did. In addition, outlooks on possible
future research and developments are given.

Chapter 6 – Conclusion: In this chapter, the main results of this work are summed up.

Appendices A to D: In the appendices, we provide some formal proofs as well as sup-
plementary material such as additional plots.
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2 PRELIMINARIES

In the following, the preliminaries for this work are presented. First, in sections 2.1 to 2.2,
a short overview on DNNs and how they are trained is given. Subsequently, in section 2.3,
we introduce balls and spheres in metric spaces. Next, we introduce ℓ𝑝 spaces and the
corresponding 𝑝-metrics in section 2.4. In section 2.5, a general definition for adversarial
examples is given. Last, we specify different threat models for adversarial attacks in
section 2.6.

2.1. DEEP NEURAL NETWORKS

A neural network is a highly parameterized mathematical model 𝑓 (x; 𝛉) = ŷ, where
x ∈ R𝑛 is an 𝑛-dimensional input, ŷ ∈ R𝑚 is an 𝑚-dimensional output and 𝛉 ∈ R𝑝 is a
𝑝-dimensional parameter vector. They aim to approximate a certain function 𝑓 (x) = y
with identical dimensionality of domain and range [32].

If the output data y is categorical, a neural network that is to approximate the cor-
responding function 𝑓 is called a classifier. We assume that y is one-hot-encoded, i.e.,
y ∈ Y with Y =

{(
𝛿1, 𝑗 , 𝛿2, 𝑗 , . . . , 𝛿𝑚,𝑗

)⊺ | 𝑗 ∈ {1, 2, . . . ,𝑚}}, where𝑚 denotes the number
of classes to differentiate. In words, with a set of classes C = {1, 2, . . . ,𝑚}, a specific
class 𝑐 ∈ C is represented as the 𝑚-dimensional vector y that is zeroed except for the
𝑐-th component, which equals one. Then, the predicted class 𝑐 ∈ C is the index of the
maximum component of the model prediction ŷ [32]:

𝑐 = arg max
𝑖∈C

𝑦𝑖 . (2.1)

Here, we define 𝑓𝑐 : R𝑛 → C as an extended version of the model function 𝑓 , which also
performs eq. (2.1) after the result ŷ of 𝑓 has been computed, yielding the predicted class
affiliation of the input data x.

Internally, neural networks are built up from layers, where the first one is the input
layer, the last one is the output layer and those in between are called hidden layers. If
a neural network incorporates two or more hidden layers, it is called deep. Moreover,
feedforward neural networks, also known as multilayer perceptrons, are a special type of
neural networks whose computational flow is straightforward, i.e. containing no cycles
or feedback loops between layers [32].
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In 1989, Cybenko [33] stated the universal approximation theorem, which says that
neural networks with one hidden layer are able to represent any continuous function.
One reason for this capability is their high number of parameters 𝛉, which are gradually
adjusted to form the best-possible approximation of 𝑓 . Another one is their non-linearity:
A layer typically consists of linear mathematical operations, being followed by a non-
linear activation function, which only make neural networks capable of approximating
non-linear functions. An exception is the input layer, which simply passes the input data
to the following layer. The two mostly used types of layers are fully connected layers
and convolutional layers [32].

Fully connected layers on the one hand multiply the vectorial input data x by a weight
matrix W, being followed by the addition of a bias vector b and resulting in the feature
vector z:

z = Wx + b. (2.2)

Convolutional layers on the other hand convolve the input data with a kernel to produce
a so-called feature map. They are often used to process two-dimensional image data in
the early stages of a DNN. Here, they can be interpreted as a kind of edge detectors. As
two-dimensional image data is frequently composed by several channels (e.g. RGB), both
the input data and the kernel have to be rank-three tensors. Moreover, a convolutional
layer does usually not only incorporate a single kernel, but various kernels that have all
the same size, but differ in values, producing various feature maps. In consequence, the
set of kernels can be understood as a rank-four tensor [32].

Let the input data be a rank-three tensor X ∈ R𝑐𝑖𝑛×ℎ𝑖𝑛×𝑤𝑖𝑛 and let the set of kernels
be a rank-four tensor K ∈ R𝑐𝑜𝑢𝑡×𝑐𝑖𝑛×𝑘ℎ×𝑘𝑤 , where 𝑐𝑖𝑛 denotes the channel count, ℎ𝑖𝑛 the
height and 𝑤𝑖𝑛 the width of input images. Furthermore, 𝑐𝑜𝑢𝑡 here denotes the kernel
count, synonymous to the number of output channels, 𝑘ℎ the kernel height and 𝑘𝑤 the
kernel width. Then, a convolutional layer performs channel-wise convolution between X
and K and eventually adds a bias tensor B ∈ R𝑐𝑜𝑢𝑡×ℎ𝑜𝑢𝑡×𝑤𝑜𝑢𝑡 , resulting in the rank-three
tensor Z ∈ R𝑐𝑜𝑢𝑡×ℎ𝑜𝑢𝑡×𝑤𝑜𝑢𝑡 with feature map height ℎ𝑜𝑢𝑡 and feature map width 𝑤𝑜𝑢𝑡 [32]:

𝑍𝑖, 𝑗,𝑙 =
𝑐𝑖𝑛∑︁
𝑎=1

(
X𝑎 ∗ K𝑖,𝑎

)
𝑗,𝑙 + 𝐵𝑖, 𝑗,𝑙 (2.3)

For both types of layers, a non-linear activation function is applied element-wise to
the result z or Z. A common one is the rectified linear unit (ReLU) function, which clips
negative values to zero [32]:

ReLU(z) = max (0, z). (2.4)
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Input [32 × 32] [6 @ 28 × 28] [6 @ 14 × 14] [16 @ 10 × 10] [16 @ 5 × 5] [120] [84] Output [10]

5 × 5 Conv.
TanH

2 × 2 Avg.-Pool
5 × 5 Conv.

TanH
2 × 2 Avg.-Pool

5 × 5 Conv.
TanH

FC
TanH

FC
So�max

Figure 2.1.: Architecture of LeNet-5 with three convolutional layers, two fully connected layers
and hyperbolic tangens (TanH) as activation function of the hidden layers. The input is required to
be 32 px × 32 px grayscale images, here a 28 px × 28 px image from the MNIST dataset is upscaled
beforehand. Red mappings refer to convolutional layers, green to fully connected layers and blue
to average pooling. Moreover, stacked tiles represent feature maps and stripes one-dimensional
feature vectors.

On the output layer of a classifier, the Softmax function can be used as an activation
function to achieve a categorical probability distribution (also called Multinoulli distribu-
tion), meaning values of output layer’s units are between zero and one, while all these
values sum up to one [32]. Therefore, the output values of the Softmax function can be
interpreted as certainties that the input x belongs to the respective class. It is defined as

Softmax(z) = exp z∑
exp z

. (2.5)

Opposite to fully connected layers, convolutional layers in many cases perform another
operation, called pooling. Pooling basically reduces the size of feature maps by mapping
several values onto a single one. Similar to convolution, a fixed-shape window is slid
over all regions of the activated feature maps, creating views. But instead of computing
a weighted sum, a reducing operation is performed on the view. For example, 𝑛 × 𝑛-
average-pooling takes the average value from each 𝑛 × 𝑛 view onto the feature maps
[32].

Last, the concrete composition of a DNN’s layers, including their types, sizes, activation
functions, etc., is called the architecture of the DNN [32]. For example, fig. 2.1 visualizes
the LeCun Network (LeNet)-5 architecture [34] (named by its originator Yann LeCun)
with three convolutional layers and two fully connected layers, being designed e.g. for
the above-mentioned MNIST dataset.

2.2. TRAINING OF DEEP NEURAL NETWORKS

Training a DNN means gradually adapting its parameters 𝛉 in such a way that the
discrepancy between model’s output ŷ and the objectively correct output y, called ground
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truth, becomes minimal for all inputs x of the considered data distribution 𝜌data. The aim
of training is that the DNN achieves a high performance, e.g., being measured by the
accuracy metric, which states the proportion of correctly classified elements over a finite
set of samples from 𝜌data [32].

However, since accuracy is basically a binary metric (either a specific prediction is
correct or it is not), it is not suitable to fine tune parameters as detailed as required. By
contrast, a loss function 𝐽 : R𝑚 ×R𝑚 → R provides an indirect performance measurement,
mapping the discrepancy of a model’s output ŷ and the corresponding ground truth data
y onto a real number. A loss function hence takes the complete output data into account,
rather than just the binary result of being a match or not. The smaller the discrepancy
between ŷ and y, the lower the loss function becomes. Thus, optimization of the model
parameters 𝛉 can be achieved by minimization of the loss function over the considered
data distribution, being modeled by the training dataset 𝜌data [32]:

arg min
𝛉

E(x,y)∼𝜌data 𝐽 (𝑓 (x), y). (2.6)

The loss function can be extended by a parameter norm penalty, regularizing the
parameter adaption to prevent overfitting, i.e., excessive adaption to the training dataset
𝜌data, but insufficient generalization to other samples from 𝜌data For example, 𝐿2 regular-
ization adds the 𝐿2 norm of the current parameter vector 𝛉 to the loss function, penalizing
high absolute parameter values that may create highly specialized models. With 𝐿2

regularization, the composite loss function results in

𝐽 (ŷ, y) + 𝛼 1
2 ∥w∥

2
2, (2.7)

where 𝛼 ∈ R≥0 is a hyperparameter1, denoting the regularization strength, and w rep-
resents the parameter vector without any bias parameters. The bias parameters are
unregularized to avoid underfitting [32].

For multinomial classification, cross-entropy is often used as a loss function. Cross-
entropy is a statistical measure that makes a statement about the dissimilarity between
two probability distributions [35].2 Let p ∈ R𝑛 and q ∈ R𝑛 be two discrete probability
distributions. Then, the cross entropy of q w.r.t. p is defined as

H(p, q) = −
𝑛∑︁
𝑖=1

𝑝𝑖 log𝑞𝑖 . (2.8)

Since in multinomial classification the output layer returns a discrete probability distri-

1Hyperparameters are parameters that are not optimized during training, but set beforehand.
2In general, cross-entropy is not symmetrical, i.e., H(p, q) ≠ H(q, p) [35]. However, in terms of cross-

entropy loss, only the first term is needed.
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bution ŷ and the ground truth data y can be interpreted as fixed reference probability
distribution, cross entropy loss is analogously defined as

𝐽 (ŷ, y) = −
𝑚∑︁
𝑖=1

𝑦𝑖 log𝑦𝑖 . (2.9)

The loss function w.r.t. 𝛉 is typically non-convex [32]. In order to minimize such a
non-convex function, one can use gradient descent, if the function is differentiable. In
gradient descent, the gradient of the loss function w.r.t. the model parameters is gradually
subtracted from the current parameter vector 𝛉(i) , beginning at an either randomly or
purposely chosen initial parameter vector 𝛉(0) and eventually converging at a minimum
[32]:

𝛉
(i+1) = 𝛉

(i) − 𝜂∇
𝛉
𝐽 . (2.10)

Here, 𝜂 ∈ R>0 is a hyperparameter and denotes the so-called learning rate, which scales
the gradient. When setting the learning rate, one has to find a good trade-off between
fast convergence and the risk of leaping over a minimum. It is usually reduced as the
training process progresses, leading to local optimization rather than further exploration
of the parameter space. Unfortunately, non-convexity implies that gradient descent does
not necessarily converge at the global minimum, but can converge at local minima as
well [36]. Moreover, gradient descent can get stuck at saddle points and plateaus of the
loss landscape, causing insufficient parameter adaption. There exist, however, several
sophisticated variants of gradient descent that can reduce risk for convergence at those
bad critical points, being capable of escaping from there. In addition, Choromanska et al.
[37] have shown that most local minima are sufficient, while the global minimum often
raises overfitting.

Because the numerical computation of the gradient ∇
𝛉
𝐽 through the difference quotient

is computationally too expensive3, it cannot be used. The backpropagation algorithm,
on the contrary, allows efficient and analytical computation of the gradient, using the
multivariable chain rule of calculus. Assuming that every mathematical operation being
part of the network’s forward pass can be expressed as a differentiable function, the loss
function can be seen as a composition of these functions, being differentiable itself. Then,
starting from the loss function, partial differentials w.r.t. intermediate results of hidden
layers can be computed by the aid of the chain rule. The partial differentials between those
intermediate results and the parameters being involved in their computation are known;
hence, partial differentials of the loss function w.r.t. these parameters and therefore

3The loss function would have to be evaluated once for every single model parameter. Every evaluation
includes a separate forward pass through the DNN.
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the gradient can ultimately be retrieved from appropriate multiplication of known and
previously computed differentials. This is also called backward pass [32].

Classical gradient descent on the one hand incorporates the whole training dataset per
optimization step. In view of large datasets, such a forward and backward pass can be
computationally very expensive, slowing down the training process. Stochastic gradient
descent (SGD) on the other hand only takes a subset of the whole training dataset, called
mini-batch, per optimization step. Since these subsets are not necessarily representative
for the considered data distribution, the computed gradients are only an approximation
of the actual gradients and tend to be noisy, especially for small batch sizes. Therefore,
the progress of minimization is not monotone. But only due to the noisy gradients, SGD
is capable of escaping from local minima and plateaus on the loss landscape [32].

The input x of a DNN is usually normalized and standardized, leading to faster conver-
gence during training [38]. While sole normalization is sensitive to outliers in the data,
image data is naturally bounded by the closed interval [0..255]. Hence, mapping pixel
intensities linearly onto the closed interval [0, 1] is sufficient.

Last, the training process is organized in terms of epochs. An epoch is the utilization
of the complete training data set for loss minimization, regardless of the batch size and
the resulting number of minimization steps. After an epoch, the loss is usually evaluated
for a separate validation dataset as well, which is withheld from actual training. If
the validation loss begins to increase and the training loss simultaneously continues to
decrease, this indicates overfitting and training should be stopped [32].

2.3. BALLS AND SPHERES IN METRIC SPACES

Let X ⊆ R𝑛 be a metric space with a metric 𝑑 : X × X → R≥0. Furthermore, let 𝑟 ∈ R≥0

and x(0) ∈ X. Then, first, the closed ball of radius 𝑟 centered at the point x(0) is the set

BX (x(0), 𝑟 ) = {x ∈ X | 𝑑 (x, x(0)) ≤ 𝑟 }. (2.11)

Second, the open ball of radius 𝑟 centered at the point x(0) is the set

BX (x(0), 𝑟 ) = {𝑥 ∈ X | 𝑑 (x, x(0)) < 𝑟 }. (2.12)

Third, the sphere of radius 𝑟 centered at the point x(0) is the set

SX (x(0), 𝑟 ) = {x ∈ X | 𝑑 (x, x(0)) = 𝑟 } = BX (x(0), 𝑟 ) \ BX (x(0), 𝑟 ). (2.13)

In addition, for a closed ball BX (x(0), 𝑟 ), the function ΠBX (x(0) ,𝑟 ) : X → BX (x(0), 𝑟 )
denotes the Euclidean projection function that projects any point x∗ ∈ X ontoBX (x(0), 𝑟 ):
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Figure 2.2.: Closed ℓ𝑝 unit balls for 𝑝 = 1, 2,∞ in two dimensions. The closed ℓ1 unit ball
B

ℓ (𝑛)1
(0, 1) (left) corresponds to a 45°-rotated square with diagonal length two, the closed ℓ2 unit

ball B
ℓ (𝑛)2
(0, 1) (center) to the unit circle and the closed ℓ∞ unit ball B

ℓ (𝑛)∞
(0, 1) (right) to the unit

square.

ΠBX (x(0) ,𝑟 ) (x∗) = arg min
x∈BX (x(0) ,𝑟 )

∥x − x∗∥2. (2.14)

Last, the closed/opened unit ball and the unit sphere are defined as the closed/opened
ball and sphere with radius 𝑟 = 1, respectively [39]. Geometrically speaking, the sphere
represents the surface of the corresponding closed ball, while the opened ball represents
the inner volume of the closed ball, excluding its surface.

2.4. ℓ𝑃 SPACES

An ℓ𝑝 space is a normed vector space, whose norm is the 𝑝-norm ∥ · ∥𝑝 . For 𝑝 ∈ [1,∞)
and an 𝑛-dimensional vector x ∈ R𝑛 , the 𝑝-norm of x is defined as [39]

∥x∥𝑝 =




𝑝
√︁∑𝑛

𝑖=1 |𝑥𝑖 |𝑝, for 1 ≤ 𝑝 < ∞

lim
𝑝→∞

𝑝
√︁∑𝑛

𝑖=1 |𝑥𝑖 |𝑝 = max𝑖∈{1,2,...,𝑛} |𝑥𝑖 |, for 𝑝 = ∞
. (2.15)

Let ℓ (𝑛)𝑝 be an 𝑛-dimensional ℓ𝑝 space. For x(1), x(2) ∈ ℓ (𝑛)𝑝 ,

𝑑𝑝 (x(1), x(2)) = ∥x(1) − x(2) ∥𝑝 (2.16)

is the 𝑝-norm induced metric inside ℓ (𝑛)𝑝 , called 𝑝-metric, and the result itself is called ℓ𝑝

distance. Commonly used 𝑝-metrics are the 1-metric, also known as Manhatten distance,
the 2-metric, which is simply the Euclidean distance, as well as the∞-metric, also known
as Chebyshev distance [40].
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Furthermore, the closed/opened ℓ𝑝 ball and the ℓ𝑝 sphere are defined as the closed/opened
ball and sphere w.r.t. the corresponding 𝑝-metric, respectively [39]. In two dimensions,
the closed ℓ1 unit-ball corresponds to a 45°-rotated square with diagonal length two, the
closed ℓ2 unit-ball to the unit circle and the closed ℓ∞ unit-ball to the unit square, as shown
in fig. 2.2. In 𝑛 dimensions, this can be generalized to the shapes of a cross-polytope (ℓ1),
a hypersphere (ℓ2) and a hypercube (ℓ∞).

A closed ℓ𝑝 ball is always a convex set, i.e., for two points x(1), x(2) ∈ B
ℓ (𝑛)𝑝
(x(0), 𝑟 ) with

x(0) ∈ ℓ (𝑛)𝑝 and 𝑟 ∈ R≥0, any point on the line segment that joins x(1) and x(2) is part of
B

ℓ (𝑛)𝑝
(x(0), 𝑟 ) [39]:

∀𝜆 ∈ [0, 1] : 𝜆x(1) + (1 − 𝜆)x(2) ∈ B
ℓ (𝑛)𝑝
(x(0), 𝑟 ). (2.17)

Last, for an appropriate 𝑛-dimensional metric ℓ∞ space ℓ (𝑛)∞ ⊆ R𝑛 , center point x(0) ∈
ℓ (𝑛)∞ and radius 𝑟 ∈ R≥0, the Euclidean projection Π of a point x∗ ∈ ℓ (𝑛)∞ onto the closed
ℓ∞ ball B

ℓ (𝑛)∞
(x(0), 𝑟 ) is

ΠB
ℓ
(𝑛)
∞
(x(0) ,𝑟 )

(
x∗) = max

(
x(0) − 𝑟 · 1,min

(
x∗, x(0) + 𝑟 · 1

))
. (2.18)

The corresponding proof is stated in appendix A.1.

2.5. ADVERSARIAL EXAMPLES

Informally, an adversarial example is an only slightly perturbed version of a natural image
which causes a DNN classifier to misclassify it as opposed to the original image.

Let X𝑝 = [0, 1]𝑛 be the 𝑛-dimensional input space of an image classifier 𝑓𝑐 : X𝑝 → C
with the𝑚-elements set of classes C = {1, 2, . . . ,𝑚}. Furthermore, the input space X𝑝 is
a metric space that is based on the 𝑝-metric 𝑑𝑝 . As a short notation, we write X for X∞.
Hence, note that X is equivalent to the closed ℓ∞ ball B

ℓ (𝑛)𝑝

( 1
2 · 1, 1

2
)
.

Moreover, let𝑑𝑝 measure the dissimilarity of two images, and let 𝜖 ∈ R≥0 be a maximum
permitted dissimilarity score. Then, we call a perturbed version x′ ∈ X𝑝 of a natural
image x ∈ X𝑝 with ground truth class 𝑐 adversarial iff the following holds [16]:

𝑓𝑐 (x) = 𝑐 ∧ 𝑓𝑐 (x) ≠ 𝑓𝑐 (x′) ∧ 𝑑 (x, x′) ≤ 𝜖. (2.19)

2.6. THREAT MODELS

A threat model typically “enumerate[s] the goals and capabilities of adversaries in a
target domain” [41]. While the “target domain” is clearly defined by image classification
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of DNNs, the remaining terms “capabilities” and “goals” have to be specified more closely
here.

First, concerning adversarial attacks of DNNs, “capabilities” mostly refers to the kind of
access given to the target DNN as well as the knowledge that follows from it. A common
differentiation here is distinction between the white-box setting and the black-box setting
[18]. While there are more fine-grained kinds of differentiation [41], we use the following
one in the scope of this work:

In the white-box setting, adversaries have unrestricted access to the target DNN. They
have knowledge about its architecture as well as its parameter values 𝛉 after training. In
consequence, they are able to compute gradients of the model function 𝑓 (x; 𝛉). Moreover,
they have access to a representative set of images sampled from the data distribution
𝜌data to which the target DNN is adapted, although this does not necessarily have to be
the used training dataset 𝜌data.

Opposite to this, in the black-box setting, adversaries have only restricted access to
the target DNN. Specifically, they have no further knowledge about its internals, but can
only pass an input image to the model and receive the classification result as an output,
in the manner of an oracle. Hence, they are not able to compute gradients of the model
function 𝑓 (x; 𝛉) as well. However, they still have access to a representative set of images
sampled from the considered data distribution 𝜌data, as in the white-box setting.

Second, “goals” points, for one thing, to the kind of misclassification an adversary
aims to achieve. In the simplest case, we can differentiate here between the untargeted
setting, where any other class apart from the correct one is accepted, and the targeted
setting, where a specific wrong class is to be predicted by the classifier. Again, there are
further subdivisions of the spectrum [41]. In the scope of this work, we only consider the
untargeted setting.

For another thing, an adversary has to specify the dissimilarity metric 𝑑 on the basis of
which the adversarial examples are to be created. Due to the ease of their computation,
𝑝-metrics are frequently used in practice, in particular the 2-metric [21, 42] as well as the
∞-metric [20, 21]. In the scope of this work, we focus on the latter.

In total, adversarial attacking becomes more difficult with both increasing complexity
of adversarial goals and decreasing scope of adversarial capabilities [41].
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3 MATERIALS AND METHODS

In this chapter, we present both the materials and the methods used in this work. First,
in section 3.1, we show the two considered image datasets, being followed by the chosen
DNN architecture in section 3.2. Next, we explain some algorithms that are utilized for
DNN training in section 3.3. In sections 3.4 and 3.5, we first introduce methods to create
adversarial examples and then present adaptions of the training process to increase the
robustness of DNN against them. Last, section 3.6 specifies the concrete experiments
being conducted in this work.

3.1. DATASETS

We use two different public image classification datasets, namely the Canadian Institute
for Advanced Research (CIFAR)-10 and the German Traffic Sign Recognition Benchmark
(GTSRB) dataset.

3.1.1. CIFAR-10

The CIFAR-10 dataset was published in 2009 by Krizhevsky [30]. It contains 60 000 32 px×
32 px RGB images, which are labeled with one of the ten classes airplane, automobile,
bird, cat, deer, dog, frog, horse, ship and truck. The dataset is uniformly distributed over
the set of classes, i.e., there are 6000 images per class.

The dataset already provides a split between a training and a validation dataset. The

airplane (0) automobile (1) bird (2) cat (3) deer (4)

dog (5) frog (6) horse (7) ship (8) truck (9)

Figure 3.1.: Example images from the CIFAR-10 dataset. Per class, one example images was taken
randomly from the training dataset.

17



Materials and Methods

training dataset of CIFAR-10 consists of 50 000 images randomly selected from the entire
dataset, where all classes are 5000 times each and therefore equally represented. The
validation dataset encompasses the remaining 10 000 images, being uniformly distributed
over the ten classes as well.

Figure 3.1 shows some example images from the CIFAR-10 dataset.

3.1.2. GTSRB

The second considered dataset is the GTSRB dataset, being published in 2011 by Stallkamp
et al. [31]. It consists of 51 839 RGB images that vary from 15 px× 15 px to 222 px× 193 px
in resolution. Furthermore, the images depict a total of 43 different German traffic signs,
which act as classes.

Just as for CIFAR-10, the GTSRB dataset provides a split between a training and a
validation dataset. The training dataset here encompasses 39 209 images and the validation
dataset contains the remaining 12 630 images. The split is based on random selection
with some constraints to preserve the class distribution. Unlike CIFAR-10, the class
distribution is not uniform, so some classes are overrepresented (e.g., the class “speed
limit 30 km/h” with 5.7 % share and the class “speed limit 50 km/h” with 5.8 % share) and
others are underrepresented (e.g., the classes “speed limit 20 km/h” and “left-hand bend”
with 0.5 % share each). Note that the ideal uniform distribution had a class share of 2.3 %.
The total relative class distribution is visualized as a histogram in fig. 3.2.

Finally, fig. 3.3 shows some example images from the GTSRB dataset as well.

3.2. DEEP NEURAL NETWORK ARCHITECTURE

We use the pre-activation (PreAct)-residual network (ResNet)-50 architecture [29] for the
DNNs trained in this work.

3.2.1. Residual Blocks

First of all, the general ResNet architecture stands out due to including so-called residual
blocks, which are a composition of several, typically convolutional layers. Basically, such
a residual block does not pass the sole output of its last layer to the following layer, but
adds the input of its first layer to the output of its last layer, called skip connection. In
the original version of the ResNet architecture, this addition is performed just before the
activation of the block’s last layer. In general, the ReLU function is used as an activation
function for the hidden layers in the ResNet architecture.

So let x be the input to the residual block, let z be the non-activated output of the
block’s last layer and let F with F (x) = z be the composite function of all layers inside

18



3.2. Deep Neural Network Architecture

sp
ee

d
lim

it
20

(0
)

sp
ee

d
lim

it
30

(1
)

sp
ee

d
lim

it
50

(2
)

sp
ee

d
lim

it
60

(3
)

sp
ee

d
lim

it
70

(4
)

sp
ee

d
lim

it
80

(5
)

en
d

of
sp

ee
d

lim
it

80
(6

)
sp

ee
d

lim
it

10
0

(7
)

sp
ee

d
lim

it
12

0
(8

)
no

ov
er

ta
ki

ng
(c

ar
)(

9)
no

ov
er

ta
ki

ng
(tr

uc
k)

(1
0)

pr
io

rit
y

ne
xt

(1
1)

pr
io

rit
y

ro
ad

(1
2)

yi
el

d
(1

3)
st

op
(1

4)
pr

oh
ib

iti
on

(1
5)

pr
oh

ib
iti

on
(tr

uc
k)

(1
6)

do
no

te
nt

er
(1

7)
da

ng
er

(1
8)

le
ft-

ha
nd

be
nd

(1
9)

rig
ht

-h
an

d
be

nd
(2

0)
do

ub
le

be
nd

(2
1)

un
ev

en
ro

ad
(2

2)
sli

pp
er

in
es

s(
w

et
)(

23
)

na
rr

ow
ro

ad
(ri

gh
t)

(2
4)

co
ns

tru
ct

io
n

ar
ea

(2
5)

tra
�

cl
ig

ht
s(

26
)

pe
de

st
ria

ns
(2

7)
ch

ild
re

n
(2

8)
bi

cy
cle

s(
29

)
sli

pp
er

in
es

s(
ic

e)
(3

0)
w

ild
an

im
al

s(
31

)
en

d
of

lim
ita

tio
n

(3
2)

tu
rn

rig
ht

(3
3)

tu
rn

le
ft

(3
4)

st
ra

ig
ht

ah
ea

d
(3

5)
st

ra
ig

ht
ah

ea
d

or
tu

rn
rig

ht
(3

6)
st

ra
ig

ht
ah

ea
d

or
tu

rn
le

ft
(3

7)
ke

ep
rig

ht
(3

8)
ke

ep
le

ft
(3

9)
ro

un
da

bo
ut

(4
0)

en
d

of
no

ov
er

ta
ki

ng
(c

ar
)(

41
)

en
d

of
no

ov
er

ta
ki

ng
(tr

uc
k)

(4
2)

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%
Cl

as
ss

ha
re

Figure 3.2.: Relative class distribution of the GTSRB dataset. The blue bar marks the ideal uniform
distribution.

speed limit 30 (1) speed limit 100 (7) priority road (12) yield (13) do not enter (17)

construction area (25) pedestrians (27) end of limitation (32) straight ahead or turn left (37) roundabout (40)

Figure 3.3.: Example images from the GTSRB dataset. Ten example images with distinct classes
were taken randomly from the training dataset. They were resized to 32 px × 32 px.

19



Materials and Methods

the block, excluding last layer’s activation.1 Then, F is called the residual function and
the eventual output of the corresponding residual block is computed by [5]

ReLU(F (x) + x). (3.1)

The rationale for such DNN architecture originates from the empirical observation that
deeper neural networks show poorer classification performance than shallower ones.
This also holds for comparisons where the deeper network is just an extended version
of the shallower one, incorporating additional layers, but sharing the same architecture
apart from that. In particular the latter contradicts the constructed solution of the deeper
network learning layer-wise the same mappings as the shallower one and learning the
identity mapping for its additional layers [5].

Consequently, He et al. [5] assumed that the identity mapping might be difficult to
learn. So instead of attempting to let a DNN learn the desired underlying mapping
H(x) directly, they tried to let it learn the additive residual F (x) = H(x) − x. They
“hypothesize[d] that it [was] easier to optimize the residual mapping than to optimize
the original, unreferenced mapping” and that, “if an identity mapping were optimal, it
would be easier to push the residual to zero than to fit an identity mapping by a stack of
nonlinear layers” [5].

Opposite to the original reasoning, however, the identity mapping being the optimal
mapping for several layers is quite unlikely, as the authors ascertained [5]. But the use
of residual blocks has another side effect that might explain its success better. In usual
“plain” DNNs, differentials are simply multiplied layer-wise with each other to compute
the derivatives of the loss function w.r.t. the model parameters. If the absolute value
of differentials is less than one, derivatives become steadily smaller for hidden layers
being closer to the input layer. This phenomenon is known as gradient vanishing [43] and
can lead to insufficient parameter adaption, especially at front layers. With the ResNet
architecture, on the contrary, skip connections allow derivatives of deeper layers to move
to front layers without a loss in signal during backpropagation. This can be shown easily:
Omitting the ReLU function for clarity and denoting the input and output of the 𝑖-th
residual block with residual function F (𝑖) by x(i) and x(i+1) , respectively, the derivative of
the loss function 𝐽 w.r.t. x(i) , given the derivative of 𝐽 w.r.t. x(i+1) from backpropagation
so far, is computed by [29]

𝜕𝐽

𝜕x(i) =
𝜕𝐽

𝜕x(i+1)
𝜕x(i+1)

𝜕x(i) =
𝜕𝐽

𝜕x(i+1)
𝜕
(F (x(i)) + x(i) )

𝜕x(i) =
𝜕𝐽

𝜕x(i+1)

(
𝜕F (𝑖) (x(i))

𝜕x(i) + 1
)
. (3.2)

1In practice, e.g., input data to convolutional layers are rank-three tensors (see section 2.1). To the sake of
simplicity, in the following we consider data in their flattened, vectorial representation.
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Figure 3.4.: Structure of a residual block for the ResNet-50 (top) and PreAct-ResNet-50 (bot-
tom) architectures. Convolutional layers are colored green, Batch Normalization red and ReLU
activation blue.

One can see here that the derivative of 𝐽 w.r.t. x(i+1) is simply added to the derivative of
the actual layer transformations included in F (𝑖) .

Internally, in case of the ResNet-50 architecture2, the residual function of a single
residual block consists of three subsequent convolutional layers. More specifically, 1 × 1,
3 × 3 and 1 × 1 convolution are performed in that order. Furthermore, the kernel count of
convolutional layers depends on an integer 𝑠 , which itself depends on the location of the
considered residual block in the whole DNN and will be discussed later. In any case, for
the first and the second convolutional layer of a residual block, the kernel count equals 𝑠 ;
for the third one, it is 4𝑠 [5].

One might have noticed that the skip connection as shown in eq. (3.1) cannot work, if
the input’s shape differs from the output’s shape. In such cases, a minimal transformation
is performed to align shapes, e.g., a 1 × 1 convolution with as many kernels as output
channels, if the channel counts are different [5].

Last, fig. 3.4a visualizes the structure of a residual block for the ResNet-50 architecture.

3.2.2. Batch Normalization

As already mentioned, the activation function each convolution is followed by is the ReLU
function. It does, however, not follow directly, but another operation is performed in

2The suffix “50” here implies that the corresponding DNN has 50 layers in total.
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between, called Batch Normalization [5]. The fundamental observation from which Batch
Normalization is motivated is that parameter changes during training also change the
input distribution a subsequent layer is confronted with, since their input is dependent
on the parameters of previous layers. Ioffe and Szegedy [44] called this effect the Internal
Covariate Shift. As it slows down the training, they invented Batch Normalization to
standardize3 the input of a DNN’s hidden layer, leading to a fixed input distribution.

Batch Normalization essentially consists of two steps. First, the current data batch
X ∈ R𝑏×𝑛 with batch size 𝑏 is standardized element-wise to mean zero and variance one
over the batch dimension:

∀𝑖 ∈ {1, 2, . . . , 𝑏} : ∀𝑗 ∈ {1, 2, . . . , 𝑛} : 𝑍𝑖, 𝑗 =
𝑋𝑖, 𝑗 − E

(
(X⊺)j

)
√︂
V

(
(X⊺)j

) . (3.3)

As standardization can also reduce the learning capabilities of the DNN, the standardized
data Z ∈ R𝑏×𝑛 is then linearly transformed in a second step:

∀𝑖 ∈ {1, 2, . . . , 𝑏} : ∀𝑗 ∈ {1, 2, . . . , 𝑛} : 𝑍 ∗𝑖, 𝑗 = 𝛾 𝑗𝑍𝑖, 𝑗 + 𝜁 𝑗 . (3.4)

Here, 𝛾, 𝜁 ∈ R𝑛 denote further learnable parameters of the DNN [44].

3.2.3. ResNet-50 and PreAct-ResNet-50 Architectures

Considering a DNN with ResNet-50 architecture from top view, the very first hidden layer
is a 3× 3 convolutional layer with 64 kernels. Next, there are four top-level blocks, which
contain a different number of residual blocks and also determine the aforementioned
parameter 𝑠 . The first of these top-level blocks contains three residual blocks with 𝑠 = 64,
the second four with 𝑠 = 128, the third six with 𝑠 = 256, and the forth another three with
𝑠 = 512. Subsequently, 4× 4 average-pooling is performed and the output is flattened, i.e.,
restructured as a vector per input image. Finally, a fully connected layer with width 2048
maps to the output layer, whose width is equal to the number of classes according to the
considered classification task [5].

The eventually used PreAct-ResNet-50 architecture is a modification of the original
ResNet-50 architecture, where the order of operations inside a residual block is changed.
In detail, instead of being performed after convolutions as usual, both the Batch Normaliza-
tion and the ReLU activation take place before the convolution, with Batch Normalization
preceding ReLU as for the regular ResNet-50 architecture. Moreover, ReLU activation
at the block’s very end is moved into the residual function. Figure 3.4b visualizes the

3Despite the name, Batch Normalization is actually a standardization technique.
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Figure 3.5.: Structure of the ResNet-50 and PreAct-ResNet-50 architecture. Convolutional layers
are colored green, residual blocks red, average pooling blue and fully connected layers yellow.

structure of a residual block for the PreAct-ResNet-50 architecture [29].
The motivation for this change arises from the fact that unmodified signal propagation

during backpropagation as pointed out in eq. (3.2) does not actually happen: The ReLU
activation we omitted for clarity might have less impact on the signal during backpropa-
gation than convolutions, since it is an identity mapping for all positive input, but it still
leads to gradient vanishing in case of non-positive input. Therefore, moving the ReLU
activation that is performed after addition into the residual function provides a nearly
clean path for signal propagation through skip connections. Remaining, but mandatory
operations are the 1 × 1 convolutions needed for shape alignment. But since they occur
only four times, at each first residual block of a top-level block, they can be neglected.
Besides, experiments have proven that the final PreAct architecture – with both Batch
Normalization and ReLU activation preceding convolutional layers – yields the best
learning performance, compared to other permutations [29].

Last, fig. 3.5 shows the structure of the entire ResNet-50 and PreAct-ResNet-50 archi-
tecture.

3.3. DEEP NEURAL NETWORK TRAINING

3.3.1. Data Augmentation

Data augmentation is a technique where training data is manipulated such that the
diversity of training data is increased. One can think of reasonable, synthetic data that
is created from the existing data. It is particularly used in case of image data, where
semantics preserving transformations, e.g., scaling or rotation, can easily be applied.

In this work, data augmentation is dynamically applied to the images of the training
datasets, i.e., the training datasets are not statically augmented beforehand, but the
original images are manipulated anew each epoch. Most utilized transformations are of
stochastic nature, providing different results when being applied several times on the
same input image. As a consequence, the total data volume used for training remains
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unchanged unlike to static augmentation, but the variability of data is incomparably
higher, subject to a sufficiently high number of epochs.

We use the following transformations (in this order) as part of the augmentation
process:

• Random horizontal flipping4,

• random rotation by 𝜑 ∈ [−15°, 15°],

• extrapolation to 38 px × 38 px using reflection along the image boundary by 3 px in
each direction, and

• random cropping back to 32 px × 32 px.

3.3.2. AdamW

Adaptive moment estimation with decoupled weight decay (AdamW) is an optimization
algorithm that represents a slight modification of the original adaptive moment estimation
(Adam) algorithm to remove problems with 𝐿2 regularization [45]. In the following, we
first show how the basic Adam algorithm works and subsequently point out the difference
to AdamW.

Adam is, equal to classical SGD, a first-order optimization method, i.e., it exploits only
the gradient of the loss function to minimize the latter. It was developed by Kingma and
Ba [46] in 2014, motivated from the observation that strictly following of the current
gradient, as SGD does, can lead to oscillating or noisy minimization paths, which make
for slow convergence themselves. Figure 3.6a visualizes the issue in a simple way for a
two-dimensional, convex loss landscape, but one can imagine that it becomes even more
problematic for a higher-dimensional, non-convex one as usual in DNN training – in
particular, if the loss landscape changes continuously due to the usage of randomized
mini-batches [32].

Informally speaking, Adam mitigates the described problem by “smoothing” the mini-
mization path using exponential moving averages of the gradient (see fig. 3.6b). More
specifically, per optimization step, the first moment (mean) and the second raw moment
(uncentered variance) of the gradient are estimated by their exponential moving averages.
After that, the actual step vector is computed by dividing the first moment estimate by
the square root of the second raw moment estimate [46].

So let g(i) = ∇
𝛉
𝐽 be the gradient of the loss function 𝐽 w.r.t. the parameter vector

𝛉 at the 𝑖-th optimization step. Moreover, let 𝛽1, 𝛽2 ∈ [0, 1) be the decay rates for

4Horizontal flipping is omitted for the GTSRB dataset, where it actually can change semantics (e.g., by
changing a turn left sign to a turn right sign).
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Figure 3.6.: Optimization schemes of standard gradient descent and Adam in view of a two-
dimensional convex optimization problem. 200 iterations are performed each. The initial learning
rate is set 𝜂 = 1. To avert leaping the minimum, it is reduced linearly for gradient descent. For
Adam, parameters 𝛽1, 𝛽2 are set to their defaults (𝛽1 = 0.9, 𝛽2 = 0.999) [46]. The optimization
problem itself is characterized by a narrow valley. Note that while gradient descent exhibits a
strongly fluctuating course initially, minimization is comparatively straightforward with Adam,
although again not being perfect and spinning spirals at convergence.

exponential moving averages of the first moment and the second raw moment of the
gradient, respectively. Then, the first moment estimate m(i) and the second raw moment
estimate v(i) are computed by [46]

m(i) = 𝛽1m(i−1) + (1 − 𝛽1)g(i) (3.5)

and

v(i) = 𝛽2v(i−1) + (1 − 𝛽2)g(i)2 (3.6)

with m(0) = 0 and v(0) = 0. As a consequence of this initialization, however, both
estimates are biased towards zero during the first optimization steps. To counter this
and achieve meaningful estimates for the optimization step, they are bias-corrected as
follows [46]:

m̂(i) =
m(i)

1 − 𝛽1
𝑖
, (3.7)

v̂(i) =
v(i)

1 − 𝛽2
𝑖
. (3.8)

Last, with 𝜂 denoting the learning rate, the step vector is computed as described above
and the parameter vector 𝛉 is basically updated as for SGD [46]:
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𝛉
(i+1) = 𝛉

(i) − 𝜂 m̂(i)√︁
v̂(i)

. (3.9)

Although the eventual effect of both the first moment estimate and the second raw
moment estimate is similar, the cause actually differs: With the first moment estimate
replacing the gradient itself in the update rule (see eq. (3.9)), gradients are averaged on
an exponentially weighted basis, canceling out fluctuations. On the other hand, division
by the square root of the second raw moment estimate can rather be interpreted as a
parameter-wise rescaling of the learning rate 𝜂, when dividing the latter instead of the
first moment estimate. If, e.g., a certain parameter 𝜃 𝑗 exhibited frequent fluctuations
during previous optimization steps, the corresponding second raw moment 𝑣 (𝑖) 𝑗 is high.
In consequence, the learning rate for this specific parameter is scaled down, leading
to smaller changes of 𝜃 𝑗 during the following optimization steps. Analogously, the
parameter-wise learning rate remains on a level close to 𝜂, if there are only minor
fluctuations, and allows greater changes here. With these similar effects, the first moment
estimate and the second raw moment estimate synergize well and make Adam an effective
and also efficient optimization algorithm for DNN training [32].

However, as mentioned at the beginning, Adam turned out to be less effective when
being combined with 𝐿2 regularization, which is itself used to tackle the overfitting
problem. The reason for this is that while 𝐿2 regularization is useful and beneficial for
classical SGD, it is not for Adam, where the estimation of moments distorts the effects of
regularization [45].

Resorting to notations in section 2.2, the gradient of an 𝐿2 regularized loss function 𝐽

w.r.t. the parameter vector 𝛉 results in ∇
𝛉
𝐽 + 𝛼w.5 Hence, for SGD (see eq. (2.10)), the

parameter update is performed by

𝛉
(i+1) = 𝛉

(i) − 𝜂
(
∇
𝛉
𝐽 − 𝛼w(i)

)
. (3.10)

With Adam, on the other hand, regularization as part of the loss function happens before
the estimation of moments and therefore g(i) = ∇

𝛉
𝐽 + 𝛼w(i) holds. As a result, the

estimation of moments takes influence on the regulative effect of the gradient g(i) . In
detail,

(a) the first moment estimate potentially damps or even cancels out regularization and

(b) the second moment estimate can lead to small parameter-specific learning rates,
reducing the effect of regularization as well.

5In order to align shapes and enable vector addition, w is zero-padded for bias components of ∇
𝛉
𝐽 .
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To solve this issue, Loshchilov and Hutter [45] developed a modified version of Adam,
called AdamW. Essentially, it does not perform 𝐿2 regularization as part of the loss
function, but weight decay as part of the update rule, using the weight decay rate 𝛼∗ ∈ R:

𝛉
(i+1) = 𝛉

(i) − 𝜂 m̂(i)√︁
v̂(i)
+ 𝛼∗w(i) . (3.11)

Thus, estimations of the first moment and the second raw moment do not distort the
effects of regularization anymore. Note that when substituting 𝜂𝛼 by 𝛼∗ in eq. (3.10), the
form of AdamW’s update rule (eq. (3.11)) is now equivalent to that of SGD, showing the
fundamental problem that led to the dedicated development of AdamW: 𝐿2 regularization
and weight decay are equivalent only for SGD, but usually, only 𝐿2 regularization and
not weight decay is implemented [45].

3.3.3. Cosine Annealing

Cosine annealing is a method for learning rate scheduling in the course of DNN training,
being proposed by Loshchilov and Hutter [47] as well. Learning rate scheduling here
means that the learning rate 𝜂 is not kept constant as training progresses, but is adjusted,
or more precisely, lowered.

Basically, the cosine annealing schedule provides for a learning rate course in accor-
dance with the first quarter period of the cosine function. The reduction can be done
either after the completion of an epoch or, more fine-grained, after each batch performed.
In this work, we use the latter definition.

The motivation for this particular kind of scheduling comes the following observation:
Concerning the decrease in learning rate, a warm-up phase and a cool-down phase in
which the change in learning rate is continuously increased and decreased, respectively, is
more effective than, e.g., a continuous linear decrease. This follows the classical approach
of heuristic optimization, where one seeks to explore the search space widely in the
beginning and changes over to exploiting the previously achieved progress in the end.
Analogously, cosine annealing allows larger optimization steps for the first batches and
smaller ones for the last batches, while remaining on a comparable level for some time.

Loshchilov and Hutter also proposed the use of so-called warm restarts, where after
reaching the minimum learning rate, it is reset to the initial learning rate again. After-
wards, cosine annealing begins again. One can imagine here that a sharp increase in
learning rate provides an additional opportunity to escape from a local minimum and,
subsequently, possibly find a deeper one.

Let 𝜂 (𝑖) be the learning rate in the 𝑖-th batch and let 𝜂𝑚𝑎𝑥 , 𝜂𝑚𝑖𝑛 be the initial, maximum
and the final, minimum learning rate, respectively. Moreover, let 𝑇𝑐𝑢𝑟 denote the number
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Figure 3.7.: Cosine annealing learning rate scheduling. For the left plot, five warm restarts
are performed (𝑇𝑚𝑎𝑥 = 2000), whereas for the right one, no warm restarts are performed at all
(𝑇𝑚𝑎𝑥 = 10000). In both cases, 10 000 batches are performed and the initial and final learning rate
are set 𝜂𝑚𝑎𝑥 = 1 and 𝜂𝑚𝑖𝑛 = 0.

of batches since the last warm restart and let 𝑇𝑚𝑎𝑥 denote the number of batches per
cosine annealing cycle, decreased by one. Then, 𝜂 (𝑖) is computed as follows [47]:

𝜂 (𝑖) = 𝜂𝑚𝑖𝑛 + 1
2 (𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛)

(
1 + cos

(
𝑇𝑐𝑢𝑟
𝑇𝑚𝑎𝑥

𝜋

))
. (3.12)

The development of the learning rate under cosine annealing is shown in fig. 3.7a for
10 000 performed batches and parameters 𝜂𝑚𝑎𝑥 = 1, 𝜂𝑚𝑖𝑛 = 0, 𝑇𝑚𝑎𝑥 = 2000.

A special case comes up, if𝑇𝑚𝑎𝑥 equals the number of totally performed batches. In that
case, no warm restarts are performed, being visualized in fig. 3.7b for the same remaining
settings as in fig. 3.7a.

Last, despite the intrinsic learning rate adaption capabilities of the latter, cosine an-
nealing has also proven to be effective in combination with Adam as well as AdamW. In
comparison with an otherwise fixed learning rate, the learning performance could be
further increased [45].

3.4. ADVERSARIAL ATTACKS

An adversarial attack is defined as a method to purposefully perturb given natural images
with the aim of creating adversarial examples and causing misclassification. Furthermore,
a specific attack is based on a threat model, modeling the circumstances under which it
is performed [41].

As part of this work, we examine three different adversarial attacks, two of which are
white-box attacks and one of which is a black-box attack. These are

(a) the Fast Gradient Sign Method (FGSM),
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(b) Projected Gradient Descent (PGD), and

(c) the Boundary Attack.

In the following, we present how the corresponding algorithms work.

3.4.1. Fast Gradient Sign Method

The Fast Gradient Sign Method (FGSM), being published by Goodfellow, Shlens, and
Szegedy [20] in 2015, was one of the very first techniques to create adversarial examples.

It is a white-box attack, so adversaries must have extensive knowledge on the archi-
tecture of the DNN 𝑓 to be attacked as well as its trained parameters 𝛉. Given a natural
image and corresponding ground truth data (x, y) ∼ 𝜌data with x ∈ X and y ∈ Y, they
must particularly be capable of computing the gradient of a suitable loss function 𝐽 (typi-
cally, cross entropy loss) w.r.t. the input x, i.e., ∇x𝐽 (𝑓 (x), y). Since the backpropagation
algorithm can be used here as well – in comparison to DNN training, only the eventually
intended derivatives are different –, this gradient can also be computed quite efficiently.

In order to create a perturbed image x′ that is probably an adversarial example, first,
the sign function is applied to the previously computed gradient ∇x𝐽 (𝑓 (x), y). Next, it is
multiplied by a magnitude of perturbation 𝜖 ∈ R≥0 to be specified in advance. The result
then actually represents the perturbation vector, being added to the natural image x.

However, the perturbed “image” obtained in this way is not necessarily part of the
considered input space X, and thus, by definition (see section 2.5), not necessarily a valid
image anymore. Hence, it is ultimately projected back onto the input space X:

x′ = ΠX
(
x + 𝜖 sign∇x𝐽 (𝑓 (x), y)

)
. (3.13)

By applying the sign function and subsequently scaling with 𝜖 , the perturbed image x′

is guaranteed to be part of the closed ℓ∞ ball BX (x, 𝜖). Therefore, the FGSM implicitly
operates in a threat model constrained by the∞-metric 𝑑∞. The corresponding proof is
stated in appendix A.2. Besides, fig. 3.8 visualizes how the FGSM works.

The principle idea behind the FGSM is similar to that of DNN training: Based on
the fact that the loss function 𝐽 makes a statement on the defectiveness of the model
function 𝑓 in view of some input data x and ground truth data y, it can generally be
used as an objective function to perform optimization. What differs in the concrete is the
quantity to be optimized: While DNN training minimizes 𝐽 w.r.t. the model parameters in
order to find the optimal model parameters and thus the best model, the FGSM aims to
maximize the loss w.r.t. the input data in order to find similar/close valid input data, but
where the model is in error with the same ground truth data. By specifying a sufficiently
small magnitude of perturbation 𝜖 , the difference between an original image x and its
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Figure 3.8.: Fast Gradient Sign Method in two dimensions. The loss function 𝐽 is plotted as black
contour lines and the natural input data x = (0.95, 0.85)⊺ is marked by a green cross. Moreover,
the gradient ∇x 𝐽 (𝑓 (x), y) is visualized as a green arrow. The FGSM then maximizes the loss for
the linearized loss function (gray contour lines) in the closed ℓ∞ ball BX (x, 𝜖) (blue square) with
𝜖 = 0.1, the resulting initial perturbation vector v is shown as a blue arrow. Last, the perturbation
is projected back onto the input space X (red rectangle), leading to the final perturbation vector
v∗ (red arrow). One sees that v∗ maximizes the linearized loss function in the set of valid FGSM
perturbations BX (x, 𝜖) (purple area).

FGSM-perturbed version x′ is constrained to be small enough to prevent a semantic
change, which would contradict the ground truth data kept constant. In detail, as the
FGSM operates in the closed ℓ∞ ball BX (x, 𝜖), the maximum perturbation per pixel equals
𝜖 , independent of the total number of perturbed pixels.

While we have shown that applying the sign function as stated in eq. (3.13) leads
to the aforementioned boundedness by BX (x, 𝜖), the question remains as to why it
is used in particular. It should be clear that its purpose is to normalize the gradient
∇x𝐽 (𝑓 (x), y) w.r.t. the ∞-norm. But actually, this can be achieved by dividing by the
∞-norm ∥∇x𝐽 (𝑓 (x), y)∥∞ as well, while maintaining the original direction of the gradient.
The application of the sign function, on the other hand, results in a change of direction
in the vast majority of cases.

To understand the reason, we look at the problem from a different perspective: We
now consider the previously stated properties of the FGSM (being constrained by the
closed ℓ∞ ball BX (x, 𝜖), only one iteration of first-order optimization) as premises, under
which a fast method to maximize the loss function 𝐽 in the vicinity of the natural image
x is to be developed. Operating in the vicinity of x allows us to linearize 𝐽 : For some
v ∈ B

ℓ (𝑛)∞
(0, 𝜖), the first-order Taylor approximation of 𝐽 (𝑓 (x + v), y) in the closed ℓ∞
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ball B
ℓ (𝑛)∞
(x, 𝜖) is

𝐽 (𝑓 (x + v), y) ≈ 𝐽 (𝑓 (x), y) + v⊺∇x𝐽 (𝑓 (x), y). (3.14)

Here, v represents the direction from the point x, in which the loss is increased by
v⊺∇x𝐽 (𝑓 (x), y), relative to the loss at x. Therefore, the vector v that maximizes the
linearized loss function inB

ℓ (𝑛)∞
(x, 𝜖) can be found by solving the constrained optimization

problem

arg max
v∈B

ℓ
(𝑛)
∞
(0,𝜖)

v⊺∇x𝐽 (𝑓 (x), y). (3.15)

It turns out that the solution to this problem is exactly v = 𝜖 sign∇x𝐽 (𝑓 (x), y). At this
point, we omit a formal proof, since this can be verified quite intuitively:

(a) All components-wise pairs of v and ∇x𝐽 (𝑓 (x), y) should have the same sign, respec-
tively. Indeed, they can, since the constraint 𝑣𝑖 ∈ [−𝜖, 𝜖] applies to all components
𝑣𝑖 with 𝑖 ∈ {1, 2, . . . , 𝑛}, so no component 𝑣𝑖 is restricted to have a specific sign that
might be different of that of 𝜕𝐽 (𝑓 (x),y)

𝜕𝑥𝑖
.

(b) Second, the absolute value of all components 𝑣𝑖 should be maximal. We quickly see
that this is 𝜖 , again independent of the dimension.

Eventually, the synthesis of both demands results in v = 𝜖 sign∇x𝐽 (𝑓 (x), y).
However, one might have recognized that we assumed 𝐽 (𝑓 (x + v), y) ∈ B

ℓ (𝑛)∞
(x, 𝜖) in

eq. (3.14), whereas we actually would have to consider the constraint 𝐽 (𝑓 (x + v), y) ∈
BX (x, 𝜖). The reason for not doing so is that the actually valid set of points for v does
not necessarily have the same properties we exploited above as B

ℓ (𝑛)∞
(0, 𝜖). To be precise,

v would have to be constrained as follows:

v ∈ V∗ with V∗ =
{
v∗ ∈ B

ℓ (𝑛)∞
(0, 𝜖)

��� x + v∗ ∈ X
}
. (3.16)

While there is no immediate closed form solution to eq. (3.15) with the changed constraint
v ∈ V∗, it can be shown that we can simply project x+v back onto the input spaceX and
therefore maximize the linearized loss function in the set of valid FGSM perturbations

X∗ = BX (x, 𝜖) = Bℓ (𝑛)∞
(x, 𝜖) ∩ X =

{
x′ ∈ X

��� x′ − x ∈ B
ℓ (𝑛)∞
(0, 𝜖)

}
. (3.17)

Note here that X∗ is in principle equivalent to V∗, but shifted by x. Geometrically
speaking, the setsV∗ andX∗ represent a hyperrectangle, but not necessarily a hypercube
as for B

ℓ (𝑛)∞
(0, 𝜖) and B

ℓ (𝑛)∞
(x, 𝜖) (see fig. 3.8 as well).
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The aforementioned maximization through projection is possible because the input
space X is a closed ℓ∞ ball itself, so in every dimension, the corresponding bound-
aries of X, B

ℓ (𝑛)∞
(x, 𝜖), V∗ and X∗ are parallel to each other. As a consequence, for

all dimensions 𝑖 ∈ {1, 2, . . . , 𝑛} in which B
ℓ (𝑛)∞
(x, 𝜖) exceeds X, the component 𝑣∗𝑖 of

v∗ = ΠX
(
x + 𝜖 sign∇x𝐽 (𝑓 (x), y)

)
− x is minimal inV∗, if 𝜕𝐽 (𝑓 (x),y)

𝜕𝑥𝑖
< 0, and maximal in

V∗, if 𝜕𝐽 (𝑓 (x),y)
𝜕𝑥𝑖

> 0. If 𝜕𝐽 (𝑓 (x),y)
𝜕𝑥𝑖

= 0, the dimension 𝑖 does not contribute to the maximiza-
tion in 3.15 anyway, no matter how 𝑣∗𝑖 is chosen. In other, non-exceeding dimensions
𝑗 ∈ {1, 2, . . . , 𝑛} with 𝑗 ≠ 𝑖 , (a) sign 𝑣∗𝑗 = sign 𝜕𝐽 (𝑓 (x),y)

𝜕𝑥 𝑗
and (b) |𝑣∗𝑗 | = 𝜖 still hold. Thus, v∗

is an optimal solution to eq. (3.15) with the corrected constraint stated in eq. (3.16).
To the end of this section, we briefly discuss a generalization of the FGSM that is

constrained by an arbitrary 𝑝-metric, called the Fast Gradient Method (FGM) [48]. The
basic algorithm is the same as for FGSM, what differs is again the constraint in eq. (3.15):
Instead of restricting v toV∗ as stated in eq. (3.16), it is formulated as follows:

v ∈ V∗𝑝 with V∗𝑝 =
{
v∗ ∈ B

ℓ (𝑛)𝑝
(0, 𝜖)

��� x + v∗ ∈ X
}
. (3.18)

Then, solving the changed optimization problem in eq. (3.15) provides the formula to
compute the perturbation vector w.r.t. the chosen 𝑝-metric. As we focus on the∞-metric
in this work, we do not attempt to solve it here for 𝑝-metrics apart from the∞-metric. But
when imagining the resulting intersection shapes e.g. for closed ℓ1 or ℓ2 balls, which are
essentially convex polytopes and spherical segments, the question arises if it is tractable
at all. Hence, one may need to go beyond linearization with further approximations and
heuristics.

3.4.2. Projected Gradient Descent

Projected Gradient Descent (PGD)6 is another first-order white-box adversarial attack, i.e.,
it exploits the gradients of the loss function 𝐽 in the input space X, just like FGSM. It was
first used by Kurakin, Goodfellow, and Bengio [49] in 2016 as “basic iterative method”.
Later, Madry et al. [21] reused it for adversarial training and referred to it with PGD,
since it is actually the same as the eponymous technique in constrained optimization
[50].

One difference between the previously presented FGSM and PGD is in the motivation
of usage: FGSM was primarily designed to create perturbations easily and quickly that are
frequently adversarial examples. PGD, on the other hand, is more sophisticated and needs

6The naming “Projected Gradient Descent” originates from the fact that in practice, optimization problems
are formulated as minimization problems in most cases, and has therefore historical reasons. As we
rather maximize the loss function, the correct term would actually be “Projected Gradient Ascent”.
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more computational resources, but provides adversarial examples in the vast majority
of cases. That aside, PGD as we use it in this work7 exhibits basically three differences
to the FGSM, which are listed in the following. Note here that we only consider PGD
constrained to the∞-metric in the scope of this work, while it is in principle also possible
to use 𝑝-metrics apart from that.

1. PGD is not a single-step, but a multi-step procedure. Broadly speaking, it performs
several perturbation steps of FGSM, each of which starts at the result of the previous
iteration. Nevertheless, the steps themselves are slightly different, compared with
FGSM.

2. PGD perturbations are still constrained by the closed ℓ∞ ball BX (x, 𝜖). A single
PGD step, however, is initially not scaled to 𝜖 as for FGSM, but to a lower PGD step
size 𝜂′. Subsequently, the resulting perturbed image is first projected back onto
the closed ℓ∞ ball B

ℓ (𝑛)∞
(x, 𝜖), then onto the input space X, before the next step is

performed.

3. PGD is not initialized with the natural input data x, but with a point that is randomly
sampled from a uniform distribution over the closed ℓ∞ ball B

ℓ (𝑛)∞
(x, 𝜖).

Formalizing the above aspects, we denote the perturbed version of the original image
x after the 𝑖-th PGD step by x′(i) . Moreover, let x′(0) be the random initialization data.
Then, the perturbation procedure of PGD can be expressed as follows:

x′(i) = ΠX

(
ΠB

ℓ
(𝑛)
∞
(x,𝜖)

(
x′(i−1) + 𝜂′ sign∇x𝐽 (𝑓 (x), y)

))
. (3.19)

To sample the point x′(0) from a uniform distribution over B
ℓ (𝑛)∞
(x, 𝜖), we simply sample

every component from an independent and identically distributed (iid) uniform distribu-
tion over the interval [−𝜖, 𝜖] and eventually shift it by the corresponding component of
x:

∀𝑗 ∈ {1, 2, . . . , 𝑛} :
(
𝑥′(0)𝑗 − 𝑥 𝑗

)
∼ U(−𝜖, 𝜖). (3.20)

To the end of this section, we give reasons and plausibility why PGD works, as we
did for FGSM. First, concerning the addition of 𝜂′ sign∇x𝐽 (𝑓 (x), y) to x′(i−1) , we refer
to section 3.4.1, where we explained the approximation of the loss function 𝐽 by its
first-order Taylor expansion. The result of that addition is necessarily part of the closed
ℓ∞ ball B

ℓ (𝑛)∞
(x′(i−1), 𝜂′).

7There might be variants which differ in some implementation details from our implementation, e.g.,
when and how often the projection back onto the input space X is performed.
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Next, the ultimate goal of the 𝑖-th PGD step’s projection part is to project any such
point back onto the intersection of the closed ℓ∞ ball B

ℓ (𝑛)∞
(x, 𝜖) and the input space

X, where the latter is a closed ℓ∞ ball as well. This intersection is not empty, since x
is necessarily part of both B

ℓ (𝑛)∞
(x, 𝜖) and X. Hence, the Euclidean projection onto the

intersection B
ℓ (𝑛)∞
(x, 𝜖) ∩X is equal to any order of successive Euclidean projections onto

B
ℓ (𝑛)∞
(x, 𝜖) and X, which has been proven in appendix A.3.

Furthermore, it is to be clarified if x′(i) is an optimal, loss-maximized solution in the
set of valid PGD perturbed data

X∗ = B
ℓ (𝑛)∞
(x′(i−1), 𝜂′) ∩ B

ℓ (𝑛)∞
(x, 𝜖) ∩ X (3.21)

after the 𝑖-th PGD step, i.e., if the following holds:

x′(i) = arg max
x∗∈X∗

𝐽 (𝑓 (x∗), y). (3.22)

Unfortunately, due to the observed non-concavity of a DNN loss function, this cannot be
guaranteed. But what can actually be guaranteed is that x′(i) is an optimal solution in
X∗ for maximizing the loss function 𝐽 that is linearized in the vicinity of x′(i−1) . As for
FGSM, this is because B

ℓ (𝑛)∞
(x′(i−1), 𝜂′), B

ℓ (𝑛)∞
(x, 𝜖) and X are all closed ℓ∞ balls, having

boundaries that are parallel to those of each other as well as their intersection X∗. The
rest follows the argumentation in section 3.4.1. Viewed over all iterations, PGD is thus
able to find a local maximum of the loss function 𝐽 in the closed ℓ∞ ball BX (x, 𝜖).

Last, we discuss the decision to use random initialization. We assume that the further
away a point is from the natural image x, the more likely it is that the image that
corresponds to this point is misclassified. At the same time, we have to consider that PGD
is constrained by the closed ℓ∞ ball BX (x, 𝜖). So because of the general non-concavity
of the loss function 𝐽 , the initialization point x′(0) should be close to the feasible area
BX (x, 𝜖) in order to ensure that the first PGD step is not pointless after projection.
Assuming that 𝜖 is relatively small, we can initialize in B

ℓ (𝑛)∞
(x, 𝜖) without taking this

risk. Not initializing in BX (x, 𝜖) in order to reduce the risk further has mostly practical
reasons, since dimensions would have to be sampled independently, while the benefit
would probably be marginal.

Now it depends on which metric is used to measure the distance between a possible
initialization point x′(0) and the natural image x. The Euclidean metric, e.g., would imply
to initialize at one of the 2𝑛 corners of B

ℓ (𝑛)∞
(x, 𝜖), geometrically speaking. However, in

the scope of this work, we resort to the ∞-metric as well, yet admiring that it would
be interesting to investigate the influence of this more restrictive initialization scheme
on the efficiency of PGD. In consequence, when sampling from a uniform distribution
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over B
ℓ (𝑛)∞
(x, 𝜖), the distance is almost guaranteed to be maximized for large 𝑛, as the

probability raises that at least one dimension is close to either −𝜖 or 𝜖 . This procedure
also coincides with the original formulation by Madry et al. [21].

3.4.3. Boundary Attack

The Boundary Attack was published by Brendel, Rauber, and Bethge [51] in 2018. Op-
posite to the previously presented adversarial attacks, it operates in a black-box setting.
Therefore, it does neither require any knowledge on the architecture, nor on the trained
parameters 𝛉 of the DNN to be attacked. However, what it does still need is access to the
model 𝑓𝑐 as a black-box 𝑓𝑐 : X → C, i.e., feeding input data x ∈ X into it and receiving the
classification result 𝑐 ∈ C. Moreover, it requires the availability of so-called target data.
This is natural images x and corresponding ground truth data 𝑐 being sampled from the
data distribution 𝜌data of the classification task the DNN was trained on. It does not neces-
sarily have to be classified correctly by the model, although the question arises, whether
performing the Boundary Attack is necessary at all in the case of misclassification.

In simplified terms, the Boundary Attack performs a random walk in the direction
of the target image x, being initialized at a random, but adversarial point x′(0) ∈ X and
staying adversarial while reducing the distance to x. By a point “being adversarial”, we
mean that the DNN classifies the corresponding image wrongly. Here, the ground truth
data 𝑐 of the target image x is used throughout as a reference.

Another major difference to FGSM and PGD is that the Boundary Attack operates
w.r.t. the Euclidean metric, not the ∞-metric. In consequence, the ℓ2 distance and not
(necessarily) the ℓ∞ distance to the target image x is reduced, as the attack progresses.

While the Boundary Attack is of iterative nature, a single step can be further subdivided
into an orthogonal substep and a minimization substep. Let x′(i) denote the perturbed
data after the 𝑖-th of 𝑁 iterations of the Boundary Attack. Then, in the 𝑖-th iteration
and starting from the point x′(i−1) , 𝑀 random orthogonal substeps are performed on
the ℓ2 sphere S

ℓ (𝑛)2
(x, ∥x − x′(i−1) ∥2), resulting in the orthogonal sample candidates o(i),(j)

with 𝑗 ∈ {1, 2, . . . , 𝑀}. Here, 𝑀 ∈ N≥1 is a parameter of the algorithm that is to be set
beforehand, just as for the number of iterations 𝑁 ∈ N≥1. Last, these random orthogonal
substeps are also limited in their size by some parameter 𝜎 (𝑖)1 ∈ R>0, whose concrete
function and computation will be explained later on.

By choosing the orthogonal sample candidates as described, the ℓ2 distance between
the target image x and all orthogonal sample candidates o(i),(j) is initially kept constant,
equalling the ℓ2 distance between x and x′(i−1) . However, as an orthogonal sample
candidate o(i),(j) is not necessarily part of the input space X, it has to be projected back
onto the latter:
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1
(i)x

𝐭(i), (j)

(i), (j)

(x, ||x -x‘ (i-1)||2)

(a) Orthogonal substep (I)

𝐭⊥∗
(i), (j)

𝐭⊥
(i), (j)

2
(i)x

1
(i)x

(x, ||x -x‘ (i-1)||2)

(b) Orthogonal substep (II)

(x, ||x -x‘
(i-1)

||2)

(c) Minimization substep

Figure 3.9.: Orthogonal substep and minimization substep of the Boundary Attack in two dimen-
sions. For simplification, we assume here that the orthogonal sample candidate o(i),(j) is part of
the input space X and therefore equal to its projected version o∗ (i),(j) .

∀𝑗 ∈ {1, 2, . . . , 𝑀} : o∗(i),(j) = ΠX
(
o(i),(j)

)
. (3.23)

Doing so, its ℓ2 distance to the target image x can change, but should still be relatively
close to the previous one.

Next, in the minimization substep of the 𝑖-iteration, a step in the direction of the target
image x is performed from each projected orthogonal sample candidate o∗(i),(j) , resulting
in the minimization sample candidates q(i),(j) . These taken steps have all a Euclidean
norm of 𝜎 (𝑖)2 ∈ R>0, which is another parameter that is to be seen similar to 𝜎 (𝑖)1 for now.
Thus, the minimization sample candidates q(i),(j) are computed as follows:

∀𝑗 ∈ {1, 2, . . . , 𝑀} : q(i),(j) = o∗(i),(j) + 𝜎 (𝑖−1)
2

∥x − o∗(i),(j) ∥2

(
x − o∗(i),(j)

)
. (3.24)

Since both all projected orthogonal sample candidates o∗(i),(j) and the target image x are
part of the input spaceX and the latter – as an ℓ∞ ball – is a convex set, we do not have to
project a minimization sample candidate q(i),(j) back onto the input space X. Figure 3.9
visualizes the orthogonal substep and the minimization substep for a random sample
direction 𝑗 in the 𝑖-th iteration.

Eventually, the images that correspond to the minimization sample candidates q(i),(j)

are all passed through the DNN. Those being classified correctly are discarded; if there are
any remaining, an arbitrary minimization sample candidate r(i),(j∗) is chosen as x′(i) , being
the starting point of the next iteration. In this case, q∗(i),(j

∗) −x′(i−1) and r(i),(j∗) −q∗(i),(j
∗)

can be considered as the final orthogonal and minimization substeps taken in the 𝑖-th
iteration, respectively. If there are not any misclassified samples, in turn, x′(i) is set to
x′(i−1) .

In the following, we show how the orthogonal sample candidates o(i),(j) are computed
in detail, starting from x′(i−1) . First of all, we define
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∆(i)
1 x = x − x′(i−1) (3.25)

as the difference vector between the target image x and the perturbed data as well as
starting point in the 𝑖-th iteration x′(i−1) . Then, we sample 𝑀 × 𝑛 times from an iid
Gaussian distribution N(0, 1):

∀𝑗 ∈ {1, 2, . . . , 𝑀} : 𝑡 (𝑖),( 𝑗)1 , 𝑡 (𝑖),( 𝑗)2 , . . . , 𝑡 (𝑖),( 𝑗)𝑛 ∼ N(0, 1). (3.26)

Subsequently, for all t(i),(j) , we compute the vector rejection t(i),(j)⊥ of t(i),(j) w.r.t. the
difference vector ∆(i)

1 x:

∀𝑗 ∈ {1, 2, . . . , 𝑀} : t(i),(j)⊥ = t(i),(j) − t(i),(j)⊺∆(i)
1 x(

∆(i)
1 x

)⊺
∆(i)

1 x
∆(i)

1 x. (3.27)

Geometrically speaking, t(i),(j)⊥ is the vector that is orthogonal to ∆(i)
1 x and that combines

with the projection of t(i),(j) onto ∆(i)
1 x to ∆(i)

1 x itself. Actually, however, we only need
the first property, since in the next step, we rescale t(i),(j)⊥ by 𝜎 (𝑖−1)

1 times the Euclidean
norm of ∆(i)

1 x:

∀𝑗 ∈ {1, 2, . . . , 𝑀} : t∗(i),(j)⊥ =
𝜎 (𝑖−1)

1 ∥∆(i)
1 x∥2

∥t(i),(j)⊥ ∥2
t(i),(j)⊥ . (3.28)

After that, we define

∀𝑗 ∈ {1, 2, . . . , 𝑀} : ∆(i),(j)
2 x = t∗(i),(j)⊥ − x (3.29)

as the difference vector between t∗(i),(j)⊥ and the target image x.
Now, applying the Pythagorean theorem, we can compute the ratio between the

Euclidean norms of ∆(i)
1 x and ∆(i),(j)

2 x:

∀𝑗 ∈ {1, 2, . . . , 𝑀} : ∥∆(i),(j)
2 x∥2 =

√︃
∥∆(i)

1 x∥22 + ∥t∗
(i),(j)
⊥ ∥22

=
√︃
∥∆(i)

1 x∥22 + 𝜎 (𝑖−1)
1

2∥∆(i)
1 x∥22

=

√︂(
𝜎 (𝑖−1)

1
2 + 1

)
∥∆(i)

1 x∥22

=
√︃
𝜎 (𝑖−1)

1
2 + 1 ∥∆(i)

1 x∥2
⇕

∀𝑗 ∈ {1, 2, . . . , 𝑀} :
∥∆(i)

1 x∥2
∥∆(i),(j)

2 x∥2
=

1√︃
𝜎 (𝑖−1)

1
2 + 1

.

(3.30)
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Algorithm 1 Boundary Attack

Parameters
x Target image
𝑁 Number of iterations
𝑀 Number of computed candidate samples per iteration

1 function BoundaryAttack(x, 𝑁 , 𝑀)
2 𝜎 (0)1 ← 0.01 ⊲ Initialization
3 𝜎 (0)2 ← 0.01

4 repeat
5 𝑥′(0)1 , . . . , 𝑥′(0)𝑛 ∼ U(0, 1)
6 until 𝑓𝑐 (x′(0)) = 𝑐

7 for 𝑖 = 1, . . . , 𝑁 do
8 x′(i) ← x′(i−1)
9 ∆(i)

1 x = x − x′(i−1)

10 for 𝑗 = 1, . . . , 𝑀 do
11 𝑡 (𝑖),( 𝑗)1 , 𝑡 (𝑖),( 𝑗)2 , . . . , 𝑡 (𝑖),( 𝑗)𝑛 ∼ N(0, 1) ⊲ Orthogonal substep

12 t(i),(j)⊥ ← t(i),(j) − t(i),(j)⊺∆(i)
1 x(

∆(i)
1 x

)⊺
∆(i)

1 x
∆(i)

1 x

13 t∗(i),(j)⊥ ← 𝜎 (𝑖−1)
1 ∥∆(i)

1 x∥2
∥t(i),(j)⊥ ∥2

t(i),(j)⊥
14 ∆(i),(j)

2 x← t∗(i),(j)⊥ − x
15 o(i),(j) ← x + 1√︃

𝜎 (𝑖−1)
1

2+1
∆(i),(j)

2 x

16 o∗(i),(j) ← ΠX
(
o(i),(j) )

17 q(i),(j) ← o∗(i),(j) + 𝜎 (𝑖−1)
2

∥x−o∗ (i),(j) ∥2

(
x − o∗(i),(j)

)
⊲ Minimization substep

18 end for

19 for 𝑗 = 1, . . . , 𝑀 do ⊲ Receiving x′(i)
20 if 𝑓𝑐 (q(i),(j)) ≠ 𝑐 then
21 x′(i) ← q(i),(j)
22 break
23 end if
24 end for

25 𝜓 (𝑖)1 ← #{ 𝑗 ∈ {1, . . . , 𝑀} | 𝑓𝑐 (o∗(i),(j)) ≠ 𝑐}/𝑀 ⊲ Computing𝜓 (𝑖)1 ,𝜓 (𝑖)2
26 𝜓 (𝑖)2 ← #{ 𝑗 ∈ {1, . . . , 𝑀} | 𝑓𝑐 (q(i),(j)) ≠ 𝑐}/𝑀
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27 if 𝜓 (𝑖)1 > 0.5 then ⊲ Adapting 𝜎 (𝑖)1 , 𝜎 (𝑖)2
28 𝜎 (𝑖)1 ← 3

2𝜎
(𝑖−1)
1

29 else if 0.2 ≤ 𝜓 (𝑖)1 ≤ 0.5 then
30 𝜎 (𝑖)1 ← 𝜎 (𝑖−1)

1
31 else𝜓 (𝑖)1 < 0.2
32 𝜎 (𝑖)1 ← 2

3𝜎
(𝑖−1)
1

33 end if

34 if 𝜓 (𝑖)2 > 0.25 then
35 𝜎 (𝑖)2 ← 3

2𝜎
(𝑖−1)
2

36 else if 0.1 ≤ 𝜓 (𝑖)2 ≤ 0.25 then
37 𝜎 (𝑖)2 ← 𝜎 (𝑖−1)

2
38 else𝜓 (𝑖)2 < 0.1
39 𝜎 (𝑖)2 ← 2

3𝜎
(𝑖−1)
2

40 end if
41 end for

42 x′← x′(N) ⊲ Final adversarial example
43 return x′
44 end function

Eventually, we simply scale ∆(i),(j)
2 x by this ratio and add the result to x. Thus, we obtain

the orthogonal sample candidate o(i),(j) that has the same ℓ2 distance to x as x′(i−1) :

∀𝑗 ∈ {1, 2, . . . , 𝑀} : o(i),(j) = x + 1√︃
𝜎 (𝑖−1)

1
2 + 1

∆(i),(j)
2 x. (3.31)

To the end of this section, we discuss how the parameters 𝜎 (𝑖)1 and 𝜎 (𝑖)2 are computed.
Actually, they are not computed by some complex function, but changed relatively to
their values 𝜎 (𝑖−1)

1 and 𝜎 (𝑖−1)
2 during the previous iteration. This is done at the end of each

iteration.
According to Brendel, Rauber, and Bethge, “the adjustment is inspired by Trust Re-

gion methods” [51]. Essentially, the changing depends on the adversarial ratio w.r.t. the
projected orthogonal sample candidates o∗(i),(j) and the minimization sample candidates
q(i),(j) , respectively. By “adversarial ratio”, we mean the ratio of misclassified projected or-
thogonal sample candidates o∗(i),(j)/misclassified minimization sample candidates q(i),(j)

to the total number of samples 𝑀 . Denoting the first ratio by𝜓 (𝑖)1 and the second one by
𝜓 (𝑖)2 , 𝜎 (𝑖)1 and 𝜎 (𝑖)2 are computed by
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𝜎 (𝑖)1 =




3
2𝜎
(𝑖−1)
1 , for 0.5 < 𝜓 (𝑖)1 ≤ 1

𝜎 (𝑖−1)
1 , for 0.2 ≤ 𝜓 (𝑖)1 ≤ 0.5

2
3𝜎
(𝑖−1)
1 , for 0 ≤ 𝜓 (𝑖)1 < 0.2

, (3.32)

𝜎 (𝑖)2 =




3
2𝜎
(𝑖−1)
2 , for 0.25 < 𝜓 (𝑖)1 ≤ 1

𝜎 (𝑖−1)
2 , for 0.1 ≤ 𝜓 (𝑖)1 ≤ 0.25

2
3𝜎
(𝑖−1)
2 , for 0 ≤ 𝜓 (𝑖)1 < 0.1

. (3.33)

Both the thresholds and the change rates coincide with the reference implementation
of the Boundary Attack. The same applies to the initial values, which are set to 𝜎 (0)1 =

0.01, 𝜎 (0)2 = 0.01 [52].
The above expected ranges can be interpreted as follows [51]:

1. Orthogonal substep: Ideally, the orthogonal substeps are small enough to locally
treat the decision boundary, i.e., the boundary between the wrongly classified region
and the correctly classified region in the input space, as approximately linear. In
that case, roughly 50 % of the (projected) orthogonal sample candidates are expected
to be misclassified. If the adversarial ratio 𝜓 (𝑖)1 is higher, this is mostly because
the substeps are too small to get sufficiently close to the decision boundary, so
𝜎 (𝑖)1 is increased. If it is significantly lower, however, the substeps are too large, so
𝜎 (𝑖)1 is decreased. Note that the former does not necessarily have to be done, but
increases the efficiency of the algorithm, so the threshold is set tightly to exactly
0.5. The latter, on the contrary, has ultimately to be done to ensure further progress
in the following iterations, but simultaneously decreases the efficiency. In order
to maintain a sufficiently high efficiency at least in the short term, the second
threshold is set more loosely to 0.2, taking the risk of being too close to the decision
boundary and running into a dead end, figuratively speaking.

2. Minimization substep: About the same applies here, i.e., 𝜎 (𝑖)2 is increased in
case of a too high adversarial ratio 𝜓 (𝑖)2 and decreased in the opposite case. The
upper threshold to keep it constant, however, cannot be derived logically as for
the linearity assumption above. As a consequence, both the upper and the lower
threshold have to be set intuitively this time. In comparison to the orthogonal
substep, an even higher risk is taken here to make much progress in relatively few
iterations.

Last, algorithm 1 shows the entire algorithm of the Boundary Attack.
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3.5. ADVERSARIAL TRAINING

Adversarial training is a special training technique for DNNs to reduce the susceptibility
to adversarial attacks as well as adversarial examples in general. Basically, it tries to make
the problem part of the solution: Either in addition to [20] or completely instead of the
natural training data x in 𝜌data [21], adversarial examples x′ are created and fed into the
training process. In the scope of this work, we concentrate on the latter approach.

The idea behind the adversarial training is similar to that of classical data augmentation;
the natural training data x is manipulated by some semantics-preserving transformations
to increase the diversity of the training data and eventually increase the robustness of
the trained DNN (see section 3.3.1). However, while these transformations in classical
data augmentation are usually static transformations on image data such as rotation
or reflection, increasing the robustness in an unspecific manner, adversarial attacks
represent rather dynamic transformations, which specifically aim to attack the model at
its flaws [20]. In consequence, adversarial training allows a continuous improvement at
the weak points, at least if the adversarial examples used for training as continuously
generated afresh, based on the current state of the model. As for the preceding data
augmentation, we create new adversarial examples dynamically per training batch when
the implementing adversarial training in this work. Doing so, they are always maximally
effective against the DNN in the current state of training. Adversarial examples that were
created solely beforehand, by contrast, would lose their effectiveness once the DNN has
adapted to them – the gain of general robustness would be marginal at best.

In the following, we present two different concrete adversarial training methods,
which are both based on the FGSM. At this point, we briefly explain why not to consider
the stronger PGD attack as well. Actually, since PGD is a stronger adversarial attack,
robustness increase would probably be higher when using it, but this comes at a high
price: Being a multi-step procedure, PGD performs several consecutive forward and
backward passes in order to create an adversarial example. Unfortunately, being based
on each other, these cannot be parallelized. As a consequence, when neglecting the
remaining, comparatively low overhead, PGD is roughly 𝑇 times slower than FGSM,
when 𝑇 denotes the number of PGD steps. Using the dynamic generation approach,
this slowdown ultimately extends to the entire training. Hence, due to the too high
computational cost, we decided to resort only to the more modest FGSM.

In concrete, the two presented methods are

(a) FGSM-based adversarial training and

(b) Stable Single Step (SSS)-based adversarial training.
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To avoid confusion with the magnitude of perturbation 𝜖 in adversarial attacks later
on, we also introduce here 𝜖∗ ∈ R≥0 as the “defensive” magnitude of perturbation in
adversarial training.

3.5.1. Fast Gradient Sign Method-based

Algorithm 2 FGSM-based adversarial training. The additional actions compared to the
standard training process are highlighted in red. For simplicity, basic SGD is used to
update the DNN parameters 𝛉, and the batch size is set to 1.

Parameters
𝜌data Training dataset
𝛉
(0) Initial DNN parameters

𝜂 SGD learning rate
𝜖∗ Maximum magnitude of perturbation
𝐵 Number of batches

1 function FGSMAdversarialTraining(𝜌data, 𝛉(0) , 𝜂, 𝜖∗, 𝐵)
2 for 𝑖 = 1, . . . , 𝐵 do
3 (x, y) ∼ 𝜌data

4 x′← ΠX
(
x + 𝜖∗ sign∇x𝐽 (𝑓 (x), y)

)
⊲ FGSM

5 x← x′
6 𝛉

(i) ← 𝛉
(i−1) − 𝜂∇

𝛉
𝐽 (𝑓 (x), y)

7 end for

8 𝛉← 𝛉
(B) ⊲ Final DNN parameters

9 return 𝛉

10 end function

FGSM-based adversarial training, being the most basic approach of adversarial training,
was first used by Goodfellow, Shlens, and Szegedy [20] in 2015 as well.

After setting 𝜖∗, it simply creates FGSM-perturbed versions x′ of the original training
images x according to eq. (3.13), which are then fed into the training process. Note here
that it is not checked whether x′ is actually adversarial or not. Algorithm 2 shows the
algorithm of FGSM-based adversarial training.

By training their DNNs in such a way, Goodfellow, Shlens, and Szegedy observed
that the robustness against adversarial examples was significantly higher than with
the standardly trained DNNs [20], marking virtually the “hour of birth” of adversarial
training.
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3.5.2. Stable Single Step-based

Stable Single Step (SSS)-based adversarial training is a very recent method, being pub-
lished by Kim, Lee, and Lee [53] in May, 2021. As already mentioned, it also uses the
FGSM to generate perturbed versions of a natural training image x.

The main difference to the FGSM-based adversarial training is that it does not operate
with a fixed magnitude of perturbation 𝜖∗, but a flexible one 𝜖∗𝑖 in the half-open interval
(0, 𝜖∗]. More specifically, the interval is discretized in an equidistant manner, i.e.,

𝜖∗𝑖 ∈
{

1
𝐿
𝜖∗,

2
𝐿
𝜖∗, . . . , 𝜖∗

}
, (3.34)

where 𝐿 ∈ N≥1 represents the level of discretization and thus the number of possible
magnitudes of perturbation in the SSS-based adversarial training. It has to be set before-
hand. Then, informally, the perturbed version of x that exhibits the smallest magnitude of
perturbation 𝜖∗𝑖 while being adversarial is fed into the training process, the rest is discarded.
In addition, just as for PGD, the SSS algorithm is not initialized at the natural image x
itself, but some random point x′(0) in the closed ℓ∞ ball BX (x, 𝜖∗)

Formalizing the aforementioned, we first sample a random initialization point x′(0) ,
which is done the same way as for PGD (see eq. (3.20)). After that, we compute the
gradient ∇x′(0) 𝐽 (𝑓 (x′(0)), y). Then, a perturbed version x′(i) of the original input data x
is created for each possible magnitude of perturbation 𝜖∗𝑖 using the FGSM:

∀𝑖 ∈ {1, 2, . . . , 𝐿} : x′(i) = ΠX
(
x′(0) + 𝜖∗𝑖 sign∇x′(0) 𝐽 (𝑓 (x′(0)), y)

)
with

𝜖∗𝑖 =
𝑖

𝐿
𝜖∗.

(3.35)

Subsequently, we check whether there is at least one adversarial example x′(i) for
𝑖 ∈ {1, 2, . . . , 𝐿}. If there is, the perturbed data x′(i) with the smallest magnitude of
perturbation 𝜖∗𝑖 that is also adversarial is used as the actual adversarial example x′ in
adversarial training:

∃𝑖 ∈ {1, 2, . . . , 𝐿} : 𝑓𝑐 (x′(i)) ≠ 𝑐 → x′ = x′(j)

with

𝑗 = arg min
𝑘∈{1,2,...,𝐿}

𝜖∗𝑘 s.t. 𝑓𝑐 (x′(k)) ≠ 𝑐.

(3.36)

If there is no adversarial example x′(i) for all 𝑖 ∈ {1, 2, . . . , 𝐿}, the perturbed data x′(L) with
maximum magnitude of perturbation 𝜖∗𝑀 = 𝜖∗ is used, as for the FGSM-based adversarial
training:
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Algorithm 3 SSS-based adversarial training. The additional actions compared to the
standard training process are highlighted in red. For simplicity, basic SGD is used to
update the DNN parameters 𝛉, and the batch size is set to 1.

Parameters
𝜌data Training dataset
𝛉
(0) Initial DNN parameters

𝜂 SGD learning rate
𝜖∗ Maximum magnitude of perturbation
𝐿 Level of discretization
𝐵 Number of batches

1 function SSSAdversarialTraining(𝜌data, 𝛉(0) , 𝜂, 𝜖∗, 𝐿, 𝐵)
2 for 𝑖 = 1, . . . , 𝐵 do
3 (x, y) ∼ 𝜌data
4 𝑐 ←= arg max 𝑗∈C 𝑦𝑖

5 𝑢1, . . . , 𝑢𝑛 ∼ U(−𝜖∗, 𝜖∗)
6 x′(0) ← x + u

7 g← sign∇x′(0) 𝐽 (𝑓 (x′(0)), y)
8 𝑘 ← 𝐿

9 for 𝑗 = 1, . . . , 𝐿 do ⊲ Discretization
10 𝜖∗𝑗 ← 𝑗

𝐿𝜖
∗

11 x′(j) ← ΠX
(
x′(0) + 𝜖∗𝑗 g

)
⊲ FGSM

12 if 𝑓𝑐 (x′(j)) ≠ 𝑐 then
13 𝑘 ← 𝑗

14 break
15 end if
16 end for

17 x′← x′(k) ⊲ Final adversarial example
18 x← x′
19 𝛉

(i) ← 𝛉
(i−1) − 𝜂∇

𝛉
𝐽 (𝑓 (x), y)

20 end for

21 𝛉← 𝛉
(B) ⊲ Final DNN parameters

22 return 𝛉

23 end function
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�𝑖 ∈ {1, 2, . . . , 𝐿} : 𝑓𝑐 (x′(i)) ≠ 𝑐 → x′ = x′(L) . (3.37)

Algorithm 2 shows the algorithm of SSS-based adversarial training.
Last, we expound the motivation for this procedure as well. While the FGSM-based

adversarial training of DNNs has proven that it can actually increase their robustness
against adversarial examples [20], it has also been shown that one has to be careful
when using this method. In 2020, Wong, Rice, and Kolter [54] pointed out that there is a
“failure mode” called catastrophic overfitting, referring to the following problem: After a
certain number of completed epochs, in which the accuracy for both FGSM-perturbed and
PGD-perturbed images steadily increased, the accuracy for the former suddenly raises up
to nearly 100 % and the latter drops to about 0 %. They proposed early stopping in such a
moment, i.e., saving the last model parameters 𝛉 that did not lead to the described divide
between both accuracies. However, as catastrophic overfitting occurs at a time when
the natural validation accuracy is still improving, this kind of early stopping results in a
trained model that is somewhat robust against adversarial examples, but falls far short of
the classification accuracy of a standardly trained DNN when it comes to natural image
data.

Kim, Lee, and Lee [53] then investigated the problem in detail, figuring out that this
is to one part caused by the fixed magnitude of perturbation 𝜖∗ used by the FGSM in
adversarial training. So at a certain moment in FGSM-based adversarial training, the loss
in between the natural image x and the surface of the closed ℓ∞ ball BX (x, 𝜖∗) on which
the FGSM-perturbed data is located suddenly begins to increase strongly. With PGD not
being restricted to that surface, but being able to find maxima of the loss function in
between, any previously gained robustness against it is lost.

To another part, the constant initialization of FGSM at the natural image can lead to
similar adversarial examples over epochs, if the direction of the gradient only slightly
changes. Random initialization, by contrast, leads inevitably to a higher diversity of
adversarial examples. At this point, one might have noticed that the way the random
initialization is performed has the same risk of potentially “running out of scope” during
loss maximization as for PGD. However, opposite to PGD, this could become critical here,
as only a single step is performed. In total, the risk is still considered to be low and due
to time reasons, we only resort to the original formulation of the SSS algorithm [53].
Nevertheless, this is an aspect that should be investigated further in some future work.
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3.6. EXPERIMENTS

In this section, we present the experiments that are conducted in the scope of this work,
based on the previously shown materials and methods. Before doing so, however, we
briefly explain the general circumstances and computational environment on which the
experiments are based or in which they take place.

First of all, Python [55] is used throughout as a programming language. Furthermore,
we use the PyTorch Framework [56] to build and train DNNs and also implement the
previously introduced adversarial attacks as well as adversarial training methods. PyTorch
also includes the Torchvision package, providing various datasets and algorithms for
computer vision. Besides, we resort to the Python package Numpy [57] to perform
further computations on the generated data. Last, plots are created using the Python
package Matplotlib [58]. The exact version numbers of these are stated in table 3.1.

Table 3.1.: Used software. The left column contains the name, the middle column the version
number and the right column the purpose.

Name Version number Purpose

Python 3.7.7 Programming language
PyTorch 1.8.1 Deep learning
Torchvision 0.9.1 Computer vision
Numpy 1.20.3 Linear algebra and n-dimensional arrays
Matplotlib 3.4.2 Data plots

The experiments are conducted on a computer cluster of the German Aerospace Center
(DLR). It consists of four CPU-nodes, each equipped with four Intel Xeon Gold 6132 CPUs
and 384 GB DDR4 RAM, and one GPU node equipped with two Intel Xeon Silver 4112
CPUs, 192 GB DDR4 RAM, as well as four NVIDIA Tesla V100s connected via NVLink.
To accelerate both the training of DNNs and the creation of adversarial examples, we
utilize the latter. But, since distributed training across multiple GPUs requires a more
complex configuration and could therefore include bugs that are difficultly to find later
on, we only resort to a single GPU.

Concerning the experiments themselves, they can be divided into the following five
sections:

1. Standard training of DNNs,

2. Adversarial examples and robustness after standard training,
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3. Adversarial training of DNNs,

4. Adversarial examples and robustness after adversarial training, and

5. Investigation of the loss landscape.

In the following, the setup for each of them is explained in detail.

3.6.1. Standard Training of Deep Neural Networks

We train two DNNs with PreAct-ResNet-50 architecture on the CIFAR-10 and GTSRB
datasets for 100 epochs with batch size 128 each. Here, the number of epochs is mostly
limited by the available computation time, whereas the chosen batch size is from experi-
ence a reasonable trade-off between acceleration through parallelization (higher batch
size) and stochasticity (lower batch size).

We use cross entropy as a loss function and AdamW as an optimization algorithm.
Concerning the latter, we choose the weight decay coefficient 𝛼∗ = 0.01. This choice
is equivalent to the default value in the PyTorch implementation of AdamW; due to
the limited available amount of time, it is unfortunately not possible for us to make an
extensive optimization of hyperparameters. Hence, other hyperparameters of AdamW
are set to their default values as well (𝛽1 = 0.9 and 𝛽2 = 0.999).

Furthermore, cosine annealing is used as a learning rate scheduler, where the initial
and minimum learning rate are set to 𝜂𝑚𝑎𝑥 = 0.001 and 𝜂𝑚𝑖𝑛 = 0, being further default
values of the PyTorch implementation8. Since in the paper of Loshchilov and Hutter [47],
the positive effect of warm restarts comes to bear only for cycle lengths 𝑇𝑚𝑎𝑥 larger than
100 epochs, but we only train for 100 epochs, we also set 𝑇𝑚𝑎𝑥 = 100.

We use the separation into training and validation datasets which is already provided
by both CIFAR-10 and GTSRB. All images are resized to 32 px × 32 px if they are not
already in this resolution. In addition, we normalize image data by mapping discrete
pixel intensities from [0..255] linearly to [0, 1]. The training data is also dynamically
augmented according to section 3.3.1. Images from the validation dataset, however,
are not augmented this way to maintain a constant reference for validation. To avoid
repetitive gradient patterns across epochs, the training data is shuffled every epoch.

Last but not least, when an epoch is finished, we evaluate the accuracy as well as
the loss as averages over the training dataset and the validation dataset. In the end, we
save the model parameters under which the lowest overall validation loss was achieved.
Therefore, we perform a kind of early stopping without missing the possibility of a later
loss decrease, but minimizing overfitting and ensuring good generalization.

8Note that in PyTorch 1.8.1, the initial learning rate 𝜂𝑚𝑎𝑥 = 0.001 is not a parameter of the learning rate
scheduling algorithm, but of the optimization algorithm and thus of AdamW as well.
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3.6.2. Adversarial Examples and Robustness after Standard Training

We use two white-box attacks (FGSM, PGD) and one black-box attack (Boundary Attack)
to create adversarial examples on the previously trained DNNs. The loss function is still
cross entropy, as in training. For both CIFAR-10 and GTSRB, the respective validation
dataset serves as a basis to create the perturbed images.

Moreover, we create uniformly distributed random perturbations

u = sign u∗ with 𝑢∗1, 𝑢
∗
2, . . . , 𝑢

∗
𝑛 ∼ U(−1, 1), (3.38)

scale them by the appropriate magnitude of perturbation 𝜖 and eventually apply them to
natural images x by addition and subsequent projection back onto the input space X:

x′ = ΠX (x + 𝜖u) . (3.39)

Note here that concerning the FGSM, PGD and the random perturbations, we use the∞-
metric as a dissimilarity metric. It has the advantage that it can be interpreted well in the
case at hand, operating on image data: For two images x(1), x(2) ∈ x, e.g., ∥x(1) −x(2) ∥∞ =

1/255 means that the pixel-wise difference between x(1) and x(2) is at most 1 in any color
channel, subject to an 8-bit encoding per channel.

Now, regarding PGD, we perform 20 iterations with step size 𝜂′ = 2/255, which is
the same as Madry et al. used in their work on CIFAR-10 [21]. We then construct four
threat models for each of the three ℓ∞-bounded attacks, where the maximum permitted
dissimilarity is set to 𝜖 = 4/255, 8/255, 12/255, 16/255, respectively. For every threat
model, we perform the corresponding attack on all images of the respective validation
dataset and therefore evaluate the robustness of the standardly trained DNN against
adversarial examples. We finally save the perturbed images that were created out of the
first 100 natural images of the considered validation dataset.

Concerning the Boundary Attack, which is internally based on the Euclidean metric,
we perform 𝑁 = 160 iterations on each image of a 2000-image subset of the respective
validation dataset. Besides, the number of sampled directions is set to 𝑀 = 16. Because of
the high computational cost of the Boundary Attack, it is unfortunately not possible for us
to perform either more iterations, consider the entire validation dataset or compute more
sample candidates. After every 10 epochs, we save the ℓ2 distance between the current
version of the perturbed image x′ and the natural image x. Furthermore, after every 40
epochs, we save the current version of the perturbed image x′ itself, if the corresponding
natural image x was under the first 100 images of the validation dataset.

Last, we also save classification results as well as corresponding certainties for all
created perturbed images.
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3.6.3. Adversarial Training of Deep Neural Networks

We train further DNNs with PreAct-ResNet-50 architecture on the CIFAR-10 and GTSRB
datasets. This time, however, we perform adversarial training, using dynamically gener-
ated adversarial examples as the training data. For this purpose, we define four different
threat models under which these adversarial examples are created, respectively:

(A) FGSM (white-box), untargeted, 𝑑 = 𝑑∞, 𝜖∗ = 8/255;

(B) SSS (white-box), untargeted, 𝑑 = 𝑑∞, 𝜖∗ = 8/255;

(C) FGSM (white-box), untargeted, 𝑑 = 𝑑∞, 𝜖∗ = 16/255; and

(D) SSS (white-box), untargeted, 𝑑 = 𝑑∞, 𝜖∗ = 16/255.

Thus, together with the two datasets, we consider eight different defense scenarios.
Concerning the training settings and hyperparameters, each scenario is set up in the

same way. Actually, we use the same settings here as for the standard training (see
section 3.6.1), with differences in the measurements on the validation dataset and the
condition for eventual saving of model parameters:

First, beyond the computations of loss and accuracy on the (now perturbed) training
dataset and the natural validation dataset, we also compute them for the FGSM- and
PGD-perturbed data from the validation dataset, called FGSM loss/accuracy and PGD
loss/accuracy, respectively. Here, PGD settings are the same as in section 3.6.2. Due to
the additional computational cost of adversarial examples’ generation just for validation
purposes, especially when using PGD, we only take a random subset of the validation
dataset here, which is one-tenth the size of the entire validation dataset. After each epoch,
it is replaced by another randomly sampled subset.

Second, we save the model parameters under which the lowest overall mixed loss was
obtained. We define the mixed loss as the average of natural validation loss and FGSM
loss at a specific epoch. Doing so, we take both the accuracy w.r.t. natural images and
the robustness against FGSM-perturbed images into account, since it is not guaranteed
that the latter implies the former.

At this point, modeling the mixed loss as the average of the natural validation loss
and the PGD loss instead would admittedly be the better approach to avoid potential
catastrophic overfitting for the saved model. However, we defined the mixed loss on the
basis of the FGSM loss on purpose, being able to ultimately investigate trained DNNs’
suffering from overfitting against FGSM perturbations.

Last, regarding SSS-based adversarial training, we use levels of discretization 𝐿 = 2
and 𝐿 = 4 for 𝜖∗ = 8/255 and 𝜖∗ = 16/255, respectively. Doing so, we maintain the same
width of discretization bins 4/255.

49



Materials and Methods

3.6.4. Adversarial Examples and Robustness after Adversarial Training

Here, we essentially repeat the experiments in section 3.6.2 for the DNNs that were
trained adversarially on the datasets CIFAR-10 and GTSRB, according to section 3.6.3.

3.6.5. Investigation of the Loss Landscape

Finally, we also make some qualitative investigation of the so-called loss landscape in the
input space, i.e., the surface that originates from evaluation of the loss function 𝐽 (𝑓 (x), y)
for a DNN classifier 𝑓 and all input images x ∈ X̃ as well as corresponding ground truth
y ∈ Y. Here, X̃ ⊆ X is a subset of the full input space. Moreover, we use cross entropy
as the loss function, just as for DNN training and the creation of adversarial examples.

Qualitative investigation means that we create plots of the loss landscape and evaluate
them visually. Since we can only plot in three dimensions and one dimension is already
reserved by the loss itself, we define X̃ as the two-dimensional plane

X̃ =
{
x′ | x′ = ΠX (x + 𝜆u + 𝜇v)} . (3.40)

In this context, x ∈ X denotes a specific natural image from the validation dataset with
regard to which we want to evaluate the loss landscape.

Next, u, v ∈ R𝑛 represent roughly a random and the adversarial direction, starting
from x and spanning the plane. To align with the∞-metric-based threat model used for
adversarial attacks, both u and v are results of applying the sign function to the original
random and adversarial direction vectors. That is, they are defined as

u = sign u∗ with 𝑢∗1, 𝑢
∗
2, . . . , 𝑢

∗
𝑛 ∼ U(−1, 1) (3.41)

and

v = sign∇x𝐽 (𝑓 (x), y). (3.42)

As we operate in high-dimensional spaces and the vectors u and v are uncorrelated, we
can assume them being approximately orthogonal, which is required to use them as axes
of the plots later on.

This can be shown quickly in the spacial case at hand: First, components of both vectors
u and v are in the most cases and with equal probability either equal to 1 or −1 and with
some significantly lower probability equal to 0. In consequence, the probability that a
pair of components (𝑢𝑖, 𝑣𝑖) with 𝑖 ∈ {1, 2, . . . , 𝑛} equals either (1, 1), (−1,−1), (1,−1) or
(−1, 1) is about the same.

Hence, applying the law of large numbers w.r.t. 𝑛, the scalar product u⊺v tends to
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zero; 1 and −1 as possible dimension-wise products of two components 𝑢𝑖, 𝑣𝑖 have equal
probability, thus canceling out each other, and if one or both components are equal to 0,
the product does not contribute to u⊺v at all:

lim
𝑛→∞ u⊺v = 0. (3.43)

At the same time, with some large 𝑛, we cannot neglect the possibility of 𝑢𝑖 = 0 or 𝑣𝑖 = 0
completely anymore, while it is still comparatively rare. As a result, the product of the
Euclidean norms of both u and v is lower than the theoretical maximum 𝑛2, but clearly
larger than zero:

0 ≪ lim
𝑛→∞ ∥u∥2∥v∥2 < 𝑛2. (3.44)

Now, with the identity

u⊺v
∥u∥2∥v∥2 = cos ∢(u, v) (3.45)

as well as eqs. (3.43) and (3.44), we see that the angle ∢(u, v) tends to 90°, so u and v can
be considered being roughly orthogonal.

Returning to the definition of the two-dimensional plane, we aim to investigate the loss
landscape specifically in the area of adversarial perturbations that are possible according
to the used threat model. Consequently, the two plane parameters 𝜆, 𝜇 ∈ [

0, 16
255

]
are

both constrained to vary between 0 (no perturbation) and 16/255 (maximum considered
magnitude of perturbation). Besides, note the projection back onto the input space, which
is necessary as the plane potentially exceeds the input space otherwise.

Last, we cannot model the loss landscape with arbitrary precision because there is
no simple, closed formula that describes it, but the loss function must be evaluated at
specific points. Hence, we discretize X̃ by redefining the plane parameters 𝜆 and 𝜇 as
𝜆, 𝜇 ∈ {

𝑖
40

16
255 | 𝑖 ∈ {0, 1, . . . , 40}}, resulting in 1681 points in X̃ at which the loss function

has to be evaluated.
To do so, we do the following for all previously trained DNNs 𝑓 , whether standardly

or adversarially, and a selection of the images x as well as corresponding ground truth
y from the validation datasets of CIFAR-10 and GTSRB: At first, we perform a forward
and backward pass with the original input image x to compute the gradient ∇x𝐽 (𝑓 (x), y).
We also sample a random vector from the uniform distribution, compute the direction
vectors u and v and eventually compute the set of points X̃. Subsequently, we consider X̃
as a batch of input images with all the same ground truth y and propagate them through
the DNN to create classification results ŷ. In the end, we evaluate the loss function 𝐽 for
all retained classification results ŷ and the constant ground truth y.
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4 RESULTS

In this chapter, we show the results of the experiments specified in section 3.6. Basically,
the structure here follows that of section 3.6. In addition to that, the results of each
experiment are divided according to the two considered datasets CIFAR-10 and GTSRB.

4.1. STANDARD TRAINING OF DEEP NEURAL NETWORKS

Figures 4.1 and 4.2 show the development of both the loss and the accuracy over the
training process for CIFAR-10 and GTSRB, respectively.

4.1.1. CIFAR-10

Regarding the training on the CIFAR-10 dataset, the minimum validation loss of 0.268
was achieved at epoch 42. Moreover, after epoch 42, validation accuracy was at 92.19 %.
From this point, both validation loss and accuracy increased slightly, but nearly steadily
until the end of training. In general, the development of the validation loss and accuracy
was quite smooth, with a single outlier at epoch 8, where the loss increased sharply to
8.81 and the accuracy decreased sharply to 33.14 %.

4.1.2. GTSRB

For the GTSRB dataset, the minimum validation loss of 0.036 was achieved at epoch 71.
At this point, validation accuracy was at 99.22 %, which was the highest overall value
as well. In contrast to the training on CIFAR-10, the validation loss did not increase
recognizably after that minimum, but fluctuates minimally over it. Analogous applies
to the validation accuracy. Last, similar to the training on CIFAR-10, there was a single
outlier at epoch 17, where the loss increased sharply to 5.616 and the accuracy decreased
sharply to 72.93 %.

53



Results

0 20 40 60 80 100
Epoch

10−1

100

101

Lo
ss

Training Validation

(a) Loss

0 20 40 60 80 100
Epoch

0%

25%

50%

75%

100%

Ac
cu

ra
cy

Training Validation

(b) Accuracy

Figure 4.1.: Loss and accuracy development of PreAct-ResNet-50, trained standardly on CIFAR-10.
For both the loss (left) and the accuracy plot (right), evaluation on the training dataset is shown
in red and evaluation on the validation dataset is shown in blue.

0 20 40 60 80 100
Epoch

10−3

10−2

10−1

100

Lo
ss

Training Validation

(a) Loss

0 20 40 60 80 100
Epoch

0%

25%

50%

75%

100%

Ac
cu

ra
cy

Training Validation

(b) Accuracy

Figure 4.2.: Loss and accuracy development of PreAct-ResNet-50, trained standardly on GTSRB.
For both the loss (left) and the accuracy plot (right), evaluation on the training dataset is shown
in red and evaluation on the validation dataset is shown in blue.

4.2. ADVERSARIAL EXAMPLES AND ROBUSTNESS AFTER
STANDARD TRAINING

4.2.1. CIFAR-10

Adversarial Examples Figure 4.3 shows perturbed versions of two images from the
validation dataset of CIFAR-10, depicting a deer and a horse, respectively. First, the
random perturbations led to no misclassification, independent of the applied magnitude
of perturbation. Besides, the classification certainty was constantly at a high level.

With FGSM, the created perturbed images are invariably adversarial examples. But for
the image of a deer, the class and the certainty varied for different values of 𝜖 , e.g., with
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Figure 4.3.: Adversarial examples of CIFAR-10, created on standardly trained PreAct-ResNet-50
(Deer, Horse). Each row shows perturbed versions of a natural image, created with one of the
adversarial attacks: random perturbations, FGSM, PGD and Boundary Attack. The original image
is shown in the left column. Remaining columns show perturbed versions with maximum ℓ∞
distance 𝜖 = 4/255, 8/255, 12/255, 16/255 (from left to right, for random perturbations, FGSM and
PGD) and after 40, 80, 120, 160 iterations of Boundary Attack (from right to left), respectively.
Classification information is provided above the corresponding image.
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only 42.66 % of recognizing a frog at 𝜖 = 12/255. FGSM-perturbed versions of the second
image, on the contrary, were misclassified as a horse without exception. Certainty here
was close to or at 100 %.

The PGD attack caused misclassification along all scenarios as well. Comparing to
FGSM, however, both the class and the certainty were more constant, with the latter
being constantly maximized.

Last, due to its mechanics, the Boundary Attack always led to misclassification as well.
Certainty here was also close to 100 %, independent of the progress of the attack. In
addition, the created adversarial examples were constantly classified as an automobile.

Concerning the three 𝜖-based attacks, differences to the original image are only barely
recognizable at 𝜖 = 4/255. From 𝜖 = 8/255 on, however, the noise comes more and
more to the fore. In particular, the maximally PGD-perturbed images exhibit interesting
changes. For the first image, the shadow on the deer’s head was slightly lightened and
the shadow beneath was simultaneously darkened. In consequence, the impression of
a dog looking directly at the viewer is originated. Not surprisingly, this image is also
classified as a dog. Something similar happened to the second image of a horse, which
was given antlers and got classified as a deer. Moreover, noise on the green appears to be
structured and lengthen its legs, with the former head being one another leg.

For the adversarial examples created by the Boundary Attack, only those after 160
iterations can even close compete with the white box attacks in terms of imperceptibility.
Nevertheless, they contain still more visible noise than the latter at 𝜖 = 16/255. The
images that were created after fewer iterations are clearly dominated by noise.

Adversarial Robustness Figure 4.4a shows the adversarial robustness of PreAct-
ResNet-50, trained standardly on CIFAR-10. The plot largely reflects the above obser-
vations. PGD caused almost guaranteed misclassification already at the smallest tested
perturbation magnitude 𝜖 = 4/255. FGSM also led to substantial decline of accuracy to
17.93 % at 𝜖 = 4/255. For higher values of 𝜖 , the accuracy stayed approximately at the
same level, with some slight fluctuations. In comparison, random perturbations produced
only a slight decline of accuracy. Nevertheless, for higher magnitudes of perturbation,
the decrease of accuracy became stronger up to a minimum of 75.82 % at 𝜖 = 16/255.

Boundary Attack Last, fig. 4.5a shows the development of the average ℓ2 distance
between the original images and the current perturbed versions during the Boundary
Attack. One can see some kind of exponential decrease for increasing iteration count,
starting at a distance of roughly 0.85 and ending at about 0.2. Furthermore, the standard
deviation of the ℓ2 distance seems to be correlated to the average distance itself, exhibiting
the same exponential decrease.
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Figure 4.4.: Adversarial robustness of PreAct-ResNet-50, trained standardly on CIFAR-10 (left)
and GTSRB (right). For both datasets, the accuracy under the adversarial attacks of random
perturbations (blue), FGSM (green) and PGD (red) was evaluated. Attacks were performed using
the∞-metric and varied in terms of the maximum permitted dissimilarity 𝜖 , being plotted on the
x-axis. As a baseline for natural images, the validation accuracy of the trained model is shown in
gray.
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Figure 4.5.: Development of ℓ2 distance during Boundary Attack on PreAct-ResNet-50, trained
standardly on CIFAR-10 (left) and GTSRB (right). For both datasets, the average ℓ2 distance
between the target image and the current perturbed version was evaluated every 10th iteration.
160 iterations were performed in total. Standard deviations are plotted as error bars.
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4.2.2. GTSRB

Adversarial Examples Figure 4.6 shows perturbed versions of two images from the
validation dataset of GTSRB. The first one depicts a sign that that prescribes to drive
straight ahead, on the second one there is a sign warning of pedestrians.

First, results for random perturbations are essentially the same as on CIFAR-10, proving
the method’s non-effectiveness.

Next, by contrast to CIFAR-10, the FGSM attack was also not effective at all on the
GTSRB dataset, since the classification was always correct. Moreover, certainty remained
over 80 % for the first image and was even constantly at 100 % for the second one.

With PGD, in turn, the created perturbed images are again invariably adversarial
examples. The predicted class remained constant per original image, independent of 𝜖 ,
and the certainty slightly fluctuated between 98 % and 100 %.

Last, adversarial examples created by the Boundary Attack were always classified as
the same class (roundabout sign), similar to CIFAR-10. Certainty here was close to 100 %
across different states of progress as well, but on average lower than for CIFAR-10.

Regarding random perturbations, FGSM and PGD, the qualitative evaluation of per-
turbations’ perceptibility gives roughly the same result as on CIFAR-10; under close in-
spection, they are imperceptible only at 𝜖 = 4/255. Again, the maximally PGD-perturbed
versions of the images show remarkable resemblance to the visual representation of their
wrongly predicted classes. In detail, the former “straight ahead” sign now contains the
bright shade of an additional arrow to the right, and limbs of the pedestrian are clearly
shortened as well as blurred.

The Boundary Attack was apparently less effective on GTSRB than on CIFAR-10, as
the high level of noise even at the maximum count of 160 iterations indicates. Actually,
perturbations equal each other at different states of progress, meaning that the attack
was not able to make any progress for longest stretches.

Adversarial Robustness Figure 4.4b shows the adversarial robustness of PreAct-
ResNet-50, trained standardly on GTSRB. In comparison to CIFAR-10, a higher accuracy
was achieved under every considered threat model. At 𝜖 = 4/255, PGD leads still to
55.39 % accuracy. For larger perturbation magnitudes, however, the loss of accuracy
became larger, ending at 20.64 % for 𝜖 = 16/255. Under FGSM attack, the accuracy
declined nearly linearly with a minimum of 60.98 % at 𝜖 = 16/255. Finally, random
perturbations had almost no negative consequences up to 𝜖 = 8/255. From this point, the
accuracy slightly decreased to 96.79 % at 𝜖 = 12/255 and 93.62 % at 𝜖 = 16/255.
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Figure 4.6.: Adversarial examples of GTSRB, created on standardly trained PreAct-ResNet-50
(Straight ahead, Pedestrians). Each row shows perturbed versions of a natural image, created
with one of the adversarial attacks: random perturbations, FGSM, PGD and Boundary Attack.
The original image is shown in the left column. Remaining columns show perturbed versions
with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255 (from left to right, for random
perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations of Boundary Attack (from
right to left), respectively. Classification information is provided above the corresponding image.
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Boundary Attack Eventually, fig. 4.5b shows the development of the average ℓ2 dis-
tance between the original images and the current perturbed versions when manipulating
the GTSRB dataset with the Boundary Attack. As on CIFAR-10, the average ℓ2 distance
seems to decrease approximately exponentially for increasing iteration count, at least in
the first half. From 80 iterations on, it steadily decreases less than former exponential
course would predict. Besides, the behavior of the standard deviation of the ℓ2 distance
appears to be roughly inverse to the same on CIFAR-10 at first. In detail, however, instead
of slowly increasing, it keeps nearly constant in the aforementioned first half.

4.3. ADVERSARIAL TRAINING OF DEEP NEURAL NETWORKS

4.3.1. CIFAR-10

Figures 4.7 and 4.8 show the development of both the loss and the accuracy over the
adversarial training process for CIFAR-10 at 𝜖∗ = 8/255 and 𝜖∗ = 16/255, respectively.

Beginning with the results of the threat models (A) and (B), the lowest mixed loss was
achieved at epoch 55 for FGSM-based adversarial training and at epoch 26 for SSS-based.
These correspond with validation accuracies of 75.28 % and 82.5 %, FGSM accuracies of
99.22 % and 48.67 %, as well as PGD accuracies of 0 % and 35.94 %, respectively. Thus,
SSS-based adversarial training outperforms FGSM-based here in terms of the natural
validation accuracy and the PGD accuracy, but is being outperformed regarding the FGSM
accuracy.

After epoch 55, the results of all metrics remained on average at the same level for
FGSM-based adversarial training, although fluctuating in some cases. For SSS-based
adversarial training, on the other hand, training loss and accuracy were still decreasing
and increasing steadily after epoch 26, respectively, with a slow-down at the very end.
The FGSM loss and the PGD loss behaved similarly, but increasing. Besides, the validation
loss continued decreasing until epoch 42 and followed the FGSM loss and the PGD loss
after that. On the contrary, their counterparts on the accuracy metric remain nearly on
the same level, with the validation accuracy and the FGSM accuracy being slightly rising
and the PGD accuracy slightly falling.

In general, the loss and accuracy development is way more chaotic for FGSM-based
adversarial training than for SSS-based, exhibiting several large fluctuations of the training
loss/accuracy, the FGSM loss/accuracy and the PGD loss/accuracy. Furthermore, there
are clearly visible correlations between the results of these metrics for FGSM-based
adversarial training: First, the training loss/accuracy follows the FGSM loss/accuracy
quite well. Second, the FGSM/training loss/accuracy and the PGD loss/accuracy behave
inversely to each other, i.e., the former rises when the latter falls and vice versa.
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Figure 4.7.: Loss (top) and accuracy (bottom) development of PreAct-ResNet-50, trained adver-
sarially on CIFAR-10 using FGSM (left) and SSS (right) at maximum ℓ∞ distance 𝜖∗ = 8/255. The
training loss/accuracy is colored red, the validation loss/accuracy blue, the FGSM loss/accuracy
green, the PGD loss/accuracy yellow, and the mixed loss purple.

Next, considering the threat models (C) and (D), epoch 44 marks the moment of the
lowest mixed loss for FGSM-based adversarial training and epoch 86 does for SSS-based.
With the model parameters at that time, the following results were obtained on the
accuracy metrics: 37.35 % and 80.76 % for the natural validation accuracy, 98.55 % and
93.19 % for the FGSM accuracy, as well as 0 % in both cases for the PGD accuracy, where
the first value refers to FGSM-based adversarial training and the second one to SSS-based,
respectively. The summary turns out similar to threat models (A) and (B), with FGSM-
based adversarial training being superior in view of the FGSM accuracy and SSS-based
being superior in view of the natural validation accuracy. But with respect to the PGD
accuracy, the latter also resulted in 0 % this time.
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Figure 4.8.: Loss (top) and accuracy (bottom) development of PreAct-ResNet-50, trained adver-
sarially on CIFAR-10 using FGSM (left) and SSS (right) at maximum ℓ∞ distance 𝜖∗ = 16/255. The
training loss/accuracy is colored red, the validation loss/accuracy blue, the FGSM loss/accuracy
green, the PGD loss/accuracy yellow, and the mixed loss purple.

In contrast to the corresponding case with 𝜖∗ = 8/255, the training loss and the
FGSM loss decreased further after the epoch of minimum mixed loss for the FGSM-based
adversarial training. Besides, the PGD loss increased slightly, while the natural validation
loss remained quite stable. The related accuracy metrics developed in a constant way as
well, whereas one has to note that both the training accuracy and the FGSM accuracy
already almost reached the 100 % maximum at the mentioned epoch 44. Concerning the
results of SSS-based adversarial training, all metrics remained approximately at the same
level after epoch 86. This comparison is, however, less meaningful, since the number of
remaining epochs is highly different here.

Last, the chaotic behavior of the FGSM-based adversarial training is evident once again.
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SSS-based adversarial training also proved to be less stable in terms of fluctuations this
time, while the extent of fluctuations was still higher for the FGSM-based. Moreover, the
correlations identified between different metrics for FGSM-based adversarial training
occurred again. On the one hand, the mirroring of FGSM/training loss/accuracy and
PGD loss/accuracy is less consistent than with 𝜖∗ = 8/255, on the other hand, it is
now slightly detectable for the SSS-based adversarial training as well, when comparing
training loss/accuracy and PGD loss/accuracy.

4.3.2. GTSRB

Figures 4.9 and 4.10 show the development of both the loss and the accuracy over the
adversarial training process for GTSRB at 𝜖∗ = 8/255 and 𝜖∗ = 16/255, respectively.

First of all, considering the threat models (A) and (B), the lowest mixed loss was
achieved at epoch 39 for FGSM-based adversarial training and at epoch 78 for SSS-based.
The corresponding accuracies are 92.38 % and 97.67 % for the validation accuracy, 97.92 %
and 93.66 % for the FGSM accuracy, as well as 28.09 % and 44.53 % for the PGD accuracy.
Again, the first value refers to FGSM-based adversarial training and the second one to
SSS-based, respectively. Hence, the behavior is equal to the threat models (A) and (B) on
CIFAR-10, with SSS-based adversarial training outperforming FGSM-based in terms of
the natural validation accuracy and the PGD accuracy, but being outperformed regarding
the FGSM accuracy.

Comparing the basic development of loss and accuracy metrics for the FGSM-based
and the SSS-based adversarial training, it is altogether quite similar, even though concrete
values differ. In both cases, the majority of loss metrics remain nearly on a constant
level, only the training loss falls steadily from macroscopical view, disregarding minor
fluctuations. Concerning the accuracy metrics, training and natural validation accuracy
quickly raised to their maximum in general, although it took some epochs more for
SSS-based adversarial training than for FGSM-based.

Major difference is, as being visible on CIFAR-10, that the FGSM loss/accuracy is
constantly lower/higher than the natural validation loss/accuracy for FGSM-based ad-
versarial training, but the opposite holds for SSS-based adversarial training. In addition,
for FGSM-based adversarial training, the FGSM accuracy is almost immediately at its
maximum, just like the training accuracy. By contrast, for SSS-based adversarial training,
it increased steadily, but slowly until the end of training.

Finally, the previously identified correlation between training loss and FGSM loss is not
detectable on GTSRB. This does, however, not hold for their accuracy counterparts as well
as the second kind of correlations: For the FGSM-based adversarial training, the known
mirroring can be observed right at the start of training, where training loss/accuracy and
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Figure 4.9.: Loss (top) and accuracy (bottom) development of PreAct-ResNet-50, trained adver-
sarially on GTSRB using FGSM (left) and SSS (right) at maximum ℓ∞ distance 𝜖∗ = 8/255. The
training loss/accuracy is colored red, the validation loss/accuracy blue, the FGSM loss/accuracy
green, the PGD loss/accuracy yellow, and the mixed loss purple.

PGD loss/accuracy diverge. Analogous applies for the SSS-based adversarial training at
epoch 20.

Moving on to the threat models (C) and (D), the minimum mixed loss was here mea-
sured at epoch 45 for FGSM-based adversarial training and epoch 58 for SSS-based.
Simultaneously, validation accuracies of 80.35 % and 95.49 %, FGSM accuracies of 97.31 %
and 88.19 %, as well as PGD accuracies of 4.77 % and 19.62 % were achieved, respectively.
As for the 𝜖∗ = 8/255 scenarios, the FGSM-based adversarial training outperformed the
SSS-based in terms of the FGSM accuracy, while being just the opposite in view of the
natural validation accuracy and the PGD based accuracy.

Comparing the results between the equivalent 𝜖∗ = 8/255 and 𝜖∗ = 16/255 cases, there
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Figure 4.10.: Loss (top) and accuracy (bottom) development of PreAct-ResNet-50, trained adver-
sarially on GTSRB using FGSM (left) and SSS (right) at maximum ℓ∞ distance 𝜖∗ = 16/255. The
training loss/accuracy is colored red, the validation loss/accuracy blue, the FGSM loss/accuracy
green, the PGD loss/accuracy yellow, and the mixed loss purple.

are many similarities and only a few differences. In the following, we point out the
latter and refer here to the results measured with 𝜖∗ = 16/255, comparing them with
those observed at 𝜖∗ = 8/255: First, the natural validation loss/accuracy was constantly
higher/lower for the FGSM-based adversarial training. Second, the PGD loss/accuracy
was constantly higher/lower for both the FGSM-based and the SSS-based adversarial
training. Last, fluctuations were overall stronger for the SSS-based adversarial training.
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4.4. ADVERSARIAL EXAMPLES AND ROBUSTNESS AFTER
ADVERSARIAL TRAINING

Due to repetitiveness, we only present adversarial examples here that were created on
the DNNs being trained with SSS and the maximum permitted ℓ∞ distance 𝜖∗ = 8/255
(threat model (B)). Adversarial examples that originate from models trained adversarially
on the basis of the remaining threat models (A), (C) and (D) can be found in appendix C.

4.4.1. CIFAR-10

Adversarial Examples Figure 4.11 shows perturbed versions of the same two CIFAR-
10 images as in fig. 4.3. This time, however, they are created on an adversarially trained
PreAct-ResNet-50.

First of all, in comparison to fig. 4.3, it is noticeable that the certainties were considerably
lower for the original images, where the standardly trained DNN had achieved 99 % to
100 %. Classification results were, however, still correct. The same applied for randomly
perturbed images, independent of the magnitude of perturbation.

Next, results for FGSM and PGD differed between the two images: Considering the first
one, misclassification occurred already at 𝜖 = 4/255. With increasing 𝜖 , misclassification
continued with increasing certainty. The classification result of the second image was,
by contrast, wrong only after 𝜖 = 12/255 for FGSM and 𝜖 = 8/255 for PGD. Besides,
the behavior of the increasing certainty can be observed here as well. Comparing the
adversarial examples with their equivalents in fig. 4.3, one notices a change in the
manipulation pattern: Where manipulation had been of additive nature for the standardly
trained model, either being unstructured noise or actually semantic additives like the
antlers, it was now rather an amplification of the structures being already present in the
natural images. This reminds of an increase in contrast, although not necessarily the
whole image was affected; for the second image, e.g., only color variations of the grass
were amplified perceivably, while the horse itself remained almost unchanged.

Last, concerning the results of the Boundary Attack, one can still identify the depicted
object, but the noise takes unmistakeably the prevalent part. Moreover, in comparison to
fig. 4.3, it is overall more dominant. Again, the wrongly predicted class remained constant
during the attack and was also the same for both images. Opposite to that, certainties
tended to vary, with no clear pattern being recognizable.

Adversarial Robustness Next, fig. 4.12 visualizes the overall adversarial robustness of
PreAct-ResNet-50, trained adversarially on CIFAR-10 under the different threat models.

First, the natural validation accuracy of threat model (B) was overall the highest.
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Figure 4.11.: Adversarial examples of CIFAR-10, created on adversarially (SSS, maximum ℓ∞
distance 𝜖∗ = 8/255) trained PreAct-ResNet-50 (Deer, Horse). Each row shows perturbed versions
of a natural image, created with one of the adversarial attacks: random perturbations, FGSM, PGD
and Boundary Attack. The original image is shown in the left column. Remaining columns show
perturbed versions with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255 (from left to right,
for random perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations of Boundary Attack
(from right to left), respectively. Classification information is provided above the corresponding
image.
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Figure 4.12.: Adversarial robustness of PreAct-ResNet-50, trained adversarially on CIFAR-10
using FGSM (left) and SSS (right) at maximum ℓ∞ distances 𝜖∗ = 8/255 (top) and 𝜖∗ = 16/255
(bottom). For all scenarios, the accuracy under the adversarial attacks of random perturbations
(blue), FGSM (green) and PGD (red) was evaluated. Attacks were performed using the∞-metric
and varied in terms of the maximum permitted dissimilarity 𝜖 , being plotted on the x-axis. As a
baseline for natural images, the validation accuracy of the trained model is shown in gray.

In addition, the natural validation accuracies were generally higher for SSS than for
their FGSM counterparts (82.5 % vs. 75.28 % at 𝜖∗ = 8/255 and 80.76 % vs. 37.35 % at
𝜖∗ = 16/255). Note, however, that the natural validation accuracy was 92.19 % for the
standardly trained DNN and therefore even higher.

Regarding the robustness against random perturbations, the behavior was similar to
that after standard training, with the accuracy at about the same level as the natural
accuracy. In detail, with increasing magnitude of perturbation, it slightly fell for threat
model (A), but raised for threat models (C) and (D) and also exceeded the natural validation
accuracy here. Threat model (B), by contrast, exhibited constant accuracy on a par with
the natural validation accuracy.
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(b) SSS, 𝜖∗ = 8/255
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(d) SSS, 𝜖∗ = 16/255

Figure 4.13.: Development of the ℓ2 distance during Boundary Attack on PreAct-ResNet-50,
trained adversarially on CIFAR-10 using FGSM (left) and SSS (right) at maximum ℓ∞ distances
𝜖∗ = 8/255 (top) and 𝜖∗ = 16/255 (bottom). For all scenarios, the average ℓ2 distance between the
target image and the current perturbed version was evaluated every 10th iteration. 160 iterations
were performed in total. Standard deviations are plotted as error bars.

Moving on to FGSM and PGD, results became more diverse. For FGSM-perturbed
images, FGSM-trained models showed a nearly optimal performance of about 98 % to 99 %,
if the magnitude of perturbations 𝜖 equaled the magnitude of perturbations 𝜖∗ during
adversarial training. Otherwise, accuracies were considerably below this, with a tendency
to be higher for higher values of 𝜖 . PGD, on the other hand, led to the same picture as
after standard training: The validation accuracy was constantly at or close to 0 %.

Threat model (B), in turn, caused the accuracies for both FGSM and PGD to continuously
decrease, somewhat more so for the latter. But even at 𝜖 = 16/255, they were still above
zero (23.6 % for FGSM and 7.37 % for PGD).

Last but not least, the results of threat model (D) pointed out the same susceptibility
against PGD as for threat models (A) and (C). However, against FGSM, the validation
accuracy was slightly above the natural validation accuracy at 𝜖 = 4/255. For higher
values of 𝜖 , the validation accuracy increased here further.
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Boundary Attack Figure 4.13 shows the development of the average ℓ2 distance be-
tween the original images and the current perturbed versions during the Boundary Attack
for all threat models.

The results here were quite similar for the threat models threat models (A) and (C):
Average ℓ2 distances fell exponentially, with a low standard deviation in the beginning
and a slightly higher one in the end. In comparison to the results on the standardly
trained model (fig. 4.5a), the initial average distance was about 0.1 and the last one only
marginally greater. However, the development of the standard deviation was inverse,
with the final value being approximately the same.

For threat model (B), on the contrary, the picture was now almost the same as after
standard training on GTSRB (fig. 4.5b). That is, the initial average distance was on a par
with that of threat models (A) and (C), but the final one was greater, measuring about
0.4. Furthermore, the change of the standard deviation was similar to that in fig. 4.5b,
whereas it was even greater for the last iterations.

Eventually, considering threat model (D), the basic development of the average ℓ2

distance equaled that after standard training (fig. 4.5a). The standard deviations were
also initially approximately equal and decreased, as the attack progressed. However,
after the half of iterations, it converged here, leading to a greater final value than for the
standardly trained DNN.

4.4.2. GTSRB

Adversarial Examples Analogously, fig. 4.14 shows perturbed versions of the same
two GTSRB images as in fig. 4.6, this time after adversarial training.

Beginning with the classification results themselves, they were all correct except for
the PGD-perturbed second image at 𝜖 = 16/255, which was wrongly classified as a “speed
limit 20” sign, as well as the perturbations resulting from the Boundary Attack. Opposite
to the results on CIFAR-10, certainties remained throughout at or very close to 100 %,
again with the exception of some results of the Boundary Attack.

Moreover, the change in the manipulation pattern that was noticed on CIFAR-10 could
not be fully confirmed here: On the one hand, semantic changes did not occur anymore
or at least to a lesser extent – for the PGD-perturbed first image, the shade of a right
pointing arrow’s line segment was still recognizable at 𝜖 = 16/255. But on the other hand,
no significant contrast increase could be detected. At least for PGD, perturbations tended
to be visually less perceptible at higher values of 𝜖 than with standard training.

Last, similar to the results on CIFAR-10, the Boundary Attack also led to more per-
ceptible perturbations than on the standardly trained model. Even after 160 iterations,
one can only barely recognize which traffic sign is actually depicted because of the high

70



4.4. Adversarial Examples and Robustness after Adversarial Training

Ra
nd

om
Pe

rtu
rb

at
io

ns

Original:
straight ahead (35)

100.00%

n = 4/255:
straight ahead (35)

100.00%

n = 8/255:
straight ahead (35)

100.00%

n = 12/255:
straight ahead (35)

100.00%

n = 16/255:
straight ahead (35)

100.00%
FG

SM

Original:
straight ahead (35)

100.00%

n = 4/255:
straight ahead (35)

100.00%

n = 8/255:
straight ahead (35)

100.00%

n = 12/255:
straight ahead (35)

100.00%

n = 16/255:
straight ahead (35)

100.00%

PG
D

Original:
straight ahead (35)

100.00%

n = 4/255:
straight ahead (35)

100.00%

n = 8/255:
straight ahead (35)

100.00%

n = 12/255:
straight ahead (35)

100.00%

n = 16/255:
straight ahead (35)

100.00%

Bo
un

da
ry

A
tta

ck

Original:
straight ahead (35)

100.00%

160 iterations:
priority next (11)

48.28%

120 iterations:
priority next (11)

48.28%

80 iterations:
priority next (11)

48.28%

40 iterations:
keep right (38)

95.55%

(a)

Ra
nd

om
Pe

rtu
rb

at
io

ns

Original:
pedestrians (27)

100.00%

n = 4/255:
pedestrians (27)

100.00%

n = 8/255:
pedestrians (27)

100.00%

n = 12/255:
pedestrians (27)

100.00%

n = 16/255:
pedestrians (27)

100.00%

FG
SM

Original:
pedestrians (27)

100.00%

n = 4/255:
pedestrians (27)

100.00%

n = 8/255:
pedestrians (27)

100.00%

n = 12/255:
pedestrians (27)

100.00%

n = 16/255:
pedestrians (27)

100.00%

PG
D

Original:
pedestrians (27)

100.00%

n = 4/255:
pedestrians (27)

100.00%

n = 8/255:
pedestrians (27)

100.00%

n = 12/255:
pedestrians (27)

100.00%

n = 16/255:
speed limit 20 (0)

99.96%

Bo
un

da
ry

A
tta

ck

Original:
pedestrians (27)

100.00%

160 iterations:
speed limit 60 (3)

90.49%

120 iterations:
speed limit 60 (3)

90.49%

80 iterations:
speed limit 60 (3)

90.49%

40 iterations:
speed limit 60 (3)

80.82%

(b)

Figure 4.14.: Adversarial examples of GTSRB, created on adversarially (SSS, maximum ℓ∞ distance
𝜖∗ = 8/255) trained PreAct-ResNet-50 (Straight ahead, Pedestrians). Each row shows perturbed
versions of a natural image, created with one of the adversarial attacks: random perturbations,
FGSM, PGD and Boundary Attack. The original image is shown in the left column. Remaining
columns show perturbed versions with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255
(from left to right, for random perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations
of Boundary Attack (from right to left), respectively. Classification information is provided above
the corresponding image.
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(b) SSS, 𝜖∗ = 8/255
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(c) FGSM, 𝜖∗ = 16/255
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Figure 4.15.: Adversarial robustness of PreAct-ResNet-50, trained adversarially on GTSRB using
FGSM (left) and SSS (right) at maximum ℓ∞ distances 𝜖∗ = 8/255 (top) and 𝜖∗ = 16/255 (bottom).
For all scenarios, the accuracy under the adversarial attacks of random perturbations (blue), FGSM
(green) and PGD (red) was evaluated. Attacks were performed using the∞-metric and varied in
terms of the maximum permitted dissimilarity 𝜖 , being plotted on the x-axis. As a baseline for
natural images, the validation accuracy of the trained model is shown in gray.

noise level.

Adversarial Robustness Figure 4.15 visualizes the overall adversarial robustness of
PreAct-ResNet-50, trained adversarially on GTSRB under the different threat models.

All in all, the results are once again comparable in principle to those of CIFAR-10,
although, as for standardly trained models, the absolute accuracies are consistently higher.
First, the DNN trained adversarially under threat model (B) achieves the highest natural
validation accuracy. Next, the natural validation accuracies were generally higher for
SSS than for their FGSM counterparts (97.67 % vs. 92.38 % at 𝜖∗ = 8/255 and 96.6 % vs.
80.35 % at 𝜖∗ = 16/255). And again, the natural validation accuracy was lower than after
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(b) SSS, 𝜖∗ = 8/255
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(c) FGSM, 𝜖∗ = 16/255
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(d) SSS, 𝜖∗ = 16/255

Figure 4.16.: Development of the ℓ2 distance during Boundary Attack on PreAct-ResNet-50,
trained adversarially on GTSRB using FGSM (left) and SSS (right) at maximum ℓ∞ distances
𝜖∗ = 8/255 (top) and 𝜖∗ = 16/255 (bottom). For all scenarios, the average ℓ2 distance between the
target image and the current perturbed version was evaluated every 10th iteration. 160 iterations
were performed in total. Standard deviations are plotted as error bars.

standard training (99.22 %).
Furthermore, the robustness against random perturbations remains principally on a

high level, with accuracies close to the natural validation accuracy. In some cases, it
slightly exceeds the natural validation accuracy, in others, it is just as slightly below.

Concerning FGSM perturbations, there is again the big difference between models
trained adversarially with FGSM and those trained with SSS. The former showed almost
perfect validation accuracies of roughly 98 %, if 𝜖 = 𝜖∗ held. In turn, the higher the
difference was between them, the lower the accuracy was. For threat model (B), by
contrast, it decreased with increasing 𝜖 , resulting in 94.45 % at 𝜖 = 4/255 and 82.91 %
at 𝜖 = 16/255. Eventually, the model which trained with threat model (D) exhibited
inverse behavior, as the validation accuracy steadily increased from 𝜖 = 4/255 (84.96 %)
to 𝜖 = 16/255 (92.1 %).

Last, considering PGD, the validation accuracy decreased slightly (threat model (C))
to moderately (threat model (B)) for increasing 𝜖 . However, it was consistently higher

73



Results

for 𝜖∗ = 8/255 than for 𝜖∗ = 16/255. Also, when comparing SSS-based training with
FGSM-based, the former led throughout to higher accuracies, independent of 𝜖∗.

Boundary Attack Last but not least, fig. 4.16 visualizes the development of the average
ℓ2 distance between the original images and the current perturbed versions during the
Boundary Attack on GTSRB, considering threat models (A) to (D).

This time, results were highly similar for the threat models threat models (A), (B)
and (D) and also close to those after standard training (see fig. 4.5b): Average ℓ2 distances
fell exponentially, with a low standard deviation in the beginning and a slightly higher
one in the end. The only difference is that for threat model (B), both the average value
itself and the standard deviation are slightly higher on convergence.

Eventually, for threat model (C), basic tendencies were the same, but both the final ℓ2
average distance and the final standard deviation were somewhat lower than for other
cases.

4.5. INVESTIGATION OF THE LOSS LANDSCAPE

4.5.1. CIFAR-10

Figure 4.17 shows the loss landscape for the same natural image as in fig. 4.3a and the
differently trained DNNs as a three-dimensional surface plot.

First of all, one sees that the adversarial direction, pointing to the left and being scaled
by the parameter 𝜇, was significantly more susceptible to an increase of loss than the
random direction, which points to the right and is scaled by 𝜆: For all DNNs, the first
misclassification occurred here already in the range 0 ≤ 𝜇 ≤ 4 and the loss raised steeply
to its peek. By contrast, it remained on a relatively constant level for increasing 𝜆.

A major difference between the networks trained adversarially with FGSM and the
rest is the natural image itself was classified wrongly and exhibited a comparatively high
loss value for the former.

Besides, the scenarios’ plots differ in what happens after that peak in the adversarial
direction, if there is an after: First, for the standardly trained network as well as the one
trained adversarially with threat model (A), there was another local minimum of loss
at 𝜇 ≈ 10/255 and 6/255 ≤ 𝜇 ≤ 12/255, respectively, before it started to increase again.
Second, for threat models (C) and (D), the loss remained on a relatively constant level.
Nevertheless, with the latter, some slight fluctuations are recognizable, leading to a single
misclassification at 𝜇 ≈ 10/255. Last, for threat model (B), the peak was only reached at
𝜇 = 16/255, as the loss increased nearly linearly over the entire observed range.

Furthermore, there are differences in the height of loss as well: For the DNNs that
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4.5. Investigation of the Loss Landscape
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(a) Standard Training
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(b) Adversarial training: FGSM, 𝜖∗ = 8/255
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(c) Adversarial training: SSS, 𝜖∗ = 8/255
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(d) Adversarial training: FGSM, 𝜖∗ = 16/255

` (1/255) 0
4

8
12

16

_
(1/

255
)

0

4

8
12

16

�
( 5̂
(x
′ ),

y)

1

2

3

4

5

Co
rr

ec
t

W
ro

ng

(e) Adversarial training: SSS, 𝜖∗ = 16/255

Figure 4.17.: Loss landscapes from PreAct-ResNet-50, trained standardly (top) and adversarially
using FGSM (left) and SSS (right) at maximum ℓ∞ distances 𝜖∗ = 8/255 (middle) and 𝜖∗ = 16/255
(bottom) on CIFAR-10 (Deer). In all cases, the natural image from the validation dataset (see
fig. 4.3a) marks the origin. Moreover, the left axis points in the adversarial direction and the
right one in a random one. Both are scaled in multiples of 1/255 according to the∞-norm. Last,
correctly classified perturbations are colored blue, wrongly ones red.
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(b) Adversarial training: FGSM, 𝜖∗ = 8/255
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(c) Adversarial training: SSS, 𝜖∗ = 8/255
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(d) Adversarial training: FGSM, 𝜖∗ = 16/255
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(e) Adversarial training: SSS, 𝜖∗ = 16/255

Figure 4.18.: Loss landscapes from PreAct-ResNet-50, trained standardly (top) and adversarially
using FGSM (left) and SSS (right) at maximum ℓ∞ distances 𝜖∗ = 8/255 (middle) and 𝜖∗ = 16/255
(bottom) on CIFAR-10 (Horse). In all cases, the natural image from the validation dataset (see
fig. 4.3b) marks the origin. Moreover, the left axis points in the adversarial direction and the
right one in a random one. Both are scaled in multiples of 1/255 according to the∞-norm. Last,
correctly classified perturbations are colored blue, wrongly ones red.
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4.5. Investigation of the Loss Landscape

were trained adversarially with FGSM, the maximum loss was by a factor of 1.5 to 2
higher than for the standardly trained model. For SSS-trained ones, on the other hand, it
was proportionally about the same much lower than for the latter, with threat model (B)
showing the lowest.

Finally, concerning the interaction of adversarial and random perturbation, loss values
in most cases change when applying random perturbation in addition to sole adversarial
perturbation. Threat model (B) is the only one which does not show this behavior.

Next, fig. 4.18 also visualizes the loss landscape for the natural image depicted in
fig. 4.3b.

In general, there are many similarities to fig. 4.17, so we focus on the differences: First,
the loss landscape after standard training has a fundamentally different appearance, more
resembling fig. 4.17c with a slightly higher curvature. Second, the FGSM-trained DNNs
classified the unperturbed or randomly perturbed image this time correctly. Third, for the
model that was trained adversarially with threat model (B), classification was now correct
until 𝜇 ≈ 9/255. Forth, the combination of adversarial and random perturbations had in
most cases the same effect as sole adversarial perturbation. Here, only the standardly
trained DNN exhibited a different behavior, with a slight decrease of loss in the direction
of random perturbation. Last but not least, loss values were throughout lower than in the
corresponding scenarios w.r.t. the first image, except for the standardly trained model as
well.

4.5.2. GTSRB

Figure 4.19 shows analogously the loss landscape for the same natural image as in fig. 4.6a
and the differently trained DNNs as a three-dimensional surface plot.

Particularly in comparison with the loss landscapes on CIFAR-10, it stands out that
the network trained adversarially with threat models (A), (B) and (D) do not exhibit
any areas of misclassification at all. Concerning the standardly trained DNN, neither
sole adversarial nor random perturbation did cause misclassification as well, but the
combination of both. Last, for the DNN resulting from adversarial training with threat
model (C), misclassification occurred roughly in the range 1/255 ≤ 𝜇 ≤ 8/255 for sole
or nearly sole adversarial perturbations, with a loss maximum at 𝜇 ≈ 4. Moreover,
simultaneously maximized adversarial and random perturbation caused another local
maximum of loss and also misclassification.

Eventually, fig. 4.20 visualizes the loss landscapes w.r.t. the natural image shown in
fig. 4.6b.

Again, the loss landscapes are quite flat overall and in particular compared to previous
results – in cases of peaks, note the scaling of the vertical axis. The model that was trained
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(a) Standard training
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(b) Adversarial training: FGSM, 𝜖∗ = 8/255
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(c) Adversarial training: SSS, 𝜖∗ = 8/255
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(d) Adversarial training: FGSM, 𝜖∗ = 16/255
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(e) Adversarial training: SSS, 𝜖∗ = 16/255

Figure 4.19.: Loss landscapes from PreAct-ResNet-50, trained standardly (top) and adversarially
using FGSM (left) and SSS (right) at maximum ℓ∞ distances 𝜖∗ = 8/255 (middle) and 𝜖∗ = 16/255
(bottom) on GTSRB (Straight ahead). In all cases, the natural image from the validation dataset
(see fig. 4.6a) marks the origin. Moreover, the left axis points in the adversarial direction and the
right one in a random one. Both are scaled in multiples of 1/255 according to the∞-norm. Last,
correctly classified perturbations are colored blue, wrongly ones red.
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(b) Adversarial training: FGSM, 𝜖∗ = 8/255
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(c) Adversarial training: SSS, 𝜖∗ = 8/255
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(d) Adversarial training: FGSM, 𝜖∗ = 16/255
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(e) Adversarial training: SSS, 𝜖∗ = 16/255

Figure 4.20.: Loss landscapes from PreAct-ResNet-50, trained standardly (top) and adversarially
using FGSM (left) and SSS (right) at maximum ℓ∞ distances 𝜖∗ = 8/255 (middle) and 𝜖∗ = 16/255
(bottom) on GTSRB (Pedestrians). In all cases, the natural image from the validation dataset (see
fig. 4.6b) marks the origin. Moreover, the left axis points in the adversarial direction and the
right one in a random one. Both are scaled in multiples of 1/255 according to the∞-norm. Last,
correctly classified perturbations are colored blue, wrongly ones red.
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adversarially with threat model (A) is the only exception, with a maximum loss of nearly
2 at 𝜇 ≈ 2/255, 𝜆 = 0. Besides, the latter was the only one that exhibited misclassification
at the mentioned peak of loss.
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5 DISCUSSION

In this chapter, we evaluate the results presented in chapter 4 and discuss possible reasons
why they turned out the way they did. Besides, we point out aspects of this work which
leave room for further research in the future. The chapter is structured by nine questions,
for each of which a plausible answer is tried to be given.

1. Why are DNNs susceptible to adversarial perturbations, but not to random
perturbations? The plots on adversarial robustness (see, e.g., fig. 4.4) and on loss
landscapes (see section 4.5) indicate that random perturbations – opposite to adversarial
perturbations – are only barely able to increase the loss significantly enough to cause
misclassification. A plausible reason for this observation would be that the set of all adver-
sarial examples for a given dataset and classifier spans a comparatively low-dimensional
subspace in the input space. Therefore, randomly perturbed images are unlikely to be
part of that subspace.

Indeed, Tramèr et al. [59] have shown in 2017 that the adversarial examples for the
784-dimensional MNIST dataset span an approximately 15-dimensional subspace, subject
to a trained DNN with convolutional layers. If a fully-connected, non-convolutional DNN
is used, the subspace is somehow larger (about 45 dimensions), but still low-dimensional
in comparison to the input space itself. So while the actual size of the subspace might
depend on aspects like the considered dataset, the used DNN architecture and also various
other hyperparameters of training, it can be assumed that the basic statement regarding
a lower-dimensional adversarial subspace is valid, explaining the inherent robustness
against random perturbations.

2. Howcan the observed development of ℓ2 distances during theBoundaryAttack
be explained? The results on the Boundary Attack show that the average ℓ2 distance
between the target image is roughly exponentially decreasing with progressing attack, but
the detailed course and – more striking – the development of standard deviations differ
between different training settings and datasets (see figs. 4.5, 4.13 and 4.16). Interpreting
the results, it actually turns out that they reflect the robustness of the different models
against adversarial perturbations quite well:

First of all, the average ℓ2 distances are generally lower for CIFAR-10 than for GTSRB.
As a low ℓ2 distance correlates with a low visual dissimilarity, this coincides with the
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observation that DNNs trained on CIFAR-10 are generally more susceptible to adversarial
perturbations than those trained on GTSRB (see, e.g., fig. 4.4).

Second, SSS-based adversarial training with 𝜖∗ = 8/255 has proven to increase the
robustness against adversarial perturbations the most. In an analogous manner, the
average ℓ2 distances are here at least on a par with other threat models of adversarial
training during the attack, but throughout higher when it is finished.

Third, concerning the standard deviations of ℓ2 distances for standardly trained DNNs,
they are initially high and eventually low for CIFAR-10, with the opposite holding
for GTSRB. This reflects the observed difference in achieved robustness between both
datasets as well: For CIFAR-10, a high initial standard deviation means that there is
some probability that the initial perturbation is even closer to the target image. In
consequence, there is a higher probability that some smaller random perturbation leads
to misclassification than for GTSRB, which is suggested by fig. 4.4 too. On the other
hand, there is also a higher probability that a larger than average random perturbation
is needed to initialize adversarially, but note that the average ℓ2 distance is initially
lower than for GTSRB. With a lower final standard deviation, in turn, almost all created
adversarial examples are similarly close to the target image. In combination with the
fact, that the final average ℓ2 distance is lower for CIFAR-10, this means that almost all
created adversarial examples are that close to the target image, with only few exceptions.
Regarding GTSRB, the opposite holds: It is both more difficult to initialize adversarially
with a high ℓ2 distance and to get close to the target image, while staying adversarial.

Forth, the standard deviations achieved on the DNNs trained adversarially with threat
model (B) further verify that this specific setting leads to the highest increase of robustness:
The results for CIFAR-10 now nearly equal those for GTSRB after standard training.
Moreover, the final standard deviations for GTSRB after adversarial training are even
higher than those after standard training.

3. Why do adversarial examples look different after adversarial training? This
question refers to two observations: First, adversarial examples generated on standardly
trained DNNs more often showed structural elements of a second class, as which they are
wrongly classified (see, e.g., figs. 4.3b and 4.6b). Second, especially adversarial examples
of CIFAR-10 images, created on adversarially trained DNNs tend to exhibit changes from
the natural image in larger, already existing structures (see, e.g., figs. 4.11a and C.5a)
than after standard training (see, e.g., figs. 4.3a and B.1a), where one would interpret the
perturbation more as fine-grained noise.

Beginning with the former, one has to note that this kind of perturbations only occur
with PGD at very high magnitudes of perturbation. It can be assumed that these per-
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turbations exhibit a significantly high loss in the considered closed ℓ∞ ball, otherwise
PGD would not end up with them. This makes sense, as the classification becomes more
difficult for humans as well; with semantic changes, a misclassification can no longer
be clearly considered a misclassification. However, we cannot give a definite reason
why PGD does not find the path to these special adversarial examples anymore, when
being performed on a DNN that was trained with single-step-based adversarial examples.
Perhaps, the single-step-based adversarial examples become somehow close to those
“mixed images” in the course of training, so the model gets adapted to them. In any case,
for a standardly trained DNN, they are not.

Concerning the second observation, the different size of structures suggests a connec-
tion to the used DNN architecture, which incorporates convolutional layers. Therefore,
it would be interesting to study the phenomenon for different architectures in some
future work. Unfortunately, there is no immediate explanation how adversarial training
is involved in this and why it apparently only occurs with the CIFAR-10 dataset, but not
with the GTSRB dataset.

4. Why does adversarial training work at all? While it is trivial that a DNN is
adapted to what it is confronted with during training, this question is aimed at the
following: The adversarial perturbations that are created during training are specifically
computed to maximize the loss at this time. Then, why does robustness gained against
adversarial perturbations of the training data cause a gain of robustness against adversarial
perturbations of the validation data, where the training dataset and the validation dataset
are disjoint?

The observation of the latter implies that different adversarial perturbations must be
somehow correlated. We know from standard training that DNNs are able to generalize
from training data to unknown validation data to some extent, where both of them reside
in the input space. This is actually possible, as the data w.r.t. a specific classification task
is inherently correlated. Consequently, the so-called manifold hypothesis assumes that
the data actually lies on a lower-dimensional manifold inside the input space [60].

At this point, the above introduced concept of a low-dimensional adversarial subspace
could possibly explain the facts once again. We can interpret this low-dimensional
adversarial subspace as a low-dimensional manifold embedded in the input space as
well, on which all adversarial examples reside. Then, the same logic according to which
standard training is possible extends to the adversarial training, with the little caveat
that the manifold of natural data remains constant during training, while the manifold of
adversarial examples continuously changes, as the loss landscape changes. These changes
must be negligible to a limited extent at least for single-step-based adversarial training,
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because the training loss measured during adversarial training clearly decreased (see,
e.g., fig. 4.7), indicating progressing adaption to single-step-based adversarial examples.
Although not being verified in this work, we can assume that the same holds for PGD-
based adversarial training, according to the results of Madry et al. [21].

However, the generalization to unknown adversarial examples, e.g. created from a
withheld validation dataset, worked differently well: For the CIFAR-10 dataset, FGSM-
based adversarial training caused catastrophic overfitting (see figs. 4.7 and 4.8). By
contrast, SSS-based adversarial training with small 𝜖∗ led to comparatively remarkable
generalization1 both to FGSM-based and PGD-based adversarial examples (see fig. 4.7).
In turn, SSS-based adversarial training with high 𝜖∗ resulted in catastrophic overfitting
again (see fig. 4.8). And last, using the GTSRB dataset, there was overfitting in varying
degrees, depending on the concrete threat model of adversarial training (see figs. 4.9
and 4.10).

Actually, in all scenarios, the generalization to unknown adversarial examples after
adversarial training worked worse than the generalization to natural images after standard
training. At the same time, the classification accuracy on the training dataset was
definitely comparable between adversarial and standard training (see, e.g., figs. 4.1b
and 4.7c). Hence, we can draw conclusion that adversarially trained DNNs generally
suffered even more from overfitting than standardly trained ones, which already exhibited
signs of overfitting (see figs. 4.1 and 4.2). The answer to the following question on
catastrophic overfitting deals with an explanation for that.

5. Why does catastrophic overfitting occur? The results of this work confirm
the work of Wong, Rice, and Kolter [54], stating that FGSM-based adversarial training
leads to catastrophic overfitting at least for the CIFAR-10 dataset (see figs. 4.7a and 4.8a).
Moreover, this work shows that it also occurs for SSS-based adversarial training with too
high 𝜖∗.

First of all, resorting to the previous answer, we can treat catastrophic overfitting as
a special case of overfitting that occurs generally in adversarial training. Problematic
is particularly the degree of overfitting, which turned out to be much higher than for
standardly trained models. Therefore, the better question is: Why are adversarially
trained DNNs generally that susceptible to overfitting, and what are the aspects that
further increase the susceptibility up to catastrophic overfitting?

Beginning with the first part of the question, we first take the manifold hypothesis
for granted. Consequently, we can assume that the ability of a DNN to generalize from
known training data to unknown validation data strongly depends on the complex-

1This is to be seen with emphasis on “comparatively”. In absolute terms, the robustness is still quite low.
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ity/dimensionality of the manifold, on which all the data belonging to the considered
data distribution resides. More specifically, generalization should work better the less
complex/lower-dimensional that manifold is, and vice versa.

Now, we observed that adversarially trained models overfit more strongly to known
adversarial examples and generalize more poorly to unknown adversarial examples than
standardly trained models overfit to known natural images and generalize to unknown
natural images. We only used single-step adversarial attacks in this work, so the reason
for the observation could be that we only covered a highly limited part of the manifold
of all adversarial examples during adversarial training, i.e., the adversarial examples
that can be created with single-step methods, which possibly form a less complex/lower-
dimensional manifold themselves. As a result, we cannot expect generalization to data
that is not even part of the manifold being considered during training, such as certain
PGD-based adversarial examples. The fact that there exist other adversarial examples not
being reachable by single-step methods is also evident from the conducted qualitative
investigation of the loss landscape, where the combination of the adversarial and some
random direction sometimes pointed to further local maxima (see, e.g., fig. 4.19). This is
due to the non-concavity of the loss function.

By contrast, others [21, 53] have shown that PGD-based adversarial training does
not have significant benefits over single-step-based adversarial training concerning the
generalization to unknown adversarial examples. Hence, restriction to single-step-based
adversarial training cannot be the main cause.

Another hypothesis that could reason the poor generalization is that the manifold of
adversarial examples is generally more complex/higher-dimensional than that of the natural
images. This, however, would have to be investigated in some future work. If it is true, it
might be connected with deficiencies of the used DNN architectures.

Regarding the second part of the question, three factors actually worsened the general-
ization: adversarial training on CIFAR-10 instead of GTSRB, the usage of FGSM-based
instead of SSS-based adversarial training, and higher values of 𝜖∗. The first of these is
covered by the answer to question 9.

The second one can be explained simply by the fact that adversarial examples created
in SSS-based adversarial training are more diverse than those generated in FGSM-based
adversarial training. This is because of the variable magnitude of perturbation as well as
the random initialization that is used by the SSS algorithm.

Last, concerning too high values of 𝜖∗, we have to differentiate between FGSM-based
and SSS-based adversarial training. For the former, the reason is exactly what motivated
the development of the latter: The loss landscape then tends to exhibit local maxima in
the areas between a natural image x and the surface of the closed ℓ∞ ball BX (x, 𝜖∗), which
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was shown by the performed loss landscape investigation as well (see, e.g., fig. 4.18). For
SSS-based adversarial training, in turn, this principally occurred as well, but between the
surface of the closed ℓ∞ ball BX (x, 𝜖∗1) and the natural image x, where 𝜖∗1 is the lowest
magnitude of perturbation in the discretization of 𝜖∗ (see, e.g., fig. 4.18 as well). A solution
to that could be to increase the level of discretization 𝐿. While Kim, Lee, and Lee [53]
already tested this and could not achieve significant improvements, the situation could
possibly change when combining this with a non-equidistant discretization, which is
dense close to the natural image and becomes coarser with increasing distance. Checking
if and to which extent this approach works is to be done in some future work as well.

6. Why does adversarial training cause a lower accuracy w.r.t. natural images?
This question refers to the result that the classification accuracy of adversarially trained
DNNs w.r.t. natural images turned out to be lower than for their standardly trained
counterparts (see figs. 4.4, 4.12 and 4.15).

This could plausibly be related to the fact that we replaced the natural images com-
pletely by adversarial examples with the implementation of adversarial training in this
work. Indeed, results show that the natural validation accuracy was lower the higher
the magnitude of perturbation 𝜖∗ was, i.e., the farther the adversarial examples used for
training were from the natural images (see figs. 4.12 and 4.15). In addition, for a constant
value of 𝜖∗, SSS-based adversarial training led to a higher natural validation accuracy than
FGSM-based; that fits into the hypothesized answer to this question, since the effective
magnitude of perturbation in SSS-based adversarial training is still bounded by 𝜖∗, but
lower on average.

As part of some future work, one could try different ratios between the adversarial
examples and natural images used for adversarial training and check, in how far it in-
creases the natural validation accuracy. At the same time, the influence on the adversarial
robustness would have to be investigated.

As an alternative that can do without a further hyperparameter, it would be interesting
to adapt the SSS algorithm. In detail, when no adversarial example is found for the
considered discretization of 𝜖∗, the natural image is fed into the training process instead
of the perturbation with maximum magnitude of perturbation 𝜖∗. Thus, natural images
and adversarial examples would balance each other dynamically; the basic focus is still
on the adversarial training, but the more the model is apparently robust against certain
perturbations, the more training is based on natural images. The latter, in turn, could
cause some decrease of robustness again, which is tackled in subsequent iterations of
training by increasing the part of adversarial examples again.
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7. Are adversarial examples inevitable? The identical question was tackled by the
work of Shafahi et al. [61], which was published in 2018. Basically, they used so-called
isoperimetric inequalities to give a lower bound on the probability that for an arbitrary
classifier and any natural image with ground truth class 𝑐 , it is either misclassified or an
adversarial example with a certain maximal magnitude of perturbation exists, subject to
some 𝑝-metric.

We do not discuss their work here in detail, but while being quite tight for the Euclidean
metric, this lower bound turned out to be rather loose w.r.t. the∞-metric, which is mainly
considered in this work. Nevertheless, their formula states that the lower bound of the
aforementioned probability is proportional to the so-called intra-class variance of the
class 𝑐 in the considered data distribution. Vividly, the intra-class variance measures the
degree of spread of all images x in the data distribution 𝜌data that are labeled as 𝑐 .

Now, even if the lower bound is loose w.r.t. the∞-metric, the tendency remains the
same, with a higher intra-class variance implying a higher probability that an adversarial
example exists for any natural image that is classified correctly by some classifier. Besides,
the authors mentioned that this looseness might be rather a result of difficult proving
than being something fundamental in case of using the∞-metric.

Last, they concluded that while the exact properties of real-world image distributions
are unknown, especially high-resoluted images with a high level of detail also suggest
high intra-class variances. Note that their statements are independent of a DNN’s concrete
architecture. Thus, on the one hand, the existence of adversarial examples might be a
fundamental problem that is not solvable in general. On the other hand, they stress that
in addition to the properties of the data distribution, both the considered dissimilarity
metric 𝑑 and the maximum permitted dissimilarity score 𝜖 still highly influence the actual
risk.

In this work, we focused mainly on the ∞-metric, except for the Boundary Attack,
which is based on the Euclidean metric. To consider other dissimilarity metrics in some
future work would potentially promote further insights into the nature of adversarial
examples. The same applies to targeted adversarial examples, which were not regarded
here as well.

8. Why are models trained on CIFAR-10 dataset more vulnerable to adversarial
examples than those trained on GTSRB? The results of this work show that the
rate of misclassification after adversarial attacks is generally higher for DNNs trained on
the CIFAR-10 dataset than those trained on GTSRB (see figs. 4.4, 4.12 and 4.15).

There are two different perspectives to explain this. For the first one, we simply resort
to the previously introduced concept of the intra-class variance. It intuitively has to

87



Discussion

be larger for CIFAR-10, as this dataset contains images of animals and objects like cars,
having different breeds and subtypes with different appearance, respectively. GTSRB,
on the other hand, contains standardized traffic signs. Then, with the statement made
by Shafahi et al. [61] (see question 7), it is clear that CIFAR-10 is more susceptible to
adversarial examples than GTSRB.

For the second one, we have to assume that the manifold hypothesis and the hypothesis
of an adversarial manifold being more complex/higher-dimensional than the manifold
of natural images (see question 5) are true. Then, the fact that models being trained
standardly on the CIFAR-10 dataset generalize worse to natural validation images than
those being trained standardly on GTSRB (see figs. 4.1 and 4.2) points out that the natural
data manifold of the former has to be more complex/higher-dimensional than that of the
latter. This is also strongly connected to the above stated higher intra-class variance of
CIFAR-10. Finally, it is very likely that the adversarial manifold of the CIFAR-10 dataset
is more complex than the adversarial manifold of GTSRB, leading to a worse generaliza-
tion to unknown adversarial examples after adversarial training on CIFAR-10 and thus
higher susceptibility to adversarial attacks. But just as for the basic hypothesis regarding
adversarial manifolds, this data distribution-dependent complexity/dimensionality of the
adversarial manifold has to be verified in some future work. To do so, it would especially
be interesting to consider higher dimensional image datasets such as the ImageNet dataset
[62].

9. Are adversarial examples a real threat? To the end of this chapter, we discuss
whether adversarial examples actually pose a threat in real applications of DNN-based
image classification, or whether it is rather an academically interesting, but in reality
irrelevant phenomenon.

We first consider the methods for creating adversarial examples that are covered in this
work. The white-box attacks presented in this work require extensive knowledge on the
DNN architecture and its parameters 𝛉 after training to compute the needed gradients.
In the defined black-box setting, extensive access to the model is still needed, even if it
can be treated as a black-box. If potential adversaries do not have the above capabilities,
they cannot create adversarial examples using these methods. With the DNN being a
crucial part of a system like an autonomously driving car, it can be assumed that there
would be various security features, such as encryption, to prevent unauthorized external
access. However, this only regards the process of creating an adversarial example.

The second part of the job would be to expose the DNN to the created adversarial
example. Since the presented adversarial attacks all create adversarial examples as byte
representations of images, adversaries would have to gain access to the DNN during
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deployment. To stick with the application of autonomous driving, they would essentially
have to hack the car while it is in traffic. At this point, it becomes clear that the threat from
such adversarial examples is actually less than the threat from hacking the surrounding
system. This is because by the time the attackers are able to do so, it is too late anyway;
then, they do not have to take the detour via adversarial examples, but can directly
manipulate the behavior of the system, e.g., the driving actions of the car.

As a result, the question arises whether there are adversarial perturbations that can be
applied in the physical world, rather than at the virtual byte level, and that are sufficiently
invariant to aspects such as camera-induced image distortion, lighting conditions, clarity
of view, recording angle, recording distance, and so on.

In 2016, Kurakin, Goodfellow, and Bengio [49] conducted first experiments concerning
physical adversarial examples. They initially created digital adversarial examples of
natural images from the ImageNet dataset [62] using different white-box attacks, including
FGSM and a variant of PGD. Subsequently, they printed these digital adversarial examples
on paper and took pictures, whereas the recording conditions were intentionally not
kept as constant as possible. Eventually, they classified the physical adversarial examples
created in this way. They found out that while causing fewer misclassifications on digital
adversarial examples than the stronger iterative attacks, the FGSM led to the highest
rate of misclassification for the physical adversarial examples (between 35 % and 55 %
classification accuracy, depending on the applied magnitude of perturbation 𝜖). They
also evaluated the accuracy for prints of natural validation images, being around 70 %
and thus noticeably higher.

However, although the realization of usual adversarial perturbations being partly
invariant to the camera transformation is quite fascinating, the impact on the real threat
being posed by adversarial examples can be assumed to be rather moderate. Resorting
once again to the application of autonomous driving, it would be conspicuous if someone
started to cover traffic signs by slightly noisy paper prints. Even if they could be attached
unnoticed, the difference to normal traffic signs would be clearly visible, e.g., the missing
reflections.

Things look different when we consider the work of Eykholt et al. [63], which was
published in 2018. They experimented with the GTSRB dataset and were able to create
adversarial perturbations in the form of graffiti and small, black/white stickers that
were relatively invariant to both different recording angles and distances. Although any
modification of traffic signs is prohibited according to § 315b Strafgesetzbuch (StGB),
this kind of physical adversarial perturbations is at first less conspicuous to humans,
especially, if the traffic sign itself is still discernible. Hence, the existence of such physical
adversarial perturbations would definitely require increased monitoring of traffic signs
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Discussion

in the era of autonomous driving.
Last, it is unclear in how far adversarial training can also increase the robustness to

physical adversarial examples. This is to be investigated in some future work.
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6 CONCLUSION

In this work, we conducted an empirical study regarding the robustness of DNN-based
image classifiers against perturbations of the input data. Here, we particularly sought
to gain further insights into the nature of adversarial examples. In the following, we
summarize the main results.

First of all, this work points out that adversarial examples can only barely be created
by random perturbations, but require very specific perturbations that are found by
purposefully exploiting the deficiencies of the trained models. Next, the evaluations
show that in the vast majority of cases, a strong white-box attack such as PGD can
generate adversarial examples, even if they are constrained to a small ℓ∞ distance from
the corresponding natural image and are therefore nearly imperceptible to the human
eye. With the Boundary Attack and operating in the black-box setting, on the other hand,
it was more difficult to create adversarial examples with a comparatively low degree of
perceptibility.

The results after adversarial training confirm that it increases the robustness against
adversarial examples to a limited extent, coming at the price of higher training effort
and lower accuracy w.r.t. natural image data. Here, the analysis of the training progress
indicated that the insufficiency of adversarial training is generally a problem of substantial
overfitting, of which the failure mode “catastrophic overfitting” is only the worst case.
Furthermore, this work confirms that the recently published SSS algorithm is effective to
mitigate the overfitting, subject to a moderate magnitude of perturbation. With higher
magnitude of perturbation, however, the overfitting behavior turned out to be similar to
FGSM-based adversarial training again.

Finally, the comparison of the two datasets CIFAR-10 and GTSRB revealed that the
latter is inherently more robust against adversarial perturbations that the former. The
results obtained were corroborated by a qualitative study of the loss landscapes that
emerged for the trained DNNs.
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A PROOFS

A.1. EUCLIDEAN PROJECTION ONTO A CLOSED ℓ∞ BALL

Lemma 1 Let 𝑥, 𝑎, 𝑏 ∈ R be real numbers. Then, the following equivalence holds:

|𝑥 − 𝑎 | < |𝑏 − 𝑎 | ⇐⇒ (𝑎 < 𝑏 ∧ 2𝑎 − 𝑏 < 𝑥 < 𝑏) ∨ (𝑎 > 𝑏 ∧ 𝑏 < 𝑥 < 2𝑎 − 𝑏) .

Proof: Proof by case analysis. Note that the cases with 𝑎 = 𝑏 lead to a contradiction and
thus do not allow any statement about 𝑥 .

Case 1: 𝑥 > 𝑎 ∧ 𝑎 < 𝑏:
𝑥 − 𝑎 < 𝑏 − 𝑎 ⇐⇒ 𝑥 < 𝑏

Case 2: 𝑥 < 𝑎 ∧ 𝑎 < 𝑏:
𝑎 − 𝑥 < 𝑏 − 𝑎 ⇐⇒ 𝑥 > 2𝑎 − 𝑏

Case 3: 𝑥 > 𝑎 ∧ 𝑏 < 𝑎:
𝑥 − 𝑎 < 𝑎 − 𝑏 ⇐⇒ 𝑥 < 2𝑎 − 𝑏

Case 4: 𝑥 < 𝑎 ∧ 𝑏 < 𝑎:
𝑎 − 𝑥 < 𝑎 − 𝑏 ⇐⇒ 𝑥 > 𝑏

Case 5: 𝑥 = 𝑎 ∧ 𝑎 < 𝑏:
0 < 𝑏 − 𝑎 ⇐⇒ 𝑎 < 𝑏

Case 6: 𝑥 = 𝑎 ∧ 𝑏 < 𝑎:
0 < 𝑎 − 𝑏 ⇐⇒ 𝑏 < 𝑎

Case 7: 𝑥 > 𝑎 ∧ 𝑎 = 𝑏:
𝑥 − 𝑎 < 0 ⇐⇒ 𝑥 < 𝑎  

Case 8: 𝑥 < 𝑎 ∧ 𝑎 = 𝑏:
𝑎 − 𝑥 < 0 ⇐⇒ 𝑥 > 𝑎  
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Proofs

Theorem 1 Let ℓ (𝑛)∞ ⊆ R𝑛 be an 𝑛-dimensional metric ℓ∞ space. Moreover, let B
ℓ (𝑛)∞
(x(0), 𝑟 )

be the closed ℓ∞ ball in ℓ (𝑛)∞ that is centered in the point x(0) ∈ ℓ (𝑛)∞ and has radius 𝑟 ∈ R≥0.
Then, the Euclidean projection of the point x∗ ∈ ℓ (𝑛)∞ onto B

ℓ (𝑛)∞
(x(0), 𝑟 ) is

ΠB
ℓ
(𝑛)
∞
(x(0) ,𝑟 )

(
x∗) = max

(
x(0) − 𝑟 · 1,min

(
x∗, x(0) + 𝑟 · 1

))
.

Proof: The proof is done by contradiction: Resorting to the definition of the Euclidean
projection (eq. (2.14)), the Euclidean distance between the point x∗ and its projection
ΠB

ℓ
(𝑛)
∞
(x(0) ,𝑟 ) (x∗) is said to be minimal. In a first step, we assume that there is another

point x̃ ∈ B
ℓ (𝑛)∞
(x(0), 𝑟 ) s.t. the Euclidean difference between x∗ and x̃ is smaller than that

between x∗ and ΠB
ℓ
(𝑛)
∞
(x(0) ,𝑟 ) (x∗). Subsequently, we show that this assumption leads to a

logical contradiction and therefore prove the original statement.
First of all, if we assume that there is a point x̃ being closer to x∗ according to the

Euclidean metric, we can conclude that there must be at least one dimension in which it
is closer.

∃x̃ ∈ B
ℓ (𝑛)∞
(x(0), 𝑟 ) :

√√
𝑛∑︁
𝑖=1

��𝑥𝑖 − 𝑥∗𝑖 ��2 <

√√
𝑛∑︁
𝑖=1

���max
(
𝑥 (0)𝑖 − 𝑟,min

(
𝑥∗𝑖 , 𝑥

(0)
𝑖 + 𝑟

))
− 𝑥∗𝑖

���2
⇓

∃𝑖 ∈ {1, 2, . . . , 𝑛} : ∀𝑗 ∈ {1, 2, . . . , 𝑛} \ {𝑖} : 𝑥 𝑗 = max
(
𝑥 (0)𝑗 − 𝑟,min

(
𝑥∗𝑗 , 𝑥

(0)
𝑗 + 𝑟

))
∧(

𝑥 (0)𝑖 − 𝑟 ≤ 𝑥𝑖 ≤ 𝑥 (0)𝑖 + 𝑟 →
��𝑥𝑖 − 𝑥∗𝑖 �� < ���max

(
𝑥 (0)𝑖 − 𝑟,min

(
𝑥∗𝑖 , 𝑥

(0)
𝑖 + 𝑟

))
− 𝑥∗𝑖

���)
(A.1)

At this point, we define the components 𝑥𝑖 and 𝑥∗𝑖 as a function of the corresponding
component 𝑥 (0)𝑖 of the closed ball’s center point x(0) , respectively. To do so, we introduce
two auxiliary variables 𝑟, 𝑟 ∗ ∈ R:

𝑥𝑖 B 𝑥 (0)𝑖 + 𝑟, (A.2)

𝑥∗𝑖 B 𝑥 (0)𝑖 + 𝑟 ∗. (A.3)

Substitution in eq. (A.1) yields
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A.1. Euclidean Projection onto a closed ℓ∞ ball

∃𝑖 ∈ {1, 2, . . . , 𝑛} : ∀𝑗 ∈ {1, 2, . . . , 𝑛} \ {𝑖} : 𝑥 𝑗 = max
(
𝑥 (0)𝑗 − 𝑟,min

(
𝑥∗𝑗 , 𝑥

(0)
𝑗 + 𝑟

))
∧(

−𝑟 ≤ 𝑟 ≤ 𝑟 → |𝑟 − 𝑟 ∗ | <
���max

(
𝑥 (0)𝑖 − 𝑟,min

(
𝑥 (0)𝑖 + 𝑟 ∗, 𝑥 (0)𝑖 + 𝑟

))
− 𝑥 (0)𝑖 − 𝑟 ∗

���)
⇓

∃𝑖 ∈ {1, 2, . . . , 𝑛} : ∀𝑗 ∈ {1, 2, . . . , 𝑛} \ {𝑖} : 𝑥 𝑗 = max
(
𝑥 (0)𝑗 − 𝑟,min

(
𝑥∗𝑗 , 𝑥

(0)
𝑗 + 𝑟

))
∧

(−𝑟 ≤ 𝑟 ≤ 𝑟 → |𝑟 − 𝑟 ∗ | < |max (−𝑟,min (𝑟 ∗, 𝑟 )) − 𝑟 ∗ |)
(A.4)

We now perform a case distinction w.r.t. 𝑟 ∗ and show that all cases lead to contradiction.
For simplification, we only consider the second term of the conjunction in eq. (A.4) –
the first term is independent of 𝑟 ∗ and can be assumed to be true, but a contradiction is
already given when the second term evaluates to false and we therefore imply something
false out of something true.

Case 1: 𝑟 ∗ > 𝑟 :

−𝑟 ≤ 𝑟 ≤ 𝑟 → |𝑟 − 𝑟 ∗ | < |max (−𝑟,min (𝑟 ∗, 𝑟 )) − 𝑟 ∗ | = |𝑟 − 𝑟 ∗ |
⇓ (lemma 1)

−𝑟 ≤ 𝑟 ≤ 𝑟 → 𝑟 < 𝑟 < 2𝑟 ∗ − 𝑟  

Case 2: −𝑟 ≤ 𝑟 ∗ ≤ 𝑟 :

−𝑟 ≤ 𝑟 ≤ 𝑟 → |𝑟 − 𝑟 ∗ | < |max (−𝑟,min (𝑟 ∗, 𝑟 )) − 𝑟 ∗ | = 0  

Case 3: 𝑟 ∗ < −𝑟 :

−𝑟 ≤ 𝑟 ≤ 𝑟 → |𝑟 − 𝑟 ∗ | < |max (−𝑟,min (𝑟 ∗, 𝑟 )) − 𝑟 ∗ | = |−𝑟 − 𝑟 ∗ |
⇓ (lemma 1)

−𝑟 ≤ 𝑟 ≤ 𝑟 → 2𝑟 ∗ + 𝑟 < 𝑟 < −𝑟  

Q. E. D.
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Proofs

A.2. FAST GRADIENT SIGN METHOD BEING CONSTRAINED BY THE
ℓ∞ METRIC

Lemma 2 Let 𝑎, 𝑏 ∈ R be real numbers and let 𝑐 ∈ R≥0 be a non-negative real number.
Then, the following inequality holds:

|max (−𝑎,min (𝑐 sign𝑏, 1 − 𝑎)) | ≤ 𝑐.

Proof: Proof by case analysis.

Case 1: 𝑐 sign𝑏 > 1 − 𝑎:

|max (−𝑎,min (𝑐 sign𝑏, 1 − 𝑎)) | = |max (−𝑎, 1 − 𝑎) | = 1 − 𝑎 < 𝑐 sign𝑏 ≤ 𝑐

Case 2: −𝑎 ≤ 𝑐 sign𝑏 ≤ 1 − 𝑎:

|max (−𝑎,min (𝑐 sign𝑏, 1 − 𝑎)) | = |max (−𝑎, 𝑐 sign𝑏) | = |𝑐 sign𝑏 | = 𝑐 |sign𝑏 | ≤ 𝑐

Case 3: 𝑐 sign𝑏 < −𝑎:

|max (−𝑎,min (𝑐 sign𝑏, 1 − 𝑎)) | = |max (−𝑎, 𝑐 sign𝑏) | = ∥ − 𝑎∥ = 𝑎 < −𝑐 sign𝑏 ≤ 𝑐

Theorem 2 Let
x′ = ΠX

(
x + 𝜖 sign∇x𝐽 (𝑓 (x), y)

)
be the FGSM-perturbed version of the natural image x ∈ X with the magnitude of pertur-
bation 𝜖 ∈ R≥0, according to eq. (3.13). Then, x′ is part of the closed ℓ∞ ball BX (x, 𝜖), i.e.,
x′ ∈ BX (x, 𝜖).

Proof: We start by taking lemma 2 for granted and set 𝑎 = 𝑥𝑖 , 𝑏 = 𝜕𝐽 (𝑓 (x),y)
𝜕𝑥𝑖

and 𝑐 = 𝜖

for all 𝑖 ∈ {1, 2, . . . , 𝑛}:

∀𝑖 ∈ {1, 2, . . . , 𝑛} :

�����max
(
−𝑥𝑖,min

(
𝜖 sign 𝜕𝐽 (𝑓 (x), y)

𝜕𝑥𝑖
, 1 − 𝑥𝑖

))����� ≤ 𝜖. (A.5)

From this point, we can simply transform the inequality’s left-hand side and finally obtain
the condition for x′ being part of the closed ℓ∞ ball BX (x, 𝜖):
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A.3. Euclidean Projection onto the intersection of two closed ℓ∞ balls

∀𝑖 ∈ {1, 2, . . . , 𝑛} :

�����max
(
−𝑥𝑖,min

(
𝜖 sign 𝜕𝐽 (𝑓 (x), y)

𝜕𝑥𝑖
, 1 − 𝑥𝑖

))����� ≤ 𝜖

⇕

∀𝑖 ∈ {1, 2, . . . , 𝑛} :

�����max
(
0,min

(
𝑥𝑖 + 𝜖 sign 𝜕𝐽 (𝑓 (x), y)

𝜕𝑥𝑖
, 1

))
− 𝑥𝑖

����� ≤ 𝜖

⇕ (2.18)

∀𝑖 ∈ {1, 2, . . . , 𝑛} :

�����ΠX
(
𝑥𝑖 + 𝜖 sign 𝜕𝐽 (𝑓 (x), y)

𝜕𝑥𝑖

)
− 𝑥𝑖

����� ≤ 𝜖

⇕
∀𝑖 ∈ {1, 2, . . . , 𝑛} : |𝑥′𝑖 − 𝑥𝑖 | ≤ 𝜖

⇕
max

𝑖∈{1,2,...,𝑛}
|𝑥𝑖 | (2.15)

= ∥x′ − x∥∞ = 𝑑∞
(
x′, x

) ≤ 𝜖

⇕
x′ ∈ BX (x, 𝜖)

(A.6)

Q. E. D.

A.3. EUCLIDEAN PROJECTION ONTO THE INTERSECTION OF TWO
CLOSED ℓ∞ BALLS

Theorem 3 Let ℓ (𝑛)∞ ⊆ R𝑛 be an 𝑛-dimensional metric ℓ∞ space. Moreover, let X1 =

B
ℓ (𝑛)∞
(x(0),(1), 𝑟1) and X2 = Bℓ (𝑛)∞

(x(0),(2), 𝑟2) be the closed ℓ∞ balls in ℓ (𝑛)∞ that are centered

in the points x(0),(1), x(0),(2) ∈ ℓ (𝑛)∞ and have radii 𝑟1, 𝑟2 ∈ R≥0, respectively. Then, if X1 and
X2 are not disjoint, the successive Euclidean projection of the point x∗ ∈ ℓ (𝑛)∞ first onto X2,
then onto X1 equals the reversed projection order:

X1 ∩ X2 ≠ ∅ → ΠX1

(
ΠX2

(
x∗) ) = ΠX2

(
ΠX1

(
x∗) ) .

Proof: Applying theorem 1 and reformulating the precondition (to be not disjoint, at
least one boundary of one ℓ∞ ball has to be shared by both ℓ∞ balls), the following is to
be proven:
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Proofs

∀𝑖 ∈ {1, 2, . . . , 𝑛} :

𝑥 (0),(1)𝑖 − 𝑟1 ≤ 𝑥 (0),(2)𝑖 − 𝑟2 ≤ 𝑥 (0),(1)𝑖 + 𝑟1 ∨ 𝑥 (0),(2)𝑖 − 𝑟2 ≤ 𝑥 (0),(1)𝑖 − 𝑟1 ≤ 𝑥 (0),(2)𝑖 + 𝑟2

→ max
(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥∗𝑖 , 𝑥

(0),(2)
𝑖 + 𝑟2

))
, 𝑥 (0),(1)𝑖 + 𝑟1

))
= max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥∗𝑖 , 𝑥

(0),(1)
𝑖 + 𝑟1

))
, 𝑥 (0),(2)𝑖 + 𝑟2

))
.

(A.7)

The proof is done by case analysis w.r.t. x∗. For the sake of brevity, we omit the
consecutive quantifier ∀𝑖 ∈ {1, 2, . . . , 𝑛} in the following, but we point out that this is
what is meant by the index 𝑖 . In addition, we index the further above preconditions as
follows, being used as a short notation subsequently:

(𝐼 .) B 𝑥 (0),(1)𝑖 − 𝑟1 ≤ 𝑥 (0),(2)𝑖 − 𝑟2 ≤ 𝑥 (0),(1)𝑖 + 𝑟1 (A.8)

(𝐼 𝐼 .) B 𝑥 (0),(2)𝑖 − 𝑟2 ≤ 𝑥 (0),(1)𝑖 − 𝑟1 ≤ 𝑥 (0),(2)𝑖 + 𝑟2 (A.9)

Last, note that the cases 𝑥∗𝑖 > 𝑥 (0),(1)𝑖 +𝑟1∧𝑥∗𝑖 < 𝑥 (0),(2)𝑖 −𝑟2 as well as 𝑥∗𝑖 < 𝑥 (0),(1)𝑖 −𝑟1∧𝑥∗𝑖 >

𝑥 (0),(2)𝑖 + 𝑟2 contradict with the precondition (𝐼 .) ∨ (𝐼 𝐼 .).

Case 1: ((𝐼 .) ∨ (𝐼 𝐼 .)) ∧ 𝑥∗𝑖 > 𝑥 (0),(1)𝑖 + 𝑟1 ∧ 𝑥∗𝑖 > 𝑥 (0),(2)𝑖 + 𝑟2:

max
(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥∗𝑖 , 𝑥

(0),(2)
𝑖 + 𝑟2

))
, 𝑥 (0),(1)𝑖 + 𝑟1

))
= max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥 (0),(1)𝑖 + 𝑟1, 𝑥

(0),(2)
𝑖 + 𝑟2

))
= min

(
𝑥 (0),(1)𝑖 + 𝑟1, 𝑥

(0),(2)
𝑖 + 𝑟2

)
= max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥 (0),(1)𝑖 + 𝑟1, 𝑥

(0),(2)
𝑖 + 𝑟2

))
= max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥∗𝑖 , 𝑥

(0),(1)
𝑖 + 𝑟1

))
, 𝑥 (0),(2)𝑖 + 𝑟2

))

Case 2: ((𝐼 .) ∨ (𝐼 𝐼 .)) ∧ 𝑥∗𝑖 > 𝑥 (0),(1)𝑖 + 𝑟1 ∧ 𝑥 (0),(2)𝑖 − 𝑟2 ≤ 𝑥∗𝑖 ≤ 𝑥 (0),(2)𝑖 + 𝑟2:

max
(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥∗𝑖 , 𝑥

(0),(2)
𝑖 + 𝑟2

))
, 𝑥 (0),(1)𝑖 + 𝑟1

))
= 𝑥 (0),(1)𝑖 + 𝑟1

= min
(
𝑥 (0),(1)𝑖 + 𝑟1, 𝑥

(0),(2)
𝑖 + 𝑟2

)
= max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥 (0),(1)𝑖 + 𝑟1, 𝑥

(0),(2)
𝑖 + 𝑟2

))
= max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥∗𝑖 , 𝑥

(0),(1)
𝑖 + 𝑟1

))
, 𝑥 (0),(2)𝑖 + 𝑟2

))

98



A.3. Euclidean Projection onto the intersection of two closed ℓ∞ balls

Case 3: ((𝐼 .) ∨ (𝐼 𝐼 .)) ∧ 𝑥 (0),(1)𝑖 − 𝑟1 ≤ 𝑥∗𝑖 ≤ 𝑥 (0),(1)𝑖 + 𝑟1 ∧ 𝑥∗𝑖 > 𝑥 (0),(2)𝑖 + 𝑟2:

max
(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥∗𝑖 , 𝑥

(0),(2)
𝑖 + 𝑟2

))
, 𝑥 (0),(1)𝑖 + 𝑟1

))
= max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥 (0),(1)𝑖 + 𝑟1, 𝑥

(0),(2)
𝑖 + 𝑟2

))
= min

(
𝑥 (0),(1)𝑖 + 𝑟1, 𝑥

(0),(2)
𝑖 + 𝑟2

)
= 𝑥 (0),(2)𝑖 + 𝑟2

= max
(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥∗𝑖 , 𝑥

(0),(2)
𝑖 + 𝑟2

))
= max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥∗𝑖 , 𝑥

(0),(1)
𝑖 + 𝑟1

))
, 𝑥 (0),(2)𝑖 + 𝑟2

))

Case 4: ((𝐼 .) ∨ (𝐼 𝐼 .)) ∧ 𝑥 (0),(1)𝑖 −𝑟1 ≤ 𝑥∗𝑖 ≤ 𝑥 (0),(1)𝑖 +𝑟1 ∧ 𝑥 (0),(2)𝑖 −𝑟2 ≤ 𝑥∗𝑖 ≤ 𝑥 (0),(2)𝑖 +𝑟2:

max
(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥∗𝑖 , 𝑥

(0),(2)
𝑖 + 𝑟2

))
, 𝑥 (0),(1)𝑖 + 𝑟1

))
= 𝑥∗𝑖

= max
(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥∗𝑖 , 𝑥

(0),(1)
𝑖 + 𝑟1

))
, 𝑥 (0),(2)𝑖 + 𝑟2

))

Case 5: (𝐼 .) ∧ 𝑥 (0),(1)𝑖 − 𝑟1 ≤ 𝑥∗𝑖 ≤ 𝑥 (0),(1)𝑖 + 𝑟1 ∧ 𝑥∗𝑖 < 𝑥 (0),(2)𝑖 − 𝑟2:

max
(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥∗𝑖 , 𝑥

(0),(2)
𝑖 + 𝑟2

))
, 𝑥 (0),(1)𝑖 + 𝑟1

))
= max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥 (0),(1)𝑖 + 𝑟1, 𝑥

(0),(2)
𝑖 − 𝑟2

))
= min

(
𝑥 (0),(1)𝑖 + 𝑟1, 𝑥

(0),(2)
𝑖 − 𝑟2

)
= 𝑥 (0),(2)𝑖 − 𝑟2

= max
(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥∗𝑖 , 𝑥

(0),(2)
𝑖 + 𝑟2

))
= max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥∗𝑖 , 𝑥

(0),(1)
𝑖 + 𝑟1

))
, 𝑥 (0),(2)𝑖 + 𝑟2

))

Case 6: (𝐼 𝐼 .) ∧ 𝑥∗𝑖 < 𝑥 (0),(1)𝑖 − 𝑟1 ∧ 𝑥 (0),(2)𝑖 − 𝑟2 ≤ 𝑥∗𝑖 ≤ 𝑥 (0),(2)𝑖 + 𝑟2:

max
(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥∗𝑖 , 𝑥

(0),(2)
𝑖 + 𝑟2

))
, 𝑥 (0),(1)𝑖 + 𝑟1

))
= 𝑥 (0),(1)𝑖 − 𝑟1

= min
(
𝑥 (0),(1)𝑖 − 𝑟1, 𝑥

(0),(2)
𝑖 + 𝑟2

)
= max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥 (0),(1)𝑖 − 𝑟1, 𝑥

(0),(2)
𝑖 + 𝑟2

))
= max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥∗𝑖 , 𝑥

(0),(1)
𝑖 + 𝑟1

))
, 𝑥 (0),(2)𝑖 + 𝑟2

))
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Case 7: ((𝐼 .) ∨ (𝐼 𝐼 .)) ∧ 𝑥∗𝑖 < 𝑥 (0),(1)𝑖 − 𝑟1 ∧ 𝑥∗𝑖 < 𝑥 (0),(2)𝑖 − 𝑟2:

max
(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥∗𝑖 , 𝑥

(0),(2)
𝑖 + 𝑟2

))
, 𝑥 (0),(1)𝑖 + 𝑟1

))
= max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥 (0),(1)𝑖 + 𝑟1, 𝑥

(0),(2)
𝑖 − 𝑟2

))
= max

(
𝑥 (0),(1)𝑖 − 𝑟1, 𝑥

(0),(2)
𝑖 − 𝑟2

)
= max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥 (0),(1)𝑖 − 𝑟1, 𝑥

(0),(2)
𝑖 + 𝑟2

))
= max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥∗𝑖 , 𝑥

(0),(1)
𝑖 + 𝑟1

))
, 𝑥 (0),(2)𝑖 + 𝑟2

))

Q. E. D.

Theorem 4 Let ℓ (𝑛)∞ ⊆ R𝑛 be an 𝑛-dimensional metric ℓ∞ space. Moreover, let X1 =

B
ℓ (𝑛)∞
(x(0),(1), 𝑟1) and X2 = Bℓ (𝑛)∞

(x(0),(2), 𝑟2) be the closed ℓ∞ balls in ℓ (𝑛)∞ that are centered

in the points x(0),(1), x(0),(2) ∈ ℓ (𝑛)∞ and have radii 𝑟1, 𝑟2 ∈ R≥0, respectively. Then, if X1 and
X2 are not disjoint, the Euclidean projection of the point x∗ ∈ ℓ (𝑛)∞ onto the intersection of
both closed ℓ∞ ballsX12 = Bℓ (𝑛)∞

(x(0),(1), 𝑟1)∩Bℓ (𝑛)∞
(x(0),(2), 𝑟2) is equivalent to the Euclidean

projection first onto X1, then onto X2:

X1 ∩ X2 ≠ ∅ → ΠX12

(
x∗) = ΠX2

(
ΠX1

(
x∗) ) .

Proof: The proof is structured similarly to those of theorems 1 and 3.
First, as in the proof of theorem 1, this proof is done by contradiction, showing that

there cannot be a valid x̃ ∈ X12 s.t. the Euclidean difference between x∗ and x̃ is smaller
than that between x∗ and ΠX12 (x∗). Doing so, we initially assume as well that if there
is a point x̃ being closer to x∗ according to the Euclidean metric, we can conclude that
there must be at least one dimension in which it is closer.

Second, as in the proof of theorem 3, we initially apply theorem 1 and reformulate the
preconditions. Besides, we also use the following short notations of preconditions that
were introduced there:

(𝐼 .) B ∀𝑘 ∈ {1, 2, . . . , 𝑛} : 𝑥 (0),(1)
𝑘

− 𝑟1 ≤ 𝑥 (0),(2)
𝑘

− 𝑟2 ≤ 𝑥 (0),(1)
𝑘

+ 𝑟1 (A.10)

(𝐼 𝐼 .) B ∀𝑘 ∈ {1, 2, . . . , 𝑛} : 𝑥 (0),(2)
𝑘

− 𝑟2 ≤ 𝑥 (0),(1)
𝑘

− 𝑟1 ≤ 𝑥 (0),(2)
𝑘

+ 𝑟2 (A.11)
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Furthermore, we abbreviate the validity preconditions w.r.t. 𝑥𝑖 , where 𝑖 denotes the
dimension in which x̃ is closer to x∗, by

(𝐼 𝐼 𝐼 .) B 𝑥 (0),(1)𝑖 − 𝑟1 ≤ 𝑥𝑖 ≤ 𝑥 (0),(1)𝑖 + 𝑟1, (A.12)

(𝐼𝑉 .) B 𝑥 (0),(2)𝑖 − 𝑟2 ≤ 𝑥𝑖 ≤ 𝑥 (0),(2)𝑖 + 𝑟2. (A.13)

Thus, the following is to be proven:

∃𝑖 ∈ {1, 2, . . . , 𝑛} : ∀𝑗 ∈ {1, 2, . . . , 𝑛} \ {𝑖} : (𝐼 .) ∨ (𝐼 𝐼 .) →
𝑥 𝑗 = max

(
𝑥 (0),(2)𝑗 − 𝑟2,min

(
max

(
𝑥 (0),(1)𝑗 − 𝑟1,min

(
𝑥∗𝑗 , 𝑥

(0),(1)
𝑗 + 𝑟1

))
, 𝑥 (0),(2)𝑗 + 𝑟2

))
∧(

(𝐼 𝐼 𝐼 .) ∧ (𝐼𝑉 .) →
��𝑥𝑖 − 𝑥∗𝑖 �� <���max

(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥∗𝑖 , 𝑥

(0),(1)
𝑖 + 𝑟1

))
, 𝑥 (0),(2)𝑖 + 𝑟2

))
− 𝑥∗𝑖

���) .
(A.14)

We now perform a case distinction w.r.t. 𝑥∗𝑖 similar to the proof of theorem 3 and
subsequently show that every case leads to contradiction as in the proof of theorem 1.
Note here that as for the former, the cases 𝑥∗𝑖 > 𝑥 (0),(1)𝑖 + 𝑟1 ∧ 𝑥∗𝑖 < 𝑥 (0),(2)𝑖 − 𝑟2 as well as
𝑥∗𝑖 < 𝑥 (0),(1)𝑖 − 𝑟1 ∧ 𝑥∗𝑖 > 𝑥 (0),(2)𝑖 + 𝑟2 contradict with the precondition (𝐼 .) ∨ (𝐼 𝐼 .) and are
therefore not considered. Moreover, as for the latter, we only consider the second term of
the outer conjunction in eq. (A.14), since the first one is irrelevant in the case distinction
w.r.t. 𝑥∗𝑖 . Last, for the sake of brevity, we omit the consecutive quantifier ∃𝑖 ∈ {1, 2, . . . , 𝑛}
in the following again, but we point out that this is what is meant by the index 𝑖 .

Case 1: ((𝐼 .) ∨ (𝐼 𝐼 .)) ∧ 𝑥∗𝑖 > 𝑥 (0),(1)𝑖 + 𝑟1 ∧ 𝑥∗𝑖 > 𝑥 (0),(2)𝑖 + 𝑟2:

(𝐼 𝐼 𝐼 .) ∧ (𝐼𝑉 .) →
��𝑥𝑖 − 𝑥∗𝑖 ��

<

���max
(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥∗𝑖 , 𝑥

(0),(1)
𝑖 + 𝑟1

))
, 𝑥 (0),(2)𝑖 + 𝑟2

))
− 𝑥∗𝑖

���
=

���max
(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥 (0),(1)𝑖 + 𝑟1, 𝑥

(0),(2)
𝑖 + 𝑟2

))
− 𝑥∗𝑖

���
=

���min
(
𝑥 (0),(1)𝑖 + 𝑟1, 𝑥

(0),(2)
𝑖 + 𝑟2

)
− 𝑥∗𝑖

���
⇓ (lemma 1)

(𝐼 𝐼 𝐼 .) ∧ (𝐼𝑉 .)
→ min

(
𝑥 (0),(1)𝑖 + 𝑟1, 𝑥

(0),(2)
𝑖 + 𝑟2

)
< 𝑥𝑖 < 2𝑥∗𝑖 −min

(
𝑥 (0),(1)𝑖 + 𝑟1, 𝑥

(0),(2)
𝑖 + 𝑟2

)
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Case 2: ((𝐼 .) ∨ (𝐼 𝐼 .)) ∧ 𝑥∗𝑖 > 𝑥 (0),(1)𝑖 + 𝑟1 ∧ 𝑥 (0),(2)𝑖 − 𝑟2 ≤ 𝑥∗𝑖 ≤ 𝑥 (0),(2)𝑖 + 𝑟2:

(𝐼 𝐼 𝐼 .) ∧ (𝐼𝑉 .) →
��𝑥𝑖 − 𝑥∗𝑖 ��

<

���max
(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥∗𝑖 , 𝑥

(0),(1)
𝑖 + 𝑟1

))
, 𝑥 (0),(2)𝑖 + 𝑟2

))
− 𝑥∗𝑖

���
=

���max
(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥 (0),(1)𝑖 + 𝑟1, 𝑥

(0),(2)
𝑖 + 𝑟2

))
− 𝑥∗𝑖

���
=

���max
(
𝑥 (0),(1)𝑖 + 𝑟1, 𝑥

(0),(2)
𝑖 − 𝑟2

)
− 𝑥∗𝑖

���
=

���𝑥 (0),(1)𝑖 + 𝑟1 − 𝑥∗𝑖
���

⇓ (lemma 1)

(𝐼 𝐼 𝐼 .) ∧ (𝐼𝑉 .) → 𝑥 (0),(1)𝑖 + 𝑟1 < 𝑥𝑖 < 2𝑥∗𝑖 − 𝑥 (0),(1)𝑖 − 𝑟1  

Case 3: ((𝐼 .) ∨ (𝐼 𝐼 .)) ∧ 𝑥 (0),(1)𝑖 − 𝑟1 ≤ 𝑥∗𝑖 ≤ 𝑥 (0),(1)𝑖 + 𝑟1 ∧ 𝑥∗𝑖 > 𝑥 (0),(2)𝑖 + 𝑟2:

(𝐼 𝐼 𝐼 .) ∧ (𝐼𝑉 .) →
��𝑥𝑖 − 𝑥∗𝑖 ��

<

���max
(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥∗𝑖 , 𝑥

(0),(1)
𝑖 + 𝑟1

))
, 𝑥 (0),(2)𝑖 + 𝑟2

))
− 𝑥∗𝑖

���
=

���max
(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥∗𝑖 , 𝑥

(0),(2)
𝑖 + 𝑟2

))
− 𝑥∗𝑖

���
=

���𝑥 (0),(2)𝑖 + 𝑟2 − 𝑥∗𝑖
���

⇓ (lemma 1)

(𝐼 𝐼 𝐼 .) ∧ (𝐼𝑉 .) → 𝑥 (0),(2)𝑖 + 𝑟2 < 𝑥𝑖 < 2𝑥∗𝑖 − 𝑥 (0),(2)𝑖 − 𝑟2  

Case 4: ((𝐼 .) ∨ (𝐼 𝐼 .)) ∧ 𝑥 (0),(1)𝑖 −𝑟1 ≤ 𝑥∗𝑖 ≤ 𝑥 (0),(1)𝑖 +𝑟1 ∧ 𝑥 (0),(2)𝑖 −𝑟2 ≤ 𝑥∗𝑖 ≤ 𝑥 (0),(2)𝑖 +𝑟2:

(𝐼 𝐼 𝐼 .) ∧ (𝐼𝑉 .) →
��𝑥𝑖 − 𝑥∗𝑖 ��

<

���max
(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥∗𝑖 , 𝑥

(0),(1)
𝑖 + 𝑟1

))
, 𝑥 (0),(2)𝑖 + 𝑟2

))
− 𝑥∗𝑖

���
=

��𝑥∗𝑖 − 𝑥∗𝑖 ��
= 0  
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Case 5: (𝐼 .) ∧ 𝑥 (0),(1)𝑖 − 𝑟1 ≤ 𝑥∗𝑖 ≤ 𝑥 (0),(1)𝑖 + 𝑟1 ∧ 𝑥∗𝑖 < 𝑥 (0),(2)𝑖 − 𝑟2:

(𝐼 𝐼 𝐼 .) ∧ (𝐼𝑉 .) →
��𝑥𝑖 − 𝑥∗𝑖 ��

<

���max
(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥∗𝑖 , 𝑥

(0),(1)
𝑖 + 𝑟1

))
, 𝑥 (0),(2)𝑖 + 𝑟2

))
− 𝑥∗𝑖

���
=

���max
(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥∗𝑖 , 𝑥

(0),(2)
𝑖 + 𝑟2

))
− 𝑥∗𝑖

���
=

���𝑥 (0),(2)𝑖 − 𝑟2 − 𝑥∗𝑖
���

⇓ (lemma 1)

(𝐼 𝐼 𝐼 .) ∧ (𝐼𝑉 .) → 2𝑥∗𝑖 − 𝑥 (0),(2)𝑖 − 𝑟2 < 𝑥𝑖 < 𝑥 (0),(2)𝑖 − 𝑟2  

Case 6: (𝐼 𝐼 .) ∧ 𝑥∗𝑖 < 𝑥 (0),(1)𝑖 − 𝑟1 ∧ 𝑥 (0),(2)𝑖 − 𝑟2 ≤ 𝑥∗𝑖 ≤ 𝑥 (0),(2)𝑖 + 𝑟2:

(𝐼 𝐼 𝐼 .) ∧ (𝐼𝑉 .) →
��𝑥𝑖 − 𝑥∗𝑖 ��

<

���max
(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
max

(
𝑥 (0),(1)𝑖 − 𝑟1,min

(
𝑥∗𝑖 , 𝑥

(0),(1)
𝑖 + 𝑟1

))
, 𝑥 (0),(2)𝑖 + 𝑟2

))
− 𝑥∗𝑖

���
=

���max
(
𝑥 (0),(2)𝑖 − 𝑟2,min

(
𝑥 (0),(1)𝑖 − 𝑟1, 𝑥

(0),(2)
𝑖 + 𝑟2

))
− 𝑥∗𝑖

���
=

���max
(
𝑥 (0),(1)𝑖 − 𝑟1, 𝑥

(0),(2)
𝑖 − 𝑟2

)
− 𝑥∗𝑖

���
=

���𝑥 (0),(1)𝑖 − 𝑟1 − 𝑥∗𝑖
���

⇓ (lemma 1)

(𝐼 𝐼 𝐼 .) ∧ (𝐼𝑉 .) → 2𝑥∗𝑖 − 𝑥 (0),(1)𝑖 − 𝑟1 < 𝑥𝑖 < 𝑥 (0),(1)𝑖 − 𝑟1  

Case 7: ((𝐼 .) ∨ (𝐼 𝐼 .)) ∧ 𝑥∗𝑖 < 𝑥 (0),(1)𝑖 − 𝑟1 ∧ 𝑥∗𝑖 < 𝑥 (0),(2)𝑖 − 𝑟2:

(𝐼 𝐼 𝐼 .) ∧ (𝐼𝑉 .) →
��𝑥𝑖 − 𝑥∗𝑖 ��

<
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(
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(
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))
− 𝑥∗𝑖

���
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𝑥 (0),(2)𝑖 − 𝑟2,min
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𝑖 + 𝑟2

))
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���
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)
− 𝑥∗𝑖

���
⇓ (lemma 1)

(𝐼 𝐼 𝐼 .) ∧ (𝐼𝑉 .)
→ 2𝑥∗𝑖 −max

(
𝑥 (0),(1)𝑖 − 𝑟1, 𝑥

(0),(2)
𝑖 − 𝑟2

)
< 𝑥𝑖 < max

(
𝑥 (0),(1)𝑖 − 𝑟1, 𝑥

(0),(2)
𝑖 − 𝑟2

)
 

Q. E. D.
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B FURTHER ADVERSARIAL EXAMPLES AFTER
STANDARD TRAINING

In this section, we present further adversarial examples that were created using the
attacking threat models from section 3.6.2 on standardly trained DNNs.

CIFAR-10

Figure B.1 shows additional adversarial examples that were generated on the PreAct-
ResNet-50 being trained standardly on the CIFAR-10 dataset. The images depict an
airplane and a ship, respectively.

GTSRB

Figure B.2 shows further adversarial examples being created on the PreAct-ResNet-50
that was trained standardly on the GTSRB dataset. The images depict a “Traffic lights”
sign and “Speed limit 80” sign, respectively.
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Further Adversarial Examples after Standard Training
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Figure B.1.: Adversarial examples of CIFAR-10, created on standardly trained PreAct-ResNet-50
(Airplane, Ship). Each row shows perturbed versions of a natural image, created with one of the
adversarial attacks: random perturbations, FGSM, PGD and Boundary Attack. The original image
is shown in the left column. Remaining columns show perturbed versions with maximum ℓ∞
distance 𝜖 = 4/255, 8/255, 12/255, 16/255 (from left to right, for random perturbations, FGSM and
PGD) and after 40, 80, 120, 160 iterations of Boundary Attack (from right to left), respectively.
Classification information is provided above the corresponding image.
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Figure B.2.: Adversarial examples of GTSRB, created on standardly trained PreAct-ResNet-50
(Traffic Lights, Speed Limit 80). Each row shows perturbed versions of a natural image, created
with one of the adversarial attacks: random perturbations, FGSM, PGD and Boundary Attack.
The original image is shown in the left column. Remaining columns show perturbed versions
with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255 (from left to right, for random
perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations of Boundary Attack (from
right to left), respectively. Classification information is provided above the corresponding image.
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C FURTHER ADVERSARIAL EXAMPLES AFTER
ADVERSARIAL TRAINING

This section contains further adversarial examples that were created using the attacking
threat models from section 3.6.2 on adversarially trained DNNs.

CIFAR-10

First, figs. C.1 to C.3 show the adversarial examples that are based on the CIFAR-10
images depicted in fig. 4.3 and created on the models being trained adversarially with
threat models (A), (C) and (D), respectively. Second, figs. C.4 to C.7 show the adversarial
examples of the images illustrated in fig. B.1, but originating from adversarially trained
PreAct-ResNet-50 this time.

GTSRB

Analogously, figs. C.8 to C.10 show the adversarial examples that are based on the GTSRB
images depicted in fig. 4.6 and created on the models being trained adversarially with
threat models (A), (C) and (D), respectively. Furthermore, the adversarial examples of
the images illustrated in fig. B.2 which originate from adversarially trained networks are
shown in figs. C.11 to C.14.
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Further Adversarial Examples after Adversarial Training
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Figure C.1.: Adversarial examples of CIFAR-10, created on adversarially (FGSM, maximum ℓ∞
distance 𝜖∗ = 8/255) trained PreAct-ResNet-50 (Deer, Horse). Each row shows perturbed versions
of a natural image, created with one of the adversarial attacks: random perturbations, FGSM, PGD
and Boundary Attack. The original image is shown in the left column. Remaining columns show
perturbed versions with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255 (from left to right,
for random perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations of Boundary Attack
(from right to left), respectively. Classification information is provided above the corresponding
image.
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Figure C.2.: Adversarial examples of CIFAR-10, created on adversarially (FGSM, maximum ℓ∞
distance 𝜖∗ = 16/255) trained PreAct-ResNet-50 (Deer, Horse). Each row shows perturbed versions
of a natural image, created with one of the adversarial attacks: random perturbations, FGSM, PGD
and Boundary Attack. The original image is shown in the left column. Remaining columns show
perturbed versions with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255 (from left to right,
for random perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations of Boundary Attack
(from right to left), respectively. Classification information is provided above the corresponding
image.
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Further Adversarial Examples after Adversarial Training
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(b) Horse

Figure C.3.: Adversarial examples of CIFAR-10, created on adversarially (SSS, maximum ℓ∞
distance 𝜖∗ = 16/255) trained PreAct-ResNet-50 (Deer, Horse). Each row shows perturbed
versions of a natural image, created with one of the adversarial attacks: random perturbations,
FGSM, PGD and Boundary Attack. The original image is shown in the left column. Remaining
columns show perturbed versions with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255
(from left to right, for random perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations
of Boundary Attack (from right to left), respectively. Classification information is provided above
the corresponding image.
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Figure C.4.: Adversarial examples of CIFAR-10, created on adversarially (FGSM, maximum ℓ∞
distance 𝜖∗ = 8/255) trained PreAct-ResNet-50 (Airplane, Ship). Each row shows perturbed
versions of a natural image, created with one of the adversarial attacks: random perturbations,
FGSM, PGD and Boundary Attack. The original image is shown in the left column. Remaining
columns show perturbed versions with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255
(from left to right, for random perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations
of Boundary Attack (from right to left), respectively. Classification information is provided above
the corresponding image.
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Further Adversarial Examples after Adversarial Training
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Figure C.5.: Adversarial examples of CIFAR-10, created on adversarially (SSS, maximum ℓ∞
distance 𝜖∗ = 8/255) trained PreAct-ResNet-50 (Airplane, Ship). Each row shows perturbed
versions of a natural image, created with one of the adversarial attacks: random perturbations,
FGSM, PGD and Boundary Attack. The original image is shown in the left column. Remaining
columns show perturbed versions with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255
(from left to right, for random perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations
of Boundary Attack (from right to left), respectively. Classification information is provided above
the corresponding image.

114



Ra
nd

om
Pe

rtu
rb

at
io

ns

Original:
bird (2)
83.34%

n = 4/255:
bird (2)
89.20%

n = 8/255:
airplane (0)

86.99%

n = 12/255:
bird (2)
53.08%

n = 16/255:
bird (2)
58.73%

FG
SM

Original:
bird (2)
83.34%

n = 4/255:
bird (2)
97.44%

n = 8/255:
bird (2)
94.77%

n = 12/255:
airplane (0)

79.85%

n = 16/255:
airplane (0)

93.33%

PG
D

Original:
bird (2)
83.34%

n = 4/255:
bird (2)
98.38%

n = 8/255:
bird (2)
98.89%

n = 12/255:
bird (2)
98.75%

n = 16/255:
bird (2)
98.80%

Bo
un

da
ry

A
tta

ck

Original:
bird (2)
83.34%

160 iterations:
airplane (0)

51.32%

120 iterations:
bird (2)
77.30%

80 iterations:
airplane (0)

87.99%

40 iterations:
airplane (0)

94.25%

(a) Airplane

Ra
nd

om
Pe

rtu
rb

at
io

ns

Original:
airplane (0)

66.95%

n = 4/255:
airplane (0)

77.84%

n = 8/255:
ship (8)
44.18%

n = 12/255:
ship (8)
81.68%

n = 16/255:
airplane (0)

59.90%

FG
SM

Original:
airplane (0)

66.95%

n = 4/255:
airplane (0)

99.95%

n = 8/255:
airplane (0)

99.44%

n = 12/255:
ship (8)
98.90%

n = 16/255:
ship (8)
99.99%

PG
D

Original:
airplane (0)

66.95%

n = 4/255:
airplane (0)

100.00%

n = 8/255:
airplane (0)

100.00%

n = 12/255:
airplane (0)

100.00%

n = 16/255:
airplane (0)

100.00%

Bo
un

da
ry

A
tta

ck

Original:
airplane (0)

66.95%

160 iterations:
ship (8)
42.17%

120 iterations:
automobile (1)

75.60%

80 iterations:
ship (8)
93.57%

40 iterations:
automobile (1)

58.73%

(b) Ship

Figure C.6.: Adversarial examples of CIFAR-10, created on adversarially (FGSM, maximum ℓ∞
distance 𝜖∗ = 16/255) trained PreAct-ResNet-50 (Airplane, Ship). Each row shows perturbed
versions of a natural image, created with one of the adversarial attacks: random perturbations,
FGSM, PGD and Boundary Attack. The original image is shown in the left column. Remaining
columns show perturbed versions with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255
(from left to right, for random perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations
of Boundary Attack (from right to left), respectively. Classification information is provided above
the corresponding image.
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Further Adversarial Examples after Adversarial Training
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Figure C.7.: Adversarial examples of CIFAR-10, created on adversarially (SSS, maximum ℓ∞
distance 𝜖∗ = 16/255) trained PreAct-ResNet-50 (Airplane, Ship). Each row shows perturbed
versions of a natural image, created with one of the adversarial attacks: random perturbations,
FGSM, PGD and Boundary Attack. The original image is shown in the left column. Remaining
columns show perturbed versions with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255
(from left to right, for random perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations
of Boundary Attack (from right to left), respectively. Classification information is provided above
the corresponding image.
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Figure C.8.: Adversarial examples of GTSRB, created on adversarially (FGSM, maximum ℓ∞
distance 𝜖∗ = 8/255) trained PreAct-ResNet-50 (Straight ahead, Pedestrians). Each row shows
perturbed versions of a natural image, created with one of the adversarial attacks: random pertur-
bations, FGSM, PGD and Boundary Attack. The original image is shown in the left column. Remain-
ing columns show perturbed versions with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255
(from left to right, for random perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations
of Boundary Attack (from right to left), respectively. Classification information is provided above
the corresponding image.
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Further Adversarial Examples after Adversarial Training
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Figure C.9.: Adversarial examples of GTSRB, created on adversarially (FGSM, maximum ℓ∞
distance 𝜖∗ = 16/255) trained PreAct-ResNet-50 (Straight ahead, Pedestrians). Each row shows
perturbed versions of a natural image, created with one of the adversarial attacks: random pertur-
bations, FGSM, PGD and Boundary Attack. The original image is shown in the left column. Remain-
ing columns show perturbed versions with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255
(from left to right, for random perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations
of Boundary Attack (from right to left), respectively. Classification information is provided above
the corresponding image.
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Figure C.10.:Adversarial examples of GTSRB, created on adversarially (SSS, maximum ℓ∞ distance
𝜖∗ = 16/255) trained PreAct-ResNet-50 (Straight ahead, Pedestrians). Each row shows perturbed
versions of a natural image, created with one of the adversarial attacks: random perturbations,
FGSM, PGD and Boundary Attack. The original image is shown in the left column. Remaining
columns show perturbed versions with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255
(from left to right, for random perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations
of Boundary Attack (from right to left), respectively. Classification information is provided above
the corresponding image.
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Further Adversarial Examples after Adversarial Training
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Figure C.11.: Adversarial examples of GTSRB, created on adversarially (FGSM, maximum ℓ∞
distance 𝜖∗ = 8/255) trained PreAct-ResNet-50 (Traffic Lights, Speed Limit 80). Each row shows
perturbed versions of a natural image, created with one of the adversarial attacks: random pertur-
bations, FGSM, PGD and Boundary Attack. The original image is shown in the left column. Remain-
ing columns show perturbed versions with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255
(from left to right, for random perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations
of Boundary Attack (from right to left), respectively. Classification information is provided above
the corresponding image.
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Figure C.12.:Adversarial examples of GTSRB, created on adversarially (SSS, maximum ℓ∞ distance
𝜖∗ = 8/255) trained PreAct-ResNet-50 (Traffic Lights, Speed Limit 80). Each row shows perturbed
versions of a natural image, created with one of the adversarial attacks: random perturbations,
FGSM, PGD and Boundary Attack. The original image is shown in the left column. Remaining
columns show perturbed versions with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255
(from left to right, for random perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations
of Boundary Attack (from right to left), respectively. Classification information is provided above
the corresponding image.
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Further Adversarial Examples after Adversarial Training
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Figure C.13.: Adversarial examples of GTSRB, created on adversarially (FGSM, maximum ℓ∞
distance 𝜖∗ = 16/255) trained PreAct-ResNet-50 (Traffic Lights, Speed Limit 80). Each row shows
perturbed versions of a natural image, created with one of the adversarial attacks: random pertur-
bations, FGSM, PGD and Boundary Attack. The original image is shown in the left column. Remain-
ing columns show perturbed versions with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255
(from left to right, for random perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations
of Boundary Attack (from right to left), respectively. Classification information is provided above
the corresponding image.
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Figure C.14.:Adversarial examples of GTSRB, created on adversarially (SSS, maximum ℓ∞ distance
𝜖∗ = 16/255) trained PreAct-ResNet-50 (Traffic Lights, Speed Limit 80). Each row shows perturbed
versions of a natural image, created with one of the adversarial attacks: random perturbations,
FGSM, PGD and Boundary Attack. The original image is shown in the left column. Remaining
columns show perturbed versions with maximum ℓ∞ distance 𝜖 = 4/255, 8/255, 12/255, 16/255
(from left to right, for random perturbations, FGSM and PGD) and after 40, 80, 120, 160 iterations
of Boundary Attack (from right to left), respectively. Classification information is provided above
the corresponding image.
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D FURTHER LOSS LANDSCAPES

In the following, we also visualize the loss landscapes of standardly and adversarially
trained networks w.r.t. the additional images of appendix B.

CIFAR-10

First of all, fig. D.1 shows the loss landscapes w.r.t. the image illustrated in fig. B.1a. Next,
the loss landscapes w.r.t. the second additional CIFAR-10 image, depicted in fig. B.1b, are
shown in fig. D.2.

GTSRB

In an analogous way, figs. D.3 and D.4 show the loss landscapes w.r.t. the images illustrated
in figs. B.2a and B.2b.
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Further Loss Landscapes
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(b) Adversarial training: FGSM, 𝜖∗ = 8/255
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(c) Adversarial training: SSS, 𝜖∗ = 8/255
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(d) Adversarial training: FGSM, 𝜖∗ = 16/255
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(e) Adversarial training: SSS, 𝜖∗ = 16/255

Figure D.1.: Loss landscapes from PreAct-ResNet-50, trained standardly (top) and adversarially
using FGSM (left) and SSS (right) at maximum ℓ∞ distances 𝜖∗ = 8/255 (middle) and 𝜖∗ = 16/255
(bottom) on CIFAR-10 (Airplane). In all cases, the natural image from the validation dataset (see
fig. B.1a) marks the origin. Moreover, the left axis points in the adversarial direction and the
right one in a random one. Both are scaled in multiples of 1/255 according to the∞-norm. Last,
correctly classified perturbations are colored blue, wrongly ones red.
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(b) Adversarial training: FGSM, 𝜖∗ = 8/255
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(c) Adversarial training: SSS, 𝜖∗ = 8/255
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(d) Adversarial training: FGSM, 𝜖∗ = 16/255
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(e) Adversarial training: SSS, 𝜖∗ = 16/255

Figure D.2.: Loss landscapes from PreAct-ResNet-50, trained standardly (top) and adversarially
using FGSM (left) and SSS (right) at maximum ℓ∞ distances 𝜖∗ = 8/255 (middle) and 𝜖∗ = 16/255
(bottom) on CIFAR-10 (Ship). In all cases, the natural image from the validation dataset (see
fig. B.1b) marks the origin. Moreover, the left axis points in the adversarial direction and the
right one in a random one. Both are scaled in multiples of 1/255 according to the∞-norm. Last,
correctly classified perturbations are colored blue, wrongly ones red.
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(b) Adversarial training: FGSM, 𝜖∗ = 8/255
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(c) Adversarial training: SSS, 𝜖∗ = 8/255
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(d) Adversarial training: FGSM, 𝜖∗ = 16/255
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(e) Adversarial training: SSS, 𝜖∗ = 16/255

Figure D.3.: Loss landscapes from PreAct-ResNet-50, trained standardly (top) and adversarially
using FGSM (left) and SSS (right) at maximum ℓ∞ distances 𝜖∗ = 8/255 (middle) and 𝜖∗ = 16/255
(bottom) on GTSRB (Traffic Lights). In all cases, the natural image from the validation dataset
(see fig. B.2a) marks the origin. Moreover, the left axis points in the adversarial direction and the
right one in a random one. Both are scaled in multiples of 1/255 according to the∞-norm. Last,
correctly classified perturbations are colored blue, wrongly ones red.
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(a) Standard training
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(b) Adversarial training: FGSM, 𝜖∗ = 8/255
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(c) Adversarial training: SSS, 𝜖∗ = 8/255
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(d) Adversarial training: FGSM, 𝜖∗ = 16/255
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(e) Adversarial training: SSS, 𝜖∗ = 16/255

Figure D.4.: Loss landscapes from PreAct-ResNet-50, trained standardly (top) and adversarially
using FGSM (left) and SSS (right) at maximum ℓ∞ distances 𝜖∗ = 8/255 (middle) and 𝜖∗ = 16/255
(bottom) on GTSRB (Speed limit 80). In all cases, the natural image from the validation dataset
(see fig. B.2b) marks the origin. Moreover, the left axis points in the adversarial direction and the
right one in a random one. Both are scaled in multiples of 1/255 according to the∞-norm. Last,
correctly classified perturbations are colored blue, wrongly ones red.
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