Fully Automatic Multi-LiDAR Calibration For Self-Driving Cars

Jörg P. Schäfer, Philipp Schmälzle, Franz Andert
DLR
Outline

• Introduction

• Methodology

• Experimental Results

• Future Work
Motivation

• An autonomously driving car drive as good as its perception is
 • Localization
 • Object Detection
Motivation

• An autonomously driving car drives as good as its perception
 • Localization
 • Object Detection
• Inconsistencies of calibration yields inaccurate results
 • Optimization process for localization often even doesn’t converge
 • Object Detection yields inaccurate positions
• Our case: LiDAR sensor position and orientation measured with total station
 • Orientation inaccurate
 • Manual errors on position
• **Goal**: avoid these errors

Automatic Calibration – Related Work

- Automatically calibrate sensors based on consistency of perceived data!
- Z. Pusztai, I. Eichhardt, and L. Hajder propose a method based on detecting boxes from different sensors (cameras and LiDAR sensors)
 - No calibration relative to the platform
 - Specific environment necessary
- P. Rieger, N. Studnicka, and M. Pfennigbauer use Boresight Calibration to align a LiDAR sensor relative to a IMU/GNSS
 - Close to our approach, but requires high quality / high density sensors
Outline

• Introduction

• Methodology

• Experimental Results

• Future Work
Sensor Maps

• Low-density sensors provide less information (our case: 4 layers)
• Increase information using stochastic approach
• Points O_i of a sensor measurement represent surface points
• Gaussian Distribution around each O_i to estimate surface points nearby
 • Yields random Boolean variables $X_{\varsigma,i}$ at each position ς
• Aggregate $Y_{\varsigma} = \bigvee_i X_{\varsigma,i}$
Sensor Map Weights

• Informative content required
• Integrate probabilities along line of sight from each position ζ, respectively

$$P[Y_\zeta] = P \left[\bigvee_i X_{\zeta,i} \right]$$

$$W_\zeta = \int_\zeta^\infty P[Y_{\zeta^*}] d\zeta^*$$
Global Variance Map

- Drive around and aggregate all sensor maps – Map-to-Map Matching
- Compute weighted mean and variance for each position
 - Rasterization with 2cm resolution
 - Left: Mean; Center: Variance; Right: Weight
Implementation Overview

- Simple implementation using vruin/CorONA scientific computation library
 - Easy computation on fields (e.g., computation of variance)
 - „Gradients are on the house“
Outline

• Introduction

• Methodology

• Experimental Results

• Future Work
Testing Area

- Different testing areas
 - Edemissen testing area
 - DLR Braunschweig parking lot
 - Berlin roads
- Experiments regarding:
 - Different obstacles
 - Different layout
 - Different trajectories
Visual Results

- Inconsistencies before and after calibration
- Left: on sensor maps
- Right: on point clouds
Results of Different Scenarios

- Examples for different Scenarios:
 - Accurate (image 1 and 3) vs. inaccurate (image 2 and 4) initial configuration
 - Boxes (image 1 and 2) vs. L-Boxes (image 3 and 4)
- Highly robust regarding angles; Fine-tuning regarding position required
Outline

• Introduction

• Methodology

• Experimental Results

• Future Work
Future Work

- Artifacts: Dynamic Objects
 - Remove them via Semantic Segmentation Neural Nets

- Experiments on Camera based POIs
 - Maximize Log-Likelihood
 - Localization
Global Variance Map – Towards Localization

Satellite image from https://maps.google.de
Thank you for your attention!

Questions?