

Investigating the social acceptance of Urban Air Mobility

Albert End*, Maria Stolz, Jana Schadow, Anne Papenfuß & Hinnerk Eißfeldt

* albert.end@dlr.de
Institute of Aerospace Medicine
Aviation and Space Psychology
German Aerospace Center (DLR)

 Survey method Computer-assisted telephone interviews (CATI)

- Implementation: infas GmbH (Bonn, Germany)
- Number of cases: n = 832
- Average duration per interview: 18 minutes
- Sample: Drawn using a random digital dial design with landline and mobile phones (representative for the German population by weighting)

CEAS Aeronautical Journal (2020) 11:665-676 https://doi.org/10.1007/s13272-020-00447-w ORIGINAL PAPER The acceptance of civil drones in Germany H. Eißfeldt¹ · V. Vogelpohl¹ · M. Stolz² · A. Papenfuß² · M. Biella² · J. Belz³ · D. Kügler²

General attitude towards civil drones

- rather negative
- undecided / answer refused

Attitude differed between subgroups, e.g. according to:

- Gender
- Age
- Knowledge about drones
- Experience (having already flown a drone oneself)
- Interest in modern technology

Envisioned own usage of civil drones

Areas of concern about civil drones

displayed = "rather concerned"

Areas of concern about civil drones

But:

- Noise concerns tended to occur more frequently among those who had already heard a drone $(\chi^2[1] = 3.29, p = .07)$
- Chi-square automatic interaction detection (CHAID): Noise concerns explained the general attitude towards civil drones best among all seven assessed concerns $(\chi^2[2] = 38.6, p < .001)$

Representative survey

Approach

- Telephone survey on the acceptance of civil drones in Germany (planned n = 1000)
- External market/social research institute → computer-assisted telephone interviews (CATI)
- Focus on noise related aspects, air taxis, and potential changes in opinion (vs. 2018)

Preparatory workshop

- Held in 12/2020 with experts in the field of drone acceptance
- Participants from DLR & several German research institutes and city authorities

Supplementary analyses

• Of the data from 2018 → conference papers (End et al., 2021, ICBEN; Eißfeldt & End, 2021, Inter-Noise)

Current status

· First draft of the questionnaire has been created

Participation & sustainability

Approach (Eißfeldt, 2020, Sustainability)

- Developing a smartphone app with three features:
 - Graphical representation of UAM flight track data
 - (Objective) UAM noise measurements
 - (Subjective) UAM noise assessments
- External IT service provider for programming
- Testing the app at DLR's National Experimental Test Center for UAS in Cochstedt

Benefit

 Opportunity for adapting flight routes/profiles such that UAM noise can be distributed as fair as possible among residents

Current status

· First draft of app and its functions has been created

Comfort & interaction

Approach

- · Determining the perspective of passengers experiencing a virtual flight with an air taxi
- Focus on examining wellbeing and interaction depending on presence/absence of pilot on board, different amounts of available information, and flight route rescheduling after take off
- Airport shuttle use case (Hamburg city center → Hamburg airport)

Technical setup

 Combination of UAM cabin simulator, mixed reality visual system, and 6DoF motion platform

Current status

- Study has been conceptualized (incl. experimental design & flight scenarios)
- · Virtual simulation environment is currently being set up

Perception by passers-by

Approach

- Determining the perspective of passers-by experiencing UAVs
 virtually flying above the city of Braunschweig (incl. an air taxi landing)
- Exp. factors: flight levels, visual density, and presence of UAM sound (for a similar approach at NLR, see Aalmoes & Sieben, 2021, DICUAM)

Technical setup

 Integration of UAVs into 360° video of an urban scene from Braunschweig presented to participants in VR from the pedestrians' point of view

Current status

- Data collection has been completed
- Data are currently being analyzed
- → For details and results, see talk by Maria Stolz

Accompanying research

Approach

- Carrying out accompanying research with respect to acceptance / human factors at the request of the project partners
- Evaluation of specific concepts developed in the current project by citizens in the context of workshops and online surveys

Completed work

Workshops on cabin design were assisted / held in 12/2020
 (user-centered design approach) (see upcoming conference paper, Stolz et al., 2021, DASC)

Current status

• Online survey with respect to cabin designs is currently being conducted

Thank you for your attention!

