

MH-FA-56-FB03_v1.3

DLR-IB-FA-BS-2020-2

DELiS Dokumentation

Programm Dokumentation

Sebastian Freund, Andreas Schuster,
Falk Heinecke, Raffael Bogenfeld,
Christian Willberg, Martin Rädel, Tanja
Führer

MH-FA-56-FB03_v1.3

Institut für Faserverbundleichtbau und Adaptronik

DLR-IB-FA-BS-2020-2

DELiS Dokumentation

Zugänglichkeit:

Stufe 1 Allgemein zugänglich

Braunschweig, August, 2020 Der Bericht umfasst: 351 Seiten

Abteilungsleiter: Autoren:

Tobias Wille Sebastian Freund, Andreas Schuster,

Falk Heinecke, Raffael Bogenfeld,

Christian Willberg, Martin Rädel, Tanja

Führer

delis
Release 21.2.6

Sebastian Freund, Andreas Schuster, Falk Heinecke,
Raffael Bogenfeld, Christian Willberg, Martin Rädel,

Tanja Führer

21.08.2020

CONTENTS

1 Introduction 1
1.1 Who uses this documentation? . 1
1.2 Programming issues . 1
1.3 The reStructuredText Cheat Sheet: Syntax Reminders . 4

2 User Manual 7
2.1 Introduction to DELiS . 7
2.2 Run DELiS . 9
2.3 DELiS CPACS Input and Output . 9
2.4 Aircraft Model . 20
2.5 Wing . 25
2.6 Rotor Blade . 47
2.7 Fuselage . 52
2.8 CPACS Generator . 63
2.9 GMSH based mesh generation in DELiS . 75

3 Developer Tools and Processes 79
3.1 Eclipse as IDE - Integrated Development Environment . 79
3.2 SVN (Subversion) . 82
3.3 Versioning . 85
3.4 Unit Testing . 85
3.5 Release Process . 95

4 Programmer Manual 97
4.1 Program Architecture . 97
4.2 Process Flow . 100
4.3 Data Structure - The Model Package . 109
4.4 Exception Handling . 116
4.5 Graph Data Structure . 117
4.6 Caching TIGL Geometry . 128
4.7 Calling Analysis . 129
4.8 Python Package Generation (F2PY) . 129

5 Hypersizer Interface Manual 131
5.1 Preliminary Considerations . 131
5.2 Process Description . 131
5.3 Creation of Groups/Components and Assemblies in DELiS . 141
5.4 Convergence Criteria . 141
5.5 Reference . 141
5.6 Hypersizer Feature Request . 141

i

5.7 Hypersizer Interface Errors . 142
5.8 Hypersizer Failure criteria . 147

6 Reference Guide 149
6.1 Main . 149
6.2 Loads . 149
6.3 Dynamic Aircraft Model (DAM) Points . 151
6.4 Mass Handling . 152
6.5 Coordinate Transformations . 159
6.6 Global Varaiables . 165
6.7 Profiles . 165
6.8 Utilities . 167
6.9 Links . 170
6.10 Control Modules . 171
6.11 Model . 171
6.12 Service . 172
6.13 Environment . 172
6.14 HyperSizer . 172
6.15 References . 173

7 Beam Models 175
7.1 Theoretical Background . 175
7.2 Program Architecture . 177
7.3 BoxBeam Interface . 190

8 Buckling 195
8.1 Buckling Interface . 195
8.2 Buckling Implementations . 198
8.3 References . 210

9 Damage Tolerance 211
9.1 Overview . 211
9.2 Introduction . 212
9.3 Methodology . 216
9.4 Damage tolerance analysis chain . 228
9.5 Test cases . 232
9.6 Current limitations . 240

10 Damage Tolerance of Composites 241
10.1 Overview . 241
10.2 Damage Tolerance Assessment . 242
10.3 Impact Analysis . 244

11 Surrogate Models 249
11.1 Design of Experiments . 250
11.2 Output Analysis . 252
11.3 The Surrogate Model . 253
11.4 Outlook . 258
11.5 References . 259

12 Validation Verification Testing 261
12.1 Profile Calculations . 261
12.2 BoxBeam . 268
12.3 Buckling . 282
12.4 Verification of sizing tools . 289

ii

12.5 SBOT . 294
12.6 References . 315

13 Installation 317
13.1 For Users . 317
13.2 For Developers . 318
13.3 Python Packages . 319
13.4 Eclipse . 320
13.5 Graphviz . 325
13.6 Cluster Deployment . 325
13.7 RCE . 325
13.8 Build the documentation . 327

14 About 329
14.1 References . 329
14.2 Authors . 329
14.3 Documentation Issues . 329
14.4 TODOs . 329

15 Indices and tables 331

Bibliography 341

Python Module Index 345

iii

iv

CHAPTER

ONE

INTRODUCTION

1.1 Who uses this documentation?

This documentation is intended mainly for programmers but also users of this Programm.

1.2 Programming issues

Most programming is done using Python. Python is a highlevel object-oriented scripting language. For a HowTo
seting up python and the programming environment eclipse please have a look at theInstallation chapter of this
documentation.

1.2.1 Python References

The best way to start with is an arbitrary tutorial. Next you should try to get grips of object oriented programming.
Then you can start having a look at the program structure. Here is a list of some literature that gives a huge reference:

• Python documentation

• free book from galileo computing

• some interesting functions can be found at the springer link in “Python Scripting for Computational Science”

• for general python questions stackover�ow can be recommended - just awesome

1.2.2 Python Programming Guidelines

This guideline may be changed and extended demand - feel free to add things

• The most important thing is to code coherently to the present code, preserving a homogeneous coding style. So
�rst please have a look at the code and try to copy the style used.

• Exceptions: in case of errors use exceptions with meaningful text(e.g. provide and xPath, supposed values,
information of the object that produced the error). There are some custom exceptions in delis.service.globals
that may be used and extended. Exceptions are caught in the modules within the “main”-package to return �les
needed within the DELiS program run. You should use exceptions at every point in the code where a fatal state
is reached. This may be an empty list, missing keywords or attributes that are not set. This way the user gets at
least a hint what could be wrong in case of unexcpected behaviour. (seeException Handling)

• no print statements - use those:

– log.debug: for all information indication the verbose program stat - please use this very often. Those
messages are written to MYGLOBAL.debugLogFileName

1

delis, Release 21.2.6

– log.info: for information of the program state that is important to the usual program run in develop-
ment mode(MYGLOBAL.development)

– log.warning: for occuring problems that can be solved

– log.error: for problems that can not be handled. Usually exceptions should be thrown in this case. But
this can be used if errors won't be �xed in the medium term future

The log variable is imported in every module for a general output handling. There are three log handler leading
to:

– sys.stdout

– MYGLOBAL.log�lename

– MYGLOBAL.debugLogFileName

• use long and meaningful variable and function names - auto completion will help you writing those

• naming conventions: Names are written in different upper/lower case styles depending on their type

– variables: usemixedCaseWords, starting with initial lowercase character

– class attributes: same as variables

– function/methods (starting with “def”): same as variables

– classes: useCapitalizedWords

– modules (all *.py �les): use alwayslowercasewords

– packages (all folders containing *.py �les): uselowercasewords, underscores may be included

– global variables: There is only one global variable namedMYGLOBALS. Within this class new global
variables may be introduced but should be avoided as possible. Use class attributes instead (self.*)

• �le paths and directories: Since in a linux environment, windows paths containing “\\” seperators can not be
normalized correctly to linux paths, all �le paths and directories must therefore be de�ned with “/” seperators
at �rst. Afterwards, paths can be normalized to windows paths if DELiS is running in a Windows environment.
As alternative, os.path.join(*paths) (part of the “os” standard librariy) for platform independent path generation
can be used and is highly recommended.

• private functions: if a function is only called within the class itself, it should be private (encapsulation). The
name of those functions start with “_”

• use several private functions than one big function

• comments are nice but often won't be updated: use more private functions with good self explainatory names
instead

• properties: information of a class that needs to be calculated previously can be made available via prop-
erties. This approach hides de�ned getter and setter and makes the information as attribute availabe.
It also can be used when class attributes needs a previous check before they can be set. (e.g. see
delis.model.sheetprops.SheetProperties.thickness)

• do not change MyGlobal class for local customization purposes: use the settings module instead. It is located in
src/settings.py or at least a template for this exists in src/settings_template.py

• use restructuredtext for documentation. Each variable (module, class, method, attribute) can be documented by
using a tripe of “”” in the following line of the variable. You can have a look at the quick introduction, the rst
cheatSheet of Thomas Cokelaer , seeThe reStructuredText Cheat Sheet: Syntax Remindersand most importantly
have check out theShow Source link that is in this documentation on the right panel. In python code, all
modules, classes, methods and class attributes should be documented using docstrings. Sphinx is capable to
interpret docstrings and produce a nicely formatted result like this:

2 Chapter 1. Introduction

delis, Release 21.2.6

variableToBeDocumented = None
"""Documentation in reStructuredText"""

For documentation of methods, their parameters and returns, �eld lists can be used to document method proper-
ties like parameters, raising exceptions, return values and types:

def beep(sec):
"""text

:param sec: time of beeping in seconds
:return: noise
"""

produces:

beep (sec)
text

Parameters sec – time of beeping in seconds

Returns noise

Besides the usual Sphinx referencing methods using:ref: within python documentation you can use the follow-
ing. Be aware that the referenced object is within the same namespace:

See Also

MyGlobals

• documentation for nearly every python package, module, class, function and attribute is available via python
console:

>>> import time
>>> help(time)
Help on built-in function listdir in module nt:
....

• explicit is better than implicit. For example explicitly given arguments and return values are easier to understand
than using class attributes

• classattributes shall be initialized in the __init__ method so one can get a quick overview of available attributes

• always do imports at the top of a module except it would create looping imports. In this case it should be noted
as comment at the top of the module and imported below

• The use of *args and **kwargs : See this

They are widely used in any constructor to set given class attributes. Generally it is used to process an arbitrary
set of parameters that you don't want to specify. It shouldn't be used in methods where the parameterset is clear
(in this case you can use keywords with default arguments instead).

• Use comprehensions as elegant way of creating lists, sets and dictionaries

For example, assume we want to create a list of squares, like:

>>> squares = []
>>> for x in range(10):
... squares.append(x ** 2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

1.2. Programming issues 3

delis, Release 21.2.6

We can obtain the same result with:

>>> squares = [x ** 2 for x in range(10)]

This also works with dictionaries and sets:

>>> {i: i ** 2 for i in range(10)} # dictionary
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

>>> {i ** 2 for i in range(10)} # set
set([0, 1, 4, 81, 64, 9, 16, 49, 25, 36])

• There is also a Python Coding Style Guideline at http://www.python.org/dev/peps/pep-0008/ and a style guide-
line by Google . Here we follow them loosely.

1.3 The reStructuredText Cheat Sheet: Syntax Reminders

Info See <http://docutils.sf.net/rst.html> for introductory docs.

Author David Goodger <goodger@python.org>

Date $Date: 2006-01-22 20:13:55 -0500 (Sun, 22 Jan 2006) $

Revision $Revision: 4321 $

Description This is a “docinfo block”, or bibliographic �eld list

1.3.1 Section Structure

Section titles are underlined or overlined & underlined.

1.3.2 Body Elements

Grid table:

example grid table
still headline 65
values 65

65

Simple tables:

4 Chapter 1. Introduction

delis, Release 21.2.6

List Type Examples
Bullet list

• items begin with “-“, “+”, or “*”

Enumerated list
1. items use any variation of “1.”, “A)”, and “(i)”
2. also auto-enumerated

De�nition list
Term is �ush-left [optional classi�er] De�nition is in-

dented, no blank line between

Field list
�eld name �eld body

Option list
-o at least 2 spaces

between option &
description

Explicit Markup Examples (visible in Show Source)
Footnote
Citation
Hyperlink Target
Anonymous Target
Directive (“::”)
Substitution Def
Comment
Empty Comment (“..” on a line by itself, with blank lines before & after, used to separate indentation contexts)

1.3.3 Inline Markup

emphasis; strong emphasis; interpreted text; interpreted text with role; inline literal text ; standalone
hyperlink, http://docutils.sourceforge.net; named reference, reStructuredText; anonymous reference; footnote refer-
ence,1; citation reference,[CIT2002]_; |substitution|; inline internal target.

1.3.4 Directive Quick Reference

See <http://docutils.sf.net/docs/ref/rst/directives.html> for full info.

Directive Name Description (Docutils version added to, in [brackets])
attention Speci�c admonition; also “caution”, “danger”, “error”, “hint”, “important”, “note”, “tip”, “warning”
admonition Generic titled admonition:.. admonition:: By The Way
image .. image:: picture.png ; many options possible
�gure Like “image”, but with optional caption and legend
topic .. topic:: Title ; like a mini section
sidebar .. sidebar:: Title ; like a mini parallel document
parsed-literal A literal block with parsed inline markup

continues on next page

1 Manually numbered or [#] auto-numbered (even [#labelled]) or [*] auto-symbol

1.3. The reStructuredText Cheat Sheet: Syntax Reminders 5

delis, Release 21.2.6

Table 1.1 – continued from previous page
Directive Name Description (Docutils version added to, in [brackets])
rubric .. rubric:: Informal Heading
epigraph Block quote with class=”epigraph”
highlights Block quote with class=”highlights”
pull-quote Block quote with class=”pull-quote”
compound Compound paragraphs [0.3.6]
container Generic block-level container element [0.3.10]
table Create a titled table [0.3.1]
list-table Create a table from a uniform two-level bullet list [0.3.8]
csv-table Create a table from CSV data (requires Python 2.3+) [0.3.4]
contents Generate a table of contents
sectnum Automatically number sections, subsections, etc.
header, footer Create document decorations [0.3.8]
target-notes Create an explicit footnote for each external target
meta HTML-speci�c metadata
include Read an external reST �le as if it were inline
raw Non-reST data passed untouched to the Writer
replace Replacement text for substitution de�nitions
unicode Unicode character code conversion for substitution defs
date Generates today's date; for substitution defs
class Set a “class” attribute on the next element
role Create a custom interpreted text role [0.3.2]
default-role Set the default interpreted text role [0.3.10]
title Set the metadata document title [0.3.10]

math

a = (x + y)2

= x2 + 2xy + y2

inline math
p

x2 � 1 is something like this.

1.3.5 Interpreted Text Role Quick Reference

See <http://docutils.sf.net/docs/ref/rst/roles.html> for full info.

Role Name Description
emphasis Equivalent toemphasis
literal Equivalent toliteral but processes backslash escapes
PEP Reference to a numbered Python Enhancement Proposal
RFC Reference to a numbered Internet Request For Comments
raw For non-reST data; cannot be used directly (see docs) [0.3.6]
strong Equivalent tostrong
sub Subscript
sup Superscript
title Title reference (book, etc.); standard default role

6 Chapter 1. Introduction

CHAPTER

TWO

USER MANUAL

2.1 Introduction to DELiS

This document describes the structure model generator DELiS from a user's point of view. It explains the main features
of DELiS and how one can run it from RCE or the command line. DELiS is developed at the Institute of Composite
Structures and Adaptive Systems. Mainly these steps can be performed:

• Read aircraft/rotor blade con�guration from CPACS

– Positions of structure elements

– Materials/Stacking sequences

– Structural pro�les

– Tool speci�c settings

• Create geometry(keypoints, lines, splines, areas) based on the con�guration read

• Generate fem input �les (Ansys and/or Nastran) employing materials, cross sections, geometry, elements,
boundary conditions and loads

• Perform sizing using SBot or Hypersizer

• Read sizing results(thickness, mass)

• Write sizing results to CPACS

The core application of DELiS is creating �nite element models of aircrafts or blades of wind energy plants that are
de�ned within a CPACS data set. These models are input by a sizing software as can be seen on the following image.
The sizer iteratively alters the �nite element properties based on the loads within an element and de�ned design criteria
such as strength and local or global buckling. The converged result is read to the aircraft object model and ultimately
the CPACS dataset is updated with the new thicknesses, stacking sequences and masses of the primary structure.

Besides these core capabilities, DELiS also features many other applications. As can be seen on the following image,
there are several input and output interfaces as well as interfaces to analysis methods such as:

Structure Generator Creates a structural de�nition based on a CPACS outer geometry. This currently
works only for fuselages.

Buckling Methods Methods are implemented to assess the �rst buckling- and also postbuckling per-
formance of a panel. There are closed-form methods as well as numerical methods using
BEOS(inhouse tool) or ABAQUS.

Metamodel Toolbox Kriging metamodels are implemented to arbitrary input. There are regular universal
kriging models but also hierarchical kriging models. Also design of experiments (DOE) methods
are available.

Excel_Export A method to output data to MS excel and create charts automatically is provided.

7

delis, Release 21.2.6

Figure 2.1 : Overall DELiS Process Flowchart

Result_Plotter There are several result plotters available that can create 2D and 3D plots with various
data and texts.

Finite Element Model Writer There are several writer to create �nite element models. Though all work
slightly different: The Ansys writer creates geometry (keypoints, lines, areas) and meshes those. The
Nastran writer produces nodes and elements directly which is faster but there is no way of producing
a �ner mesh using mesh seeds. The Abaqus writer will work comparably to the nastran writer, but
is not fully functional yet.

BoxBeam CrosssectionBoxbeam is a inhouse tool to calculate metal and composite crosssection prop-
erties. There is a veri�ed wing interface but the fuselage interface is still under construction.

SBot Sizing Interface and inhouse tool for structure sizing based on fully-stressed-design.

Hypersizer Interface Interface to the commercial sizing software Hypersizer.

Figure 2.2 : DELiS interfaces and analysis methods

In chapterAircraft Model the overall aircraft features are explained such as material de�nitions, stackings, pro�les

8 Chapter 2. User Manual

delis, Release 21.2.6

geometries and loads used. ChapterWing describes needed input values and created outputs for sizing a wing with
ParamamSBot. Next the model characteristics for the blade creation of wind turbines is described. Lastly the inputs
and outputs of aFuselagemodeling and sizing is explained.

2.2 Run DELiS

2.2.1 Run DELiS from Commandline

2.2.2 DELiS RCE versions

DELiS can be launched via RCE for modeling and dimensioning an aircraft respectively. At least every two months
a new version of the model generator is published in RCE. The numbering of versions is as follows. The �rst number
refers to the version's year and the second number, separated by an underscore, refers to the corresponding month
of the respective version. The last number is the revision identifying possible updates within one release. Besides
the revisions every second month, there is also a version with the suf�x *_nightly. The *_nightly version is the most
recent program state which is actually under development.

These versions are exemplary the ones published onfa-termsrv1 :

• delis_nightly

• delis_13_5_1

• delis_13_5_0

• delis_13_3_0

2.3 DELiS CPACS Input and Output

Figure 2.3 : DELiS input output overview

2.3.1 Overview CPACS Input

The CPACS input dataset has to be a valid cpacs �le. UIDs that are referenced in any used subtree are mandatory.

There are some input subtrees being used by DELiS that are presented the following sections:

• /cpacs/toolspeci�c/delis

• /cpacs/vehicles/aircraft/model[uID]

• /cpacs/vehicles/materials

• /cpacs/vehicles/materials/composites (optional)

2.2. Run DELiS 9

delis, Release 21.2.6

• /cpacs/vehicles/pro�les/structuralPro�les

• /cpacs/vehicles/structuralElements

DELiS Toolspeci�c Preferences

/cpacs/toolspeci�c/delis

Within the toolspeci�c block in/cpacs/toolspeci�c/delisuser de�ned settings can be set which are evaluated at tool
runtime.

Note: All optional toolspeci�c settings overwrite default values. These default values are chosen after several
structural investigations. So please adjust these settings with great caution!

General Toolspeci�c ItemsPlease also refer to the cpacs scheme as documentation.

• tool standard tool description and version information

• aircraftModelUID ID of the aircraft model to be analyzed. Refers to/cpacs/vehicles/aircraft/
model[uID]

• lumpMassBreakdownOutput Flag if the massbreakdown should be written completely or if the mass sum of
each type of structural element of one component should be written. E.g. write all sparCells or write only
the sum of the sparCells of the wing.

Defaults to false

• coupleFuselageBTFlag if coupling with the BT fuselage should be performed. In this case, DELiS creates
only wings and the ansys components for coupling with Trafuma. If False, also a DELiS fuselage will be
created, if given and requested and coupled with the DELiS wings.

Defaults to false

• useAeroCoef�cientAndNodalInertialLoads Flag if the loadcase AeroCoef�cientAndNodalInertialLoad-
sLoadCase should be used before other loadcases

Defaults to False

• createdComponentsOptional list of ComponentIDs of the component(wing or fuselage) that should be mod-
eled.

If not set all components are modeled.

• wings List of wings to set speci�c model and sizing settings. If not speci�ed, default values are used.

A detailed description is in the sectionWing Settingsbelow.

• fuselages

List of fuselages to set speci�c model and sizing settings. If not speci�ed, default values are used.

A detailed description is in the sectionFuselage Settingsbelow.

• sizingConvergence

– thicknessThreshold Convergence threshold to the maximum thickness change.

Defaults to 0.0005 in SBOT

– maxIterations Defaults to 13

– massThresholdDefaults to 0.005

10 Chapter 2. User Manual

delis, Release 21.2.6

Figure 2.4 : Exemplary toolspeci�c options that can be used in a CPACS input �le

2.3. DELiS CPACS Input and Output 11

delis, Release 21.2.6

Wing Settings

delis.model.wing. WingSettings ()
This class de�nes settings that are applied to a wing model.

Requires The wing settings in cpacs must provide the wingUID, where these settings should be
applied.

modelSettings

Variables

• numberOfElementsInEtaDirection – Number of Elements in span(eta) direction.
This also de�nes the number of real and imaginary ribs in delis.

Defaults to 40

• numberOfElementsInXsiDirection – Number of Elements in chord(xsi) direction.
This also de�nes the number of all types of spars (le,te,real,imaginary) in delis.

Defaults to 10

• skinBaysInSizingRegionEta – Number of bays in span(eta) direction that de�nes
the size of the optimization region. A bay is the region of adjacent spars and ribs.

Defaults to 1

• skinBaysInSizingRegionXsi – Number of bays in chord(xsi) direction that de�nes
the size of the optimization region. A bay is the region of adjacent spars and ribs.

Defaults to 1

• createOnlyWingBox – Flag if just the wing box(region from front spar to rear spar)
should be modeled. Otherwise a model from leading to trailing edge is created.

Defaults to True

• createControlSurfaces – Flag if the control surfaces should be modeled explicitly
instead of using mass points.

Defaults to False

• stringerModeling – Determines how stringers are modeled. These strings can be
given: [smeared, simpleBeamSection, complexBeamSection]

Defaults to smeared

• capModeling – Determines how caps are modeled. These strings can be given: [simple-
BeamSection, complexBeamSection]

Defaults to simpleBeamSection

• createStructureTopology – Flag if wing structure should be created automatically
via aircraft generator class without an input dataset. If the �ag is set to false, the inner
structure needs to be read from CPACS or any other input dataset.

Attention: At the moment, only ribs will be created if True.

• doStaticCondensation – Flag if wing component should be also condensed on dy-
namic aircraft model points. (please add more documentation here)

Defaults to False

• auxiliaryRibStiffenerSettings – settings to de�ne stiffener elements assigned
to wing ribs for use within a FE model. This dictionary comprises a stiffener pro�le identi�er
de�ned in a CPACS dataset (parameter `stiffenerPro�le'), the aligning type of the stiffener

12 Chapter 2. User Manual

delis, Release 21.2.6

(parameter `stiffenerType' with valid values longitudinal, vertical, grid) and the `verticalS-
tiffenerPitch' de�ning the number of parallel stiffening elements in vertical direction. The
latter also in�uences the necessary mesh discretization of wing component in z-Direction.

• splitWingStructure – Flag if wing structure(spars and skins) de�ned in cpacs should
be split into smaller regions bordered by spars and ribs. If False, the initial cpacs de�nition
of sparSegments and the default skin de�nition is used instead of a �ne granular structure.
This has effects on the sizing regions, which are coarse or �ne.

Defaults to True

• meshSettings – Mesh discretization settings used for wing components. At the moment
only the variables elemSizeIn[X|Y|Z] are supported to de�ne the minimum element edge
length used in `Gmsh' meshing tool.

sizingSettings

Variables

• frontSparSizingSettings – Sizing settings for the front spar. For a description of
the attributes, please refer to SheetSizingSettings

• sparSizingSettings – Sizing settings for all spars except the front spar. For a de-
scription of the attributes, please refer to SheetSizingSettings

• ribSizingSettings – Sizing settings for ribs. For a description of the attributes, please
refer to SheetSizingSettings

• lowerSkinSizingSettings – Sizing settings for lower skins. For a description of the
attributes, please refer to SheetSizingSettings

• upperSkinSizingSettings – Sizing settings for upper skins. For a description of the
attributes, please refer to SheetSizingSettings

• capSizingSettings – Sizing settings for caps. For a description of the attributes,
please refer to Pro�leSizingSettings. StiffenerTypes defaults to {`CAP'}.

weightSettings

Variables weightCalibrationFactors – Factors multiplied to the resulting sizing mass for
weight calibration. Possible variables: [skinWeightFactor, sparWeightFactor, ribWeightFactor]

Fuselage Settings

delis.model.fuselage. FuselageSettings (**kwargs)
Since the fuselage structures can be de�ned coarse in the cpacs, the structure elements that represent shells and
beams can be split in optimization regions of various size. A split by the user de�ned in the cpacs dataset will
stay intact.

Additionally the type of beam modeling and the settings for the sizing can be changed.

A bay is the skin area enclosed by two adjacent stringers and two adjacent frames.

Requires The fuselage settings in cpacs must provide the fuselageUID, where these settings should
be applied.

Model Section

Variables

• skinBaysInOptimizationRegionEta – Number of bays in eta(longitudial) direc-
tion that belong to one optimization region.

2.3. DELiS CPACS Input and Output 13

delis, Release 21.2.6

Defaults to 1

• skinBaysInOptimizationRegionXsi – Number of bays in xsi(circumferencial) di-
rection that belong to one optimization region.

Defaults to 4

• framesInOptimizationRegion – Number of frames that are within one optimization
region.

Defaults to 4

• optimizationRegionsInOneFrame – Number of optimization regions within one
frame. This is only active if framesInOptimizationRegion == 1

Defaults to 6

• stringersInOptimizationRegion – Number of stringer lines that are within
one optimization region. This is only active if stringers are sized explicitly mod-
eled and not smeared within the containing fuselageSkin. Stringers are smeared if
Stringer.isLineBasedElement=True

Defaults to 4

• stringerLinesInOptimizationRegion – Number of optimization regions within
one stringer. A stringer line is de�ned by the distance of adjacent frames. This is only active
if stringersInOptimizationRegion == 1 and if stringers are sized explicitly and not smeared
within the containing fuselageSkin.

Defaults to 10

• crossbeamsInOptimizationRegion – Number of crossbeams that are within one
optimization region.

Defaults to 4

• crossbeamstrutsInOptimizationRegion – Number of crossbeamstruts that are
within one optimization region.

Defaults to 4

• longfloorbeamsInOptimizationRegion – Number of long�oorbeams that are
within one optimization region.

Defaults to 2

• longfloorbeamLinesInOptimizationRegion – Number of optimization regions
within one long�oorbeam. A long�oorbeam line is de�ned by the distance of adjacent
crossbeams. This is only active if long�oorbeamsInOptimizationRegion == 1

Defaults to 20

• beamModeling – Determines how stringers are modeled.[simpleBeamSection, com-
plexBeamSection]

Defaults to complexBeamSection

• createInternalPressureLoadCase – If True, a loadcase is appended to the load-
cases list with fuselage internal pressure only

Defaults to False

• startFrameNumber – None or int. De�nes the number of the �rst frame of a barrel.
If given, a barrel will be created instead of the full fuselage model. Frames are numbered

14 Chapter 2. User Manual

delis, Release 21.2.6

increasingly from the front, starting with 1. If startFrameNumber and endFrameNumber are
both None, a full fuselage will be created.

Defaults to None

• endFrameNumber – None or int. De�nes the number of the last frame of the barrel. If
given, a barrel will be created instead of the full fuselage model. Frames are numbered
increasingly from the front, starting with 1. If startFrameNumber and endFrameNumber are
both None, a full fuselage will be created.

Defaults to None

• doStaticCondensation – Flag if fuselage should be also condensed on dynamic air-
craft model points. (please add more documentation here)

Defaults to False

• meshSettings – Mesh discretization settings used for wing components. At the moment
only the variables elemSizeIn[X|Y|Z] are supported to de�ne the minimum element edge
length used in `Gmsh' meshing tool.

Sizing Section

Variables

• frameSizingSettings – Sizing settings for all spars except the front spar. For a de-
scription of the attributes, please refer to Pro�leSizingSettings

• stringerSizingSettings – Sizing settings for ribs. For a description of the at-
tributes, please refer to Pro�leSizingSettings

• skinSizingSettings – Sizing settings for lower skins. For a description of the at-
tributes, please refer to SheetSizingSettings

• crossbeamSizingSettings – Sizing settings for upper skins. For a description of the
attributes, please refer to Pro�leSizingSettings

• crossbeamstrutSizingSettings – Sizing settings for caps. For a description of
the attributes, please refer to Pro�leSizingSettings

• longfloorbeamSizingSettings – Sizing settings for the front spar. For a descrip-
tion of the attributes, please refer to Pro�leSizingSettings

• bulkheadBeamSizingSettings – Sizing settings for the beams of the bulkheads. For
a description of the attributes, please refer to Pro�leSizingSettings

• bulkheadShellSizingSettings – Sizing settings for the shells of the bulkheads.
For a description of the attributes, please refer to SheetSizingSettings

weightSettings

Variables weightCalibrationFactors – Factors multiplied to the resulting sizing mass for
weight calibration. Possible variables: [fuselageWeightFactor]

2.3. DELiS CPACS Input and Output 15

delis, Release 21.2.6

Sheet Sizing Settings

delis.model.sizingsettings. SheetSizingSettings (stiffenerTypes=None, designCri-
teria=None, minimalSkinThick-
ness=0.001, initialThicknessDist-
Func=None)

The SheetSizingSettings de�ne the possible preferences for the sizing of shell-based elements.

Variables

• stiffenerTypes – De�nes the stiffening of a sheet. At the moment, only one type at
the same time is applicable. These values are valid: {“unstiffened”, “sandwich”, “T”, “Z”,
“I”, “J”, “C”, “L”, “HAT”}.

Defaults to “T”

• designCriteria – De�nes the stiffening of a sheet. Several types are applicable. An
illustration is given in the CPACS documentation. These values are valid: {“stressBased-
Failure”, “localBuckling”, “globalBuckling”}.

Defaults to {“stressBasedFailure”, “localBuckling”, “globalBuckling”}

• minimalSkinThickness – De�nes the minimal thickness of each sheet of the stiffener
and skin.

Defaults to 0.001

• initialThicknessDistFunc – function de�ning the initial thickness distribution
over the relative wing station or fuselage length. It is read from the cpacs path /intialTh-
icknessDistribution

Defaults to None (CPACS thicknesses are used)

Pro�le Sizing Settings

delis.model.sizingsettings. ProfileSizingSettings (stiffenerTypes=None, designCri-
teria=None, minimalSkinThick-
ness=0.001, initialThicknessDist-
Func=None)

The Pro�leSizingSettings de�ne the possible preferences for the sizing of beam-based elements.

Variables

• stiffenerTypes – De�nes the stiffening of a sheet. At the moment, only one type at
the same time is applicable. An illustration is given in the CPACS documentation. These
values are valid: {“T”, “Z”, “I”, “J”, “C”, “L”, “HAT”,”CAP”,”TUBE”,”BOX”,”WEB”}.

Defaults to “T”

• designCriteria – De�nes the stiffening of a sheet. Several types are applicable. These
values are valid: {“stressBasedFailure”, “localBuckling”, “globalBuckling”}.

Defaults to {“stressBasedFailure”, “localBuckling”, “globalBuckling”}

• minimalSkinThickness – De�nes the minimal thickness of each sheet of the stiffener.

Defaults to 0.001

• initialThicknessDistFunc – function de�ning the initial thickness distribution
over the relative wing station or fuselage length. It is read from the cpacs path /intialTh-
icknessDistribution

16 Chapter 2. User Manual

delis, Release 21.2.6

Defaults to None (CPACS thicknesses are used)

Aircraftmodel

/cpacs/vehicles/aircraft/model

This is the location where all aircraft speci�c de�nitions but also analysis results are stored within the CPACS. Thus
all or de�ned (if explicitly requested in the delis toolspeci�cs) wings and fuselages are read. For speci�c information
about wing and fuselage modeling please refer toWingandFuselage. Additionally the analysis node is read. Important
items are the load de�nitions(Load Cases) and the massbreakdown

Materials

/cpacs/vehicles/materials

Each referenced material has to be given in this subtree. There is the distinction between isotropic(steel, aluminium),
transversal isotropic(CFRP layer) and orthotrop(CFRP stacking) material behavior. Different strength criteria are used
while sizing.

Composites

/cpacs/vehicles/materials/composites

Each composite referenced within the structure de�nition has to be given here.

2.3. DELiS CPACS Input and Output 17

delis, Release 21.2.6

CPACS Pro�les

/cpacs/vehicles/pro�les/structuralPro�les

StructuralPro�les are the geometric description of a structure pro�le. All structural pro�les referenced within the
structure de�nition have to be given.

/cpacs/vehicles/structuralElements/pro�leBasedStructuralElements

StructuralElements add mechanical properties to the geometry de�ned in structuralPro�les. All referenced structural
elements have to be given.

Sheet Elements

/cpacs/vehicles/structuralElements/sheetBasedStructuralElements

Besides Pro�leBasedStructuralElements as described inCPACS Pro�lesthere is also a section to describe the me-
chanical properties of sheet-like structural elements such as fuselage skins and �oorpanels. They contain the material
de�nition of the skin segment (Material, thickness, (lay-up)). This way structural elements with equal properties can
reference the same de�nition via sheetBasedStructuralElements.

This only applies to fuselage sheet based elements!

18 Chapter 2. User Manual

delis, Release 21.2.6

Geometry Calculation

Geometry Calculation Using TIGL

When using TIGL the model generator employs the TIGL functionstiglFuselageGetPointAngleTranslated ,
tiglWingGetUpperPoint and tiglWingGetLowerPoint are used. Please refer to the TIGL manual for
more information.

Geometry Calculation Using Splining

Coupling

Empennage Fuselage Coupling

The empennage is coupled to the fuselage with the via attachment pins, which are de�ned in the CPACS dataset.-
/cpacs/vehicles/aircraft/model/wings/wing/componentSegments/componentSegment/wingFuselageAttachments/wingFuselageAttachment/attachmentPins.

Thereby the attachment pins are de�ned in global coordinates. In DELiS the attachment pins are attached to the wing
component. Here a search for the nearest rib/spar intersection is made. The node closest to the attachment pin is then
selected and is coupled to the attachment pin via a constraint equations. The attachment pins itself are modelled as
additional mass points with a negligible mass. An example is shown below.

Figure 2.5 : Example for empennage attachment pin coupling

2.3. DELiS CPACS Input and Output 19

delis, Release 21.2.6

2.3.2 DELiS CPACS Output

Thicknesses and Stackings

Mass

Mechanical Properties of Pro�les

CPCAS Header

The path /cpacs/header is also updated with DELiS run and modi�cation information.

2.3.3 DELiS Return Directory Content

Besides the updated CPACS, DELiS copies some �les to the return directory:

• FEM model input �le

• run.log Log�le of the regular run stdout

• debug.log Log�le of the debug output. This usually contains additional information than the run.log

• error.log Log�le of the error message

2.4 Aircraft Model

2.4.1 Component Numbering

In delis, each component has it's speci�c number stored in Fuselage/Wing.componentNumber. A component may be
a fuselage, wing but also a control surface. This unique number is set during the �rst steps of reading the cpacs dataset
on aircraftModel level. If the �agcreateSymmetricalWing is True the_reflected components are created
otherwise

As example given this cpacs dataset (the numbers refer to their order in the xml �le):

• wing1 (symmetry=false) (e.g. vtp)

• wing2 (symmetry=true) (e.g. htp)

• wing3 (symmetry=true) (e.g. main wing)

– control surface1

– control surface2

• fuselage

The delis number scheme utilizes the order given in cpacs and always starts with the wings followed by fuselages. If
the �ag createSymmetricalWing is True, the resulting componentNumber will be this:

1. wing1

2. wing2

3. wing2_re�ected

4. wing3

5. control surface1

20 Chapter 2. User Manual

delis, Release 21.2.6

6. control surface2

7. wing3_re�ected

8. control surface1_re�ected

9. control surface2_re�ected

10. fuselage

If the �ag createSymmetricalWing is False, the resulting componentNumber will be this:

1. wing1

2. wing2

3. wing3

4. control surface1

5. control surface2

6. fuselage

2.4.2 Geometry and FE Numbering

Generally wing numbers have the size of 6 digits and fuselage numbers 6 to 8 digits. Wings may have several com-
ponents like main wing, vtp, htp and �aps. Thus wing numbering holds a component number which can be seen in
wing Geometry Numbering. Since there is just one fuselage a component number is not needed as seen in fuselage
Geometry Numbering. The respective type numbers can be found in the following listing:

Type Numbers

MyGlobals. _numbering = [(�misc�, 0), (�upperShell�, 1), (�lowerShell�, 2), (�rib�, 3), (�spar�, 4), (�wingLine�, 5), (�wingMass�, 5), (�damPoint�, 6), (�trackAttachmentPoint�, 6), (�gearStrut�, 7), (�trackStrut�, 7), (�upperShellStiffener�, 8), (�lowerShellStiffener�, 9), (�fuselageSkin�, 25), (�frame�, 26), (�stringer�, 27), (�paxcrossbeam�, 28), (�cargocrossbeam�, 29), (�paxcrossbeamstrut�, 30), (�cargocrossbeamstrut�, 31), (�paxLongFloorBeam�, 32), (�cargoLongFloorBeam�, 33), (�floorpanel�, 34), (�frontbulkhead�, 35), (�frontbulkheadArea�, 36), (�frontWingboxBulkhead�, 37), (�frontWingboxBulkheadArea�, 38), (�rearWingboxBulkhead�, 39), (�rearWingboxBulkheadArea�, 40), (�mass�, 41), (�keelbeam�, 42), (�fuselagereinforcement�, 43), (�vtpUpperBulkhead1�, 44), (�vtpUpperBulkhead1Area�, 45), (�vtpUpperBulkhead2�, 46), (�vtpUpperBulkhead2Area�, 47), (�vtpUpperBulkhead3�, 48), (�vtpUpperBulkhead3Area�, 49), (�frameline�, 50), (�xstrut�, 51), (�cutout�, 52), (�stringerorientation�, 53), (�crossbeamorientation�, 54), (�paxstrutorientation�, 55), (�cargostrutorientation�, 56), (�paxLongFloorBeamorientation�, 57), (�cargoLongFloorBeamorientation�, 58), (�floorpanel2�, 59), (�floorpanel3�, 60), (�floorpanel4�, 61), (�htptrimmingattachment�, 62), (�htptrimmingattachmentArea�, 63), (�pressurefloor�, 64), (�pressurefloorArea�, 65), (�rearbulkhead�, 66), (�rearbulkheadArea�, 67)]
This is a listing of all available types that are used for geometry generation. It
translates the name of a type of structural elements to it's type number. usually
it is addressed using the dictionary MyGlobal.numbering. Mainly it is called from
delis.service.utilities.[getWingKeypointID,getKeypointID,splitWingKeypointID,splitKeypointID]

Note: The numbering shall never be inverted since it may happen that there are several names for one type

Dynamic aircraft model points are numbered the following wheredamnumberis the number of the dam point:

1001000 +damnumber

2.4.3 DELiS Pro�les

DELiS models pro�les as beams for Ansys and Nastran. After they are read from the cpacs (seeCPACS Pro�les) are
used within delis.model.mechanicalproperties.Beam:

delis.model.mechanicalproperties. Beam(*args, **kwargs)
This class is an extension of the Line class. It extends the lines geometric description by pro�le information and
a keypoint de�ning the orientation of the pro�le.

Mechanical Properties

The mechanical properties of the beam are dependent on 4 objects:

• Starting point (self.p1)

• End point (self.p2)

2.4. Aircraft Model 21

delis, Release 21.2.6

• Orientation point (self.orientationKeyopint)

• Cross section description which is an object of type model.pro�le.Pro�le (self.pro�le). This is usually read
from /cpacs/vehicles/pro�les/structuralPro�les and /cpacs/vehicles/structuralElements.

The �rst three objects de�ne the geometry and element coordinate system. Whereas the last de�nes the cross
section properties like stiffness and mass.

Modeling in Ansys

Within Ansys pro�les are modeled using the above mechanical properties. The coordinate system is de�ned by
the direction from delis.beam.p1 to Beam.p2 for the x-direction. The z-direction is given by the vector Beam.p1
to Beam.orientationKeypoint that is adjusted in Ansys to a vector normal to x-direction. The y-direction is
de�ned by the cross product of x and z direction. Please have a look at the ansys manual for Beam188 and
Beam189.

Note: In CPACS the pro�le cross section is de�ned on an xy plane. In Ansys they are de�ned on an yz plane
and the x-direction is the beam longitudinal direction. The CPACS x-direction is the Ansys y-direction and the
CPACS y-direction is the Ansys z-direction. Following the global coordinate system and the Ansys style beam
coordinate system is used.

Thus the orientation of the beam coordinate system varies for every Beam depending on the structure type it
belongs to, the extrusion direction and the orientation keypoint. The extrusion direction of a beam coincides
with the local x-direction. The orientation keypoint de�nes the z-direction orthogonally to the x-axis. The y-
axis can be calculated by the right-hand rule. Following the extrusion direction and the orientation keypoints
are de�ned depending on the beam type:

Frames The extrusion direction is in clockwise direction looked from the front. The orientation
keypoint is the frame center keypoint. This way the beam z-axis is directed to the fuselage
center and the y-axis roughly in negative global x-direction.

Fuselage Stringer The extrusion direction is oriented from the front to the back. The orientation
keypoint is a keypoint orthogonal to the skin towards the fuselage center. For the creation of
the correct orthogonal point for each stringer line, three keypoints of a frame attached to the
stringer are taken into account. Then the center of a circle with all three points on it's radius is
calculated. This way the beam z-axis is roughly directed to the fuselage center and the y-axis is
directed tangential to the skin in clockwise direction, looking from the front.

CrossBeamsLines of crossbeams are extruded from lower to higher y-values. Crossbeams shall
have a z-direction that is coincident with the global z-direction. Thus all lines of one crossbeam
have the same orientation keypoint with a higher z-coordinate then the crossbeam itself. This
way the beam y-coordinate is parallel to the global negative x-axis

Crossbeamstruts Lines of struts are extruded from lower to higher z-values. The beam y-axis is
directed to the positive global x-axis. The beam z-axis is directed to the global positive y-axis.

LongFloorBeams Lines of longFloorBeams are extruded from lower to higher x-values. LongFloor-
Beams shall have a z-direction that is coincident with the global z-direction. Thus the orientation
keypoint must be at a higher z-value than the longFloorBeams keypoints. Here all lines refer to
the same LongFloorBeamPosition which has the attribute “orientationKeypoint”.

ForwardPressureBulkhead Lines of vertical stiffeners of the forward pressure bulkhead are ex-
truded from negative to positive z-coordinates. The orientation keypoint is located normal to the
bulkhead surface having a greater x-coordinate. The horizontal stiffeners of the forward pres-
sure bulkhead are extruded from negative to positive y-coordinates. The orientation keypoint is
located normal to the bulkhead surface having a smaller x-coordinate.

22 Chapter 2. User Manual

delis, Release 21.2.6

FuselageReinforcementLines of FuselageReinforcements always start at it's frame/stringer cross-
ing and end at their target point. The orientation keypoint is de�ned based on the main direction
of the line vector:

• If the vector directs mainly in x-direction, the orientation keypoint is above the line compa-
rably to LongFloorBeams

• If the vector directs mainly in y-direction, the orientation keypoint is behind (positive x-
direction) the line comparably to Crossbeams

• If the vector directs mainly in z-direction, the orientation keypoint is in global y-direction
comparably to Crossbeamstruts

HtpTrimmingAttachment The HtpTrimmingAttachment has two beams supporting the attachment
plate which is directly connected with the forward HTP wing attachment point. Though the
orientation of the two beams depend on the exact geometry of the surrounding structure, it is
assumed that the orientation is mainly along the global y-direction. The orientation keypoint is
normal to the yz plane and has a greater x-coordinate. The beams are extruded from the larger
z-coordinate to the smaller one.

2.4.4 DELiS SheetProperties

2.4.5 Load Cases

Currently delis covers 4 variations of loads that may be de�ned in the CPACS. The �rst cpacs-entry of the following
listing that applies will be used as load source:

• For �ne CFD-loads, the following CPACS branch has to be available

cpacs/vehicles/aircraft/model/analyses/loadAnalysis/loadCases/
flightLoadCase/externalAmifFile

It uses the amif �le format that maps cfd-surface loads to nodes of the fem model. In this case the inertia loads
(due to primary and secondary structure masses as well as pax, cargo and fuel masses) are read from the CPACS.
In addition the engine thrust is applied at the certain thrust level to the loadcase. Lastly the acceleration de�ned
in the cpacs is introduced to all loadcases.

• If nodal loads are given, they are read from this path:

/cpacs/vehicles/aircraft/model/analyses/loadAnalysis/loadCases/
flightLoadCase/nodalLoads

Component loads compose all loads (inertia-, areo- and engine loads) to one balanced load set. Hence, the
acceleration of these loadcases are set to zero. The componentLoads are provided for each spatial direction (6
DOF). All speci�ed forces and moments are given on the so calledloadReferenceAxis , which is described
via dynamic aircraft model points in each component (wing, fuselage). These point-wise forces and moments
are, respectively, mapped to the closest rib as line load on the upper and lower surface for wings and for fuselages
they are connected to the next frame via RBE3 elements.

• In the case that areoLoads are given in the cpacs, this path is read:

/cpacs/vehicles/aircraft/model/analyses/loadAnalysis/loadCases/
flightLoadCase/aeroLoads

With this, the inertia- and engine loads are read as with amif load �les

• The last case is a combination of aero loads from the areoLoads-element and all other loads from the nodal loads
breakdown. With this, the aero load input is more �exible. On the other hand, a trimmed load state must be
ensured by methods previous to delis in the work�ow. The �ag

2.4. Aircraft Model 23

delis, Release 21.2.6

Figure 2.6 : Exemplary CPACS loadcase structure with component loads

/cpacs/toolspecific/delis/useAeroCoefficientAndNodalInertialLoads

must be set to true and nodalLoads and aeroLoads must be present for each loadcase.

Work�ow for processing loads

1. Read loadcase de�nition from Cpacs which is done on wing/fuselage level in the methodwing/fuselage.
readLoadsCpacs . So each wing/fuselage will have a wing.loadcases attribute containing the loadcase def-
inition and each discrete load entry. When using aerodynamic loads from cpacs, just the half wing loads are
read. For areo+inertia loads also only half wing loads are used. For amif load cases the amif File is read out
and rewritten into a apdl script containing all forces on the respective nodes. Additionally, the forces for engine
thrust, tanks and the accelerations are added. If acut loads envelopeis de�ned at this xPath:

`` /cpacs/vehicles/aircraft/model/analyses/loadAnalysis/loadCases/loadsEnvelope/
,! cutLoadsEnvelope ``

It will be read and only the critical loadcases of the wings and fuselages modeled are considered in
further calculations.

2. After the whole aircraft model is read an geometry is created the loads are accumulated on aircraft level, copying
all loads form the wings and fuselages and merging them to one loadcase inmodel.aircraftModel.
loadCases .

3. For SBot/Ansys calculations the �leS_BOT01_inp.mac is created byservice.miscwriter.
paramamsbot.ParamamSBot listing the de�nition, constraints and design criteria used of each loadcase.

4. For SBot/Ansys calculations the �les containing each load are written to the folderCSM_GEO. Which results in
one �le for each loadcase. These �les are nameddelis_loadcase_<LC_number>.mac .

24 Chapter 2. User Manual

delis, Release 21.2.6

For fuselage calculations additional cabin pressures are applied to each loadcase. Additionally for fuselage calculations
another loadcase is created representing fatigue due to internal pressure.

Theory

Here is an overview about the load cases that should be used for fuselage dimensioning where� p is 63000Pa.

Nr Loadcase name Pres-
sure

Material
Limit

Safety fac-
tor

Source

1 Max. internal Pres-
sure

� p �
1:33

Strength 1.5 Niu: Airframe Stress Analysis and Siz-
ing; p. 46

2 Manoevre +2.5g � p Strength 1.5 Niu: Airframe Stress Analysis and Siz-
ing; p. 36

3 Manoevre -1.0g � p Strength 1.5 Niu: Airframe Stress Analysis and Siz-
ing; p. 36

4 Vertical gust � p Strength 1.5 Niu: Airframe Stress Analysis and Siz-
ing; p. 37

5 Lateral gust � p Strength 1.5 Niu: Airframe Stress Analysis and Siz-
ing; p. 37

6 Lateral gust(alt. di-
rection)

� p Strength 1.5 Niu: Airframe Stress Analysis and Siz-
ing; p. 37

2.5 Wing

2.5.1 Process Flow

The process �ow of the wing generation with DELiS within a CPACS-based project is composed of 4 sub-steps work-
ing on different data formats of the aircraft (see next �gure). The starting point is the parametric aircraft description
within the CPACS format. These information are read by the CPACS2Paramam interface. It creates each required
input �le for paramam as well as all additional inputs for an SBot run that are not written by Paramam such as loads,
loadcase descriptions and optimization settings. Following Paramam is started creating an Ansys macro �le and an
additional script is written containing information about optimization regions and optimization metadata that is needed
for stability criteria. SBot is creates and solve the �nite element model via Ansys call. Utilizing the results reserve
factors and new thicknesses are calculated. In a iterative process Ansys is used again to obtain new results due to the
new thicknesses. After convergence or the maximum number of iterations is reached, result �les are written. Those
are handed back to the CPACS2Paramam interface, writing the result to the CPACS.

2.5.2 CPACS Input

Outer Shape

Generally the outer shape of the wing is de�ned by airfoils. An airfoil is de�ned by a 3-dimensional pointlist with all
three coordinates mandatory. For typical pro�les, one of the coordinate vectors contains only “0” entries. All point
coordinates are transferred to the global coordinate system. The points have to be ordered in a mathematical positive
sense. Normalized coordinates are not required. First and last point may, but need not to, be identical. Hence, it
is possible to include “open” pro�les. However, the trailing edge position of the upper and lower point need to be
identical. No crooked trailing edges are possible.

Example 1: For a conventional wing, the airfoil coordinates are de�ned in x and z with all the y-coordinates set to “0”.
The points have to be ordered from the trailing edge along the lower side to the leading edge and then along the upper
side back to the trailing edge.

2.5. Wing 25

delis, Release 21.2.6

Figure 2.7 : General process �ow

Figure 2.8 : Data �ow of the cpacs2paramam interface

26 Chapter 2. User Manual

delis, Release 21.2.6

Figure 2.9 : Data �ow of paramam

Figure 2.10 : Data �ow and looping in SBot

2.5. Wing 27

	MH-FA-56-FB03
	delis

