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CHAPTER

ONE

INTRODUCTION

1.1 Who uses this documentation?

This documentation is intended mainly for programmers but also users of this Programm.

1.2 Programming issues

Most programming is done using Python. Python is a highlevel object-oriented scripting language. For a HowTo
seting up python and the programming environment eclipse please have a look at the Installation chapter of this
documentation.

1.2.1 Python References

The best way to start with is an arbitrary tutorial. Next you should try to get grips of object oriented programming.
Then you can start having a look at the program structure. Here is a list of some literature that gives a huge reference:

• Python documentation

• free book from galileo computing

• some interesting functions can be found at the springer link in “Python Scripting for Computational Science”

• for general python questions stackoverflow can be recommended - just awesome

1.2.2 Python Programming Guidelines

This guideline may be changed and extended demand - feel free to add things

• The most important thing is to code coherently to the present code, preserving a homogeneous coding style. So
first please have a look at the code and try to copy the style used.

• Exceptions: in case of errors use exceptions with meaningful text(e.g. provide and xPath, supposed values,
information of the object that produced the error). There are some custom exceptions in delis.service.globals
that may be used and extended. Exceptions are caught in the modules within the “main”-package to return files
needed within the DELiS program run. You should use exceptions at every point in the code where a fatal state
is reached. This may be an empty list, missing keywords or attributes that are not set. This way the user gets at
least a hint what could be wrong in case of unexcpected behaviour. (see Exception Handling)

• no print statements - use those:

– log.debug: for all information indication the verbose program stat - please use this very often. Those
messages are written to MYGLOBAL.debugLogFileName

1

http://www.python.org/
http://docs.python.org/release/2.6.6/
http://openbook.galileocomputing.de/python/
http://stackoverflow.com/
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– log.info: for information of the program state that is important to the usual program run in develop-
ment mode(MYGLOBAL.development)

– log.warning: for occuring problems that can be solved

– log.error: for problems that can not be handled. Usually exceptions should be thrown in this case. But
this can be used if errors won’t be fixed in the medium term future

The log variable is imported in every module for a general output handling. There are three log handler leading
to:

– sys.stdout

– MYGLOBAL.logfilename

– MYGLOBAL.debugLogFileName

• use long and meaningful variable and function names - auto completion will help you writing those

• naming conventions: Names are written in different upper/lower case styles depending on their type

– variables: use mixedCaseWords, starting with initial lowercase character

– class attributes: same as variables

– function/methods (starting with “def”): same as variables

– classes: use CapitalizedWords

– modules (all *.py files): use always lowercasewords

– packages (all folders containing *.py files): use lowercasewords, underscores may be included

– global variables: There is only one global variable named MYGLOBALS. Within this class new global
variables may be introduced but should be avoided as possible. Use class attributes instead (self.*)

• file paths and directories: Since in a linux environment, windows paths containing “\\” seperators can not be
normalized correctly to linux paths, all file paths and directories must therefore be defined with “/” seperators
at first. Afterwards, paths can be normalized to windows paths if DELiS is running in a Windows environment.
As alternative, os.path.join(*paths) (part of the “os” standard librariy) for platform independent path generation
can be used and is highly recommended.

• private functions: if a function is only called within the class itself, it should be private (encapsulation). The
name of those functions start with “_”

• use several private functions than one big function

• comments are nice but often won’t be updated: use more private functions with good self explainatory names
instead

• properties: information of a class that needs to be calculated previously can be made available via prop-
erties. This approach hides defined getter and setter and makes the information as attribute availabe.
It also can be used when class attributes needs a previous check before they can be set. (e.g. see
delis.model.sheetprops.SheetProperties.thickness)

• do not change MyGlobal class for local customization purposes: use the settings module instead. It is located in
src/settings.py or at least a template for this exists in src/settings_template.py

• use restructuredtext for documentation. Each variable (module, class, method, attribute) can be documented by
using a tripe of “”” in the following line of the variable. You can have a look at the quick introduction, the rst
cheatSheet of Thomas Cokelaer , see The reStructuredText Cheat Sheet: Syntax Reminders and most importantly
have check out the Show Source link that is in this documentation on the right panel. In python code, all
modules, classes, methods and class attributes should be documented using docstrings. Sphinx is capable to
interpret docstrings and produce a nicely formatted result like this:

2 Chapter 1. Introduction

http://docutils.sf.net/rst.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
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variableToBeDocumented = None
"""Documentation in reStructuredText"""

For documentation of methods, their parameters and returns, field lists can be used to document method proper-
ties like parameters, raising exceptions, return values and types:

def beep(sec):
"""text

:param sec: time of beeping in seconds
:return: noise
"""

produces:

beep(sec)
text

Parameters sec – time of beeping in seconds

Returns noise

Besides the usual Sphinx referencing methods using :ref: within python documentation you can use the follow-
ing. Be aware that the referenced object is within the same namespace:

See Also
--------
MyGlobals

• documentation for nearly every python package, module, class, function and attribute is available via python
console:

>>> import time
>>> help(time)
Help on built-in function listdir in module nt:
....

• explicit is better than implicit. For example explicitly given arguments and return values are easier to understand
than using class attributes

• classattributes shall be initialized in the __init__ method so one can get a quick overview of available attributes

• always do imports at the top of a module except it would create looping imports. In this case it should be noted
as comment at the top of the module and imported below

• The use of *args and **kwargs : See this

They are widely used in any constructor to set given class attributes. Generally it is used to process an arbitrary
set of parameters that you don’t want to specify. It shouldn’t be used in methods where the parameterset is clear
(in this case you can use keywords with default arguments instead).

• Use comprehensions as elegant way of creating lists, sets and dictionaries

For example, assume we want to create a list of squares, like:

>>> squares = []
>>> for x in range(10):
... squares.append(x**2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

1.2. Programming issues 3

http://sphinx.pocoo.org/domains.html#info-field-lists
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We can obtain the same result with:

>>> squares = [x**2 for x in range(10)]

This also works with dictionaries and sets:

>>> {i: i**2 for i in range(10)} # dictionary
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

>>> {i**2 for i in range(10)} # set
set([0, 1, 4, 81, 64, 9, 16, 49, 25, 36])

• There is also a Python Coding Style Guideline at http://www.python.org/dev/peps/pep-0008/ and a style guide-
line by Google . Here we follow them loosely.

1.3 The reStructuredText Cheat Sheet: Syntax Reminders

Info See <http://docutils.sf.net/rst.html> for introductory docs.

Author David Goodger <goodger@python.org>

Date $Date: 2006-01-22 20:13:55 -0500 (Sun, 22 Jan 2006) $

Revision $Revision: 4321 $

Description This is a “docinfo block”, or bibliographic field list

1.3.1 Section Structure

Section titles are underlined or overlined & underlined.

1.3.2 Body Elements

Grid table:

example grid table
still headline 65
values 65

65

Simple tables:

4 Chapter 1. Introduction

http://www.python.org/dev/peps/pep-0008/
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List Type Examples
Bullet list

• items begin with “-“, “+”, or “*”

Enumerated list
1. items use any variation of “1.”, “A)”, and “(i)”
2. also auto-enumerated

Definition list
Term is flush-left [optional classifier] Definition is in-

dented, no blank line between

Field list
field name field body

Option list
-o at least 2 spaces

between option &
description

Explicit Markup Examples (visible in Show Source)
Footnote
Citation
Hyperlink Target
Anonymous Target
Directive (“::”)
Substitution Def
Comment
Empty Comment (“..” on a line by itself, with blank lines before & after, used to separate indentation contexts)

1.3.3 Inline Markup

emphasis; strong emphasis; interpreted text; interpreted text with role; inline literal text; standalone
hyperlink, http://docutils.sourceforge.net; named reference, reStructuredText; anonymous reference; footnote refer-
ence,1; citation reference, [CIT2002]_; |substitution|; inline internal target.

1.3.4 Directive Quick Reference

See <http://docutils.sf.net/docs/ref/rst/directives.html> for full info.

Directive Name Description (Docutils version added to, in [brackets])
attention Specific admonition; also “caution”, “danger”, “error”, “hint”, “important”, “note”, “tip”, “warning”
admonition Generic titled admonition: .. admonition:: By The Way
image .. image:: picture.png; many options possible
figure Like “image”, but with optional caption and legend
topic .. topic:: Title; like a mini section
sidebar .. sidebar:: Title; like a mini parallel document
parsed-literal A literal block with parsed inline markup

continues on next page

1 Manually numbered or [#] auto-numbered (even [#labelled]) or [*] auto-symbol

1.3. The reStructuredText Cheat Sheet: Syntax Reminders 5
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Table 1.1 – continued from previous page
Directive Name Description (Docutils version added to, in [brackets])
rubric .. rubric:: Informal Heading
epigraph Block quote with class=”epigraph”
highlights Block quote with class=”highlights”
pull-quote Block quote with class=”pull-quote”
compound Compound paragraphs [0.3.6]
container Generic block-level container element [0.3.10]
table Create a titled table [0.3.1]
list-table Create a table from a uniform two-level bullet list [0.3.8]
csv-table Create a table from CSV data (requires Python 2.3+) [0.3.4]
contents Generate a table of contents
sectnum Automatically number sections, subsections, etc.
header, footer Create document decorations [0.3.8]
target-notes Create an explicit footnote for each external target
meta HTML-specific metadata
include Read an external reST file as if it were inline
raw Non-reST data passed untouched to the Writer
replace Replacement text for substitution definitions
unicode Unicode character code conversion for substitution defs
date Generates today’s date; for substitution defs
class Set a “class” attribute on the next element
role Create a custom interpreted text role [0.3.2]
default-role Set the default interpreted text role [0.3.10]
title Set the metadata document title [0.3.10]

math

𝑎 = (𝑥 + 𝑦)2

= 𝑥2 + 2𝑥𝑦 + 𝑦2

inline math
√
𝑥2 − 1 is something like this.

1.3.5 Interpreted Text Role Quick Reference

See <http://docutils.sf.net/docs/ref/rst/roles.html> for full info.

Role Name Description
emphasis Equivalent to emphasis
literal Equivalent to literal but processes backslash escapes
PEP Reference to a numbered Python Enhancement Proposal
RFC Reference to a numbered Internet Request For Comments
raw For non-reST data; cannot be used directly (see docs) [0.3.6]
strong Equivalent to strong
sub Subscript
sup Superscript
title Title reference (book, etc.); standard default role
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CHAPTER

TWO

USER MANUAL

2.1 Introduction to DELiS

This document describes the structure model generator DELiS from a user’s point of view. It explains the main features
of DELiS and how one can run it from RCE or the command line. DELiS is developed at the Institute of Composite
Structures and Adaptive Systems. Mainly these steps can be performed:

• Read aircraft/rotor blade configuration from CPACS

– Positions of structure elements

– Materials/Stacking sequences

– Structural profiles

– Tool specific settings

• Create geometry(keypoints, lines, splines, areas) based on the configuration read

• Generate fem input files (Ansys and/or Nastran) employing materials, cross sections, geometry, elements,
boundary conditions and loads

• Perform sizing using SBot or Hypersizer

• Read sizing results(thickness, mass)

• Write sizing results to CPACS

The core application of DELiS is creating finite element models of aircrafts or blades of wind energy plants that are
defined within a CPACS data set. These models are input by a sizing software as can be seen on the following image.
The sizer iteratively alters the finite element properties based on the loads within an element and defined design criteria
such as strength and local or global buckling. The converged result is read to the aircraft object model and ultimately
the CPACS dataset is updated with the new thicknesses, stacking sequences and masses of the primary structure.

Besides these core capabilities, DELiS also features many other applications. As can be seen on the following image,
there are several input and output interfaces as well as interfaces to analysis methods such as:

Structure Generator Creates a structural definition based on a CPACS outer geometry. This currently
works only for fuselages.

Buckling Methods Methods are implemented to assess the first buckling- and also postbuckling per-
formance of a panel. There are closed-form methods as well as numerical methods using
BEOS(inhouse tool) or ABAQUS.

Metamodel Toolbox Kriging metamodels are implemented to arbitrary input. There are regular universal
kriging models but also hierarchical kriging models. Also design of experiments (DOE) methods
are available.

Excel_Export A method to output data to MS excel and create charts automatically is provided.
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Figure 2.1 : Overall DELiS Process Flowchart

Result_Plotter There are several result plotters available that can create 2D and 3D plots with various
data and texts.

Finite Element Model Writer There are several writer to create finite element models. Though all work
slightly different: The Ansys writer creates geometry (keypoints, lines, areas) and meshes those. The
Nastran writer produces nodes and elements directly which is faster but there is no way of producing
a finer mesh using mesh seeds. The Abaqus writer will work comparably to the nastran writer, but
is not fully functional yet.

BoxBeam Crosssection Boxbeam is a inhouse tool to calculate metal and composite crosssection prop-
erties. There is a verified wing interface but the fuselage interface is still under construction.

SBot Sizing Interface and inhouse tool for structure sizing based on fully-stressed-design.

Hypersizer Interface Interface to the commercial sizing software Hypersizer.

Aircraft/Blade

ObjectyModel

CPACS
Interface

Structure
Generator

FiniteyElement

ModelyWriter

CPACS
Dataset Ansys

Nastran

SBotySizing

Hypersizer
Interface

Abaqus

Hypersizer
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Methods

Excel
ExportExcel

Result
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Metamodel
Toolbox

DELiS

SBot
Interface

Figure 2.2 : DELiS interfaces and analysis methods

In chapter Aircraft Model the overall aircraft features are explained such as material definitions, stackings, profiles
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geometries and loads used. Chapter Wing describes needed input values and created outputs for sizing a wing with
ParamamSBot. Next the model characteristics for the blade creation of wind turbines is described. Lastly the inputs
and outputs of a Fuselage modeling and sizing is explained.

2.2 Run DELiS

2.2.1 Run DELiS from Commandline

2.2.2 DELiS RCE versions

DELiS can be launched via RCE for modeling and dimensioning an aircraft respectively. At least every two months
a new version of the model generator is published in RCE. The numbering of versions is as follows. The first number
refers to the version’s year and the second number, separated by an underscore, refers to the corresponding month
of the respective version. The last number is the revision identifying possible updates within one release. Besides
the revisions every second month, there is also a version with the suffix *_nightly. The *_nightly version is the most
recent program state which is actually under development.

These versions are exemplary the ones published on fa-termsrv1:

• delis_nightly

• delis_13_5_1

• delis_13_5_0

• delis_13_3_0

2.3 DELiS CPACS Input and Output

DELiS

CPACS
Geometry

Structure Def.
Materials

Loads

CPACS
Structure Thk.

Mass Primary Str
Structure Model

Figure 2.3 : DELiS input output overview

2.3.1 Overview CPACS Input

The CPACS input dataset has to be a valid cpacs file. UIDs that are referenced in any used subtree are mandatory.

There are some input subtrees being used by DELiS that are presented the following sections:

• /cpacs/toolspecific/delis

• /cpacs/vehicles/aircraft/model[uID]

• /cpacs/vehicles/materials

• /cpacs/vehicles/materials/composites (optional)
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• /cpacs/vehicles/profiles/structuralProfiles

• /cpacs/vehicles/structuralElements

DELiS Toolspecific Preferences

/cpacs/toolspecific/delis

Within the toolspecific block in /cpacs/toolspecific/delis user defined settings can be set which are evaluated at tool
runtime.

Note: All optional toolspecific settings overwrite default values. These default values are chosen after several
structural investigations. So please adjust these settings with great caution!

General Toolspecific Items Please also refer to the cpacs scheme as documentation.

• tool standard tool description and version information

• aircraftModelUID ID of the aircraft model to be analyzed. Refers to /cpacs/vehicles/aircraft/
model[uID]

• lumpMassBreakdownOutput Flag if the massbreakdown should be written completely or if the mass sum of
each type of structural element of one component should be written. E.g. write all sparCells or write only
the sum of the sparCells of the wing.

Defaults to false

• coupleFuselageBT Flag if coupling with the BT fuselage should be performed. In this case, DELiS creates
only wings and the ansys components for coupling with Trafuma. If False, also a DELiS fuselage will be
created, if given and requested and coupled with the DELiS wings.

Defaults to false

• useAeroCoefficientAndNodalInertialLoads Flag if the loadcase AeroCoefficientAndNodalInertialLoad-
sLoadCase should be used before other loadcases

Defaults to False

• createdComponents Optional list of ComponentIDs of the component(wing or fuselage) that should be mod-
eled.

If not set all components are modeled.

• wings List of wings to set specific model and sizing settings. If not specified, default values are used.

A detailed description is in the section Wing Settings below.

• fuselages

List of fuselages to set specific model and sizing settings. If not specified, default values are used.

A detailed description is in the section Fuselage Settings below.

• sizingConvergence

– thicknessThreshold Convergence threshold to the maximum thickness change.

Defaults to 0.0005 in SBOT

– maxIterations Defaults to 13

– massThreshold Defaults to 0.005
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Figure 2.4 : Exemplary toolspecific options that can be used in a CPACS input file
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Wing Settings

delis.model.wing.WingSettings()
This class defines settings that are applied to a wing model.

Requires The wing settings in cpacs must provide the wingUID, where these settings should be
applied.

modelSettings

Variables

• numberOfElementsInEtaDirection – Number of Elements in span(eta) direction.
This also defines the number of real and imaginary ribs in delis.

Defaults to 40

• numberOfElementsInXsiDirection – Number of Elements in chord(xsi) direction.
This also defines the number of all types of spars (le,te,real,imaginary) in delis.

Defaults to 10

• skinBaysInSizingRegionEta – Number of bays in span(eta) direction that defines
the size of the optimization region. A bay is the region of adjacent spars and ribs.

Defaults to 1

• skinBaysInSizingRegionXsi – Number of bays in chord(xsi) direction that defines
the size of the optimization region. A bay is the region of adjacent spars and ribs.

Defaults to 1

• createOnlyWingBox – Flag if just the wing box(region from front spar to rear spar)
should be modeled. Otherwise a model from leading to trailing edge is created.

Defaults to True

• createControlSurfaces – Flag if the control surfaces should be modeled explicitly
instead of using mass points.

Defaults to False

• stringerModeling – Determines how stringers are modeled. These strings can be
given: [smeared, simpleBeamSection, complexBeamSection]

Defaults to smeared

• capModeling – Determines how caps are modeled. These strings can be given: [simple-
BeamSection, complexBeamSection]

Defaults to simpleBeamSection

• createStructureTopology – Flag if wing structure should be created automatically
via aircraft generator class without an input dataset. If the flag is set to false, the inner
structure needs to be read from CPACS or any other input dataset.

Attention: At the moment, only ribs will be created if True.

• doStaticCondensation – Flag if wing component should be also condensed on dy-
namic aircraft model points. (please add more documentation here)

Defaults to False

• auxiliaryRibStiffenerSettings – settings to define stiffener elements assigned
to wing ribs for use within a FE model. This dictionary comprises a stiffener profile identifier
defined in a CPACS dataset (parameter ‘stiffenerProfile’), the aligning type of the stiffener
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(parameter ‘stiffenerType’ with valid values longitudinal, vertical, grid) and the ‘verticalS-
tiffenerPitch’ defining the number of parallel stiffening elements in vertical direction. The
latter also influences the necessary mesh discretization of wing component in z-Direction.

• splitWingStructure – Flag if wing structure(spars and skins) defined in cpacs should
be split into smaller regions bordered by spars and ribs. If False, the initial cpacs definition
of sparSegments and the default skin definition is used instead of a fine granular structure.
This has effects on the sizing regions, which are coarse or fine.

Defaults to True

• meshSettings – Mesh discretization settings used for wing components. At the moment
only the variables elemSizeIn[X|Y|Z] are supported to define the minimum element edge
length used in ‘Gmsh’ meshing tool.

sizingSettings

Variables

• frontSparSizingSettings – Sizing settings for the front spar. For a description of
the attributes, please refer to SheetSizingSettings

• sparSizingSettings – Sizing settings for all spars except the front spar. For a de-
scription of the attributes, please refer to SheetSizingSettings

• ribSizingSettings – Sizing settings for ribs. For a description of the attributes, please
refer to SheetSizingSettings

• lowerSkinSizingSettings – Sizing settings for lower skins. For a description of the
attributes, please refer to SheetSizingSettings

• upperSkinSizingSettings – Sizing settings for upper skins. For a description of the
attributes, please refer to SheetSizingSettings

• capSizingSettings – Sizing settings for caps. For a description of the attributes,
please refer to ProfileSizingSettings. StiffenerTypes defaults to {‘CAP’}.

weightSettings

Variables weightCalibrationFactors – Factors multiplied to the resulting sizing mass for
weight calibration. Possible variables: [skinWeightFactor, sparWeightFactor, ribWeightFactor]

Fuselage Settings

delis.model.fuselage.FuselageSettings(**kwargs)
Since the fuselage structures can be defined coarse in the cpacs, the structure elements that represent shells and
beams can be split in optimization regions of various size. A split by the user defined in the cpacs dataset will
stay intact.

Additionally the type of beam modeling and the settings for the sizing can be changed.

A bay is the skin area enclosed by two adjacent stringers and two adjacent frames.

Requires The fuselage settings in cpacs must provide the fuselageUID, where these settings should
be applied.

Model Section

Variables

• skinBaysInOptimizationRegionEta – Number of bays in eta(longitudial) direc-
tion that belong to one optimization region.
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Defaults to 1

• skinBaysInOptimizationRegionXsi – Number of bays in xsi(circumferencial) di-
rection that belong to one optimization region.

Defaults to 4

• framesInOptimizationRegion – Number of frames that are within one optimization
region.

Defaults to 4

• optimizationRegionsInOneFrame – Number of optimization regions within one
frame. This is only active if framesInOptimizationRegion == 1

Defaults to 6

• stringersInOptimizationRegion – Number of stringer lines that are within
one optimization region. This is only active if stringers are sized explicitly mod-
eled and not smeared within the containing fuselageSkin. Stringers are smeared if
Stringer.isLineBasedElement=True

Defaults to 4

• stringerLinesInOptimizationRegion – Number of optimization regions within
one stringer. A stringer line is defined by the distance of adjacent frames. This is only active
if stringersInOptimizationRegion == 1 and if stringers are sized explicitly and not smeared
within the containing fuselageSkin.

Defaults to 10

• crossbeamsInOptimizationRegion – Number of crossbeams that are within one
optimization region.

Defaults to 4

• crossbeamstrutsInOptimizationRegion – Number of crossbeamstruts that are
within one optimization region.

Defaults to 4

• longfloorbeamsInOptimizationRegion – Number of longfloorbeams that are
within one optimization region.

Defaults to 2

• longfloorbeamLinesInOptimizationRegion – Number of optimization regions
within one longfloorbeam. A longfloorbeam line is defined by the distance of adjacent
crossbeams. This is only active if longfloorbeamsInOptimizationRegion == 1

Defaults to 20

• beamModeling – Determines how stringers are modeled.[simpleBeamSection, com-
plexBeamSection]

Defaults to complexBeamSection

• createInternalPressureLoadCase – If True, a loadcase is appended to the load-
cases list with fuselage internal pressure only

Defaults to False

• startFrameNumber – None or int. Defines the number of the first frame of a barrel.
If given, a barrel will be created instead of the full fuselage model. Frames are numbered
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increasingly from the front, starting with 1. If startFrameNumber and endFrameNumber are
both None, a full fuselage will be created.

Defaults to None

• endFrameNumber – None or int. Defines the number of the last frame of the barrel. If
given, a barrel will be created instead of the full fuselage model. Frames are numbered
increasingly from the front, starting with 1. If startFrameNumber and endFrameNumber are
both None, a full fuselage will be created.

Defaults to None

• doStaticCondensation – Flag if fuselage should be also condensed on dynamic air-
craft model points. (please add more documentation here)

Defaults to False

• meshSettings – Mesh discretization settings used for wing components. At the moment
only the variables elemSizeIn[X|Y|Z] are supported to define the minimum element edge
length used in ‘Gmsh’ meshing tool.

Sizing Section

Variables

• frameSizingSettings – Sizing settings for all spars except the front spar. For a de-
scription of the attributes, please refer to ProfileSizingSettings

• stringerSizingSettings – Sizing settings for ribs. For a description of the at-
tributes, please refer to ProfileSizingSettings

• skinSizingSettings – Sizing settings for lower skins. For a description of the at-
tributes, please refer to SheetSizingSettings

• crossbeamSizingSettings – Sizing settings for upper skins. For a description of the
attributes, please refer to ProfileSizingSettings

• crossbeamstrutSizingSettings – Sizing settings for caps. For a description of
the attributes, please refer to ProfileSizingSettings

• longfloorbeamSizingSettings – Sizing settings for the front spar. For a descrip-
tion of the attributes, please refer to ProfileSizingSettings

• bulkheadBeamSizingSettings – Sizing settings for the beams of the bulkheads. For
a description of the attributes, please refer to ProfileSizingSettings

• bulkheadShellSizingSettings – Sizing settings for the shells of the bulkheads.
For a description of the attributes, please refer to SheetSizingSettings

weightSettings

Variables weightCalibrationFactors – Factors multiplied to the resulting sizing mass for
weight calibration. Possible variables: [fuselageWeightFactor]
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Sheet Sizing Settings

delis.model.sizingsettings.SheetSizingSettings(stiffenerTypes=None, designCri-
teria=None, minimalSkinThick-
ness=0.001, initialThicknessDist-
Func=None)

The SheetSizingSettings define the possible preferences for the sizing of shell-based elements.

Variables

• stiffenerTypes – Defines the stiffening of a sheet. At the moment, only one type at
the same time is applicable. These values are valid: {“unstiffened”, “sandwich”, “T”, “Z”,
“I”, “J”, “C”, “L”, “HAT”}.

Defaults to “T”

• designCriteria – Defines the stiffening of a sheet. Several types are applicable. An
illustration is given in the CPACS documentation. These values are valid: {“stressBased-
Failure”, “localBuckling”, “globalBuckling”}.

Defaults to {“stressBasedFailure”, “localBuckling”, “globalBuckling”}

• minimalSkinThickness – Defines the minimal thickness of each sheet of the stiffener
and skin.

Defaults to 0.001

• initialThicknessDistFunc – function defining the initial thickness distribution
over the relative wing station or fuselage length. It is read from the cpacs path /intialTh-
icknessDistribution

Defaults to None (CPACS thicknesses are used)

Profile Sizing Settings

delis.model.sizingsettings.ProfileSizingSettings(stiffenerTypes=None, designCri-
teria=None, minimalSkinThick-
ness=0.001, initialThicknessDist-
Func=None)

The ProfileSizingSettings define the possible preferences for the sizing of beam-based elements.

Variables

• stiffenerTypes – Defines the stiffening of a sheet. At the moment, only one type at
the same time is applicable. An illustration is given in the CPACS documentation. These
values are valid: {“T”, “Z”, “I”, “J”, “C”, “L”, “HAT”,”CAP”,”TUBE”,”BOX”,”WEB”}.

Defaults to “T”

• designCriteria – Defines the stiffening of a sheet. Several types are applicable. These
values are valid: {“stressBasedFailure”, “localBuckling”, “globalBuckling”}.

Defaults to {“stressBasedFailure”, “localBuckling”, “globalBuckling”}

• minimalSkinThickness – Defines the minimal thickness of each sheet of the stiffener.

Defaults to 0.001

• initialThicknessDistFunc – function defining the initial thickness distribution
over the relative wing station or fuselage length. It is read from the cpacs path /intialTh-
icknessDistribution
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Defaults to None (CPACS thicknesses are used)

Aircraftmodel

/cpacs/vehicles/aircraft/model

This is the location where all aircraft specific definitions but also analysis results are stored within the CPACS. Thus
all or defined (if explicitly requested in the delis toolspecifics) wings and fuselages are read. For specific information
about wing and fuselage modeling please refer to Wing and Fuselage. Additionally the analysis node is read. Important
items are the load definitions(Load Cases) and the massbreakdown

Materials

/cpacs/vehicles/materials

Each referenced material has to be given in this subtree. There is the distinction between isotropic(steel, aluminium),
transversal isotropic(CFRP layer) and orthotrop(CFRP stacking) material behavior. Different strength criteria are used
while sizing.

Composites

/cpacs/vehicles/materials/composites

Each composite referenced within the structure definition has to be given here.
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CPACS Profiles

/cpacs/vehicles/profiles/structuralProfiles

StructuralProfiles are the geometric description of a structure profile. All structural profiles referenced within the
structure definition have to be given.

/cpacs/vehicles/structuralElements/profileBasedStructuralElements

StructuralElements add mechanical properties to the geometry defined in structuralProfiles. All referenced structural
elements have to be given.

Sheet Elements

/cpacs/vehicles/structuralElements/sheetBasedStructuralElements

Besides ProfileBasedStructuralElements as described in CPACS Profiles there is also a section to describe the me-
chanical properties of sheet-like structural elements such as fuselage skins and floorpanels. They contain the material
definition of the skin segment (Material, thickness, (lay-up)). This way structural elements with equal properties can
reference the same definition via sheetBasedStructuralElements.

This only applies to fuselage sheet based elements!
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Geometry Calculation

Geometry Calculation Using TIGL

When using TIGL the model generator employs the TIGL functions tiglFuselageGetPointAngleTranslated,
tiglWingGetUpperPoint and tiglWingGetLowerPoint are used. Please refer to the TIGL manual for
more information.

Geometry Calculation Using Splining

Coupling

Empennage Fuselage Coupling

The empennage is coupled to the fuselage with the via attachment pins, which are defined in the CPACS dataset. -
/cpacs/vehicles/aircraft/model/wings/wing/componentSegments/componentSegment/wingFuselageAttachments/wingFuselageAttachment/attachmentPins.

Thereby the attachment pins are defined in global coordinates. In DELiS the attachment pins are attached to the wing
component. Here a search for the nearest rib/spar intersection is made. The node closest to the attachment pin is then
selected and is coupled to the attachment pin via a constraint equations. The attachment pins itself are modelled as
additional mass points with a negligible mass. An example is shown below.

Figure 2.5 : Example for empennage attachment pin coupling
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2.3.2 DELiS CPACS Output

Thicknesses and Stackings

Mass

Mechanical Properties of Profiles

CPCAS Header

The path /cpacs/header is also updated with DELiS run and modification information.

2.3.3 DELiS Return Directory Content

Besides the updated CPACS, DELiS copies some files to the return directory:

• FEM model input file

• run.log Logfile of the regular run stdout

• debug.log Logfile of the debug output. This usually contains additional information than the run.log

• error.log Logfile of the error message

2.4 Aircraft Model

2.4.1 Component Numbering

In delis, each component has it’s specific number stored in Fuselage/Wing.componentNumber. A component may be
a fuselage, wing but also a control surface. This unique number is set during the first steps of reading the cpacs dataset
on aircraftModel level. If the flag createSymmetricalWing is True the _reflected components are created
otherwise

As example given this cpacs dataset (the numbers refer to their order in the xml file):

• wing1 (symmetry=false) (e.g. vtp)

• wing2 (symmetry=true) (e.g. htp)

• wing3 (symmetry=true) (e.g. main wing)

– control surface1

– control surface2

• fuselage

The delis number scheme utilizes the order given in cpacs and always starts with the wings followed by fuselages. If
the flag createSymmetricalWing is True, the resulting componentNumber will be this:

1. wing1

2. wing2

3. wing2_reflected

4. wing3

5. control surface1
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6. control surface2

7. wing3_reflected

8. control surface1_reflected

9. control surface2_reflected

10. fuselage

If the flag createSymmetricalWing is False, the resulting componentNumber will be this:

1. wing1

2. wing2

3. wing3

4. control surface1

5. control surface2

6. fuselage

2.4.2 Geometry and FE Numbering

Generally wing numbers have the size of 6 digits and fuselage numbers 6 to 8 digits. Wings may have several com-
ponents like main wing, vtp, htp and flaps. Thus wing numbering holds a component number which can be seen in
wing Geometry Numbering. Since there is just one fuselage a component number is not needed as seen in fuselage
Geometry Numbering. The respective type numbers can be found in the following listing:

Type Numbers

MyGlobals._numbering = [('misc', 0), ('upperShell', 1), ('lowerShell', 2), ('rib', 3), ('spar', 4), ('wingLine', 5), ('wingMass', 5), ('damPoint', 6), ('trackAttachmentPoint', 6), ('gearStrut', 7), ('trackStrut', 7), ('upperShellStiffener', 8), ('lowerShellStiffener', 9), ('fuselageSkin', 25), ('frame', 26), ('stringer', 27), ('paxcrossbeam', 28), ('cargocrossbeam', 29), ('paxcrossbeamstrut', 30), ('cargocrossbeamstrut', 31), ('paxLongFloorBeam', 32), ('cargoLongFloorBeam', 33), ('floorpanel', 34), ('frontbulkhead', 35), ('frontbulkheadArea', 36), ('frontWingboxBulkhead', 37), ('frontWingboxBulkheadArea', 38), ('rearWingboxBulkhead', 39), ('rearWingboxBulkheadArea', 40), ('mass', 41), ('keelbeam', 42), ('fuselagereinforcement', 43), ('vtpUpperBulkhead1', 44), ('vtpUpperBulkhead1Area', 45), ('vtpUpperBulkhead2', 46), ('vtpUpperBulkhead2Area', 47), ('vtpUpperBulkhead3', 48), ('vtpUpperBulkhead3Area', 49), ('frameline', 50), ('xstrut', 51), ('cutout', 52), ('stringerorientation', 53), ('crossbeamorientation', 54), ('paxstrutorientation', 55), ('cargostrutorientation', 56), ('paxLongFloorBeamorientation', 57), ('cargoLongFloorBeamorientation', 58), ('floorpanel2', 59), ('floorpanel3', 60), ('floorpanel4', 61), ('htptrimmingattachment', 62), ('htptrimmingattachmentArea', 63), ('pressurefloor', 64), ('pressurefloorArea', 65), ('rearbulkhead', 66), ('rearbulkheadArea', 67)]
This is a listing of all available types that are used for geometry generation. It
translates the name of a type of structural elements to it’s type number. usually
it is addressed using the dictionary MyGlobal.numbering. Mainly it is called from
delis.service.utilities.[getWingKeypointID,getKeypointID,splitWingKeypointID,splitKeypointID]

Note: The numbering shall never be inverted since it may happen that there are several names for one type

Dynamic aircraft model points are numbered the following where damnumber is the number of the dam point:

1001000 + damnumber

2.4.3 DELiS Profiles

DELiS models profiles as beams for Ansys and Nastran. After they are read from the cpacs (see CPACS Profiles) are
used within delis.model.mechanicalproperties.Beam:

delis.model.mechanicalproperties.Beam(*args, **kwargs)
This class is an extension of the Line class. It extends the lines geometric description by profile information and
a keypoint defining the orientation of the profile.

Mechanical Properties

The mechanical properties of the beam are dependent on 4 objects:

• Starting point (self.p1)

• End point (self.p2)
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• Orientation point (self.orientationKeyopint)

• Cross section description which is an object of type model.profile.Profile (self.profile). This is usually read
from /cpacs/vehicles/profiles/structuralProfiles and /cpacs/vehicles/structuralElements.

The first three objects define the geometry and element coordinate system. Whereas the last defines the cross
section properties like stiffness and mass.

Modeling in Ansys

Within Ansys profiles are modeled using the above mechanical properties. The coordinate system is defined by
the direction from delis.beam.p1 to Beam.p2 for the x-direction. The z-direction is given by the vector Beam.p1
to Beam.orientationKeypoint that is adjusted in Ansys to a vector normal to x-direction. The y-direction is
defined by the cross product of x and z direction. Please have a look at the ansys manual for Beam188 and
Beam189.

Note: In CPACS the profile cross section is defined on an xy plane. In Ansys they are defined on an yz plane
and the x-direction is the beam longitudinal direction. The CPACS x-direction is the Ansys y-direction and the
CPACS y-direction is the Ansys z-direction. Following the global coordinate system and the Ansys style beam
coordinate system is used.

Thus the orientation of the beam coordinate system varies for every Beam depending on the structure type it
belongs to, the extrusion direction and the orientation keypoint. The extrusion direction of a beam coincides
with the local x-direction. The orientation keypoint defines the z-direction orthogonally to the x-axis. The y-
axis can be calculated by the right-hand rule. Following the extrusion direction and the orientation keypoints
are defined depending on the beam type:

Frames The extrusion direction is in clockwise direction looked from the front. The orientation
keypoint is the frame center keypoint. This way the beam z-axis is directed to the fuselage
center and the y-axis roughly in negative global x-direction.

Fuselage Stringer The extrusion direction is oriented from the front to the back. The orientation
keypoint is a keypoint orthogonal to the skin towards the fuselage center. For the creation of
the correct orthogonal point for each stringer line, three keypoints of a frame attached to the
stringer are taken into account. Then the center of a circle with all three points on it’s radius is
calculated. This way the beam z-axis is roughly directed to the fuselage center and the y-axis is
directed tangential to the skin in clockwise direction, looking from the front.

CrossBeams Lines of crossbeams are extruded from lower to higher y-values. Crossbeams shall
have a z-direction that is coincident with the global z-direction. Thus all lines of one crossbeam
have the same orientation keypoint with a higher z-coordinate then the crossbeam itself. This
way the beam y-coordinate is parallel to the global negative x-axis

Crossbeamstruts Lines of struts are extruded from lower to higher z-values. The beam y-axis is
directed to the positive global x-axis. The beam z-axis is directed to the global positive y-axis.

LongFloorBeams Lines of longFloorBeams are extruded from lower to higher x-values. LongFloor-
Beams shall have a z-direction that is coincident with the global z-direction. Thus the orientation
keypoint must be at a higher z-value than the longFloorBeams keypoints. Here all lines refer to
the same LongFloorBeamPosition which has the attribute “orientationKeypoint”.

ForwardPressureBulkhead Lines of vertical stiffeners of the forward pressure bulkhead are ex-
truded from negative to positive z-coordinates. The orientation keypoint is located normal to the
bulkhead surface having a greater x-coordinate. The horizontal stiffeners of the forward pres-
sure bulkhead are extruded from negative to positive y-coordinates. The orientation keypoint is
located normal to the bulkhead surface having a smaller x-coordinate.
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FuselageReinforcement Lines of FuselageReinforcements always start at it’s frame/stringer cross-
ing and end at their target point. The orientation keypoint is defined based on the main direction
of the line vector:

• If the vector directs mainly in x-direction, the orientation keypoint is above the line compa-
rably to LongFloorBeams

• If the vector directs mainly in y-direction, the orientation keypoint is behind (positive x-
direction) the line comparably to Crossbeams

• If the vector directs mainly in z-direction, the orientation keypoint is in global y-direction
comparably to Crossbeamstruts

HtpTrimmingAttachment The HtpTrimmingAttachment has two beams supporting the attachment
plate which is directly connected with the forward HTP wing attachment point. Though the
orientation of the two beams depend on the exact geometry of the surrounding structure, it is
assumed that the orientation is mainly along the global y-direction. The orientation keypoint is
normal to the yz plane and has a greater x-coordinate. The beams are extruded from the larger
z-coordinate to the smaller one.

2.4.4 DELiS SheetProperties

2.4.5 Load Cases

Currently delis covers 4 variations of loads that may be defined in the CPACS. The first cpacs-entry of the following
listing that applies will be used as load source:

• For fine CFD-loads, the following CPACS branch has to be available

cpacs/vehicles/aircraft/model/analyses/loadAnalysis/loadCases/
flightLoadCase/externalAmifFile

It uses the amif file format that maps cfd-surface loads to nodes of the fem model. In this case the inertia loads
(due to primary and secondary structure masses as well as pax, cargo and fuel masses) are read from the CPACS.
In addition the engine thrust is applied at the certain thrust level to the loadcase. Lastly the acceleration defined
in the cpacs is introduced to all loadcases.

• If nodal loads are given, they are read from this path:

/cpacs/vehicles/aircraft/model/analyses/loadAnalysis/loadCases/
flightLoadCase/nodalLoads

Component loads compose all loads (inertia-, areo- and engine loads) to one balanced load set. Hence, the
acceleration of these loadcases are set to zero. The componentLoads are provided for each spatial direction (6
DOF). All specified forces and moments are given on the so called loadReferenceAxis, which is described
via dynamic aircraft model points in each component (wing, fuselage). These point-wise forces and moments
are, respectively, mapped to the closest rib as line load on the upper and lower surface for wings and for fuselages
they are connected to the next frame via RBE3 elements.

• In the case that areoLoads are given in the cpacs, this path is read:

/cpacs/vehicles/aircraft/model/analyses/loadAnalysis/loadCases/
flightLoadCase/aeroLoads

With this, the inertia- and engine loads are read as with amif load files

• The last case is a combination of aero loads from the areoLoads-element and all other loads from the nodal loads
breakdown. With this, the aero load input is more flexible. On the other hand, a trimmed load state must be
ensured by methods previous to delis in the workflow. The flag
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Figure 2.6 : Exemplary CPACS loadcase structure with component loads

/cpacs/toolspecific/delis/useAeroCoefficientAndNodalInertialLoads

must be set to true and nodalLoads and aeroLoads must be present for each loadcase.

Workflow for processing loads

1. Read loadcase definition from Cpacs which is done on wing/fuselage level in the method wing/fuselage.
readLoadsCpacs. So each wing/fuselage will have a wing.loadcases attribute containing the loadcase def-
inition and each discrete load entry. When using aerodynamic loads from cpacs, just the half wing loads are
read. For areo+inertia loads also only half wing loads are used. For amif load cases the amif File is read out
and rewritten into a apdl script containing all forces on the respective nodes. Additionally, the forces for engine
thrust, tanks and the accelerations are added. If a cut loads envelope is defined at this xPath:

``/cpacs/vehicles/aircraft/model/analyses/loadAnalysis/loadCases/loadsEnvelope/
→˓cutLoadsEnvelope``

It will be read and only the critical loadcases of the wings and fuselages modeled are considered in
further calculations.

2. After the whole aircraft model is read an geometry is created the loads are accumulated on aircraft level, copying
all loads form the wings and fuselages and merging them to one loadcase in model.aircraftModel.
loadCases.

3. For SBot/Ansys calculations the file S_BOT01_inp.mac is created by service.miscwriter.
paramamsbot.ParamamSBot listing the definition, constraints and design criteria used of each loadcase.

4. For SBot/Ansys calculations the files containing each load are written to the folder CSM_GEO. Which results in
one file for each loadcase. These files are named delis_loadcase_<LC_number>.mac.
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For fuselage calculations additional cabin pressures are applied to each loadcase. Additionally for fuselage calculations
another loadcase is created representing fatigue due to internal pressure.

Theory

Here is an overview about the load cases that should be used for fuselage dimensioning where ∆𝑝 is 63000Pa.

Nr Loadcase name Pres-
sure

Material
Limit

Safety fac-
tor

Source

1 Max. internal Pres-
sure

∆𝑝 ×
1.33

Strength 1.5 Niu: Airframe Stress Analysis and Siz-
ing; p. 46

2 Manoevre +2.5g ∆𝑝 Strength 1.5 Niu: Airframe Stress Analysis and Siz-
ing; p. 36

3 Manoevre -1.0g ∆𝑝 Strength 1.5 Niu: Airframe Stress Analysis and Siz-
ing; p. 36

4 Vertical gust ∆𝑝 Strength 1.5 Niu: Airframe Stress Analysis and Siz-
ing; p. 37

5 Lateral gust ∆𝑝 Strength 1.5 Niu: Airframe Stress Analysis and Siz-
ing; p. 37

6 Lateral gust(alt. di-
rection)

∆𝑝 Strength 1.5 Niu: Airframe Stress Analysis and Siz-
ing; p. 37

2.5 Wing

2.5.1 Process Flow

The process flow of the wing generation with DELiS within a CPACS-based project is composed of 4 sub-steps work-
ing on different data formats of the aircraft (see next figure). The starting point is the parametric aircraft description
within the CPACS format. These information are read by the CPACS2Paramam interface. It creates each required
input file for paramam as well as all additional inputs for an SBot run that are not written by Paramam such as loads,
loadcase descriptions and optimization settings. Following Paramam is started creating an Ansys macro file and an
additional script is written containing information about optimization regions and optimization metadata that is needed
for stability criteria. SBot is creates and solve the finite element model via Ansys call. Utilizing the results reserve
factors and new thicknesses are calculated. In a iterative process Ansys is used again to obtain new results due to the
new thicknesses. After convergence or the maximum number of iterations is reached, result files are written. Those
are handed back to the CPACS2Paramam interface, writing the result to the CPACS.

2.5.2 CPACS Input

Outer Shape

Generally the outer shape of the wing is defined by airfoils. An airfoil is defined by a 3-dimensional pointlist with all
three coordinates mandatory. For typical profiles, one of the coordinate vectors contains only “0” entries. All point
coordinates are transferred to the global coordinate system. The points have to be ordered in a mathematical positive
sense. Normalized coordinates are not required. First and last point may, but need not to, be identical. Hence, it
is possible to include “open” profiles. However, the trailing edge position of the upper and lower point need to be
identical. No crooked trailing edges are possible.

Example 1: For a conventional wing, the airfoil coordinates are defined in x and z with all the y-coordinates set to “0”.
The points have to be ordered from the trailing edge along the lower side to the leading edge and then along the upper
side back to the trailing edge.
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Figure 2.7 : General process flow

Figure 2.8 : Data flow of the cpacs2paramam interface
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Figure 2.9 : Data flow of paramam

Figure 2.10 : Data flow and looping in SBot
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Figure 2.11 : Wing finite element model consisting of shells and beams.

Example 2: For a fuselage, the coordinates are typically given in y and z with x set to “0”. Starting point of the profile
sould be the lowest point (typically in the symmetry plane), then upwards on the positive y-side up to the highest
point (again, typically in the symmetry plane). Depending on, whether the fuselage shall be specified with symmetry
condition or not, the profile either ends there, or continues on the negative y-side back down to the lowest point.

A profile can be symmetric. In that case the profile is interpreted as being not closed and will be closed by mirroring
it on the symmetry plane.

Based on the airfoils several geometry transformations are performed in order achieve the desired final shape of the
aerodynamic surface. These transfomration have to be perfomred a specific order, depicted following:

As shown in the previous figure Order of coordinate transformation from airfoil to wing the overall wing shape,
position and orientation in 3D space is defined using the transformation parameters. Using those parameters, the wing
coordinate system is translated, rotated and scaled. Information for the respective transformation can be found in
follwoing CPACS branches:

• airfoil (/cpacs/vehicles/aircraft/profiles)

• element (/cpacs/vehicles/aircraft/model/wings/wing/sections/section/elements/element)

• positioning (/cpacs/vehicles/aircraft/model/wings/wing/positionings/positioning)

• section (/cpacs/vehicles/aircraft/model/wings/wing/sections/section)

• segment (/cpacs/vehicles/aircraft/model/wings/wing/segments/segment)

The following figure shows the different geometric components and parameters leading to the final wing shape:

A section represents a plane in 3D space (see figure CPACS sections determining the elements positions), which is
used to define the position and orientation of elements.

In other words it is the cut plane through the aerodynamic surface. As depicted in figure CPACS components de-
termining the wing geometry each element is defined by an airfoil. The position of a section is determined by
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Figure 2.12 : Order of coordinate transformation from airfoil to wing

Figure 2.13 : CPACS components determining the wing geometry
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Figure 2.14 : CPACS sections determining the elements positions

positionings (see figure CPACS positionings determining the sections positions).

The positionings describe an additional translation of sections. Basically, the positioning is a vector
having the length ‘length’ and an orientation that is described by the parameters ‘sweepAngle’ and ‘dihedralAngle’.
The application of the sweepangle does not lead to a rotation of the section. The orgin of the section coordinate
system is the position which is described by the positioning vector plus the translation which is described in the
section.

Note: The total translation, which is described by positionings, is the sum of the current positioning and all position-
ings that are defined ‘before’ (the actual positioning is referring to). An example for this is given at positioning 3 and
4 in figure CPACS positionings determining the sections positions).

As shown in the previous figure Order of coordinate transformation from airfoil to wing several (but at least one)
elements can compose a section. Each element may also be individually transformed, which is exemplarily shown
below.

Note: For further details, please refer to the CPACS documentation.
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Figure 2.15 : CPACS positionings determining the sections positions

Figure 2.16 : CPACS elements individually transformation
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Flap Outer Shape

Generally the outer shape for the flaps is given in innerBorder and outerBorder, were the eta and xsi
coordinates are defined in the wing coordinate system. This input is optional for DELiS. The shape defini-
tion can be found under /cpacs/vehicles/aircraft/model/wings/wing/componentSegments/
componentSegment/controlSurfaces with the sub elements:

• ../trailingEdgeDevices/trailingEdgeDevice/outerShape

• ../trailingEdgeDevice/innerShape

• ../leadingEdgeDevices/leadingEdgeDevice/outerShape

• ../leadingEdgeDevice/innerShape

Inner Shape

In principal the inner shape of the wing is described via relative coordinates (𝜉 and 𝜂). But, in this context two different
types of relative coordinates are to be distinguished. Firstly, there is the aerodynamic segment coordinate system. An
aerodynamic section lies between two aerodynamic profiles (yellow surfaces). The following figure depicts the datum
definition of Iso-𝜉 and Iso-𝜂 lines.

Figure 2.17 : Coordinates within aerodynamic segment

Secondly, there is the component segment coordinate system. Following, exemplary a wing decomposition into several
component segments (green and red) is illustrated.

The definition of the component segment coordinate system differs compared to the aerodynamic segment coordinates.
The subsequent shown figures depict how the component segment 𝜉 and 𝜂 is defined.
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Figure 2.18 : Exemplary component segment definition for wing

Figure 2.19 : Component segment coordinate system definition
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Figure 2.20 : Special case in defining component segment coordinates for transformed aerodynamic segments

Wing Coordinate Transformation

This section is dedicated to explain briefly the mathematical background of the coordinate transformation needed for
the wing. Spar positions and rib positions are used to locate the corresponding structural components within the wing.
Relative coordinates specified within the component segment coordinate system are used for this purpose. Relative
coordinates related to the component segment coordinate system are following named 𝜉 and 𝜂. All aerodynamic seg-
ment related coordinates are named 𝜉

′
and 𝜂

′
. The corresponding positions in absolute coordinates can be determined

by exploiting the mathematical formulation of the chord surface (represents the mid surface through an aerodynamic
segment from leading to trailing edge). The chord surface (it is referred to Inner Shape) of the aerodynamic segment
is parameterized as follows:

𝑝(𝜂
′
, 𝜉

′
) = 𝜂

′
�⃗� + 𝜉

′
�⃗� + 𝜂

′
𝜉
′
�⃗� + 𝑑, 𝑤𝑖𝑡ℎ

�⃗� = −𝑝1 + 𝑝2,

�⃗� = −𝑝1 + 𝑝3,

�⃗� = 𝑝1 − 𝑝2 − 𝑝3 + 𝑝4,

𝑑 = 𝑝1.

For transforming component segment coordinates the aerodynamic segment chord surface edge points (𝑝1 to 𝑝4) are
taken. Utilizing these vectors, three vectors are formed. The first vector �⃗�𝑙 describes the leading edge:

�⃗�𝑙 = 𝑝2 − 𝑝1

The second vector �⃗�𝑡 describes the trailing edge:

�⃗�𝑡 = 𝑝4 − 𝑝3

The third vector �⃗�𝑙 is the leading edge vector projected on the wing xy-plane:

�⃗�𝑙 = −�⃗�𝑙, 𝑤𝑖𝑡ℎ 𝑛𝑥 = 0
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Depending of the shape of the aerodynamic segment in absolute coordinates it is potentially necessary to extend the
leading or the trailing edge. The corresponding procedure is depicted in the next figure and will be described following.

Figure 2.21 : Component segment coordinate transformation

The plane through a trailing edge point (𝑝3 or 𝑝4) with the normal vector �⃗�𝑙 is needed to calculate the respective
intersection with the leading edge. The plane equation equals to:

(𝑝− 𝑝𝑖) · �⃗�𝑙 = 0.

The linear equation of the leading edge equals to:

𝑝 = 𝑝1 + 𝜂
′
(𝑝2 − 𝑝1).

This leads to:

𝜂
′

𝑙 =
(𝑝𝑖 − 𝑝1) · �⃗�
(𝑝2 − 𝑝1) · �⃗�

.

In case that 𝜂
′

𝑙 > 1 the leading edge has to be extended. The new leading edge point is defined as 𝑝
′

2 = 𝑝1+𝜂
′

𝑙(𝑝2−𝑝1).
For 𝜂

′

𝑙 < 1 the intersection point with the trailing edge (𝑝
′

4) can be calculated in the same way. The same procedure is
to be conducted for the inner section of the component segment. Finally, we should have four points (𝑝

′

1 to 𝑝
′

4) defining
the component segment corners, which can, but not have to, be different from the aerodynamic segment corner points.

Note: This procedure has to be performed only once for the inner and the outer section of the component segment.

Using 𝑝
′
1 to 𝑝

′
4 the component segment corner 𝜂 values can be calculated:

𝜂𝑖 =
(𝑝𝑖 − 𝑝

′

1) · �⃗�
(𝑝

′
2 − 𝑝

′
1) · �⃗�

.

In order to calculate the absolute coordinates of a (𝜂, 𝜉) pair the following calculations have to be conducted:

𝑝𝑏𝑒𝑔 = (1 − 𝜉)𝑝1 + 𝜉𝑝3,

𝑝𝑒𝑛𝑑 = (1 − 𝜉)𝑝2 + 𝜉𝑝4.
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Afterwards the corresponding 𝜂 values can be determined:

𝜂𝑏𝑒𝑔 = (1 − 𝜉)𝜂1 + 𝜉𝜂3,

𝜂𝑒𝑛𝑑 = (1 − 𝜉)𝜂2 + 𝜉𝜂4.

And finally we get our 3D point:

𝑝(𝜂, 𝜉) = 𝑝𝑏𝑒𝑔 +
𝜂 − 𝜂𝑏𝑒𝑔(𝜉)

𝜂𝑒𝑛𝑑(𝜉) − 𝜂𝑏𝑒𝑔(𝜉)
(𝑝𝑒𝑛𝑑(𝜉) − 𝑝𝑏𝑒𝑔(𝜉)).

The way back from absolute coordinates to relative coordinates is more complex. Since the chord surface is defined
as bi-linear function, the calculation of relative coordinates is a non-linear problem. This implies the need for an
optimization. During this optimization process combinations of (𝜂, 𝜉) which is used to evaluate the previous equation.
For a specified position 𝑝* (in absolute coordinates) on the chord surface the optimizer tries various combinations of
(𝜂, 𝜉) in order to minimize the distance between 𝑝* and 𝑝(𝜂, 𝜉). The objective function reads:

𝑓 = 𝑚𝑖𝑛(‖𝑝* − 𝑝(𝜂, 𝜉)‖).

Wing Structure

The principle assembly of a wing is depicted in figure CPACS compo-
nents determining the wing geometry. The wing structure can be found in
/cpacs/vehicles/aircraft/model/wings/wing/componentSegemnts/componentSegment/structure. All given infor-
mation is read for each component segment, specified within CPACS. Subsequently, all data is being evaluated
and composed to a continuous wing structure. Generally the structural components are given in spars, ribs,
upperShell and lowerShell.

• spars - /cpacs/vehicles/aircraft/model/wings/wing/componentSegemnts/componentSegment/structure/spars

• ribs - /cpacs/vehicles/aircraft/model/wings/wing/componentSegemnts/componentSegment/structure/ribsDefinitions

• skins - /cpacs/vehicles/aircraft/model/wings/wing/componentSegemnts/componentSegment/structure/upperShell

• skins - /cpacs/vehicles/aircraft/model/wings/wing/componentSegemnts/componentSegment/structure/lowerShell

Following the processing of the individual structural components will be briefly described:

Attention: All structural components are specified in component segment coordinates, which have to be trans-
formed, in order to use the TIGL-Library properly (see Inner Shape). Each aerodynamic segment as well as each
component segment reaches from 𝜉 = 0 to 𝜉 = 1 and from 𝜂 = 0 to 𝜂 = 1. But, one component segment contains
at least one aerodynamic segment, which raises the issue of coordinate transformation. All relative coordinates
used wihtin the wing are refered to the component segment coordinate system.

Wing Spars

Every spar within a component segment is described through a varying number of spar positions and a spar
segment.

At first the spar points (->``sparPositions``) have to be defined. Spar points are defined using the relative coordinates
𝜂 and 𝜉. Spar points do lay on wing middle plane. Two or more spar points are connected to one spar segment.
Each spar segment can be seen as one spar. One spar point can be used by more than one spar, if e.g. two spars
are merging. The detailed cross section of the spar is also defined for the respective spar segment. An examplary
CPACS definition is shown in figure Wing Spars

Spar cells are an optional element of the CPACS. They are defined via the etaCoordinates and define a region
of special cross section and material properties. Within spar cells a special area of the spar is defined where
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Figure 2.22 : Wing structure cpacs structure

Figure 2.23 : Wing spars cpacs structure

Figure 2.24 : Wing spars cpacs schematic
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different cross section and material properties shall be defined. The area of the spar is defined by using the parameters
‘fromEta’ and ‘toEta’. The definition of the caps, webs and rotation is equivalent to the cross section definition of the
complete spar.

Wing Ribs

Ribs are described through rib setswithin a component segment. Within these rib sets an eta range can be specified
containing a specified number of ribs with equal properties and characteristics.

Figure 2.25 : Wing ribs cpacs structure

The positions of the rib, as well as the orientation of the ribs are defined in ribPositioing. The cross section
properties, as e.g. materials, are defined in ribCrossSection. The positions of the ribs are defined by placing the
ribs on a reference line on the wing (ribReference). The inner and the outer beginning of the rib set is defined
using etaStart and etaEnd. The position of the forward and rear end of the ribs is defiend by ribStart and
ribEnd. The orientation of the ribs is defined in ribRotaton. The number of ribs of the current rib set is either
defined by ribNumber or by spacing. Different possibilities to define ribs within CPACS is depicted in figure
Wing Ribs.

Figure 2.26 : Wing ribs cpacs schematic
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Wing Skin

In general the skin of the wing is characterized via an upperShell node and a lowerShell node within CPACS, respec-
tively. These nodes contain general information on the upper skin and the lower skin of the wing. Furthermore a global
stringer characterization is given.

Figure 2.27 : Wing Skin cpacs structure (upperShell as well as lowerShell)

If different skin or stringer properties should be defined in a special region of the wing this can be done within
cells.If the stringer should not be defined explicite, they can be defined implizite by defining an equivalent material
layer and using a composite as material.

Figure 2.28 : Wing Skin Cells cpacs structure (upperShell as well as lowerShell)

A cell defines a special region of the wing. Within this region skin and stringer properties can be defined that
differer from the properties of the rest of the wing. In general a cell is defined by specifying four borders, the cell
leading edge and trailing edge and the inner border and the outer border. Those borders can
either be defined by using 𝜂 and 𝜉 coordinates or by referencing to spars and ribs. Mixed definitions (e.g. forward
border is defined due to a spar, side borders due to eta coordinates) is allowed. In general a cell is quadrilateral.
But if e.g. the spar, which is used for the definition of the trailing edge, has a kink, the cell can have more
than four corners. The cell leading edge and trailing edge (= forward and rear border) can either be
defined by referencing to a spar (->``sparUID``) or by the defining the 𝜉 (=relative chord) coordinates of the border
(xsi1 = inner end; xsi2 = outer end). The cell inner border and outer border can either be defined
by referencing to a rib (->``ribDefinitionUID`` and ribNumber) or by the defining the 𝜂 (=relative spanwise)
coordinates of the border (eta1 = forward end; eta2 = rear end).

An example for the various possible CPACS definitions is depicted in figure Wing Skin.
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Figure 2.29 : Wing skins cpacs schematic

Wing Flaps

Mainly analog to Wing generation

Structure

The wing structure can be found in - /cpacs/vehicles/aircraft/model/wings/wing/componentSegments/componentSegment/controlSurfaces/trailingEdgeDevices/trailingEdgeDevice/structure.
All given information is read for each trailing or leading edge device, specified within CPACS. Generally the structural
components are given in spars, ribs, upperShell and lowerShell.

• /cpacs/vehicles/aircraft/model/wings/wing/componentSegments/componentSegment/controlSurfaces/trailingEdgeDevices/trailingEdgeDevice/structure/spars

• /cpacs/vehicles/aircraft/model/wings/wing/componentSegments/componentSegment/controlSurfaces/trailingEdgeDevices/trailingEdgeDevice/structure/ribsDefinitions

• /cpacs/vehicles/aircraft/model/wings/wing/componentSegments/componentSegment/controlSurfaces/trailingEdgeDevices/trailingEdgeDevice/structure/upperShell

• /cpacs/vehicles/aircraft/model/wings/wing/componentSegments/componentSegment/controlSurfaces/trailingEdgeDevices/trailingEdgeDevice/structure/lowerShell

For the details on the ribs, spars and skins within the flaps please see (see Wing Spars), (see Wing Ribs) and (see Wing
Skin)

Wing Coupling

The flaps are coupled to the attached wing via tracks. Those can be found in The wing structure can be found in -
/cpacs/vehicles/aircraft/model/wings/wing/componentSegments/componentSegment/controlSurfaces/trailingEdgeDevices/trailingEdgeDevice/tracks.
The tracks are defined in eta coordinates in the flap coordinate system. Within DELiS TIGL is used to calculate the
keypoint corresponding the track eta coordinate. Afterwards the nearest 2 ribs are selected. All keypoints intersecting
those 2 ribs with the corresponding spars are attachment keypoints. Then the attachment keypoints are coupled
with the track points via contraint equations. The track points itself are modelled as additional mass points with a
negligible mass.

An example is shown below.
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Figure 2.30 : Example for flap/wing coupling
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Create Symmetrical Wing

Wing.getReflectedWing(old2NewDict=None, copyProperties=True, unifyAttributesOnSymmetry-
Plane=True, wingCopy=None)

A Wing instance is returned that is a copy of the original half wing and subsequently reflected on the xz-plane.

The CPACS-definition usually uses half wing definitions with the symmetry attribute set to True. Thus, delis
also uses the CPACS definition of this half wing in the first place, generates its geometry, loads, secondary
masses and connections to other components. In order to create a full wing model, this half wing instance is
copied at first. Secondly all keypoints, coordinatesystems (see note below), loads etc. are reflected. In a third
step all IDs are changed to satisfy the new component number (see Component Numbering). Next all geometric
items that are on the xz-plane are fused such that e.g. a spar might share the same keypoints on the xz-plane
with its reflected pendant.

When creating new attributes of this wing or other subattributes, this attributes class needs a copy method
that must be called by the base instance. Please also consider if the new item might be on the symmetry plane
and if it contains keypoints that must be reflected. This must be added to the reflection part in this method.

To reflect coordinate systems, it is assured to reflect the normal direction (z-coordinate) and the material
direction (x-coordinate). The y-direction will be different in order to satisfy the right-hand rule.

The Rib on the symmetry plane* is removed on the copid wing to avoid conflicts. Thus, at some points the parent
rib might be the original rib. If the removed rib was the rootRib, the second rib becomes the rootRib.

If reflectedWingLoads are given in the loadCases, they are moved to the reflected wing’s loadCases. The
reflectedWingLoads of this wing are removed in order to not mix up the loadCase sum on aircraft level.

Parameters

• old2NewDict – Links this wing, its attributes, attributes of the attributes, etc. with their
respective copies in order to avoid multiple copies of the same instance. For the reflection
of only this wing, this parameter can be omitted.

• copyProperties – Flag if sheetproperties and profiles should be copied or if the refer-
ences should be kept.

• unifyAttributesOnSymmetryPlane – Flag; If True, this wing and the
copied&reflected wing are seen as full wing. This means that keypoints (and other geometry
items) are fused if they are on the symmetry plane. This wing is marked as the original wing
and has a reference to the reflected wing in by the attribute reflectedHalfWing.

• wingCopy – if controlSurface ought to be reflected, an already existing controlSurface.
“wing” is passed to the routine. Then, the wing is not copied.
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2.5.3 CPACS Output

See Section Wing Structure See Section Wing Spars See Section Wing Ribs See Section Wing Skin

2.5.4 Splitting of Optimization Regions

2.5.5 Geometry Numbering

Due to the fact, that wing and fuselage can be distinguished by the component number each wing gets (see explanation
below). In this context it is possible that elements within wing and fuselage use the same numbering space for different
types. Keypoints, Lines, Areas and Real constant set are numbered according to following procedure.

Numbering code: WTRRSS

1. W: Component number [1,..,9] (This may be other wings or systems)

2. T: Typ:

keypoint: 1: upper, 2: lower, 7: main gear

lines: 1: upper, 2: lower, 3: rib, 7: main gear, 8: upper stiffener, 9: lower stiffener

surface: 1:upper, 2: lower, 3: rib, 4: spar

3. R: rip number on specific position [1,. . . ,99] (span wise)

4. S: spar number on specific position [1,. . . ,99] (cord wise)

Figure 2.31 : Numbering of Keypoints

For analysis and evaluation of the structure mechanical behavior an FEM model of the wing box of the wing depicted
in the following figure. That means the remaining wing regions, e.g. leading edge, are neglected for the simulation.
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Figure 2.32 : Numbering of Lines
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Figure 2.33 : Numbering of Areas
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Nonetheless, it is also possible to create an FEM model of the full wing containing leading edge, wing box as well as
trailing edge.

Figure 2.34 : Wing resulting FEM model

Concluding the wing calculation is capable of the following:

• create wing geometry models

• create ansys and nastran finite element models

• perform an optimization using SBot in Ansys

•

2.5.6 Stacking Order and Element Normal Orientation

Attention: The z-direction of the material cs is not in every case equal to the element normal orientation!

The following picture shows the orientation of the element normal orientation. The stacking direction depends on the
normal direction as well as the interpretation of the fem system used. These are the defaults when defining a composite
in ansys and nastran:

The layers stack in normal direction where the first layer defined is at the bottom (Ansys) respectively has a Z0 = 0
(Nastran). This default definition does not match the requirement that the delis geometry is the outer shape of the
wing/fuselge and the stacking must be in the inside of the geometrical shape. Thus, in DELiS the following definition
of normals, stackings and their offsets is used. The notation 1..n refers to the order of composite layers defined in
cpacs and in DELiS.

This is the element normal direction and stacking order for ansys-sbot

46 Chapter 2. User Manual



delis, Release 21.2.6

Figure 2.35 : Default Element Normal Orientation and Stacking Order of Ansys and Nastran

This is the element normal direction and stacking order for ansys-hypersizer

2.5.7 Material Orientation

Attention: The z-direction of the material cs is not in every case equal to the element normal orientation!

Each shell-based region having sheetproperties has a local coordinate system which is accessed by
sheetProperties.coordinateSystem. They are created within the createAreas method. The projec-
tion onto the respective element of the direction of the x-axis of these coordinate systems define the 0° fiber direction.
This can be seen in the following image. This direction can be altered by the parameter orthotropyDirection
in the CPACS which causes a coordinate system that is rotated around the positive z-axis. For wing skins , this the
cpacs definition of the coordinate system is used. Spars and ribs are close to the CPACS definition but they are aligned
with their respective areas and not using the chord surface as used in CPACS. Again, the orientation is quite similar.

A rough visualization of the local coordinate systems can be found in the next image. The coordinate system of wing
skins, the x-axis is defined by the two leading edge points of the ‘from’- and the ‘to’-element of the componentSegment
definition. The z-axis is perpendicular to the global x-axis and the local x-axis of the wing skin. Here, the global x-axis
is used as first axis and the local x-axis of the skin as second axis for computing the cross product. Finally, the wing
skin y-axis is defined by right hand rule.

The spar coordinate system’s x-axis is directed to positive eta along the respective faces of the sparCell’s first area.
The z-direction is directed to positive xsi coordinate and perpendicular to the area. y is defined by right hand rule.

The rib coordinate system is defined as follows: x-axis is from leading to trailingeEdge of the first area of the respective
ribSegment. z-axis is normal to the rib in the direction of positive eta. y is defined by right hand rule.

2.6 Rotor Blade

Analog to Wing generation
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Figure 2.36 : Element Normal Orientation and Stacking Order
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Figure 2.37 : Element Normal Orientation and Stacking Order in Ansys for SBot
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Figure 2.38 : Projection of the local coordinate systems’s x-axis onto the element in nastran and ansys. [Source:
Nastran qrg]
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Figure 2.39 : Definition of local coordinate systems. The projection of the x-axis onto the shell elements define the
material direction. An optional CPACS parameter orthotropyDirection rotates these default coordinate systems around
the positive z-axis.
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2.7 Fuselage

Figure 2.40 : Fuselage finite element model consisting of shells and beams.

The fuselage calculation is capable of the following:

• create fuselage geometry models

• create ansys and nastran finite element models

• perform an optimization using SBot in Ansys

• perform finite element model reductions along the load reference axis in ansys and nastran

• split coarse skin and floor panel definitions into fine regions for optimization

• calculate mechanical profile cross section properties for isotropic material

2.7.1 CPACS Input and Structure Description

Outer Shape

Generally the outer shape is given in sections, segments and positionings. This information represents a
CAD model like structure and is only used by the TIGL package which calculates the coordinate of the intersection
point of a user defined vector and the outer shape.

• /cpacs/vehicles/aircraft/model/fuselages/fuselage/sections/section

• /cpacs/vehicles/aircraft/model/fuselages/fuselage/segments/segment

• /cpacs/vehicles/aircraft/model/fuselages/fuselage/positionings/positioning

52 Chapter 2. User Manual



delis, Release 21.2.6

Inner Shape

delis.model.partitioning.fuselageposition.FuselagePosition(**kwargs)
Here a point on the fuselage hull and -for stiffeners- a beam profile attribute. The position is used by frames as
framePositions and fuselage stringers as stringerPositions. Both frames and stringers are defined geometrically
along a single FuselagePositions. The position of a frame/stringer at a certain points always refers to the previous
FuselagePosition

With a given outer shape, a coordinate system is required to specify the positions of structure elements such as
stringers and frames. Fuselage coordinates of structural elements are described via these 4 coordinates (CPACS
notation):

• positionX

• referenceAngle

• referenceY

• referenceZ

PostionX is an absolute coordinate describing the fuselage longitudinal direction. In the following image the
definition of the other coordinates on a specific positionX can be seen. TIGL calculates the intersection points
of a reference axis which starts at a given point in the inner fuselage and runs outwards. The starting point is the
fuselage’s origin of coordinates (y and z) which is offset by referenceY and referenceZ. Lastly referenceAngle
defines the direction from this starting point. If 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐴𝑛𝑔𝑙𝑒 = 0 the reference axis aligned parallel to the
z-axis. The angle rotates in clockwise-direction viewed to the positive x-coordinate.

Y

Z

referenceY
referenceZ

referenceAngle

referenceAxis

Figure 2.41 : Fig.: CPACS fuselage coordinate description
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Frames

/cpacs/vehicles/aircraft/model/fuselages/fuselage/structure/frames

Figure 2.42 : CPACS frame definition

Frames are defined by specifying a list containing positions and structuralElementUIDs. Those positions are composed
of a position in x-direction, a reference point on the yz-plane and a reference angle as described in Inner Shape. The
structuralElementUID references to the profile definition (see CPACS Profiles and DELiS Profiles). The alignment
is not supported in DELiS, continuity is always 0 and interpolation is always 0. These frame positions enable the
definition of different frame profiles on the frame’s path. A framePosition is valid till the next framePosition in
referenceAngle-direction. Thus at least one framePosition is mandatory.

Frames and stringers compose a grid on the outer surface which is the main geometric discretization of a fuselage.
Many structure elements depend on specific frames, stringers or on the whole grid by referencing frames and stringers
as associative parametric description of their position.

Figure 2.43 : Fuselage frames depicted as fem model
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Stringers

/cpacs/vehicles/aircraft/model/fuselages/fuselage/structure/stringers

Figure 2.44 : CPACS stringer definition

Stringers are defined by specifying a list containing positions and structuralElementUIDs. Those positions are com-
posed of a position in x-direction, a reference point on the yz-plane and a reference angle as described in Inner Shape.
The structuralElementUID references the profile definition(see CPACS Profiles and DELiS Profiles). The alignment
is not supported in DELiS, continuity is always 0 and interpolation is always 0. These stringer positions enable the
definition of different stringer profiles on the stringer’s path and changing the referenceAxis in the fuselage’s aft. At
least two stringerPositions are mandatory. The geometry definition of stringers using a reference axis is needed to
have stringers running on a constant z-coordinate through the fuselage. These stringers are used to mount the pax-
floorstructure which in most aircrafts is leveled. This can be seen on a fuselage tail cone when looked from behind as
depicted in the following image.

Stringers shall not cross each other. Internally they are ordered in respect to their startX and tangential starting
position. There are some prerequisites for the skin panel definition since they are bordered by the stringers and frames.
See Fuselage Skins for prerequisites.

Fuselage Skins

/cpacs/vehicles/aircraft/model/fuselages/fuselage/structure/skinSegments

Fuselage skinSegments are defined by the 5 references. It first references the sheetElement (see Sheet Elements) and
then the bordering frames and stringers. This requires the referenced frames and stringers should from a closed graph.
I.e. no stringer should end previous of the ending frame. The element standardSheetElementUID is not supported in
DELiS since this requires the search for all areas not covered by explicitly defined skinSegments.

The skin segments are created after the creation of frames and stringers. Additionally they are split into finer regions
to represent the optimization region as described in DELiS Toolspecific Preferences using the variables skinBaysInSiz-
ingRegionEta and skinBaysInSizingRegionXsi. The initial split is kept intact. Only each skinSegment is split into finer
level of detail. This way one can still preserve initial material settings.
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Figure 2.45 : Fuselage stringers where some stringers in the green and brown zone are on a constant z-axis to mount
the floor structure.

Figure 2.46 : Fuselage stringers depicted as fem model

Figure 2.47 : CPACS skinSegments definition
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Figure 2.48 : Fuselage skins as defined in an initial CPACS file

Figure 2.49 : Fuselage skins split with default split options in toolspecific [skinBaysInSizingRegionEta=1, skinBaysIn-
SizingRegionXsi=4]

Floor Structure

/cpacs/vehicles/aircraft/model/fuselages/fuselage/structure/paxCrossBeams

/cpacs/vehicles/aircraft/model/fuselages/fuselage/structure/cargoCrossBeams

Crossbeams are defined by a frame it is attached to on both sides. The referenceZ ist the z-coordinate in the fuselage
coordinate system describing the level of the crossbeam. It also references the profile definition (see CPACS Profiles
and DELiS Profiles). The alignment is currently not supported. The distinction between pax and cargo elements is
done in DELiS by the variable deck

/cpacs/vehicles/aircraft/model/fuselages/fuselage/structure/paxCrossBeamStruts

/cpacs/vehicles/aircraft/model/fuselages/fuselage/structure/cargoCrossBeamStruts

Crossbeam struts are defined by a reference to the crossbeam and the frame it is attached to. positionYAtCrossBeam
describes the y-coordinate of the crossbeam at which the strut is attached. From this position angleX defines the angle
of the strut in global yz-plane. It defaults to 180. Struts also reference the profile definition (see CPACS Profiles and
DELiS Profiles). The alignment is currently not supported. The distinction between pax and cargo elements is done in
DELiS by the variable deck

/cpacs/vehicles/aircraft/model/fuselages/fuselage/structure/longFloorBeams

Longfloorbeams are defined analog to stringers using positions. Each longFloorBeamPosition contains a refer-
ence to the crossbeam where it is located. positionY defines the y-coordinate at the crossbeam in the fuselage-
coordinatesystem. Longfloorbeams also reference the profile definition (see CPACS Profiles and DELiS Profiles).
The alignment is not supported in DELiS, continuity is always 0 and interpolation is always 0. The positions of
longfloorbeams enable the change of the position and of the profile definition.

Figure 2.50 : Fuselage skins split with coarse split options in toolspecific [skinBaysInSizingRegionEta=4, skinBaysIn-
SizingRegionXsi=10]
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Figure 2.51 : CPACS crossbeam definition for pax and cargo

Figure 2.52 : CPACS crossbeamstrut definition for pax and cargo

Figure 2.53 : CPACS longfloorbeams definition
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Figure 2.54 : Fuselage floor structure depicted as fem model. blue: crossbeams; red: crossbeamstruts; green:
longfloorbeams

Floor Panels

Bulkheads

Center Fuselage Area

2.7.2 Splitting of Optimization Regions

In the DELiS toolspecific preferences, variables defining the membership to an optimization regions can be set. An
optimization region is represented by the fem properties and thus the profile- and sheet based structural elements
(DELiS Profiles and DELiS SheetProperties). For example, several frames may reference the same profile-object and
are optimized having always the same profile. When a cpacs is read, the toolspecific splitting preferences are applied.
Some of the splitting properties can be seen in the following images.

• skinBaysInSizingRegionEta

• skinBaysInSizingRegionXsi

• framesInOptimizationRegion

• optimizationRegionsInOneFrame

• stringersInOptimizationRegion

• stringerLinesInOptimizationRegion

• crossbeamsInOptimizationRegion

• crossbeamstrutsInOptimizationRegion

• longfloorbeamsInOptimizationRegion
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• longfloorbeamLinesInOptimizationRegion

Figure 2.55 : Fuselage skins split

Figure 2.56 : Fuselage frame split

Figure 2.57 : Fuselage crossbeam split

2.7.3 Geometry Numbering

Fuselage numbers consist of 8 digits. They are given according to a type number(2 digits), the number of it’s adjacent
frames(2-4 digits) and stringers(2-4 digits) or longFloorBeams(2-4 digits). For lines the first keypoint and for areas
the first line number is used as FFFSSS numbering. The type number can be found in the aircraft Geometry and FE
Numbering. The numbering and sorting assumptions of each structure element is described as extrusion direction in
the fuselages Bulkhead Numbering section.

The amount of digits for frames, stringers and seatrails is defined by these global variables

𝑀𝑌𝐺𝐿𝑂𝐵𝐴𝐿.𝑓𝑟𝑎𝑚𝑒𝐼𝑑𝑅𝑎𝑛𝑔𝑒 = 10𝑛

𝑀𝑌𝐺𝐿𝑂𝐵𝐴𝐿.𝑠𝑡𝑟𝑖𝑛𝑔𝑒𝑟𝐼𝑑𝑅𝑎𝑛𝑔𝑒 = 10𝑚

Where n is the amount of digits for fames and m is the amount of digits for stringers and longfloorbeams.

An exception is the area and line numbering when a stringer is running out or starting. This leads to an area with 5
keypoints and lines. For FE-modeling an artificial line is introduced to the area splitting it into 2 pieces. The SSS part
of the newly created line and area is numbered in regard to the starting or ending stringer. This can be seen exemplary
in the following figure. Here the area enclosed by the keypoints 8069112, 8069027, 8069113, 8070113 and 8070112
is split up creating the line L9068027 and area A7069027.
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Figure 2.58 : Fuselage strut split

Figure 2.59 : Fuselage longfloorbeam split

Figure 2.60 : Fuselage numbering scheme of keypoints, lines and areas

Figure 2.61 : Keypoint numbering
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Figure 2.62 : Line numbering

Figure 2.63 : Area numbering

62 Chapter 2. User Manual



delis, Release 21.2.6

Figure 2.64 : Keypoint(left), line(center) and area(right) numbering for areas with 5 keypoints

Bulkhead Numbering

The numbering of the bulkhead in general, is similar to the numbering of the hole fuselage. One difference is that the
areas are assigned to a different type (first 2 numbers) other than the keypoints and lines. The vertical lines posess a
higher horizontal position number (last 3 digits) than the horzontal lines.

Keelbeam Numbering

The keelbeam includes keypoints, lines and areas from the frames, the stringer, the skins and the wings. It therefore
consits of different ID types. As usual the FFFSSS numbering changes with the position of the element.

2.7.4 Stacking Order, Material- and Element Normal Orientation

The following picture shows the orientation of the stacking order, material- and element normal orientation. The
stacking order depends on the direction of the z-axis. The element normal orientation points into positive z-direction.
The reference layer (in ANSYS called ‘Section Offset’) describes, where the stacking is located in relation to the
given area. For Nastran the elements are offset by -1 * thickness for ref=top and for ref=mid the offset is -0.5
* thickness. Each shell-based region having sheetproperties has a local coordinate system which can be accessed by
sheetProperties.coordinateSystem. They are created within the createAreas method. The projection
onto the respective element of the direction of the x-axis of these coordinate systems define the 0° fiber direction. This
can be seen in the following image. This direction can be altered by the parameter orthotropyDirection in the
CPACS which causes a coordinate system that is rotated around the positive z-axis.

2.8 CPACS Generator

2.8.1 AircraftModel

delis.service.aircraftgenerator.AircraftGenerator(**kwargs)
This class is intended to generate the structure topology of an aircraft.

AircraftGenerator.getAircraft(initialAircraftModel)
doc
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Figure 2.65 : Keypoint numbering
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Figure 2.66 : Line numbering
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Figure 2.67 : Area numbering

Figure 2.68 : Keypoint numbering
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Figure 2.69 : Line numbering

Figure 2.70 : Area numbering
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Figure 2.71 : Element Normal Orientation, Stacking Order and Material Orientation (Default)
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2.8.2 Wing/Wind Energy Blade

Rib Generator

AircraftGenerator.generateRibs(compSegment, engines=[], mainGears=[], existingRibs=[])
The method generates a rib structure inside a wing’s component segment. If ribs are already existing, new ribs
are generated and the existing ribs are used for initializing the sheetproperties of the new ribs.

The general procedure of system rib generation is defined as follows:

1. Define initial eta coordinates for ribs at symmetry plane and tip. These ribs are always parallel to the
symmetry plane

2. Add eta coordinates of additional dependent system ribs (rib at engine, gear, midsparEnd, rootrib)

3. determine the end eta where no rotation occurs

4. Generate rib objects from previously defined system rib etas

5. Determine eta coordinates between system ribs to add further ribs (based on mininmal rib distance)

6. Generate rib objects between previously generated system ribs

7. correct rib crossing by adjusting the rib angle of a group adjacent ribs

8. If some ribs are already existing (e.g. from CPACS), map sheetproperties to nearby new ribs

There are two crucial decisions that are taken. The first decision is the rotation angle of the rotated ribs. In
case of a main wing, the rotation is 90° to the front spar. For others (htp,vtp), the rotation reference is the rear
spar. Secondly, (mentioned in 3.) the end eta where no rotation occurs is decided by these rules with decreasing
priority

a) if midspar is present, it’s last eta coordinate is the first fully rotated rib

b) Else if engine is present, the eta of the first engine is the last non-rotated rib

c) Else if frontspar has at least 3 cpacs-defined wingPositions, the eta of wingPos[1] is used

d) Else the rib after the first rib is the first rotated rib

This is an example output of the ribgenerator:

Parameters

• compSegment – ComponentSegment, where ribs shall be inserted

• engines – Engines used for generation engine ribs

• mainGears – Main gears used for generation of gear ribs at gear location.

• existingRibs – Already exisiting ribs which are used for material adaptaption of the
new ribs.

Returns list of ribs created
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Figure 2.72 : Example output of the rib generator
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2.8.3 Fuselage

AircraftGenerator.getFuselage(initialFuselage=None, createFloorStructure=True, createWing-
Box=True)

This method generates a fuselage. Actually an initial fuselage without structure is needed.

Parameters

• initialFuselage – Fuselage object having segments, sections, positionings already
defined. but structure is not present

• createFloorStructure – Defines whether floorstructure should be generated or not -
True or False

• createWingBox – Defines whether the cutout for the wingbox should be generated or
not - True or False

Returns fuselage instance

Generating frames

Figure 2.73 : Creation of frames

Frames are created equidistant in order to the parameter self.framePitch and the fixed frames at the front and rear
bulkhead and the wing supporting Frames. At the front fuselage the half framePitch is used up to the biggest
fuselage diameter.

Generating stringers

To place the stringers, the aircraft is divided into three parts (Figure ?? ):

• Part I is from forward bulkhead to the first location of the biggest diameter

• Part II is from the first location of the biggest diameter to rear bulkhead

• Part III is placed behind the rear bulkhead. There is no floorstructure in this section.

The final stringerPositions are calculated at the sections a, b, c and d between those parts. The path of a stinger
in one part is always defined by the front stringerPosition. This stringerPosition defines a plane. It is defined by
the vector calculated from angle, ref_y and ref_z (see Figure 2.74 point 1 and referenceAngle) and running in
x-direction. The intersecting line of this plane and the fuselage geometry defines the path of the stringer.

There are several requirements for the stringer calculation:

• The stringers should be equidistant on the upper and lower side of the floor height.
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• Part I & II requires a horizontal stringer at the floor crossbeams.

• Additionally part II requires horizontal stringers from the floor level up to relPaxHeight (see Figure 2.76 ).

• The reference point must always be inside the fuselage.

For section a and part I (Figure 2.74 ), the reference point and angle is calculated by firstly calculating equidistant
points at section a (e.g. point 2) and section b (e.g. point 3). The stringer pitch above the stringer at floor level
may differ from the stringer pitch below floor level. The angle is calculated for each set of “2” and “3” points.
The reference is calculated by the extension of the vector 23 to the inner.

For section b and part II there is a distinction between horizontal stringers and non horizontal stringers. Hori-
zontal stringers run from the floor level up to relPaxHeight and have a +-90deg angle. Their reference is y=0 and
z representing the respective height of the horizontal stringer. All non horizontal stringers have their reference
in the geometrical center of section b. Their angle is calculated using the geometrical center of section b and
their outer location of section b (point 3 in Figure 2.74 )

Section c and part III stringerPositions are calculated by the given (given from part II) locations at section c and
an equidistant distribution or stringer points at section d.

Another important feature is implemented by ending stringers in part II. If the distance between the stringers gets
too small, a stringer will end at this position. To get this done, the distance of every stringer to its next is checked.
If two subsequent stringer pitches are too small in a row, the middle stringer will end at this position. The stringer
gets its final stringerPosition at the actual iterated frame. The stringer gets deleted from the reference lists that
is used for further calculations. The distance checks continue.

Generating floor structure

The positions of the floor structure is calculated by the dimensions of the container. The container feet width
is used to calculate the the cargo floor height. This cargo floor height + container height + “free space delta” is
used to calculate the height of the passenger floor. The width of the container is used to place the struts.

Restrictions

• the placement of the struts at the cargo crossbeams must be entered manually and may be singular

• some areas of floor structure may be outside of the fuselage area, depending on the defined parameters

• the parameter self.pitchfactor is something like a best-fit-factor. There needs to be some testing for best
match
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Figure 2.74 : Creation of reference points for stringer positioning
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Figure 2.75 : Ending stringers due to the vicinity criterion

Figure 2.76 : definition of the floor structure

74 Chapter 2. User Manual



delis, Release 21.2.6

2.9 GMSH based mesh generation in DELiS

In DELiS, the open-source tool called “Gmsh” can be used for meshing the structural aircraft geometry in the different
design processes. Only a brief introduction into the tool and its adaption steps within DELiS will be given here. For
further information, please have a look at the entire documentation of gmsh.

Figure 2.77 : Gmsh user interface with exemplary loaded aircraft geometry

As already explained in chapter ???, the initial aircraft geometry is generated in DELiS based on certain functions
of the TiGL library or self-written methods. The full geometry is then available in the DELiS object model with all
information on keypoints, lines and areas as well as their connection between each other. With this information, a
geometry input file (for example test.geo) for gmsh is written. This file contains the geometry with all information
on element topology and mesh sizes. The following picture illustrates the process with exemplary gmsh syntax of the
define such an geometry input file based on previously generated geometry in DELiS.

Attention: When areas are written to the geometry file, the correct order and orientation of the underlying lines
must be ensured when the line loop of the area is defined. The line loop must be either defined in clockwise or
counterclock-wise order of the lines. If a line is defined from point 1 to point 2, but the line need to be reversed to
ensure the loop order, the line id must be multiplied by -1 within the line loop definition (an exemplary illustration
will be given here very soon!)

After the input file is generated, it is passed to gmsh. To call gmsh, several batch parameter are available e.g. to define
the desired mesh output file. As default in DEliS, the “msh” file format is used as output since it provides an easy
understanding and tabular view on the generated mesh elements to ensure easy parsing of the mesh file in DELiS.

In DELiS all node and element information is read into an array structure. In the most simple way, the msh-file
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Figure 2.78 : Schematic overview of geometry inputfile generation for Gmsh based on DELiS internal structure
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ascii format consists of several sections starting with the msh format (which is unused by delis) following with node
information.:

$MeshFormat
2.2 0 8
$EndMeshFormat
$Nodes
11237 #number of nodes
1 30.37980103 0 -0.485089200658 #first node
..
11237 46.54812911557489 28.14459450708101 1.276766481800727 #last node
$EndNodes

After the node information, all information about the created elements are given, for example:

$Elements
20971 #number of elements
1 15 2 0 110101 1 #first element
..
20971 3 2 0 14441100 11237 6318 979 5669 #last element
$EndElements

The element entries define

1. the incrementing element number

2. the element type

3. the number of additional tags assigned to the element. Currently, two different tags can be assigned to an
element. First, a geometrical entity can be assigned representing e.g. the underlying surface an element belongs
to. Here, the internal area id Geometry and FE Numbering is used. Second, a physical entity can be set
representing larger groups of elements (e.g. the hole wing upper cover). The latter is not used in DELiS because
only geometrical information is written in the related geometry writer for gmsh.

4. the special physical tag (0 for no entity tag)

5. the special geometrical tag (0 for no entity tag)

6. all following columns describe the node numbers within an arbitrary element.

Attention: The geometrical entity identifiers do not coincide with the related area ids in DELiS due to the ID
concept which has overlaps in the keypoint, lines and area ranges. To solve this problem, all line ids are multiplied
with 10 and all area ids are multiplied with 100 when writing the information to a geo-input file.

After reading the msh file, all element information must be processed further. This is due to the fact, that the order
DELiS is writing the elements differ from the order in the msh-File. So, all element tables need to be enhanced by
additional information to which component (wing,fuselage) an element belongs. Furthermore, an additional column
is inserted defining the meta element type. This means e.g triangular and quadrilateral elements belong to the same
type.
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CHAPTER

THREE

DEVELOPER TOOLS AND PROCESSES

3.1 Eclipse as IDE - Integrated Development Environment

3.1.1 The Look

First activate all the perspectives you need in

Window->Open Perspective->Other->[PyDev|Debug|XML].

There are shortlinks to the perspectives on the upper right corner. The Pydev Perspective should be your default
perspective and look like this

The tabs can be rearrange by drag and drop. You can include the missing Views(the tabs like PyDev Package Explorer)
by clicking Window->Show View-> etc. The console can be created several times by clicking the button Open
Console->New Console View. By clicking Open Console->PyDev Console you can open a console
to actually input python code for testing.

Change the Workspace to a place somewhere on D:\\<your username>\\ by clicking on File->Switch
Workspace. Here all your local eclipse settings are stored.

3.1.2 Settings

Please add the general eclipse settings that are located on

\\BSFAIT00\fa\Projekte\WingFuselageModelGenerator_Freund\eclipse_prefs.epf.

Import them by clicking File->Import->General->Preferences. Select the file and import all.
Then you need to add the folder of your ModelGeneratorProject(the one with the .project file). Click
Window->Preferences->Pydev->Interactive Console. On the right hand side is this statement listed
os.chdir('D:\\freu_se\\fuselage\\trunk'). Change the path accordingly but still include the double
backslash(\\\\).

With those settings customized templates are available. You can find their definition in
Window->Preferences->Pydev->Editor->Templates called mydef and myclass. They can be
used in the python editor to quickly create new classes or methods by typing mydef and use the auto completion
Ctrl + Space.
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Figure 3.1 : Pydev Perspective
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3.1.3 Shortcuts

CTRL + Shift + L Get list of available shortcuts.

Ctrl + Space Auto completion. You only need to type the beginning of a variable and you get appropriate
suggestions.

CTRL + H Search in the active PyDev Project. Extremely important feature!

CTRL + Shift + F9 Relaunch with the same configuration(Only works in PyDev Editor.

CTRL + Alt + Enter Open interactive console.

CTRL + Shift + 7 Comment/Uncomment selected lines.

Ctrl + 4 Create big comment of the actual selected lines

CTRL + Shift + Up/Down Arrow Go to the next method/class up or down.

ALT + Shift + A Change to Block selecting mode. With this you can select text block over several lines.

CTRL + Alt + A Show Annotations.

Tab Indent one or more lines.

Shift + Tab Unindent one or more lines.

CTRL + D Delete row. Try it! You no more need to grab the mouse and select the line, no more Home,
Shift + End, Delete. Quick and clean.

ALT + Up/Down Arrow Move the row (or the entire selection) up or down. Very useful when rearrang-
ing code. You can even select more rows and move them all. Notice, that it will be always correctly
indented.

ALT + Left/Right Arrow Move to the last location you edited. Imagine you just created a class Foo, and
now you are working on a class Boo. Now, if you need to look at the Foo class, just press Alt+Left
Arrow. Alt+Right Arrow brings you back to Boo.

CTRL+E Shows you a list of all open editors.

CTRL+F6 Use to move between open editors. This is an slower alternative to Ctrl + E. Comes handy
in a situation when you want to periodically switch between two editors, something, what is nearly
impossible with Ctrl+E as it sorts entries quite randomly. Or you might just use Alt+Arrows..

CTRL+F7 Move between views. When in editor, press Ctrl+F7 to switch to the Package Explorer, or
hold Ctrl and press F7 multiple times to switch to other views.

CTRL+F8 Move between perspectives. The same as previous.

CTRL + M Maximize or umaximize current tab.

Alt + Shift + Up Select variable at cursor. In a second step it selects the whole expression in the current
bracket

Alt + Shift + Down Deselects the whole expression in the current bracket. Deselects the currently se-
lected variable

Alt + Shift + - Create another editor window with a second view of the actual file

Ctrl + 4 Perform forward search in TexLipse using SumatraPDF

Ctrl + Alt + F Perform forward search in TexLipse using Pdf4Eclipse

Ctrl + 5 Comment selected lines in TexLipse

Ctrl + 6 Uncomment selected lines in TexLipse
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3.1.4 Run Python Module

Now you can run a python-main file when opening one in src/main/* and pressing F11 -> Python Run. You can
create own run- and debug configurations by clicking on Run -> Run Configurations -> Python Run
and Run -> Debug Configurations -> Python Run. Here you can add commandline arguments and
change the environment for instance.

3.1.5 Spell Checking

Eclipse supports spell checking at least for those types of document:

• py

• tex

• rst

Please refer to the settings Window->Preferences and type spell in the search box. There you find every place
where settings for spell checking can be done. The svn repository provides optional standard dictionaries and also a
user defined dictionary that you can set there. It is located in /static/eclipse_dictionary/. Everyone is
welcome to extend the user-dictionary.

3.2 SVN (Subversion)

3.2.1 Introduction

The DLR hosts a SVN server where the project and its history is stored. This location is called repository. From
this repository one can checkout a working copy. This local copy can be used to add and test something without
disturbing others. When something is working(timestep of few days/hours) one can commit the changes to the server.
For retrieving the local changes to the own working copy one can use the update command.

SVN keeps track of all changes and can perform file merges. That means that 2 people can work concurrently on the
same file in their own working copy. When person 1 commits its changes, they are simply available on the server.
When the second person does the commit, those changes will be merged to the changes of person 1 producing a file
with both changes. This procedure only works when both are not working at the exact same line.

For DELiS two tools for svn are in use:

• TortoiseSVN This is a windows program and can be used from the windows file explorer.

• Subversive This is an eclipse plugin which is used within eclipse.

When you use Mantis, you have to use subversive. Otherwise you may also use TortoiseSVN.

An svn repository generally contains 3 folders:

• trunk

• tag

• branch

For more information see http://en.wikipedia.org/wiki/Apache_Subversion#Branching_and_tagging
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3.2.2 Working With SVN

The svn tools extend folders and files under version control with addional icons. TortoiseSVN provides icons for the
windows file explorer and subversive provides icons for the eclipse pydev package explorer. They represent the status
of the file (unchanged, changed, added and yet not committed, not in repository, conflicted . . . ). They give a good hint
of what is changed and which files need to be taken care of.

For tortoiseSVN the following functions are accessed by doing a rightclick on the respective folder or file in the win-
dows file explorer. For subversive, do a rightclick on a folder or file in eclipse in the PyDev Package Explorer
and then Team to use these functions:

• Commit: After a change on a local file you can upload all changes to the svn server. This will make the changed
files public for all other users working with this repository.

• Update: To receive the changes that others committed to the repository an update can be performed.

• Add to Version Control Adding files and folders to svn control.

• Show History Here an overview is given which changes were done in which svn revision

• Synchronize All synchronize actions refresh the Synchronize view in the Team Synchronizing per-
spective. The changes on the server are listed and also the local changes are shown. No Update or Commit
is done with this.

• Tortoisesvn -> rename Files must be renamed by SVN clients. When using the operating systems rename svn
will not keep track of it an restore the file with the old name.

• Tortoisesvn -> delete Deleting files on the working copy. Do not use the operating systems delete!

• Moving folders Try to avoid moving folders(It still can be done in the TortoiseSVN repo-browser)

• Local settings Local program settings may be changed in settings.py. See settings_template.py
for further instructions.

• Edit Conflicts Let’s assume two developers changed the same file at the same position. One developer commits
that file. When the other developer updates or synchronizes his working copy he will get a conflict as can
be seen in the following image:

Figure 3.2 : Exemplary conflicted file

On every update that creates a conflicting file, eclipse mentions this in a message box. Then you can
rightclick on the conflicted file and go to Edit Conflicts. Caution: the red symbol represents not
only conflicts but merges as well. So is there is no need to edit a conflict the option Edit Conflicts
is not active.

So looking at all the changes one can copy all the appropriate changes to his local file(Working). You
can also use the square in the middle of both windows. Lastly rightclick on the file again and Mark as
Merged or Overwrite Commit.

Edit conflicts in tortoiseSVN is a bit more handy. So one can also use this.

• Further information Further information can be found on the eclipse-subversive documentation under Team
support with SVN and Actions
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Figure 3.3 : Exemplary resolve conflict

The Classic SVN Approach in Eclipse

At first please change the settings in Window -> Preferences -> Team -> SVN and deactivate Check
the new Resources in the Commit Dialog.

After changing files one can rightclick on these files or some parent folders and go to Team. Here all svn commands
described in Working With SVN can be used.

Task Focused SVN Integration In Eclipse

At first please change the settings in Window -> Preferences -> Team -> SVN and deactivate Check
the new Resources in the Commit Dialog.

When working with tasks one can use eclipse’ capabilities to track which files were changes when a specific task was
active. The task focused svn commits are done in the Team Synchronizing perspective. Click on the synchronize
button[1] as depicted in the following image and then on SVN -> Next -> Finish.

Figure 3.4 : Synchronize View

Following the Synchronize View populates. Click on the Show File System Resources button[2] and then
on SVN Changes Sets. Now a list like the one shown in the last figure populates. Items starting with a number
are changes on the svn repository by another user. They can be applied by clicking on the Update all incoming
changes button[3] which is like a regular update on the projects repository. Items without a number are tasks that
were active and have task focused changes. They can be committed by clicking on the Commit all outgoing
changes button[4]. Changes can also be updated and committed for each single task with a rightlick on the respective
change set.
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When performing a commit while working with tasks, one finds a standard text in the commit message containing task
number, task name and web address. A specific message should be added that contains facts not written in the task
description. An exemplary commit message looks like this:

ASSIGNED - # 10340: Investigate eclipse's features for svn+mantis integration - 2h
https://mantis.dlr.de/mantis/view.php?id=10340

documentation added to programmer manual

programmer manual restructured

installation manual restructured: all svn stuff is ported to programmer manual

Note: Files not under version control also show up in a change set. Please be cautious not to include files that you do
not want to have under version control.

3.3 Versioning

DELiS uses semantic versioning (SemVer) as scheme for its versions including one extension. SemVer consists of
three components: major, minor, patch. These numbers are concatenated with a “.”.

major minor patch
Example 13 2 0
Explanation

1. New feature
2. incompatibe to prev

versions

1. New feature
2. compatible to prev

versions

Patch/Bugfix

3.4 Unit Testing

DELiS contains a test-suite for unit testing using pytest. It is loacted in /test/ in the DELiS program folder. The
tests are automatically executed using Jenkins as continous integration platform at http://fa-jenkins:8080.

3.4.1 Placement of the tests in DELiS

• The test modules should be placed under the folder ‘CPACStest’. Please do not confuse it with the ‘test’ folder
under ‘src’

• Should have the prefix ‘test_’

• Tests for a module named ‘xxxyyy’ should be under ‘test_xxxyyy’ module

• Directory structure should always be maintained. E.g. the tests for the module src.buckling.beos5interface.py
should be placed under test.test_src.test_buckling.test_beos5interface.py
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3.4.2 Rules/Guidelines

• Always reset global variables If a global variable is changed during a setup_* or in the test itself, the variable
must be reset at the end of the test. Example which might be run in a teardown_module - function:

def teardown_module(module):
from delis.service.globals import MyGlobals
MYGLOBAL.useComplexCrossSections = MyGlobals.useComplexCrossSections
MYGLOBAL.useInertiaLoads = MyGlobals.useInertiaLoads
MYGLOBAL.runDir = MyGlobals.runDir
#TODO: do other teardown actions

• Mocked objects should have the prefix mock All the objects that are mocked should have a prefix ‘mock’.
For example, if a wing model is mocked its mock object’s name should be like ‘mock_wingModel’

• Test these types of behavior:

– Happycase Happy case is a default scenario featuring no exceptional or error conditions, and com-
prises the sequence of activities executed if everything goes as expected. For example, the happy
case for a function validating credit card numbers would be where none of the validation rules
raise an error, thus letting execution continue successfully to the end, generating a positive re-
sponse.

– Bound/special treatment Bound is where test cases are generated using the extremes of the input
domain, e.g. maximum, minimum, just inside/outside boundaries, typical values, and error val-
ues.A common technique for testing boundary cases is with three tests: one on the boundary and
one on either side of it. So for the previous example that would be -1, 0, 1, 99, 100, and 101.

– Failurecase Failure case is used to check if a particular exception is raised. If the exception is not
raised then the test fails. For example, if an input field is meant to accept only integer values
0–100, entering the values -1, 0, 100, and 101 would represent the boundary cases.

• Long/Extensive/Text-like test names The tests are not called by another method. Thus they can also serve as
documentation of itself. Include happycase, boundary, failiurecase in the name.

• Feature Oriented Testing Tests should be feature oriented. not neccesarily testing each and every method.

• Run longTest in Jenkins Server after fixing Instable Builds After fixing every instable builds the longTest
should be executed on the jenkins server. The short tests do not cover all the tests in the program. It covers
only the short ones, So its always better to execute the long builds after fixing the instability.

3.4.3 Simple Test Example

Let’s create a first test file with a simple test function:

Create a PyDev module under the ‘test’ folder and name it ‘test_sample.py’:

# content of test_sample.py
def func(x):

return x + 1

def test_answer():
assert func(3) == 5

That’s it. You can execute the test function now (right click the module and run as “python Unit-Test”). The output
you will get is below.:
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=========================== test session starts ============================
platform linux2 -- Python 2.7.3 -- pytest-2.3.5
collected 1 items
test_sample.py F
================================= FAILURES =================================
_______________________________ test_answer ________________________________
def test_answer():
> assert func(3) == 5
E assert 4 == 5
E + where 4 = func(3)
test_sample.py:5: AssertionError
========================= 1 failed in 0.01 seconds =========================

Here the ‘assert’ statement failed because func(3) is not equal to 5. Now change func(3) to func(4). Run the test again
and see what happens ;) .

3.4.4 Two ways of starting the Tests

There are two methods of starting the tests. They are as follows,

• Method 1: Running directly from eclipse

• Method 2: Running from the command line

We will see about both the methods one by one.

Important: Before running the tests, make sure the test environment is setup already.

Method 1: Running directly from eclipse

This is probably the easiest method for running the tests right after they are created. To perform this, simply right click
on the test module that you created and choose ‘run as’. Under this click ‘Python unit-test’. An illustration is shown
below,

You should be able to see the tests that are running in the console now and the test failures are shown in the ‘PyUnit’
tab next to the console like the following illustration.

You can also hold ‘Ctrl’ (or ‘Strg’) and select multiple tests and run them at the same time.

Method 2: Running from the command line

This method is exactly how the Jenkins Server runs the tests. So it is always a good programming practice to perform
this step every time before any big change in the code is committed to the SVN and to see if all the tests pass before-
hand. Be advised that this method also runs Pylint, Coverage and Sphinx Documentation. So it takes significantly
longer time to run than the previous method

For doing this you need to create a new ‘External Tools Configuration’. In Eclipse menu bar, go to Run=>External
Tools=>External Tools configurations. Now create a new Configuration with the name ‘Cmd’, Location as
‘C:WindowsSystem32cmd.exe’ and select workspace as CPACS. Now click ‘Run’ button. You should be able to
see the command prompt in the console.

Now, add the path of python and pytest to the windows path. Normally you can use the following lines directly but
make sure the path is the same as in your computer too. Please add them one by one.:

SET PATH=C:\Python27;%PATH%
SET PATH=C:\Python27\Scripts;%PATH%
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Then, use following commands to run the tests,

For running long tests use,:

python setup.py long

For running short tests use,:

python setup.py short

3.4.5 Categorization of tests

The tests can be categorized into two as follows,

• By the type of test and

• By the time taken for the tests to run

We will see about these two categories one by one

By Type

1. Value comparison tests

Here the ‘assert’ keyword is used to compare the values and the test passes if the comparison returns ‘true’ or 1.:

import pytest

def func(x):

(continues on next page)
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(continued from previous page)

return x + 1

def test_mytest1():
assert func(3) == 4

def test_mytest2():
assert func(3) > 3

2. Test the failure case (test exceptions)

Here pytest.raises is used to check if a particular exception is raised. If the exception is not raised then the test fails. In
the following example pytest.raises checks if the SystemExit exception is raised by the func(y). Please import pytest
before running this type of tests.:

import pytest#please import pytest always

def func(y):
if (y-1==0):

raise SystemExit

def test_mytest():
with pytest.raises(SystemExit):

→˓

→˓ func(1)

3. File comparison tests

This test is used to check if two files have the same content. Normally you can use this test for comparing the output
that you get from a module with a sample output that you already have and check if there are any changes.:

import pytest #please import pytest always
from delis.service.utilities import compareFiles,setPathToRootFolder

def test_mytest():
setPathToRootFolder()
assert compareFiles('test/test_workshopExamples/samples/fa_paramam_interface1.mac

→˓','test/test_workshopExamples/samples/fa_paramam_interface2.mac')

• Note that setPathToRoorFolder() is a method that changes the current system path to the root directory of
CPACS.

• CompareFiles(string1,string2) is a custom made method for comparing two files. The compareFiles() function
can be found in src.service.utilities.py.

• There is another function called “predicate(line)“ right above the compareFiles() function in utilities.py where
the lines to be ignored are added. ‘Date’ and ‘OPERATOR’ are already added to it.
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By the time taken for the test to run

1. Long tests

Long tests are the tests that take a longer time to run. Jenkins reserves these tests for the nighty builds and are not run
every time the SVN is committed. For specifying a long test, simply use a marker as below,:

@pytest.mark.long
def test_someTest():

"""test contents here""

@pytest.mark.long is the marker that identifies that a test as a long test.

2. Short tests

Short tests are the tests that take a relatively short time for its execution. All the tests that don’t have any markers
before them are automatically considered to be short tests. (i.e.) you don’t have to do anything to mark it as a short
test. Jenkins runs these short tests every time the SVN is committed.

2. Documentation tests

It is quite inconvenient creating the documentation at each long test. During the creation of the documentation, it can
not be reached. On the other hand, the documentation changes only once in a while. Hence, there is a separate test
type for the documentation called documentationtest. This is used for all tests concerning the documentation.

3.4.6 Writing Tests Inside Classes

Writing tests inside a class is same as writing it outside a class. But there are a few things to be kept in the mind before
writing it. They are, - The class should have a prefix ‘Test’. Note that the first letter of the ‘Test’ is a capital - all the
tests that are inside the class should have an argument ‘self’:

import pytest
class Test_Name:

def test_function(self):
with pytest.raises(ZeroDivisionError):

1/0

3.4.7 Fixtures

Fixtures are used to initialize and deinitialize the tests. The two main functions of a fixture are ‘setup’ and ‘teardown’.
Setup is used for initializing and Teardown is used for deinitializing. There are four types of fixtures. They are,

• Function Fixtures -> ‘setup_function’ and ‘teardown_function’

• Module Fixtures -> ‘setup_module’ and ‘teardown_module’

• Class Fixtures -> ‘setup_class’ and ‘teardown_class’

• Method Fixtures -> ‘setup_method’ and ‘teardown_method’

We will see about them one by one.. Note: ‘Methods’ and ‘Functions’ in python are the same but ‘Methods’ are
present inside the class and ‘Functions’ are present outside the class. Please do not confuse them both.
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Function Fixtures

The ‘setup_function’ of a function fixture is called before every test function and similarly the ‘teardown_function’ is
called after every test function execution.

Example:

def setup_function(function):
print (“Setup function“)

def teardown_function(function):
print (“Teardown Function")

def test_one():
assert 1

def test_two ():
assert 2

In this example you can see that the setup_function is called before the execution of each of the tests and similarly the
teardown_function is called after the execution of each of the tests.

Module Fixtures

The ‘setup_module’ of a Module fixture is called before every test module execution and similarly the ‘tear-
down_module’ is called after every test module execution.

Example:

def setup_module(module):
print (“Setup_module")

def teardown_module(module):
print (“Teardown_module")

def test_one():
assert 1

def test_two():
assert 1
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In this example you can see that the setup_module is called only once before the tests are run and the teardown_module
is run once after the tests. They are used for initializing and deinitializing an entire test module.

Class Fixtures

The ‘setup_class’ of a Class fixture is called before every test class execution and similarly the ‘teardown_class’ is
called after every test class execution.

Example:

class Test_sample:

def setup_class(cls):
print (“Setup_class")

def teardown_class(cls):
print (“Teardown class")

def test_insideClass(self):
assert 1

def test_insideClass2(self):
assert 1
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In this example you can see that the setup_class is called only once inside the class before the tests are run and the
teardown_class is run once inside the class after the tests. They are used for initializing and deinitializing a test class.

Method Fixtures

The ‘setup_method’ of a method fixture is called before every test method execution inside a class and similarly the
‘teardown_method’ is called after every test method execution.

Example:

class Test_sample:

def setup_method(self,method):
print (“Initialize Method ")

def teardown_method(self,method):
print (“Deinitialize method ")

def test_insideClass1(self):
assert 1

def test_insideClass2(self):
assert 1

In this example you can see that the setup_method is called before the each of the tests are run inside the class and the
teardown_method is run after each of the tests. They are used for initializing and deinitializing the test methods.

3.4.8 Running short tests alone from Eclipse

For running the short tests alone from eclipse go to, ‘Run’ => ‘Run Configurations’. Double click on ‘Python
Unittests’. Now create a new unit test with name as ‘Short Test’ and select project to be the current project. Under main
module type ‘${workspace_loc:trunk/test}’. Now click on Arguments tab check ‘Override Pyunit Preferences for the
Launch’. Choose the test runner to be ‘Pytest Runner’ and enter the following argument in the window directly below.
-v -s -m "not long and not indevelopment and not documentationtest" If you are using
the clipboard to copy the argument to Eclipse, please delete and retype the quotation marks. Click Apply and close
the window. Now for running short tests just right click on the file and ‘run as’ -> ‘Run Configurations’ and choose
‘Short Test’ .
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3.5 Release Process

The release process for delis contains procedures that must be performed for each release and such that are performed
only for major releases.

3.5.1 Procedures For Major Releases

Major releases require the procedures done for minor releases as well as some additional task handling and global
actions in mantis. Since mantis can be used via the web interface or within eclipse, the following description may
differ in some points. Both variants are explained in the following.

The following steps are based on the mantis plugin within the eclipse framework

1. Perform all steps described in the next paragraph Procedures For Minor Releases.

2. In mantis, change the Target Version of all tasks which don’t have status resolved within this release to
next release.

3. In mantis, change the Target Version of all tasks with status resolved and within Target Version not
yet planned version to the actual version.

4. Set the Resolution of all completed tasks to fixed.

5. Set the Fixed in Version of all completed tasks to the actual version.

6. In Mantis --> Manage --> Manage Projects --> Paramam --> Versions, set the actual
version as released.

If the web interface of mantis is used, the following steps are

1. Perform all steps described in the next paragraph Procedures For Minor Releases.

2. Go to the register View Issues to get a view of all task issues in the project.

3. Tasks with target version of this release: Set the tab to Update Target Version and update all tasks which
don’t have status resolved to the next release. It is important that in the filter mask the tag Target Version
is visible and set to this release. If this tag is not shown in the mask, please update your default project in
your user preference (Mantis --> My Account --> Preferences --> Default Project) to
Paramam. This should reset the filter mask on the View Issues tab and the filter tab Target Version
should be visible again.

4. For tasks of target version not yet planned version: Set the tab at the bottom to Update Target Version
and set all with status resolved to the actual version.

5. Set the tab to Update Fixed in Version and set to the actual version for all completed tasks.

6. Filter the Status for resolved and Target Version for the acutal version. Set the Fixed In
Version to the actual version.

7. Filter the Status for resolved and Target Version for the acutal version. Close all tasks filtered.

8. In Mantis --> Manage --> Manage Projects --> Paramam --> Versions, set the actual
version as released. (This requires manager permissions in mantis!)
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3.5.2 Procedures For Minor Releases

1. Check if the installed SVN tools (Tortoise SVN) and eclipse plugins for version management are updated to the
newest version and of course use the same version both.

2. Check if all delis builds are stable on the jenkins machine. It is not advisable to create releases of unstable
program states. It should be carefully checked if a release should be created despite unstable builds. Please have
a look on the Jenkins server and see Unit Testing for further information.

3. Activate the task for the upcoming major release. It is named Perform DELiS release and can be found
in the mantis roadmap.

4. Set new version in delis.service.globals.Globals: major, minor and revision

5. Call main.releasecreator.py in DELiS. It creates

• the newest documentation as html and pdf,

• puts the documentation to SVN (a manual OK in the opened window is required)

• creates a new tag in <https://svn.dlr.de/PARAMAM/branch/DELiS/tags> (a manual OK in the opened
window is required)

• creates new RCE components of DELiS in /tmp/cpacswrapper/rce and copies it the toolserver

• updates tags on toolserver

• copies settings to new tag
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FOUR

PROGRAMMER MANUAL

4.1 Program Architecture

The program is composed of several python packages that are divided in respect to their specific task. In the following
chart you can see these packages, their most important modules/functionalities and the connection between them.

Program Architecture

AcGraph

Package Service

Package Control

Package Model

Package Geometry

Package Structure

Aircraft
Model

Package Main

main

environment

read CPACS

create keypoints

create areas

create DAMP

create masses

read results

write CPACS

wing

fuselage

spar

rib

stringer

skin

crossbeam

point

line

area

surface

rotation

scaling

transformation

globals

utilities

writer

reader

link object model
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Principle setup of object model

Aircraft

Wing
Blade

Fuselage

Stringer

Spar

Rib

Skin

Frame

Crossbeam

Floorbeam

Floorpanel

Profile

Sheetproperties

Keypoint

Line

Area

For a full description of the packages purposes and containing modules and classes please have a look at chapter
Reference Guide.

4.1.1 Main

The main package contains all main methods. Those modules do mainly three things. - parse commandline arguments
- parse config file - call the respective control class

Parsing commandline args and calling control class

The commandline arguments are parsed by optparse that cares for the corrct arguments. For a list of possible arguments
call:

$ <modulename> -h

If a delis config file is given, the config file is read using the delis config parser

Subsequently the appropriate control module is called with preprocessed commandline arguments.

4.1.2 Control

The control package is the most frequently changing part of this program. It is intended to manage the following:
- build up of the object model - handle all activites that should be performed with the model classes - trigger finite
element calculations - do all needed custom activities

Its modules are made for their special purpose:

• Calculations using ParamamSBot

• Calculations using just SBot

• Calculations using BoxBeam

• Calculations using Beos

Usually each developer has its own module for individual programming and testing without disturbing others via
changes in svn. All other packages are intended for a concurrent use.
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4.1.3 Model

The model package contains all elements describing the aircraft structure. It is subdivided in generic modules(e.g.
aircraftmodel, wing, fuselage, material), a geometry package, a structure package and a partitioning package.

Generic modules are those that are not further clustered. So they serve very diverse purposes.

Geometry

Structure

Partitioning

4.1.4 Service

This package is intended to support working on the aircraft object model with specialized functions that do not belong
to aircraft structure information. This includes the following:

• writing aribtrary information to an excel sheet and create excel graphs in excelhandler

• writing geometry(keypoints, lines, areas) to an arbirary output in geometrywriter:

– matplotlib (2D graphs)

– mayavi2 (3D graphs but slow)

– ansys input file

– nastran input file

• writing finite element and material information to an ansys or nastran file in fewriter

• handling global values in globals

• writing files for an paramamSBot run and writing images of structural profiles in miscwriter

• reading SBot results in miscreader

• handling stiffness and mass matrices in stiffnessmassmatrix

• providing an interface to the TIXI and TIGL libraries that support reading, interpreting and writing CPACS files
in tivalibs

• providing general functions in utilities

4.1.5 Service.Utilities

This package is intended to provide additional functions to handle complex workflows in DELiS. This includes the
following:

• running generated fe models with common fe solver (ansys,nastran) with capabilities of remote calculation

• reading and writing of files which results from a DELiS based workflow

• mathematical functions for evaluating geometrical primitives (e.g check for intersection of 2D lines)

• methods to ensure proper working of a DELiS workflow on the system plattform (e.g. initializing paths)

• methods for user-friendly output generation of the different DELiS workflow states
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4.1.6 Graph

The aircraftgraph module is the backend of the program. Several objects within the package model are added to the
graph and crossreferenced with other object that have some properties in common(e.g. a line and its start and end
keypoint). For performance reasons there are just some objects within the graph. Please have a look at the section
Graph Data Structure for further details.

4.2 Process Flow

4.2.1 General Process Flow

Program Call Hierarchy. 
Labels with a preceding (p) are python packages and preceding (m) refers to python modules. 

Preceding (w/f) represents wing and fuselage functions.

(p) model

(p) delis.model.geometry

(p) delis.model.structure
(m) spar
(m) rib

(m) stringer
(m) skin

(m) crossbeam
...

(m) aircraftmodel
(m) wing

(m) fuselage

(m) delis.model.mass

(p) main

(p) control
(m) wingcontrol | (m) fuselagecontrol

(m) bladecontrol

main control main

initCpacs

createCpacsModel

createGeometry

createDAMPoints

createAnsysInput

runAnsys

(w).createParamamInput

(w).runParamam

runSBot

writeCpacs

(w/f).readCpacs

(w/f).createKeypoints

(w/f).createLines

(w/f).createAreas

(w/f).connectMass

f.createDAMPoints

(w/f).writeGeometry

(w/f).writeFE

(w/f).writeCpacs

_readMaterialsCpacs

_readProfiles

_readAirfoils

readCpacs

connectMass

writeCpacs

readCpacs

createKeypoints

createLines

createAreas

writeCpacs

(m) translate

(m) line

(m) area

(m) surface

(m) rotation

(m) scaling

(m) transformation

On the previous image the program call hierarchy for a wing, a fuselage or a windblade model generation and cal-
culation can be seen. The runs are started in the respective main-script. Here commandline arguments are parsed.
In production mode (MYGLOBAL.development=False) the program is not supposed to throw exceptions. Thus each
main script calls main.env to introduce a global exception handling, by catching each exception and returning with a
pretty formatted error message.

control scripts [(within control)] Within the control scripts the program flow is managed. Most steps that are started
here can be easily switched on or off.

initCpacs [(within delis.model.common.GenericCpacsControl - inherited)] Initializing a cpacs-based model by
opening the xml-file within tixi and tigl. Also the cpacs-toolspecific section is read, that contains additional
run options (See Aircraft Model for retrieved information).

createCpacsModel [(within delis.model.common.GenericCpacsControl - inherited)] This method and its con-
taining methods create an aircraft model by including topological and geometry information, loads and
mechanical properties to each structural object.

CpacsIntegration._readMaterialsCpacs(tixi, **kwargs)
Within this method the cpacs materials and composites are read an put into a list of
model.material.MaterialDefinitions and model.material.Composite objects.
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CpacsIntegration._readProfiles(tixi)
This method reads all structural profiles of the actually open cpacs file. The profiles are saved in a list
and made available to all profile based structure.

CpacsIntegration._readAirfoils(tixi)
This method reads all airfoils of the actually open cpacs file.

wing/fuselage.readCpacs [(within model)] Within this method all topological wing and fuselage infor-
mation are read by calling the readCpacs-methods of all containing structure components.

readCpacs [(p) delis.model.structure] Those readCpacs-methods are within frame, stringer, cross-
beam, crossbeamstrut, floorpanel, skin, seatrail, bulkhead, cutout, gear and mass for fuselage
calculations and within stringer, spar, skin, gear, mass for wing calculations. They also may call
sub-methods also named readCpacs e.g. sparPostion and framePostion.

wing/fuselage.createKeypoints [(within model)] Within this method the keypoints of every structural
object are created. This is done by calling createKeypoint-methods of the respective structural objects.

createKeypoints [(within delis.model.structure)] Those methods create keypoints as structural ob-
ject. Each structural object and geometry based object that comprises of the keypoints created
are connected using the graph backend described in Graph Data Structure. A keypoint is an ob-
ject of type delis.model.geometry.translate.Translation to represent its location as well as meta
information such as IDs. Additionally arithmetic operations can be easily performed due to their
inheritance of np.ndarray (See numpy).

wing/fuselage.createLines [(within model)] Analog to the creation of keypoints lines of each subsequent
structural object are created by calling their createLines method.

createLines [(within delis.model.structure)] For the line creation, objects of type
delis.model.geometry.line.Line are used. Mostly they are created by using two adjacent
keypoints of the structural object for each line.

wing/fuselage.createAreas [(within model)] Within this method the areas of every area-based structural
object are created. This is done by calling creatAreas-methods of the respective sturctural objects.

createAreas [(within delis.model.structure)] For the area creation objects of type
delis.model.geometry.area.Area are used. They are created by a graph search on a subgraph of
the graph-backend (See Graph Search for Area Creation for more details).

createDAMPoints [(within delis.model.commoncomponent.AircraftComponent - inherited)] In this step Dy-
namicAircraftModelPoints are created. Those are points along the load reference axis(LRA) of a
wing/fuselage representing the structural behavior like a beam model. It is also used to apply the compo-
nent loads to the aircraft structure.

createAnsysInput [(within control script)] This section of the control files covers the creation of FE-input files.
Next to Ansys .mac files also Nastran .bdf files are supported. This is done by creating an writer located
in delis.service.fewriter. That writer comprises of methods for writing all necessary information to the
respective file like materials, profiles, geometry, elements and boundary conditions. Geometry is written
by classes in delis.service.geometrywriter that are inherited by the respective fewriter class.

runAnsys [(within control script)] Here the created ansys srcipt can be executed in ansys creating an ansys
database.

createParamamInput [(within delis.service.miscwriter.ParamamSBot)] Wing calculations can be carried out
by a collection of matlab scripts called paramam. To invoke paramam its input files need to be written.
Those files represent the parametric setup of all wing properties.

runParamam [(within control script)] When the input above is written, paramam can be invoked creating an
ansys input file and all relevant SBot(sizing in Ansys) information.
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runSBot [(within control script)] SBot a collection of ansys apdl-scrips for sizing can be invoked. It performs
the sizing and writes new skin thicknesses and fe-results that can be used to update the python object
model.

writeCpacs [(within control script)] All updates to the python object model may be written back to the cpacs.
This can include new skin thicknesses, extended profile information, differently split optimization regions,
DAM points. The call hierarchy is similar to the call hierarchy of readCpacs.

4.2.2 Detailed Process Flow for Wing Model Generation

Following, the process flow illustrates the wing structure generation process.

Program Call Hierarchy. 
Labels with a preceding (p) are python packages and preceding (m) refers to python modules.

(p) model

(p) delis.model.geometry

(p) delis.model.partitioning
(m) componentSegment

(p) delis.model.structure
(m) spar
(m) rib

(m) stringer
(m) skin

(p) delis.model.structure

(m) skin

(m) spar

(m) rib

(m) translate

(m) line

(m) area

(m) surface

readCpacs

setSegments

_readSpars

_readSparCells

completeSpars

_readRibs

_adjustSparPositions

generateImaginarySpars

completeRibs

_equaliseNumberOfSparPositions

generateImaginaryRibs

completeSparCells

_readWingSkins

completeSkins

_readControlSurfaces

readCpacs

createKeypoints

createLines

createAreas

writeCpacs

Rib

ImaginaryRib

RibSegment

ImaginaryRibSegment

SkinWing

Spar

ImaginarySpar

SparSegmentCell

ImaginarySparSegmentCell

Within the readCpacs method the following methods are sequentially called:

• setSegments -
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ComponentSegment.setSegments(aerodynamicSegments)
The component segment is composed of at least one aerodynamic segment (see Inner Shape). The
component segment coordinate system is aligned to the projeciton of the leading edge onto the wing
x-y-plane. For computing component segment coordinates properly all transformations performed on
the aerodynamic shape of the wing has to be considered by adjusting the projection vector. For further
information please refer to Wing Coordinate Transformation.

In order to perform an appropriate projection a projection vector has to be calculated in global coor-
dinates.

Figure 4.1 : Definition of component segment coordinates

Within this method the chord surface of the component segment is composed. The following steps are
sequentially performed:

– all aerodynamic segments belonging to the actual component segment are retrieved (since the
component is just defined by fromElement and toElement),

– the component segment border points are set - these points are necessary to subsequently deter-
mine in which aerodynamic segment the specified position in relative and absolute coordinates,
respectively, is located,

– subsequently the individual segments of the leading edge (for each aerodynamic segment) are
projected onto the xy-plane of the wing coordinate system,

– finally the aerodynamic segment corner 𝜂 coordinates are calculated in the component segment
coordinate system and assigned to the respective aerodynamic segment.

Attention:

– Relative coordinates, used within the component segment are always given within the com-
ponent segment coordinate system not within the aerodynamic segment coordinate system.

– Absolute coordinates, used within the component segment are always given within the air-
craft coordinate system.
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• readSpars -

ComponentSegment._readSpars(xPath, tixi)
Within this method the CPACS definition w.r.t. spars is read. Firstly, all defined spar positions are
stored within a dictionary. Defined spar positions turn into instance of type WingPosition().

Secondly, the individual spars are created. The previously created dictionary, which contains all spar
psoitions defined within CPACS, is used assign the corresponding spar positions belonging to the
respective spar.

Finally, this method fills the spars list of the component segment with real spars. Each spar segment
(CPACS defintion) is transfered into an instance of type Spar().

Figure 4.2 : Component segment structure after executing method _readSpars()

Attention: At this position defined spar cells are not yet considered.

Parameters xPath – string, specifying the path within CPACS, where the spars definition
is located

• readSparCells -

ComponentSegment._readSparCells(readCellDefinitions, tixi)
Within this method the CPACS definition w.r.t. spar cells is read. For each spar defined in CPACS
and read previously the existence of spar cells is checked. If any spar cells are defined they turn into
instances of type SparSegmentCell().

Attention: At this position the spar cells are not yet assigned the corresponding spars. Just the
spar positions related to the spar cells are added to the respective spars.

Parameters
– readCellDefinitions – flag if spar cell data should be read from CPACS
– xPath – string, specifying the path within CPACS, where the spars definition is located

104 Chapter 4. Programmer Manual



delis, Release 21.2.6

Returns dictionary, containing all spar cells defined within CPACS - the keys of this dictio-
nary are the individual spar instances and the values are instances of type SparSegment-
Cells(), which are extended in case spar cells are defined.

• completeSpars -

ComponentSegment.completeSpars(sparCellsDict)
Within this method the leading and the trailing edge are added, in case of modeling a full wing. The
list of spars is filled with instances of ImaginarySpar() for leading and trailing edge.

Note: The provided dictionary sparCellsDict is extended by the new spars and corresponding
ImaginarySparSegmentCells().

Additionally, the isFrontSpar and isRearSpar attribute as well as the spar number is set
within this method.

Figure 4.3 : Component segment structure after executing method completeSpars()

Parameters sparCellsDict – dictionary, containing all spar cells previously read - (with
spars as keys and spar cells values)

• readRibs -

ComponentSegment._readRibs(xPath, tixi)
Within this method the CPACS definition w.r.t. ribs is read. Firstly, it is checked whether a wing to
fuselage attachment is defined. If so, the respective rib id and number is read.

Secondly, the number of ribs as well as their 𝜂 are determined. Since, ribs are defined in sets via start
and end 𝜂 the individual locations have to be calculated.

Finally, ribs are created as instances of type Rib() and the list of ribs of the component segment
is extended. The location of each rib on the chord surface is again defined by instances of type
WingPosition().

Additionally the isRootRib attribute is set in order to identify where the wing is attached to the
fuselage.
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Figure 4.4 : Component segment structure after executing method _readRibs()

Attention: At this position ribs are not yet rotated.

Parameters
– xPath – string, specifying the path within CPACS, where the ribs definition is located
– tixi – Tixi-Object, Tixi Handle which contains CPACS tree information

• adjsutSparPositions -

ComponentSegment._adjustSparPositions(sparCellsDict)
This method is intended to perform a spar position adjustment on already completed spars (refer to
method completeSpars()), in order to prevent crossing of spars in weird geometries, e.g. wind energy
blades.

Additional instances of type WingPosition() are added at segments borders in order to keep
track of all geometry changes of the outer shape. This is necessary, since structure positions shall be
connected linearly in absolute space. Hence, between two defined locations a kink might be missed
(if the user has not already accounted for that case when writing the CPACS). For this purpose, the
front spar positions are used to identify the missing structure points.

In the subsequent step, all spars positions will be extended by the additional wing segment border
locations. Furthermore, the length of all spars is adjusted. If real ribs are existent the 𝜂 coordinate of
the last real rib and 𝜂 = 1, otherwise, is used to define the end of each spar. All spars, which are not
reaching from :math:`eta=0` to the determined end :math:`eta` are extended in order to reach
from 𝜂 = 0 to 𝜂 = 1 (in case of wind energy blades, without ribs) or 𝜂 = 𝜂𝑙𝑎𝑠𝑡𝑅𝑒𝑎𝑙𝑅𝑖𝑏. This is done
by adding or adjusting spar positions of the respective spar.

Note:
– The provided dictionary sparCellsDict is extended by the new spars and corresponding
ImaginarySparSegmentCells().

– Already existing spar cells, in particular their positions, are also adjusted, if necessary.

Parameters sparCellsDict – dictionary, containing all spar cells previously read - (with
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Figure 4.5 : Component segment structure after executing method _adjustSparPositions()

spars as keys and spar cells values)

• generateImaginarySpars -

ComponentSegment.generateImaginarySpars(additionalSparCount=0)
This method is intended to fill the list of spars with imaginary spars in order to achieve a well shaped
FE-net (imaginary spars serving as additional supporting points to created further keypoints). The
additional spars are equally distributed within the wingbox and the trailing edge region. While addi-
tional spars within the leading edge region are distributed by logarithmic spacing (higher spar density
near to leading edge and decreasing in the direction of the front spar).

In case that a stringer pitch is specified the number of additional spars within the wingbox region is
calculated according to this distance. These additional spars are subsequently used define stringer as
beams. (This procedure ensures a consistent mesh between skin and stringer - without the need of tie
constraints or glueing)

Parameters additionalSparCount – integer, specifying the number of imaginary
spars to be added to the list of existing spars

• completeRibs -

ComponentSegment.completeRibs(sparCellsDict, types=[])
This method completes all existing ribs. The actual existing ribs are processed as following: #. each
rib is first extended to le,te by imaginary rib segments if necessary #. then split, #. then rotated, #.
coincident imaginary rib segments from step 2 are removed #. lastly the intersection of ribs and spars
is calculated

Completion of ribs means in this context that additional instances of type
ImaginaryRibSegment() are added to the rib in case that the rib is not reaching from
specified fromSpar to specified toSpar.

Every rib is composed of rib segments. Each rib segment is currently located bewtween adjacent spars
of type real, leading or trailing edge. Whenever such a rib segment crosses a real spar the respective
rib segment is split. This is done till no rib segment crosses any real spar.
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Figure 4.6 : Component segment structure after executing method generateImaginarySpars()

The last step is the rotation of the ribs, after completion and split of rib segments. Tt is also checked
whether there were imaginary rib segments created where already real rib segments of other are ex-
isting.

Finally, one of the most important steps within this method is performed. The intersection of ribs and
spars is calculated and additional instances of type WingPosition() are created, if necessary.

Parameters
– sparCellsDict – dictionary, containing all spar cells previously read - (with spars

as keys and spar cells values)
– types – types of ribs to be modified

• equaliseNumberOfSparPositions -

ComponentSegment._equaliseNumberOfSparPositions(sparCellsDict)
This method is intended to equalise the number of spar positions. Due to the rib rotation performed
in a proceeding method the number of spar positions might no longer be equal. Although, an equal
number of spar positions is crucial for the following process steps of model generation (e.g. geometry
generation).

First all following wing Positions are removed, except those which: - are not bordering any spar
Cell - do not have an onRibs object - are no original spar Positions (defined in the CPACS data set)
Afterwards all sparCell borders are checked. If there are any wing Position nearby (according to the
threshold), the bordering wingPositions are replaced by the corresponding wing Position. Within the
third step all wing Positions within the spar are checked

• generateImaginaryRibs -

ComponentSegment.generateImaginaryRibs(totalRibCount=2, tixiHandle=None)
This method is intended to fill the list of ribs with imaginary ribs in order to achieve a well shaped
FE-net (imaginary ribs serving as additional supporting points to created further keypoints). The
additional ribs are equally distributed between two existing ribs. Additionally, at each spar position a
virtual rib is added, if a real rib is not existent.
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Figure 4.7 : Component segment structure after executing method completeRibs()

Parameters totalRibCount – integer, specifying the total number ribs within the list of
ribs. If this number is smaller than the number of real ribs, no imaginary rib is included.

• completeSparCells -

ComponentSegment.completeSparCells(sparCellsDict, wingSettings)
This method is intended to split all existing spar segment cells.

• readWingSkins -

ComponentSegment._readWingSkins(xPath, tixi, wingSettings=False, ribsConjunc-
Dict={})

doc

Note: For component segments there is a method in the utilities package available, which is dedicated to debugging
and testing issues. The plotStructure method enables the user to visualize the structural supporting points on the
chord surface by specifying the structure to be plotted (list of ribs and/or list of spars) and the coordinates (relative or
absolute).

4.3 Data Structure - The Model Package

4.3.1 Component Segment

ComponentSegment.getEtaXsiAtLineSparIntersection(orientationVector, wingPosition,
spar, etaBounds=None)

this method is intended to return the componenet segment eta for the intersection of two specified lines in
component segment coordinates. In particular these lines belong to a spar and a rib, respectively. If the lines do
not intersect exactly, the eta location with the lowest distance to the orientationVector+wingPosition is returned.

Parameters
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• orientationVector – instance of type Translation() or List(), specifying the direction
vector of the rib segment

• spar – instance of type Spar(), specifying the spar which is to be intersected by the speci-
fied direction vector

Returns float, component segment eta

Following important attributes of the ComponentSegment() are breifly introduced:

ComponentSegment.wingPositions
Property: List containing all instances of type WingPosition() of all structure components.

ComponentSegment.chordSurface
Property: Instances of type ComponentSegmentSurface() representing the mid plane of the component
segment for calculation of absolute coordinates.

The wing structural information depicted below is a visualization of object model created for wing structure compo-
nents after interpreting and evaluating CPACS by DELiS.

Figure 4.8 : Wing structure after evaluation with DELiS
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Wing Positions

One of the key classes used within the component segment in order to define the positions of structural components
are the classes WingPositions() and WingPosition():

WingPositions.getWingPositionsByType(types)possible types are [original, additional, all]
WingPositions.getWingPositionsByBorderingWingPositions(. . . )possible types are [original, additional, all]
WingPositions.getBorderingWingPositionsByEta(. . . )Returns the previous and next wing Position at the given

eta coordinate.

delis.model.partitioning.positioning.WingPositions.getWingPositionsByType

WingPositions.getWingPositionsByType(types)
possible types are [original, additional, all]

delis.model.partitioning.positioning.WingPositions.getWingPositionsByBorderingWingPositions

WingPositions.getWingPositionsByBorderingWingPositions(fromPos, toPos, types, sor-
tAttribute='eta')

possible types are [original, additional, all]

delis.model.partitioning.positioning.WingPositions.getBorderingWingPositionsByEta

WingPositions.getBorderingWingPositionsByEta(eta, types)
Returns the previous and next wing Position at the given eta coordinate.

Parameters types – one of [original, additional, all]

Following important attributes of the WingPosition() are breifly introduced:

WingPosition.position
Property: Absolute location on the chord surface of the WingPosition() given within the wing coordinate
system

WingPosition.eta
Property: Relative location on the chord surface of the WingPosition() given within the component seg-
ment coordinate system

WingPosition.xsi
Property: Relative location on the chord surface of the WingPosition() given within the component seg-
ment coordinate system

WingPosition.onSpars
Property: List containing all instances of type Spar() the WingPosition() belongs to.

WingPosition.onRibs
Property: List containing all instances of type Rib() the WingPosition() belongs to.

Based on the classes WingPositions() and WingPosition() all structural components are located on the
chord surface.

Attention: Each strucrture component within the wing should have assigned these positions. Whenever refering
to numbering (e.g. from rib number, to spar number, . . . ) use these positions.
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Wing Spars

Every spar within a component segment is described through a varying number of spar positions and a spar segment.

Figure 4.9 : Wing spars cpacs structure

It is crucial to understand that a spar segment defined CPACS corresponds to a whole spar within the object model.

Figure 4.10 : Wing spars FEM representation (Areas)

The spar segment specified in CPACS is interpreted contains information on the corresponding spar positions by
referring via the UIDs to the specified spar positions. These spar positions are being correlated in order to form spars,
spar segments and spar cells.

Example (see Figure Wing Spars):

(subsequently strong emphasis is used for CPACS expressions, emphasis is used for Python
Object Model expressions and italic for both)

There are 3 spar positions defined for the 2nd spar segment. The interpretation will lead to
one spar containing common information provided by the spar segment. Additionally, the
spar positions form 2 spar segements assigned to the spar. Following these spar segments are
further fragmented into so called spar cells. The borders of these spar cells are specified via
to wing specific coordinates (from eta and to eta).

The existing real spars will subsequently be filled up with additional imaginary spars. This is the way to enhance the
accuracy of the outer shape representation and the FE mesh density. The second purpose for creating additional spars
is to generate a higher granularity of the optimization regions.

Note: The number of additional imaginary spars is controllable by the user within the options in toolspecific.
[sparsInXsiDirection = 25 (Default)]
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Wing Ribs

Ribs are described through rib sets within a component segment. Within these rib sets an eta range can be specified
containing a specified number of ribs with equal properties and characteristics.

Figure 4.11 : Wing ribs cpacs structure

The ribs are described via a location in wing span direction (eta) and the bordering spars. Independent of the specified
bordering spars all resulting ribs will be split and extented, respectively, through all occurring real spars including
leading and trailing edge. The result is depicted in Figure Wing Ribs. Here in this case the front spar and the rear spar
were specified as bordering spars. While processing the CPACS dataset all defined rib sets were extended from front
spar to leading edge and from rear spar to trailing edge. Thus, each rib consists of 3 rib segments.

Figure 4.12 : Wing ribs FEM representation (Areas)

The existing real ribs will subsequently be filled up with additional imaginary ribs. These additional ribs lead also to
a higher granularity of the optimization regions.

Note: The number of additional imaginary ribs is controlled by the user within the options in toolspecific. [ribsInX-
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siDirection = 40 (Default)]

Wing Skin

In general the skin of the wing is characterized via an upperShell node and a lowerShell node within CPACS, respec-
tively. These nodes contain general information on the upper skin and the lower skin of the wing. Furthermore a global
stringer characterization is given.

Figure 4.13 : Wing Skin cpacs structure (upperShell as well as lowerShell)

In order to specify wing skin regions with varying or special properties cells are defined.

Figure 4.14 : Wing Skin Cells cpacs structure (upperShell as well as lowerShell)

As depicted in Figure Wing Skin the resulting skin regions are defined via adjacent spars and ribs spanning a skin bay.
Every skin bay represents an individual cell.

The geometric dimensions of the skin regions is generally defined through bordering spars and ribs. In order to reduce
the dimensions of the skin regions it is necessary to increase the number of ribs and spars within the structure. An
exaltation of the rib and the spar count can be accomplished by generating more imaginary structural components.

4.3.2 Wing Coordinate Transformation Methods

In order to handle all types of coordinates and coordinate systems (absolute, aerodynamic segment and component
segment) various types of methods are necessary to transform these coordinates into each other.

The coordinate transformations are defined in the following modules.

documentation

delis.model.partitioning.componentsegment.ComponentSegment(**kwargs)
The component segment is the class where a wing’s structure is defined.

Attention:

• Relative coordinates, used within the component segment are always given within the component
segment coordinate system not within the aerodynamic segment coordinate system.
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Figure 4.15 : Wing skin FEM representation (Areas)

• Absolute coordinates, used within the component segment are always given within the wing coordinate
system not within the aircraft coordinate system.

ComponentSegment._getChordSurface() This private method returns the chord surface of the
component segment.

delis.model.partitioning.componentsegment.ComponentSegment._getChordSurface

ComponentSegment._getChordSurface()
This private method returns the chord surface of the component segment. It is composed of adjacent aerody-
namic segment chord surfaces.

delis.model.partitioning.segment.Segment(**kwargs)
classdocs

Segment.absPosToSegEtaXsi(position) Returns a tuple of (eta,xsi) at the given position.
Segment._getChordSurface() This method returns the chord surface of the component

segment.

delis.model.partitioning.segment.Segment.absPosToSegEtaXsi

Segment.absPosToSegEtaXsi(position)
Returns a tuple of (eta,xsi) at the given position. For further details please refer to TIGL documentation CHAP-
TER 3: USING TIGL or the documentation.

Note: Within this method an optimization is conducted in order to minimize the distance between the specified
position and a point on the chord surface. For this purpose the chord surface of the aerodynamic segment is used
to evaluate arbitrary 𝜂,:math:xi combinations.

Parameters position – absolute position on the chord surface

Returns 𝜂, 𝜉 - in respective segment coordinates
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delis.model.partitioning.segment.Segment._getChordSurface

Segment._getChordSurface()
This method returns the chord surface of the component segment. It is composed of adjacent aerodynamic
segment chord surfaces

4.4 Exception Handling

To get information about the reason and an example of how to use exceptions, please refer to the python documentation.

Thus exceptions are a handy way to categorize errors and make it easier to handle errors. There are three things where
an exception is used and handled:

• An error occurred in a function nested several levels below a calling function where the corresponding error is
caught by the try-except-statement and there is a deterministic way how to deal with the error.

• An error occurred that is not caught so the error will create an traceback and the corresponding error message.
Since there are specific classes of exceptions in this program(see below) the programmer/user also gets an
impression of the category of error like this:

Traceback (most recent call last):
File "C:\Eclipse\eclipse\plugins\org.python.pydev_2.7.1.2012100913\pysrc\pydevd.py
→˓", line 1397, in <module>
debugger.run(setup['file'], None, None)
File "C:\Eclipse\eclipse\plugins\org.python.pydev_2.7.1.2012100913\pysrc\pydevd.py
→˓", line 1090, in run
pydev_imports.execfile(file, globals, locals) #execute the script
File "D:\freu_se\fuselage\trunk\src\test\testing.py", line 719, in <module>
raise CpacsError('This is an examplary error because the cpacs-input is
→˓incorrect.')
delis.service.globals.CpacsError: 'This is an examplary error because the cpacs-
→˓input is incorrect.'

• This case is like the last one but with MYGLOBAL.development == False. Here the exception is caught in the
highest level and creating a pretty printout instead of a traceback and terminating the program:

--------------------------------------------------------------------------------
Program "fa_paramam_interface" stopped abnormally due to the following error:
2013-03-18, 09:19:11
--------------------------------------------------------------------------------
<class 'service.globals.CpacsError'>:
'This is an examplary error because the cpacs-input is incorrect.'
--------------------------------------------------------------------------------

There are several categories of exceptions that can be used and inherit from the generic self defined exception Cus-
tomException. This way one can catch all self defined exceptions in contrast to other exceptions like AttributeError
etc.. Those are the self defined exceptions:

CustomException Generic exception that is used as category. Please do not use this exception directly
- use the exceptions inheriting from that one. It is recommended to use it after except statements to
catch all the self defined exceptions.

TixiTiglError Used if a call to tixi or tigl fails

CpacsError Used if the cpacs-input is incorrect

AircraftStructureError Used in cases where the objects of the aircraft structure are malformed
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GeometryError Used if some created geometry is wrong

InternalError Used for uncategorized errors

ImproperParameterError Used if the given parameters of a function are wrong

BeosError Used within the beos interface

HyperSizerError Used for all HyperSizer specific errors like errors in the hypersizer interface, errors
when creating the hypersizer model or reading it’s results

This python defined exception is useful for functions that will be implemented in the future and only the header is
present:

NotImplementedError Used within functions where only the header is present.

4.5 Graph Data Structure

4.5.1 Overview

To reference certain objects that have something in common, they are interrelated by a graph structure. This way
arbitrary objects included in the graph can be connected together. Adjacency can be used to retrieve objects in a
flexible way that share common properties.

The main intention is to create a data structure where objects are universally connected and enable a easy generation
of lists providing e.g. the keypoints or lines along a spar object. This way adjacent areas, lines, or optimization regions
can be found easily. Additionally using graph search algorithms complex connections between two vertices can be
found. Thus a flexible area and grid generation may be performed.

Therefore in model.aircraftgraph a graph class - based on undirected graphs - is provided to handle object relations.
There is an abstract base class AircraftGraph that implementing graph classes shall inherit from. It defines the needed
methods. There is just one Graph initialized for the whole aircraft which is instantiated in delis.service.globals and
imported in every module as acGraph. Actually there is one implementation of that abstract graph class: NXAircraft-
Graph. It uses the undirected graph class within the networkx library. It is very well documented.

Additionally each object acting as vertex inherits from an ACGraphVertex(*) class located in
model.commonaircraftgraph. Those are used to simplify access to the acGraph object by providing conve-
nience methods like addVertex and neighbors. More importantly it provides properties that enable direct access
to adjacent objects of a certain type. Thus properties like spars,*frames*,*stringers*,*keypoints*,*lines* etc. are
implemented and return a sorted list of those objects.

Note: To not confuse graph nodes with finite element nodes the graph nodes are always called vertexes.

4.5.2 Objects used as Vertex in AcGraph

Those objects are added to the acGraph on runtime:

• component

– wing

– fuselage

• structure element

– frame
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– stringer

– spar

– rib

– etc.

• geometry

– translate (point)

– line

– area

• other

– Profile

Profile sheets and points are also added. This is just a byproduct during the profile generation.

4.5.3 Building an ACGraph

Here the creation of the graph structure on a fuselage 1x1-panel is described as example which is transferable to all
other structure types. Exemplary the initial imports are performed:

from delis.model.aircraftgraph import NXAircraftGraph
from delis.model.fuselage import Fuselage
from delis.model.structure.fuselage.frame import Frame
from delis.model.structure.stringer import Stringer
from delis.model.geometry.translate import Translation
from delis.model.geometry.line import Line
from delis.model.geometry.area import Area
from delis.model.structure.skin import Skin

Regarding to the Process Flow description the acGraph object is instantiated at the very beginning of the program run:

acGraph = NXAircraftGraph()

When reading Cpacs structure information in fuselage.readCpacs() the fuselage is added to the graph:

fuselage=Fuselage()
acGraph.addVertex(fuselage)

Next Frame.readCpacs(), Stringer.readCpacs() and Skin.readCpacs() is called within
Fuselage.readCpacs() and the created frames, stringers and skins are added to the graph and connections
to the fuselage-vertex is established:

frame1, frame2 = Frame(), Frame()
stringer1, stringer2 = Stringer(), Strigner()
skin = Skin()
fuselage.addVertex(frame1)
fuselage.addVertex(frame2)
fuselage.addVertex(stringer1)
fuselage.addVertex(stringer2)
fuselage.addVertex(skin)

The function fuselage.addVertex is located in model.commonaircraftgraph.
ACGraphVertexCommonProperties which automatically adds edges. On the next image you can see
the resulting graph structure:
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Figure 4.16 : Vizualization of acGraph object containing fuselage(A320Fuselage1ID), frames (fr2, fr3), stringers(st4,
st5), skin(fs1) and their respective edges

Following keypoints are created in frame.createKeypoints() by searching the intersections between frames
and stringers. The keypoints are subsequently connected to the component(fuselage), the frame and the intersecting
stringer. The skin is not connected to keypoints at this stage as can be seen in the following image since this is done
when generating areas:

keypoint1,keypoint2,keypoint3,keypoint4 = Translation(),Translation(),Translation(),
→˓Translation()
# vertex keypoint* is added on the addEdge call
acGraph.addEdges(keypoint1,[frame1,stringer1,fuselage])
acGraph.addEdges(keypoint2,[frame1,stringer2,fuselage])
acGraph.addEdges(keypoint3,[frame2,stringer1,fuselage])
acGraph.addEdges(keypoint4,[frame2,stringer2,fuselage])

Next when combining the keypoints of each frame and stringer respectively(createLines()), lines can be created.
They are connected to their keypoints, the structure whose path the line describes and the component:

line1 = Line(keypoint1, keypoint2)
line2 = Line(keypoint2, keypoint3)
line3 = Line(keypoint3, keypoint4)
line4 = Line(keypoint4, keypoint1)
# the graph is updated in the line constructor
# it searches for common neigbors of the keypoints and adds them

Lastly areas are generated in createAreas() which is explained in Graph Search for Area Creation. The created
areas and the skin is interconnected and both have edges to keypoints, lines and the respective component. They are
not connected to frames and stringers which can be seen in the following image:
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Figure 4.17 : Vizualization of acGraph object containing fuselage(A320Fuselage1ID), frames (fr2, fr3), stringers(st4,
st5), skin(fs1), keypoints(K*) and their respective edges

Figure 4.18 : Vizualization of acGraph object containing fuselage(A320Fuselage1ID), frames (fr2, fr3), stringers(st4,
st5), skin(fs1), keypoints(K*), lines(L*) and their respective edges
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lines = [line1,line2,line3,line4]
area=Area(lines)
#
acGraph.addVertex(area)
keypoints=set()
[keypoints.update(line.keypoints) for line in lines]
acGraph.addEdges(area, lines + list(keypoints) + [fuselage])
#
#link skin to area and area's keypoints and lines
acGraph.addEdges(skin, [area] + lines + list(keypoints))

Figure 4.19 : Vizualization of acGraph object containing fuselage(A320Fuselage1ID), frames (fr2, fr3), stringers(st4,
st5), skin(fs1), keypoints(K*), lines(L*), area(A*) and their respective edges

4.5.4 Classes used as Vertex

Each class that is used as vertex inherits from a class model.commonaircraftgraph.ACGraphVertex* additional prop-
erties. There are four classes that are directly used for inheriting:

• ACGraphVertexWing: Structure entities used for wing calculations(wing, rib, spar) inherit from this class.
Wing specific class-properties are provided here like access to spars, ribs and skins.

• ACGraphVertexFuselage: Structure entities used for wing calculations(fuselage, frame, stringer,crossbeam)
inherit from this class. Fuselage specific class-properties are provided here like access to frames, stringers
and crossbeams.

• ACGraphVertex: This class holds all aircraft properties and is inherited by Line and Area.

• ACGraphVertex4NPArray: This class also holds all aircraft properties except an __init__ method. It is
inherited by Translation which also inherits from np.ndarray which may not have an init method. Please
refer to the class description for more information.
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ACGraphVertex

ACGraphVertexInit

ACGraphVertexFuselageACGraphVertexWing

ACGraphVertexFuselageProperties

ACGraphVertex4NPArray

ACGraphVertexWingProperties

ACGraphVertexCommonProperties

Those classes contain properties like adding vertexes but more importantly methods for retrieving a spe-
cial type of neighbors like spars. This is done by the class attribute acVertexType of the model
classes. It is used by methods like ACGraphVertexCommonProperties._getVertexesByType
and ACGraphVertexCommonProperties._getVertexesByEdgeAttribute which distinguish between
those types.

Sorting To sort the lists retrieved by e.g. Stringer.keypoints is done by searching neighbor vertexes with
acVertexType=='keypoint'. These neighboring vertexes are by default returned in the order in which they
were connected to the base vertex. Otherwise one may also define a sort criterion. This is done within the getter-method
of the keypoint class property ACGraphVertexCommonProperties._getKeypoints. There a StructureEle-
mentList is initialized containing the correct sort attribute.

In some cases the class attributes do not supply a sufficient sort attribute(e.g. the lines of an area are dependent on the
order they are found by the graph search). To enable this an additional attribute “sort” is included to the edge attributes.
This is retrieved for sorting in ACGraphVertexCommonProperties._getVertexesByEdgeAttribute
and sorted accordingly.

Saving Sorted Lists To avoid multiple calls to an unchanged graph and sorting of a result list, those resulting lists are
saved in the dictionary _typesDict defined in ACGraphVertexInit. There is a check if the graph changed and
the result lists changed. So this list is updated if needed.

4.5.5 Visualization

There is one way of visualizing the acGraph provided by service.utilities:

delis.service.delisobjectsplotter.mainobjectsplotter.printGraphStructureMatplotlib(g,
po-
si-
tions=None,
show=True)

Prints the vertexes and edges of the graph g by dots and lines. It also adds the name of the vertex using the
__str__ attribute.

Parameters

• g – graph object

• positions – dict with vertex object as key and 2D position iterable(e.g. list, ndarray) as
value

Returns networkx postions dict with vertex object as key and 2D position ndarray as value

..note:: This only works with NxGraphs(networkx)

Example:
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>>> from delis.service.aircraftgraph import NXAircraftGraph
>>> from model.geometry.translate import Translation
>>> ag=NXAircraftGraph()
>>> t1=Translation([0,0,0],id='1')
>>> t2=Translation([0,0,0],id='2')
>>> t3=Translation([0,0,0],id='3')
>>> t4=Translation([0,0,0],id='4')
>>> ag.addEdge(t1,t2)
>>> ag.addEdge(t2,t4)
>>> ag.addEdge(t1,t3)
>>> ag.addEdge(t3,t4)
>>> # the following code is temporarily not working. Version problem with
→˓networkx and matplotlib
>>> #positions = printGraphStructureMatplotlib(ag, show = False) # set show=True
→˓if it should be plot.

4.5.6 Graph Search for Area Creation

Within the method _createAreasBySubgraph a graph search is performed identifying lines belonging to an area.

StructureElement._createAreasBySubgraph(acSubGraph, lines, sheetPropertyList=None,
areatype=None)

Create areas by graph searches on a Subgraph

This method creates areas by searching the shortest path between the two keypoints of a line. To do so the line
is removed from the graph so the shortest path consists of keypoints and lines along the area except that line.
Next the lines are extracted and an area is created.

Parameters

• acSubgraph – Graph identifying the objects and their adjacency properties where areas
should be created. It usually only contains keypoints and lines.

• lines – list of line objects that are used to split up the polyline of an area

• areatype – identifies the type of the area to be created. The type is looked up in MY-
GLOBAL.numbering

Param sheetPropertyList: list of sheetProperties. It must have the same length as lines and is
mapped to the area created by the corresponding line. If None the sheetProperties of self are
used.

Example Usually the acSubGraph consists of lines and keypoints between two frames or two ribs respectively.
In the following images two frames intersected by 10 stringers are exemplary used for illustration.

Iteratively the lines of the first frame are removed and a shortest path search is performed between the lines
keypoints “K 7030010” and “K 7030001”. This results in identifying additionally the lines “L 8030010”, “L
7031010” and “L 8030001” as the area spanning lines.
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Figure 4.20 : Vizualization of acGraph object containing lines and keypoints. The inner keypoints and lines are the
ones of the first frame.
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Figure 4.21 : Geometric representation of acGraphs lines
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Figure 4.22 : Vizualization of acGraph object containing lines and keypoints. The inner keypoints and lines are the
ones of the first frame.
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Figure 4.23 : Geometric representation of acGraphs lines
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4.5.7 Conclusion

Concluding there are the following pros and cons using a graph structure.

• pro

– easy and universal linking of objects

– easy access to specific types of adjacent nodes

– areas are not restricted by having exact 4 lines. By the graph search a flexible area creation is possible

– geometric neighbors can be quickly found without the need of a strict grid structure

– once the graph is created the sorted neighbors can be accessed quickly due to caching sorted lists

• con

– higher effort to create data structure

– less encapsulation since every important object is linked with each other. So the graph should not be
changed except at the defined stages explained in Building an ACGraph

– sorting data is more complicated since the order objects are added to the graph does not specify a
sequence that is kept - see Classes used as Vertex

– pickle does not work due to high recursion depth

4.6 Caching TIGL Geometry

delis.service.tivalibs.LibTIGL()
This class is a specialization of the automatically generated Tigl class. It adds the ability to return a Translation
object instead of single coordinates.

Additionally the geometry will be cached for later calculations on the exact same geometry.

Caching Geometry:

To ensure the outer geometry to be exactly equal to a previous run a string is created based on the geometric
airfoil information and the positions of sections. This is done by the “getHashName”-functions in fuselage,
wing, section, element and airfoil. Then a md5 hash is created based on this huge string, defining the filename
of the cache file MYGLOBAL.keypointCachingDirectory + md5-hash + .pickle for each fuse-
lage and wing. The hash identifies the outer shape distinctively. Thus there is a dictionary in this class mapping
the fuselage- and wing-index to their respective hash.

Now the outer shape is identified distinctively, the keypoints created by the methods of this class are stored in
an additional dictionary (self.fuselageKeypoints, self.wingKeypoints). This dictionary is pickled(serialized) at
the end of the run to their respective file. On the next run this file is loadad in readCacheFile and used for
keypoints having the same input parameters when the getPoint-methods are called. Attention: always a copy of
those keypoints is returned.

Note: The Translation objects that are serialized loose their non-ndarray properties. So just the coordinates
themselves may be used. This is due to a non-standard way of object instanciation when deserializing.
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4.7 Calling Analysis

In DELiS, several finite element solvers can be used to solve different kinds of structural problems. Currently, in-
terfaces to Ansys, Nastran and Abaqus are provided. They all base on a general python interface which provide
convenient methods to establish a fe solver call whithout taking effort e.g. in file I/O or error handling. This is all
done by the general interface. For example,running an linear static analysis in Ansys with a beforehand written file
Model.mac will be instantiated as follows:

from delis.service.utilities import AnsysCaller
ansCall = AnsysCaller(feFilename = "Model.mac")
ansCall.run(doRemoteCall = False, jobName = "testJobName")

If Abaqus or Nastran are used as external fe solver, the approach is similiar and the input file and caller object need to
be changed. Within a run() call, the user can also define if the calculation shall be done locally or one the FA-Cluster
in remote mode.

4.7.1 Calling Hypersizer

Please refer to Hypersizer Interface Manual.

4.8 Python Package Generation (F2PY)

For the purpose of making the functionalities of BoxBeam available in an user comfortable way it is been ported from
Fortran to Python by using f2py.py and compiled via mingw32 and gnu95, respectively.

4.8.1 Prerequisites

As mentioned before there are some requirements to e fulfilled in order to create a python library of a fortran pro-
gram properly. The required programs, modules and packages, respectively, should be available when following the
installation guideline of this documentation (see Installation)

4.8.2 Creating the Python Library

The generation of a .pyd - file is realized within two steps.

Firstly, a .pyf -file has to be created. This so called signature file of the program to be compiled contains the specifi-
cation of all variables occurring in the subroutines and the program itself. Following a sample of such a description,
extracted from the .pyf -file for BoxBeam, is given:

subroutine mll(n,zi,phi,h,a,rho,b,rk,d,rhott,ecc,ori,nori,ier) ! in :bbeam:mll.f
integer, intent(in) :: n
real*8, intent(in) :: zi
real*8 dimension(n),depend(n), intent(in) :: phi
real*8 dimension(n),depend(n), intent(in) :: h
real*8 dimension(3,3,n),depend(n), intent(in) :: a
real*8 dimension(n),depend(n), intent(in) :: rho
real*8 dimension(3,3), intent(out) :: b
real*8 dimension(3,3), intent(out) :: rk
real*8 dimension(3,3), intent(out) :: d
real*8, intent(out) :: rhott

(continues on next page)
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(continued from previous page)

real*8, intent(out) :: ecc
real*8 dimension(n),depend(n), intent(out) :: ori
integer, intent(out) :: nori
integer, intent(out) :: ier

end subroutine mll

This .pyf -file is created by using the python module F2PY.py. This python module should already be included within
the python package mentioned in Installation. The step of generating a signature file is concluded by executing an
appropriate command line command, which will result into the existence of a .pyf - file. The following command line
expressions for example are used to generate a signature file for BoxBeam:

del bbeam.pyf
C:\Python27\python.exe C:\Python27\Scripts\f2py.py -m bbeam -h bbeam.pyf bbeam.f
→˓common.f concha.f geom.f util.f mll.f setZeros.f
PAUSE

Within the command line options the -m specifies the name of the main file of the program. The option -h specifies
the name of the .pyf - file to be created, which is followed by all subroutines/files to include.

Secondly, a .pyd - file is generated using the beforehand created .pyf - file. This is the resulting library subsequently
importable within python.

This .pyd -file is created by using mingw32 and gnu95. The required compiler mingw32 and gnu95 are also available
when using eclipse (see Installation.). The step of generating a library file is concluded by executing an appropriate
command line command, which will result into the existence of a .pyd - file.

Note: Your path that is set below may not contain whitespaces!

The following command line expressions for example are used to generate a signature file for BoxBeam:

del bbeam.pyd
SET PATH=C:\Eclipse\MSYS\bin;C:\Eclipse\MSYS\mingw\bin;C:\Eclipse\MSYS\doxygen\bin;
→˓%PATH%
C:\Python27\python.exe C:\Python27\Scripts\f2py.py -c --compiler=mingw32 --
→˓fcompiler=gnu95 bbeam.pyf bbeam.f concha.f geom.f util.f mll.f setZeros.f
PAUSE

Within the command line options the -c specifies the name of the compiler to be used while creating the library. This
option is followed by all subroutines/files to include, except of the file containing the common part. This file was
already considered while generating the .pyf - file.

130 Chapter 4. Programmer Manual



CHAPTER

FIVE

HYPERSIZER INTERFACE MANUAL

5.1 Preliminary Considerations

Before developing in the hypersizer interface, one can create the hypersizer object model headers in python for auto
completion in eclipse. Perform the following steps:

# go to python directory
cd C:\\Python27
# run the following command
python.exe Lib\\site-packages\\win32com\\client\\makepy.py -i
# select "HyperSizer Advanced Structural Analysis Library, v<xx>" and
# perfom the actions listed in the output in python

Now you can use the debugger and get additional information about the types of the hypersizer objects used.i

5.2 Process Description

5.2.1 Nomenclature

These terms are used within the hypersizer interface:

Component Hypersizer term. Collection of finite elements with identical thickness/stacking and whose
stresses are analyzed collectively. Hypersizer can read components from the fem model. To accom-
plish this, each component must have distinct beam/shell properties.

Group Hypersizer term. Collection of components with identical design concept and design parameter
setup(bounds, permutations).

Assembly Hypersizer term. Collection of components whose composite layup definition is the same.
Hypersizer can read assemblies from an ansys fem model. These structural elements comprise
assemblies:

• Upper wing skins

• Lower wing skins

• Ribs

• Spars

• Fuselage skins

• Floor panels

• Frames
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• Stringers

• Crossbeams

• Crossbeam struts

• Long floor beams

Parameter Hypersizer term. Design parameter such as skin thickness. The parameter has minbound,
maxbound, numberOfPermutations and possible materials as attributes.

Optimization Region Within the hypersizer interface, there is only one component within a group. Thus
in the interface a component and it’s respective group is referred as optimization region. Within the
model generator optimization regions are

• delis.model.structure.skin.SkinFuselage

• delis.model.structure.skin.SkinWing

• delis.model.structure.fuselage.floorpanel.FloorPanel

• delis.model.structure.fuselage.frame.FramePosition

• delis.model.structure.stringer.StringerPosition

• delis.model.structure.fuselage.longfloorbeam.LongFloorBeamPosition

• delis.model.structure.fuselage.crossbeam.CrossBeam

• delis.model.structure.fuselage.crossbeamstrut.CrossBeamStrut

These classes inherit from delis.model.commonstructure.
PanelSizingProperties or delis.model.commonstructure.
BeamSizingProperties where the hypersizer related group objects are created.

All those entities are used in Paramam, Hypersizer and the FEM solver. Thus the table below shows the entity names
in the respective software environment.

Table 5.1: Collection names in Hypersizer, Paramam, Ansys and Nastran
Hyper-
sizer

Paramam Ansys Nastran

Compo-
nent

Optimization Region Elements with same proper-
ties

Elements with same proper-
ties

Group Same as component Not present Not present
Assembly Lists like upperSkins, spars, cross-

beams
ansys components ???

5.2.2 Sizing Process

Overall Sizing Process

The overall aircraft modeling and sizing process is split into five parts as can be seen on the following image. When
a CPACS-dataset is created, it is read by the model generator producing the initial FEM-model and loadcases for the
FEM system that is requested. Within the FEM-model the correct components and Groups for Hypersizer are already
given by the partitioning of element properties and merging them as ansys/nastran components. Additionally python-
based Hypersizer group objects are created and passed to the Hypersizer interface. These group objects comprise of
the group- and component key, the panel or beam concept and the parameters including bounds and permutations.
This information created by the model generator is passed to the hypersizer interface establishing a COM-interface to
Hypersizer and creating all the mentioned objects in Hypersizer. Then in an iterative process a fem solution is created,
read by Hypersizer and the results are interpreted within the Hypersizer interface.
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DELiS

Aircraft 
Object Model

Aircraft 
Object Model

FEM
Solver

FEM
Solver

HypersizerHypersizer

CPACS
Hypersizer 
Interface

Hypersizer 
Interface

Figure 5.1 : Overall Hypersizer Process Flowchart

Detailed Hypersizer Process

When the hypersizer interface has started a Hypersizer application is opened utilizing the COM-interface. Using the
information provided by the model generator the hypersizer interface creates these objects within the Add ‘Hypersizer’
to dictionary application:

• Hypersizer Project

• Hypersizer Materials and effective laminates (Under construction - when will this be done exactly?)

• Hypersizer Assemblies

• Hypersizer Groups

– Concept

– Parameters

– Permutations

– Adding Materials/Effective Laminates

– Set Buckling Lengths

• Set Design Factors (Under construction)

• Set Design Criteria (Under construction)

The initial sizing loop starts with calling Ansys or Nastran which employs the given FEM and load files. Ansys creates
*.rst and Nastran creates *.op2 result files. In the initial Ansys run the APDL-based *.mac file is read and a *.cdb
file is created which is used on the subsequent Ansys runs. This is explained below in more detail. Hypersizer reads
element loads of each component. With the use of the design criteria activated and design factors set, the components
are analyzed. The result are the margins of safety and the lightest design satisfying the design criteria. Hypersizer
updates the FEM model properties of those lightest designs. Following the hypersizer interface checks convergence
criteria such as relative change of total mass and maximal number of iterations. If convergence is not reached, the
sizing settings like bounds and permutations may be adjusted and the next sizing loop is started. In the other case
postprocessing information is created and the results are returned to the model generator and CPACS respectively.

The following two images depict the handling of files during sizing iterations. The <model> keyword refers to the
name of the model file that is set by the user. In each iteration the FEM input file is parsed by the FEM solver creating
a result file. Hypersizer reads the model and result file performing it’s sizing. It always creates the new FEM input file
with a filename appended by _i. This file is copied to a file with the name <model>_V<iterationNumber-1>.
This way the files of each iterations stay intact for postprocessing or other subsequent calculations. The initial sizing
with Ansys is a special case. The model generator provieds APDL-based *.mac files which are processed by Ansys
creating the result file and the *.cdb file which is used on the subsequent Ansys runs.
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Figure 5.2 : Detailed Hypersizer Process Flowchart
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Ansys – Hypersier Iterations

Iteration 1 Iteration 2 Iteration 3

AnsysAnsys

<model>.mac

Copy FEM 
Model

Copy FEM 
Model

<model>.rst
<model>.cdb

HypersizerHypersizer

<model>_i.cdb

AnsysAnsys

<model>_V1.cdb

Copy FEM 
Model

Copy FEM 
Model

<model>_V1.rst

HypersizerHypersizer

<model>_i.cdb

AnsysAnsys

<model>_V2.cdb

Copy FEM 
Model

Copy FEM 
Model

<model>_V2.rst

HypersizerHypersizer

<model>_i.cdb

Figure 5.3 : Files created on a sizing run using Ansys
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Nastran
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Hypersizer

<model>_i.bdf
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Copy FEM 
Model

<model>_V1.op2

Hypersizer

<model>_i.bdf

Nastran

<model>_V2.bdf

Copy FEM 
Model

<model>_V2.op2

Hypersizer

<model>_i.bdf

Figure 5.4 : Files created on a sizing run using Nastran
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Initialization of HyperSizerInterface

delis.hypersizer.hypersizerinterface.HyperSizerInterface(femFilename, runDi-
rectory, groups,
assemblies=None,
solverType=None,
unitSystem='meter',
emptyDataBaseFile-
name=None, reinitialize-
Database=True, keepHy-
perSizerRunning=False,
maxIterations=13, num-
berOfLoadCases=1,
membershipDict={},
sizingMethod=None)

The hypersizer interface is the interface between some abstract python object model and the object model of
Hypersizer. It employs the classes of the hypersizermodel that establish a connection to Hypersizer via the
windows COM-interface. In the hypersizer interface the sizing loops are performed.

Parameters

• femFilename – Name of the fem model file. It can be given as basename, base-
name+extension or directory+basename+extension. The file should be in runDirectory.

• runDirectory – Folder where the hypersizer run is executed. It also contains the fem
model file. The hypersizer databas will be copied to this folder.

• groups – List with instances of hypersizer.hypersizermodel.HyperSizerGroup or derived
classes. The componenKey of each group must be present as id of the fem property in the
fem input file.

• assemblies – List of instances of hypersizer.hypersizermodel.HyperSizerAssembly. If
none is given, the assemblies within the fem file are used in hypersizer and an assembly with
all components is created, called “All”.

• solverType – Identifies the solver. It is either a string or an int:

string int

–
nastran 1

–
mscNastran 1

–
neiNastran 5

–
nxNastran 6

–
abaqus 7

–
ansys 8

• unitSystem – string [‘meter’|’millimeter’]
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• emptyDataBaseFilename – Path(relative or absolute) and name of the initial hyper-
sizer database. A copy of this database file is created in the runDirectory and used for the
sizing process, creating the hypersizer project, groups etc.

• reinitializeDatabase – If True the database will be reinitialized by using the
database at emptyDataBaseFilename and the project will be created. If False a given
database will be loaded and the containing HS project and groups will be used. !!! This is
still under construction !!!

• keepHyperSizerRunning – If True, hypersizer will be loaded during the whole sizing
process. If False the hypersizer application will be shut down during the fem calculations
and reopened again afterwards.

• maxIterations – Int, maximal number of iterations.

• numberOfLoadCases – Int, number of loadcases used. This variable is only needed for
ansys calculations!

Example initialization:

# imports
from delis.service.globals import MYGLOBAL
from fa_pyutils.service.logger import log
from hypersizer.hypersizerinterface import HyperSizerInterface
import delis.service.utilities as utils
import shutil , os
from hypersizer.hypersizermodel import HyperSizerGroupUnstiffenedPanel,
→˓HyperSizerParameter

# create run directory
timestr = utils.getTimeString()
runDir=os.path.normpath(MYGLOBAL.programDir+'/tmp/'+MYGLOBAL.progName+'_'+timestr)
if not os.path.exists(runDir): os.makedirs(runDir)

groups = []
#create hypersizer parameter that is added to each group
topThickness = HyperSizerParameter(8 , 0.001524 , 0.04953 , 50 , [])

#create group numbers according to the id of the fem properties in the
#fem input file
groupNumbers = [750001,750004,750008,750012,750016,750020,750023,750027]
groupNumbers.extend([750032,750039,750044,750048,750051,750057,750059])
groupNumbers.extend([750063,750067,750071,750075,750079,750083])
groups = [HyperSizerGroupUnstiffenedPanel(groupNumber ,[topThickness,],

) for groupNumber in groupNumbers]
unitSystem = 'meter'
feFilename = 'vamp.mac'

# copying testing fem files
# fem files should be made available by the user
shutil.copyfile('static/hyperSizerDatabase/vamp.mac', runDir+'/vamp.mac')

hypersizerInterface = HyperSizerInterface(feFilename,runDir,groups,
keepHyperSizerRunning=False,
unitSystem=unitSystem,
maxIterations=2,
numberOfLoadCases=2,
)

(continues on next page)
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(continued from previous page)

hypersizerInterface.runHyperSizer()

The groups and assemblies may be created using a python script as seen in the example above. Furthermore
groups and assemblies may also be created using the model generator. The class model.aircraftmodel.
AircraftModel contains the method getHypersizerGroups and getHypersizerAssemblies
that call methods with the same name in fuselages and wings recursively and return groups and assemblies.

if a reflected wing is generated, the properties of the original wing need to be copied to the reflected wing after
one iteration step. Here the flag “copyWingProperties” needs to be set True

hypersizerInterface.runHyperSizer(copyWingProperties=True)

Groups and Components

delis.hypersizer.hypersizermodel.HyperSizerGroup(key, concepts=None, hyperSizerPa-
rameters=None, **kwargs)

The hypersizer interface treats hypersizer groups and hypersizer components as the same. Thus this class pro-
vides preferences and methods for both, groups and components. Each Group has only one Component, so that
distinguishing between several Components is not necessary.

The hypersizer interface provides several types of groups/components that differ from each other by rep-
resenting different hypersizer panel/beam families and different concepts. The general group is the class
hypersizer.hypersizermodel.HypersizerGroup. This class can be used for every case but the
setting of the panel/beam family and concepts must be accomplished by the user. All classes inheriting from
HypersizerGroup are a specialization and for every panel/beam design a user may create additional spe-
cialized classes.

These are important attributes:

Key Key of the component and group in hypersizer. It is also the id of the fem property of that
specific region.

Parameters List with instances of class HyperSizerParameter. It defines the set of parameters, their
bounds and stepSize that shall be used in the design. These parameter objects will be copied and
included to this group.

Concepts List of concepts which can be seen in the concepts tab. Each entry specifies if the respec-
tive concept is activated. Example: for unstiffened panels self.concepts[0] is 1:

self.concepts = [1], # one stack unstiffened

bpcOneStack 1
bpcTwoStack 2
bpcThreeStack 3
bpcHoneycombSandwich 4
bpcFoamSandwich 5
bpcHatBonded 11
bpcTwoSheetBonded 12
bpcTrusscoreSandwichBonded 13
bpcHatFastened 14
bpcTwoSheetFastened 15
bpcTrusscoreSandwichFastened 16
bpcIBonded 21
bpcTBonded 22
bpcZBonded 23
bpcJBonded 24
bpcCBonded 25

(continues on next page)
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(continued from previous page)

bpcAngleBonded 26
bpcIFastened 27
bpcTFastened 28
bpcZFastened 29
bpcAngleFastened 30
bpcBlade 31
bpcInvertedT 32
bpcInvertedAngleL 33
bpcIContinuousFlangeBonded 34
bpcTContinuousFlangeBonded 35
bpcJContinuousFlangeBonded 36
bpcISandwichBonded 37
bpcBladeSandwich 38
bpcReinforcedCoreSandwich 39
bpcOrthoGrid 51
bpcWaffleGrid 52
bpcIsoGrid 53
bpcAngleGrid 54
bpcGeneralGrid 55
bpcGrid0 56
bpcGrid90 57
bpcOrthoGridSandwich 58
bpcAngleGridSandwich 59
bpcPRSEUS 61
bpcBeamI 71
bpcBeamT 72
bpcBeamC 73
bpcBeamL 74
bpcBeamZ 75
bpcBeamJ 76
bpcBeamCap 77
bpcBeamWeb 78
bpcBeamRectangular 81
bpcCircularTube 91
bpcEllipticalTube 92
bpcTaperedCircularTube 93

If this list is empty, the default concepts are active.

5.2.3 Used Packages and Modules

These python packages and modules are used by the hypersizer interface.

• hypersizer.*

• delis.service.globals

• delis.service.utilities

140 Chapter 5. Hypersizer Interface Manual



delis, Release 21.2.6

5.3 Creation of Groups/Components and Assemblies in DELiS

delis.hypersizer.groupgenerator.GroupGenerator()
This class generates hypersizer groups/components using a given DELiS aircraft model.

Groups/Components

The DELiS groups/components are defined on basis of the properties of the fem model. Additionally the concept
of the group/component and their bounds are dependent on the type of structure and their CPACS definition
(Further information can be found in DELiS Toolspecific Preferences).

Assemblies Assemblies unite a collection of groups/components that is used for rapid sizing and to define
toplevel hypersizer properties and linking of variables. Thus each type of structure element of each wing and
fuselage has it’s own assembly such as frames, stringers(fuselage), crossbeams, ribs. The skins of each wing are
split into upper and lower skins. Another exception are the spars and spar caps. Here each spar, upper cap and
lower cap has its own assembly.

5.4 Convergence Criteria

The hypersizer iterations terminate if all convergence criteria are fulfilled:

Value in iteration Operator Convergence Value Default
iteration number >= HyperSizerInterface.maxIterations 13
change in mass < threshold: 0.0005
All Margins of Safety are positive

A user can request a stop of the iterations. When the hypersizer interface is started, a file called control is created
containing 0. If this is changed to 1, the iterations stop during the convergence check.

5.5 Reference

Please refer to the paragrapf HyperSizer in the chapter Reference Guide.

5.6 Hypersizer Feature Request

Offset beam in z-direction an explicit beam should be offseted to account for the skin it is mounted on.
The fe nodes are located on the jig-shape. Thus the beam should start at z = - skin.thickness.

At least the beam model should start at the Bottom (http://hypersizer.com/help/index.php#
FE-Update/update-elem-beam_offset.php9

buckling for non-standard approach todo

material input todo
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5.7 Hypersizer Interface Errors

Here all errors of the interface can be listed that can not be explained right away. In the future we might have the
chance of identifying common errors and investigate them.

1. Error when opening the hpyersizer application by a non-admin user running as windows service (jenkins, rce).:

src\hypersizer\hypersizermodel.py:459: in __init__
self.openHyperSizer(nonFEA)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <hypersizer.hypersizermodel.HyperSizerApplication object at
→˓0x0000000028712CC0>
nonFEA = False

def openHyperSizer(self,nonFEA = False):
"""Opens the hypersizer com interface"""
log.debug('Open hypersizer com instances')
if self.comHS is None:

try:
self.comHS = win32com.client.Dispatch("HyperSizer.Application")

except win32com.client.pywintypes.com_error:
# see task #13377
# this error is not reproducible. please contact freu_se if it

→˓still occurs!
try:

self.comHS = win32com.client.Dispatch("HyperSizer.Application
→˓")

except Exception as exception:
> raise HyperSizerError('Could not open Hypersizer! This error
→˓occured: '+str(exception))
E delis.service.globals.HyperSizerError: "Could not open
→˓Hypersizer! This error occured: (-2147024891, 'Zugriff verweigert', None, None)"

Solution

1. open cmd window as admin

2. run “dcomcnfg.exe”

3. goto Component Services --> Computers --> My Computer or in german
Komponentendienste --> Computer --> Arbeitsplatz

4. select properties of My Computer / Arbeitsplatz

5. Choose the COM Securities tab

6. In Access Permissions, click “Edit Defaults” and add the user that hosts the service to it and give it
“Allow local access” permission.

7. In launch and Activation Permissions, click “Edit Defaults” and add the user that hosts the service
to it and give it “Local launch” and “Local Activation” permission.

Solution from this page: https://social.technet.microsoft.com/Forums/windows/en-US/
dde69147-a01a-4eb1-8ea9-31adbf874bed/microsoft-excel-application-entry-missing-in-dcomcnfg?
forum=w7itproappcompat

1. Error when opening the hypersizer application. The actual running GUI version also crashed:
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File "D:\freu_se\fuselage\trunk\src\main\fuselagemain.py", line 89, in main
mycontrol.run(**kwargs)

File "D:\freu_se\fuselage\trunk\src\control\fuselagecontrol.py", line 384, in run
hypersizerInterface.runHyperSizer()

File "D:\freu_se\fuselage\trunk\src\hypersizer\hypersizerinterface.py", line 124,
→˓in runHyperSizer
self._runHyperSizer()

File "D:\freu_se\fuselage\trunk\src\hypersizer\hypersizerinterface.py", line 164,
→˓in _runHyperSizer
self.openHyperSizer()

File "D:\freu_se\fuselage\trunk\src\hypersizer\hypersizerinterface.py", line 112,
→˓in openHyperSizer
self.hyperSizerApplication = HyperSizerApplication()

File "D:\freu_se\fuselage\trunk\src\hypersizer\hypersizermodel.py", line 152, in _
→˓_init__
self.hs = win32com.client.Dispatch("HyperSizer.Application")

File "C:\Python27\lib\site-packages\win32com\client\__init__.py", line 95, in
→˓Dispatch
dispatch, userName = dynamic._GetGoodDispatchAndUserName(dispatch,userName,

→˓clsctx)
File "C:\Python27\lib\site-packages\win32com\client\dynamic.py", line 108, in _
→˓GetGoodDispatchAndUserName
return (_GetGoodDispatch(IDispatch, clsctx), userName)

File "C:\Python27\lib\site-packages\win32com\client\dynamic.py", line 85, in _
→˓GetGoodDispatch
IDispatch = pythoncom.CoCreateInstance(IDispatch, None, clsctx, pythoncom.IID_

→˓IDispatch)
pywintypes.com_error: (-2146788248, 'OLE error 0x800a9c68', None, None)

2. Error when running two hypersizer instances in parallel.

DONE #10717

3. Error when importing model and loads initially. It says “path not found” but it is unclear which path:

INFO 2013-08-17 00:31:26,030: Open database at F:\VAMP\freu_se\trunk\tmp\fa_
→˓paramam_interface_20130817_3055_ans_barrel\hs_db_meter6.4.hdb
INFO 2013-08-17 00:31:26,686: Create new Project "ProjectHsInterface"
INFO 2013-08-17 00:31:26,701: Import FE model and loads from F:\VAMP\freu_se\
→˓trunk\tmp\fa_paramam_interface_20130817_3055_ans_barrel/vamp.cdb and F:\VAMP\
→˓freu_se\trunk\tmp\fa_paramam_interface_20130817_3055_ans_barrel/vamp.rst
Traceback (most recent call last):
File "F:\VAMP\freu_se\eclipse\eclipse\plugins\org.python.pydev_2.7.1.2012100913\

→˓pysrc\pydevd.py", line 1397, in <module>
debugger.run(setup['file'], None, None)

File "F:\VAMP\freu_se\eclipse\eclipse\plugins\org.python.pydev_2.7.1.2012100913\
→˓pysrc\pydevd.py", line 1090, in run

pydev_imports.execfile(file, globals, locals) #execute the script
File "F:\VAMP\freu_se\trunk\src\main\fuselagemain.py", line 102, in <module>

main()
File "F:\VAMP\freu_se\trunk\src\main\fuselagemain.py", line 89, in main

mycontrol.run(**kwargs)
File "F:\VAMP\freu_se\trunk\src\control\fuselagecontrol.py", line 394, in run

hypersizerInterface.runHyperSizer()
File "F:\VAMP\freu_se\trunk\src\hypersizer\hypersizerinterface.py", line 126,

→˓in runHyperSizer
self._runHyperSizer()

File "F:\VAMP\freu_se\trunk\src\hypersizer\hypersizerinterface.py", line 199,
→˓in _runHyperSizer (continues on next page)
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project.importFEM(self.runDirectory+'/'+self.femFilename, self.solverType)
File "F:\VAMP\freu_se\trunk\src\hypersizer\hypersizermodel.py", line 227, in

→˓importFEM
self._evaltuateHyperSizerFunction(self.hsProject.ImportFEM)

File "F:\VAMP\freu_se\trunk\src\hypersizer\hypersizermodel.py", line 119, in _
→˓evaltuateHyperSizerFunction

if hyperSizerFunction(*args) is True:
File "<COMObject Item>", line 2, in ImportFEM

pywintypes.com_error: (-2147352567, 'Ausnahmefehler aufgetreten.', (0, u
→˓'ImportFEM [Function]', u'Unhandled Error, Application Error in
→˓Project::ImportFEM [Function]()\r\n\r\nLine #9, Error #-2147188733, Unhandled
→˓Error, Application Error in clsHyperSizerProject::ComponentImport [Function]()\
→˓r\n\r\nLine #71, Error #-2147188733, Unhandled Error, Application Error in
→˓clsReadFem::Init [Sub]()\r\n\r\nLine #14, Error #-2147188733, Unhandled Error,
→˓Application Error in clsHyperSizerProject::WorkingFolder [Property Get]()\r\n\r\
→˓nLine #20, Error #76, Path not found', None, 1000440, -2147188733), None)

The same error occured with HS V7:

pywintypes.com_error: (-2147352567, 'Ausnahmefehler aufgetreten.', (0, u'Project',
→˓ u'Application Error in Project::ImportFEM [Function]()\r\n\r\nLine #9, Error
→˓#76, Application Error in Project::ImportCore [Function]()\r\n\r\nLine #12,
→˓Error #76, Application Error in clsHyperSizerProject::ComponentImport
→˓[Function]()\r\n\r\nLine #17, Error #76, Application Error in
→˓clsHyperSizerProject::WorkingFolder [Property Get]()\r\n\r\nLine #5, Error #76,
→˓Path not found', None, 1000076, -2146828212), None)

4. Error opening hpyersizer application:

INFO 2013-08-17 00:23:37,720: Open Hypersizer
INFO 2013-08-17 00:23:37,720: Open HyperSizer Application
Traceback (most recent call last):
File "C:\Eclipse\eclipse\plugins\org.python.pydev_2.7.1.2012100913\pysrc\pydevd.

→˓py", line 1397, in <module>
debugger.run(setup['file'], None, None)

File "C:\Eclipse\eclipse\plugins\org.python.pydev_2.7.1.2012100913\pysrc\pydevd.
→˓py", line 1090, in run

pydev_imports.execfile(file, globals, locals) #execute the script
File "D:\freu_se\fuselage\trunk\src\main\fuselagemain.py", line 102, in <module>

main()
File "D:\freu_se\fuselage\trunk\src\main\fuselagemain.py", line 89, in main

mycontrol.run(**kwargs)
File "D:\freu_se\fuselage\trunk\src\control\fuselagecontrol.py", line 395, in

→˓run
hypersizerInterface.runHyperSizer()

File "D:\freu_se\fuselage\trunk\src\hypersizer\hypersizerinterface.py", line
→˓126, in runHyperSizer

self._runHyperSizer()
File "D:\freu_se\fuselage\trunk\src\hypersizer\hypersizerinterface.py", line

→˓191, in _runHyperSizer
self.openHyperSizer()

File "D:\freu_se\fuselage\trunk\src\hypersizer\hypersizerinterface.py", line
→˓114, in openHyperSizer

self.hyperSizerApplication = HyperSizerApplication()
File "D:\freu_se\fuselage\trunk\src\hypersizer\hypersizermodel.py", line 154,

→˓in __init__
self.hs = win32com.client.Dispatch("HyperSizer.Application")

(continues on next page)
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File "C:\Python27\lib\site-packages\win32com\client\__init__.py", line 95, in
→˓Dispatch

dispatch, userName = dynamic._GetGoodDispatchAndUserName(dispatch,userName,
→˓clsctx)
File "C:\Python27\lib\site-packages\win32com\client\dynamic.py", line 108, in _

→˓GetGoodDispatchAndUserName
return (_GetGoodDispatch(IDispatch, clsctx), userName)

File "C:\Python27\lib\site-packages\win32com\client\dynamic.py", line 85, in _
→˓GetGoodDispatch

IDispatch = pythoncom.CoCreateInstance(IDispatch, None, clsctx, pythoncom.IID_
→˓IDispatch)
pywintypes.com_error: (-2146788248, 'OLE error 0x800a9c68', None, None)

5. Not enough Memory:

Done: http://hypersizer.com/forum/index.php/topic,460.0.html

6. Program ended when resetting loads:

INFO 2013-08-21 19:24:09,792:
→˓================================================================================
INFO 2013-08-21 19:24:09,792: Start Iteration 8
INFO 2013-08-21 19:24:09,792:
→˓================================================================================
INFO 2013-08-21 19:24:09,792: Calculate FEM result
INFO 2013-08-21 19:24:09,792: calling ansys locally with license: aa_t_a
INFO 2013-08-21 19:27:15,184: return value of ansys call:8
INFO 2013-08-21 19:27:15,184: Import new FEA-Loads from D:\freu_se\fuselage\
→˓trunk\tmp\fa_paramam_interface_20130821_184652_ans_barrel/vamp_V7.rst
Traceback (most recent call last):
File "C:\Eclipse\eclipse\plugins\org.python.pydev_2.7.1.2012100913\pysrc\pydevd.

→˓py", line 1397, in <module>
debugger.run(setup['file'], None, None)

File "C:\Eclipse\eclipse\plugins\org.python.pydev_2.7.1.2012100913\pysrc\pydevd.
→˓py", line 1090, in run

pydev_imports.execfile(file, globals, locals) #execute the script
File "D:\freu_se\fuselage\trunk\src\main\fuselagemain.py", line 102, in <module>

main()
File "D:\freu_se\fuselage\trunk\src\main\fuselagemain.py", line 89, in main

mycontrol.run(**kwargs)
File "D:\freu_se\fuselage\trunk\src\control\fuselagecontrol.py", line 393, in

→˓run
hypersizerInterface.runHyperSizer()

File "D:\freu_se\fuselage\trunk\src\hypersizer\hypersizerinterface.py", line
→˓126, in runHyperSizer

self._runHyperSizer()
File "D:\freu_se\fuselage\trunk\src\hypersizer\hypersizerinterface.py", line

→˓180, in _runHyperSizer
project.updateFEALoads(self.femFilename, self.solverType)

File "D:\freu_se\fuselage\trunk\src\hypersizer\hypersizermodel.py", line 254,
→˓in updateFEALoads

self._evaltuateHyperSizerFunction(self.hsProject.ResetFeaLoads)
File "D:\freu_se\fuselage\trunk\src\hypersizer\hypersizermodel.py", line 119,

→˓in _evaltuateHyperSizerFunction
if hyperSizerFunction(*args) is True:

File "C:\Python27\lib\site-packages\win32com\gen_py\36A23079-251A-43B3-8FE8-
→˓DB5E1FDAF0A6x0x7x0.py", line 4413, in ResetFeaLoads

(continues on next page)
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return self._oleobj_.InvokeTypes(1610809390, LCID, 1, (11, 0), (),)
pywintypes.com_error: (-2147352567, 'Ausnahmefehler aufgetreten.', (0, u'Project',
→˓ u'Unhandled Error', None, 1000440, -2147188733), None)

7. Program ended when opening HS:

Traceback (most recent call last):
File "D:\hohn_c\eclipse_workspace\trunk\src\main\wing_main_christoph.py", line

→˓87, in <module>
main()

File "D:\hohn_c\eclipse_workspace\trunk\src\main\wing_main_christoph.py", line
→˓65, in main

mycontrol.run(**kwargs)
File "D:\hohn_c\eclipse_workspace\trunk\src\control\wingcontrol_christoph.py",

→˓line 665, in run
hypersizerInterface.runHyperSizer()

File "D:\hohn_c\eclipse_workspace\trunk\src\hypersizer\hypersizerinterface.py",
→˓line 198, in runHyperSizer

self.hyperSizerApplication.closeHyperSizer()
File "D:\hohn_c\eclipse_workspace\trunk\src\hypersizer\hypersizermodel.py",

→˓line 231, in closeHyperSizer
self._closeDatabase()

File "D:\hohn_c\eclipse_workspace\trunk\src\hypersizer\hypersizermodel.py",
→˓line 218, in _closeDatabase

if self.comHS is not None and self.comHS.DatabaseStatus:
File "C:\Python27\lib\site-packages\win32com\client\dynamic.py", line 516, in __

→˓getattr__
raise AttributeError("%s.%s" % (self._username_, attr))

AttributeError: HyperSizer.Application.DatabaseStatus

8. Program ended when having about 2000 groups with the error below. Solution: restart computer:

INFO 2014-06-12 18:23:18,463: Import FE model and loads from D:\freu_se\
→˓fuselage\trunk\tmp\delis_20140612_182221_test_sizing/delis.bdf and D:\freu_se\
→˓fuselage\trunk\tmp\delis_20140612_182221_test_sizing/delis.op2
INFO 2014-06-12 18:23:46,621: Create hypersizer groups, set parameters and
→˓their bounds.
INFO 2014-06-12 18:32:13,375: Start sizing
INFO 2014-06-12 18:32:13,375: HyperSizier sizing started
Traceback (most recent call last):
File "D:\freu_se\fuselage\trunk\test\test_src\test_main\test_sizing.py", line

→˓141, in <module>
test_hypersizerFuselageNastran()

File "D:\freu_se\fuselage\trunk\test\test_src\test_main\test_sizing.py", line
→˓136, in test_hypersizerFuselageNastran

hypersizerInterface.runHyperSizer()
File "D:\freu_se\fuselage\trunk\src\hypersizer\hypersizerinterface_V7.py", line

→˓198, in runHyperSizer
self._runHyperSizer()

File "D:\freu_se\fuselage\trunk\src\hypersizer\hypersizerinterface_V7.py", line
→˓280, in _runHyperSizer

resultList = project.size()
File "D:\freu_se\fuselage\trunk\src\hypersizer\hypersizermodel_V7.py", line 561,

→˓ in size
log.debug('collecting result finished')

File "D:\freu_se\fuselage\trunk\src\hypersizer\hypersizermodel_V7.py", line 200,
→˓ in _evaluateHyperSizerFunction

(continues on next page)
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File "<COMObject GetProject>", line 2, in Size
pywintypes.com_error: (-2147352567, 'Ausnahmefehler aufgetreten.', (0, u'Project',
→˓ u'Sizing failed, error running HyperSizer See D:\\freu_se\\Program Data\\
→˓Hypersizer\\Project_delis_20140612_182221_test_sizing\\TEMP\\Project_delis_
→˓20140612_182221_test_sizing.HDG.', None, 1000440, -2147188668), None)

Content of the file mentioned:

- This program is confidential and a trade secret of Collier R&D Corp.
- HyperSizer(TM) copyright 1996-2014 Collier R&D. All rights reserved.
- Portions copyright 1996 NASA. All rights reserved.

reading *.INI
reading *.CNT
reading *.HFM
reading *.HFA
reading *.DIS
reading *.SIZ
reading *.LDU
reading *.HAN
reading *.HGP
reading *.HUT
reading *.HLC
reading *.M**

5.8 Hypersizer Failure criteria

Hypersizer gives the possibility to create own failure criteria. This feature is called “Analysis plugins”. In the Hyper-
sizer manual the “Developer Tutorial” or “Tutorial” describe the way of creating a dll library. For the used Hypersizer
version 7.0.53 the manual give source code and installation examples for Intel Fortran, Visual C++ and Eclipse C++.
The source code examples for C++ and Fortran are given:

# Plugin examples
cd trunk\static\hyperSizerDLL\plugin

5.8.1 Intel Fortran

Up to now only the Intel Fortran interface has been tested. The manual has an error:

• set buld configuration

– instead of the manual description the platform definition has to be Win32 or X86 not x64

An simplified example is given with source code, an Ansys model and a Hypersizer project file:

# Plugin examples trunkstatichyperSizerDLLpluginHs_UDef

# Ansys model and Hypersizer project file cd D:Blub_newstatichyperSizerDLLexample

The dll library has to be included in the Hypersizer project file with: Preferences –> Plugins

The name of the dll is fixed to “Hs_UDef.dll”. In: Analysis defaults –> Analysis methods

The program includes several subroutines and modules. A Fortran module defines global variables and is also used to
define the C interface pointer. The program is structured in several files.
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“Hs_UDef.f90” is used as direct interface file. The initialization and the analysis is done. The placeholder
correspond to the user defined criterias in Hypersizer.

“Initialize_UDef.f90” has to be used to set physics units, language (Fotran or C++) and version number.

“Sampel.f90” has examples for criterion definition.
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6.1 Main

6.2 Loads

delis.model.loads.GenericLoadCase(**kwargs)
As stated in the module description, there are several ways of importing loads. This class covers generic methods
for load handling. Common for every loadCase class is storing single loads of type Load in self.loads and
self.symmetircLoads. The load input is distinguished by the classes NodalLoadsLoadCase and
AeroCoefficientLoadCase.

delis.model.loads.NodalLoadsLoadCase(**kwargs)
Class for handling a load case description with nodal loads.

Those loads rely on loads composed of areo-, enginethrust- and inertia loads. So there is no flow needed and the
acceleration is zero!

Loads will be applied on the components dam points

delis.model.loads.AeroCoefficientLoadCase(**kwargs)
Class for handling a load case description.

Workflow for processing areo loads

1. Read loadcase definition from Cpacs which is done on wing level. So each wing will have a
wing.loadcases. Todo read lc definition read flow parameters calculate discrete loads from
aero coefficients on aero points move calculated loads to dynamic aircraft model points

2. accumulate wing loads to aircraftModel.loadcases

3. create S_BOT01_inp.mac -> loadcase definition and sizing criteria

4. create loadfiles for S_BOT in folder CSM_GEO. Which results in one file for each loadcase. These
files are named delis_loadcase_<LC_number>.mac

Those loadcases are aerodynamic loadcases. So they should not contain loads resulting from mass inertia.

For fuselage additional cabin pressures are applied to each loadcase.

delis.model.loads.AmifLoadCase(**kwargs)
Class for handling a load case description.

Workflow for processing amif-based areo loads

1. Read loadcase definition from Cpacs which is done on wing level.

#. Read out amif file (link is written from cpacs/vehicles/aircraft/model/analyses/loadAnalysis/loadCases/flightLoadCase/externalAmifFile)
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1. amif File is rewritten into Ansys APDL file containing all aerodynamic forces on each node of the aero-
dynamic surface

2. inertial loads (engine thrust, accelerations, tank loads) are added to the loadcase file

3. create S_BOT01_inp.mac -> loadcase definition and sizing criteria

4. create loadfiles for S_BOT in folder CSM_GEO. Which results in one file for each loadcase. These
files are named delis_loadcase_<LC_number>.mac

delis.model.loads.AeroCoefficientAndNodalInertialLoadsLoadCase(**kwargs)
This class uses aero loads from the AeroCoefficientLoadCase and all other loads from the nodal loads breakdown

Drawback:

Symmetrical loads in AeroCoefficientLoadCase is not considered. Thus if unsymmetric loads are
given for the nodal loads, it will lead to an error. This must be implemented for that case and a check
if both load sources contain symmetric loads must be included.

delis.model.loads.Load(input_array=None, point=Translation(None) = 0.0, 0.0, 0.0, rota-
tion=Rotation([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]), pointTypeOfLoad=None)

This class represents a Load that is defined by a vector of length 6. The load vector is included in a numpy array
and can be accessed and altered like this:

>>> from model.loads import Load
>>> load=Load([1,0,0,0,0,0])
>>> load
Load([1., 0., 0., 0., 0., 0.])
>>> load.point
Translation(None) = 0.0, 0.0, 0.0
>>> load.rotation
Rotation([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

The load can be moved and rotated by the point and rotation properties:

>>> # translate the load
>>> # getting a copy of the point object, move it 2[m] in y-direction and
>>> # move the load - the result is a newly added moment
>>> p=load.point
>>> p
Translation(None) = 0.0, 0.0, 0.0
>>> p2=p+[0,2,0]
>>> p2
Translation(None) = 0.0, 2.0, 0.0
>>> load.point = p2
>>> load
Load([1., 0., 0., 0., 0., 2.])

>>> # rotate the load
>>> # getting a copy of the rotation, rotate it by 90 degress around the z-axis
>>> # and rotate the load
>>> load=Load([1,0,0,0,0,0])
>>> r=load.rotation
>>> r
Rotation([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> r2 = Rotation()

(continues on next page)
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>>> r2.angles = [0.,0.,np.pi/2]
>>> r2
Rotation([[ 6.123234e-17, -1.000000e+00, 0.000000e+00],

[ 1.000000e+00, 6.123234e-17, -0.000000e+00],
[ 0.000000e+00, 0.000000e+00, 1.000000e+00]])

>>> load.rotation = r2
>>> load
Load([ 6.123234e-17, -1.000000e+00, 0.000000e+00, 0.000000e+00,

0.000000e+00, 0.000000e+00])

The point and rotation properties always reference to the aircraft coordinate system. Thus one can not operate
with them directly - a new point or rotation has to be calculated outside of the loads class and applied to the load
as shown in the description above.

6.3 Dynamic Aircraft Model (DAM) Points

DAM points are slave nodes which are used as load reference for a set of master nodes. DAM points can be created
by two methods. The first method reads user defined coordinates of the DAM points. The number of DAM points has
to be equal to the length of a given load vector. The second method utilizes a user defined load reference axis. Along
this axis a specific, not user defined, number of DAM points will be created. For the fuselage the number is set to 20.
For the wind and the blade the number is set to the total number of real and imaginary ribs.

AircraftComponent.createDAMPointsCpacs(aircraftGenerator=None, tixi=None)
This method creates dynamic aircraft models from CPACS. The two definitions are

xList = tixi.getFloatVector(xPath+’/dynamicAircraftModelPoints/x’)

yList = tixi.getFloatVector(xPath+’/dynamicAircraftModelPoints/y’)

zList = tixi.getFloatVector(xPath+’/dynamicAircraftModelPoints/z’)

and

along a defined load reference axis with a fixed number of DAM point.

The number of load reference points are given in CPACStixi.getNamedChildrenCount(xPath+’/loadReferenceAxisPoints’,
‘loadReferenceAxisPoint’) The coordinates of these points are defined in eta

eta=tixi.getDoubleElement(xPath+’/loadReferenceAxisPoints/loadReferenceAxisPoint[‘+str(pointNumber)+’]/eta’)

and xi (for wing and blade)

xi=tixi.getDoubleElement(xPath+’/loadReferenceAxisPoints/loadReferenceAxisPoint[‘+str(pointNumber)+’]/xi’)

If no xi is defined it is set to 0.25.

The number of DAM points are fixed:

for fuselage: countDAMPoints = 20 for wing and blade: countDAMPoints = len(self.ribs)

The DAM points and the coupling structure points are exported

for fuselage: frames for wing and blade: real and imaginary ribs

)

6.3. Dynamic Aircraft Model (DAM) Points 151



delis, Release 21.2.6

6.4 Mass Handling

6.4.1 Mass Object

delis.model.structure.mass.Mass(scalarMass, coG=None, **kwargs)
This class represents mass points, their center of gravity(cog) and mass inertias.

This class can be initialized standalone or read input from a certain cpacs xpath. The mass is defined by the
scalar mass, the cog, mass inertia, a reference point and possibly keypoints the mass is attached to (for usage
with rbe3 elements). A mass can be moved only by the reference point. The cog stays intact. If another mass is
added to this mass, this mass is cumulated and the cog and inertias are adapted accordingly.

Examples:

>>> from model.structure.mass import Mass
>>> # introduce a 10 kilograms mass at coordinate origin
>>> m1 = Mass(10.)
>>> print(m1)
10.0, [0.0, 0.0, 0.0], ,
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

>>> # introduce a 20 kilograms mass at coordinate [0,1,0]
>>> m2 = Mass(20.,[0,1,0])
>>> print(m2)
20.0, [0, 1, 0], ,
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

>>> # add both masses, the result is stored in m1.
>>> # The old m1 is not existing anymore.
>>> # Also the cog and mass inerta has changed
>>> m1 + m2
>>> print(m1)
30.0, [0.0, 0.6666666666666666, 0.0], ,
[[6.66666667 0. 0. ]
[0. 0. 0. ]
[0. 0. 6.66666667]]

>>> # masses can be reflected at the xy-plane
>>> # this is important to create the other side of wings
>>> m3 = m1.reflectMassOnXZPlane()
>>> print(m3)
30.0, [0.0, -0.6666666666666666, 0.0], ,
[[ 6.66666667 -0. 0. ]
[-0. 0. -0. ]
[ 0. -0. 6.66666667]]

>>> # the moments of inertia can be accessed at any point
>>> # moments of inertia at cog:
>>> m1.massMomentsOfIntertia
array([[6.66666667, 0. , 0. ],

[0. , 0. , 0. ],
[0. , 0. , 6.66666667]])

>>> # moments of inertia at coordinate origin:
>>> m1.getMassMomentsOfInertiaAtPoint([0,0,0])
array([[20., 0., 0.],

[ 0., 0., 0.],
[ 0., 0., 20.]])
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References:

http://www.uni-magdeburg.de/ifme/l-festigkeit/pdf/massentraegheitsmomente.pdf

http://de.wikipedia.org/wiki/Tr%C3%A4gheitstensor

6.4.2 Mass List

delis.model.structure.mass.Masses(*args, **kwargs)
Handling of collections of masses.

This class is intended to handle collections of masses. Thus besides the usual list properties, at some points it
contains the same interfaces as the single point mass.

1. The addMass method behaves the same. A single mass adds a mass by adding it to itself. This masses
list appends a given single mass or extends another masses list. This property is used widely in ser-
vice.structuremassfactory. With this one can return a single mass or a mass list.

2. The method reflectMassOnXZPlane also behaves similar.

Examples:

>>> # The examples from Mass can be used to compare the similar behavior.
>>> # The difference is only if a single mass point or several mass points are
→˓used.
>>> from model.structure.mass import Mass, Masses
>>> m1 = Mass(10.)
>>> m2 = Mass(20.,[0,1,0])
>>> masses = Masses([m1,m2])
>>> print(masses.massSum) # result is the same as in the Mass-example
30.0, [0.0, 0.6666666666666666, 0.0], ,
[[6.66666667 0. 0. ]
[0. 0. 0. ]
[0. 0. 6.66666667]]

>>> print(masses.scalarMassSum)
30.0
>>> m3 = masses.reflectMassOnXZPlane()
>>> print(m3.massSum)
30.0, [0.0, -0.6666666666666666, 0.0], ,
[[6.66666667 0. 0. ]
[0. 0. 0. ]
[0. 0. 6.66666667]]

>>> # Example using addMass
>>> massList = Masses(masses) # new instance
>>> singlePointMass = masses.massSum
>>> addedSinglePointMass = Mass(30.)
>>> addedMassesList = Masses([addedSinglePointMass])
>>> # add single point mass with single point mass
>>> singlePointMass.addMass(addedSinglePointMass)
>>> print(singlePointMass.mass)
60.0
>>> # add mass list with single point mass
>>> massList.addMass(addedSinglePointMass)
>>> print(massList.scalarMassSum)
60.0
>>> # add mass list with another mass list
>>> massList = Masses(masses) # new instance
>>> massList.addMass(addedMassesList)

(continues on next page)
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>>> print(massList.scalarMassSum)
60.0

6.4.3 Structure Mass Calculator

delis.service.structuremassfactory.StructureMassFactory(getMassCumulated=True,
plotMasses=False, plot-
Granularity=2, cre-
ateMassTable=False)

This class calculates the primary structure mass of the aircraft or subcomponents.

The important mass methods are

1. getAircraftMass

2. getFuselageMass

3. getWingOrComponentSegmentMass

4. getStructureElementMass

The mass calculation is based on the geometry of all structure elements. Thus the length of beams and the
surface area of shells will be used to determine the total mass. With these methods the respective Mass will be
returned. Additionally the masses can be plot using the flag self.plotMasses.

Example:

>>> from delis.service.structuremassfactory import StructureMassFactory
>>> smf = StructureMassFactory()
>>> smf.plotMasses = True
>>> smf.relativeMarkerSize = 100. # increase marker size for this example
>>> smf.getMassCumulated = False # optional for fine mass plot
>>> smf.plotGranularity = 2 # optional for fine mass plot
>>>
>>> # Create fuselage cylinder model. Other aircraft models may be used as well
>>> from delis.service.custominput import getAircraftModel
>>> from delis.service.custominput import createKeypointsForFuselageCylinderModel,
→˓ createKeypointsForWingModel
>>> aircraftModel=getAircraftModel()

[ ]
####

>>> f=createKeypointsForFuselageCylinderModel(aircraftModel.fuselages[0])
>>> w=createKeypointsForWingModel(aircraftModel.wings[0])
>>> aircraftModel.createLines()

[ ]
#####

>>> log.logLevel = 30
>>> aircraftModel.createAreas()

[ ]
##

[ ]
###

[ ]
####

[ ]
#############################################

>>> log.logLevel = 20

(continues on next page)
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>>> print(smf.getAircraftMass(aircraftModel).massSum)
474.499995664423, [2.1227755520514413, 0.07269968454203365, 0.
→˓007269968454203324], aircraftmodel_id,
[[1763.4177779 55.97926544 5.59792654]
[ 55.97926544 1724.85120635 -3.19881517]
[ 5.59792654 -3.19881517 1765.70347652]]
>>> smf.createMassPlot(showPlot = False, imagePath = None, viewPoint = 'iso',
→˓fileTypes = ['png','svg'])

Variables

• getMassCumulated – Flag if the mass should be summed up in one mass object or if it
should be returned as masses list. Defaults to True.

• plotMasses – Flag, defining if the calculated masses should be included to a mass plot.
Default is False

• massVisualizer – If self.plotMasses is True, all masses calculated in this instance are
added to the mass plot. Finally self.createMassPlot must be called after all masses are
calculated in order to create the plot.

• plotGranularity – int [1,2] describes the granularity of the plot. Default is 2. 1: rough
granularity, each structure element is one mass point 2: fine granularity, each line and area
of a structure element is one mass point.

• relativeMarkerSize – Relative size of the mass marker. It is multiplied with the
scalar mass in order to determine the size of the plot marker.

• createMassTable – Flag, if True the mass data of the get*Mass-methods are ported
to a mass table. When all masses are analyzed one can create the mass table with
self.createMassTables. Defaults to False.

• massTable – if self.createMassTable==True, it is an instance of StructureMassTableGen-
erator. If False, a dummy class is used.

StructureMassFactory.
getAircraftMass(. . . )

Returns the mass of the aircrafts primary structure.

StructureMassFactory.
getFuselageMass(fuselage)

Returns the mass of the fuselages’ primary structure.

StructureMassFactory.
getWingOrComponentSegmentMass(wing)

Returns the mass of the wings’ or componentsegments’
primary structure.

StructureMassFactory.
getStructureElementMass(. . . )

Returns the mass of the structure elements’ primary
structure.

delis.service.structuremassfactory.StructureMassFactory.getAircraftMass

StructureMassFactory.getAircraftMass(aircraftModel)
Returns the mass of the aircrafts primary structure.

Parameters aircraftModel – instance of AircraftModel

Returns Mass or Masses object, depending on self.getMassCumulated
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delis.service.structuremassfactory.StructureMassFactory.getFuselageMass

StructureMassFactory.getFuselageMass(fuselage)
Returns the mass of the fuselages’ primary structure.

Parameters fuselage – instance of fuselage

Returns Mass or Masses object, depending on self.getMassCumulated

delis.service.structuremassfactory.StructureMassFactory.getWingOrComponentSegmentMass

StructureMassFactory.getWingOrComponentSegmentMass(wing, usedStructureTypes=None)
Returns the mass of the wings’ or componentsegments’ primary structure.

Parameters

• wing – instance of wing

• usedStructureTypes – list of strings with structure types where the mass should be
calculated. Can be [‘upperSkins’,’lowerSkins’,’ribs’,’spars’]

Returns Mass or Masses object, depending on self.getMassCumulated

delis.service.structuremassfactory.StructureMassFactory.getStructureElementMass

StructureMassFactory.getStructureElementMass(structureElement, additionalLine-
Mass=0.0, additionalAreaMass=0.0,
weightCalibrationFactor=1.0)

Returns the mass of the structure elements’ primary structure.

Parameters

• structureElement – instance of a structure element that contains sheetproperties or
the profile frame, stringer, skin, ribSegment, SparCell, crossbeam

• additionalLineMass – float value that is added to the line mass calculation [1/m]

• additionalAreaMass – float value that is added to the area mass calculation [1/m/m]

Returns Mass or Masses object, depending on self.getMassCumulated

6.4.4 Mass Postprocessor

delis.service.structuremassfactory.StructureMassVizualizer()
This class is capable to produce mass plots.

This class is built in the StructureMassFactory. There, the primary structure masses can be plot easily. Though,
if other masses e.g. secondary masses, payload and fuel should be used in a plot, this class can also be used
standalone. Masses are plot as mass point located at their cog. The size of the point determines the mass itself.
It can be used like this:

>>> from delis.service.structuremassfactory import StructureMassVizualizer
>>> from model.structure.mass import Mass
>>> smp = StructureMassVizualizer()
>>> m1=Mass(10,[0,0,0])
>>> print(m1)
10, [0, 0, 0], ,
[[0. 0. 0.]

(continues on next page)

156 Chapter 6. Reference Guide



delis, Release 21.2.6

(continued from previous page)

[0. 0. 0.]
[0. 0. 0.]]
>>> m2=Mass(20,[1,0,0])
>>> m3=Mass(15,[0,1,0])
>>> m4=Mass(25,[0,0,1])
>>> smp.addMassesToPlot([m1,m2],relativeMarkerSize = 10)
>>> smp.setColor() # changing color to next value in colormap
>>> smp.addMassesToPlot([m3,m4],relativeMarkerSize = 10)
>>> smp.plotMasses(showPlot = False, viewPoint='iso')

Figure 6.1 : Mass plot result of the example code above

Figure 6.2 : Mass plot of a full aircraft including secondary masses

StructureMassVizualizer.initFigure() Initializes or resets the plot.(all values are deleted)
continues on next page
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Table 6.2 – continued from previous page
StructureMassVizualizer.
addMassesToPlot(masses)

Adds the given masses to the current plot

StructureMassVizualizer.
plotMasses([. . . ])

Plots the masses in 3D space visualizing the positions
and scalar masses.

StructureMassVizualizer.
setColor([color])

Sets the color of the next masses.

delis.service.structuremassfactory.StructureMassVizualizer.initFigure

StructureMassVizualizer.initFigure()
Initializes or resets the plot.(all values are deleted)

delis.service.structuremassfactory.StructureMassVizualizer.addMassesToPlot

StructureMassVizualizer.addMassesToPlot(masses, plotId=False, relativeMarkerSize=1.0)
Adds the given masses to the current plot

Parameters

• masses – List of objects of type Mass. Can also be a single mass.

• plotId – Flag if the if of the mass should be plot.

• relativeMarkerSize – float > 0. Defines the relative size of the mass marker

delis.service.structuremassfactory.StructureMassVizualizer.plotMasses

StructureMassVizualizer.plotMasses(showPlot=True, imagePath=None, viewPoint='top', file-
Types=None)

Plots the masses in 3D space visualizing the positions and scalar masses.

Parameters

• showPlot – Flag if the plot should be shown at runtime.

• imagePath – String with the path and name of the image file (png) that should be saved.
The file extension is not required. If None, no image is created.

• viewPoint – string, defining the view of the plot [‘top’,’front’,’side’,’iso’]

• fileType – list of strings, defining the type of the image file [‘png’,’svg’]

delis.service.structuremassfactory.StructureMassVizualizer.setColor

StructureMassVizualizer.setColor(color=None)
Sets the color of the next masses.

If no color is given, the next color from the colormap is used. The colormap is
[‘blue’,’green’,’red’,’cyan’,’magenta’,’yellow’,’white’,’black’]

delis.service.structuremassfactory.StructureMassTableGenerator()
Class that is capable to create mass overview files.

The class is used by StructureMassFactory intensively. When StructureMassFactory.createMassTable==True all
mass data at aircraft-, component-, structureElements- and structureElement-level are stored in this class. It can
be written to a file with self.writeMassTables. There are 4 levels of granularity provided with the files:
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1. each structure element (frame, stringer, sparSegment, ribSegment)

2. each structure element type (frames, stringers, spars ,ribs)

3. each component (fuselage, wing)

4. each aircraft

Supported output formats are ‘csv’ and ‘text’. For an example, please use the code provided in StructureMass-
Factory and initialize it with:

>>> smf = StructureMassFactory(createMassTable=True)

Example result table (DELiS_coarse_mass.txt):

# component # structure type # scalar mass # mass sum # cog x #
→˓ cog y # cog z
#---------------------------------------------------------------------------------
→˓--------------------------
#
#
# strut #
# # UpperSkinWing # 33.9302 # # 18.0629 #
→˓ 0.0000 # 0.0762
# # LowerSkinWing # 33.9302 # # 18.0613 #
→˓ 0.0000 # 0.0346
# # Rib # 0.7602 # # 18.0226 #
→˓ 0.0000 # 0.0588
# # Spar # 4.0057 # # 17.9476 #
→˓ -0.0000 # 0.0590
# strut # # # 72.6264 # 18.0554 #
→˓ 0.0000 # 0.0556
#
#
# aircraft total #
# SBW_CROR # # # 72.6264 # 18.0554 #
→˓ 0.0000 # 0.0556

6.5 Coordinate Transformations

Coordinate transformations are performed by 4 objects: Translation, Rotation, Scaling and Transformation. Additional
information can be found in [Refs1] and [Refs2] (p. 9).

6.5.1 Translation

delis.model.geometry.translate.Translation(input_array=None, id=None)
This class describes a point in 3D space which is represented by a vector of length 3.

With this class points in 3D space can be created and operations may be performed. For that purpose
the class inherits from np.ndarray which is a class for storing matrix values and performing operations
on them. For further details on np.ndarray please refer to the numpy/scipy documentation.

Usage:
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>>> from model.geometry.translate import Translation
>>> t = Translation([1,2,0])
>>> t
Translation(None) = 1, 2, 0
>>> # getting only one coordinate
>>> t.x
1
>>> # setting only one coordinate value
>>> t.x = 5
>>> t
Translation(None) = 5, 2, 0
>>> #adding translations
>>> t2 = t + t
>>> t2
Translation(None) = 10, 4, 0
>>> # getting the distance between two translations
>>> t.distance(t2)
5.385164807134504
>>> # checking coordinate equality
>>> t3=Translation([5,2,0])
>>> t==t;t==t2;t==t3
True
False
True

6.5.2 Rotation

delis.model.geometry.rotate.Rotation(input_array=None)
This class describes a rotation in 3D space which is represented by a 3x3 matrix.

With this class rotations in 3D space can be created and operations may be performed. For that purpose the
class inherits from np.ndarray which is a class for storing matrix values and performing operations on them. For
further details on np.ndarray please refer to the numpy/scipy documentation.

Rotations are represented by a 3x3 symmetirc rotation matrix.

Usage:

>>> import numpy as np
>>> from model.geometry.rotate import Rotation
>>> # creating identity rotation
>>> r=Rotation()
>>> r
Rotation([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> # creating empty rotation objects for demonstration below
>>> rx=r.copy()
>>> ry=r.copy()
>>> rxy=r.copy()
>>> # creating rotation by defining angles in radians!
>>> # by default the rotation is performed in a static reference frame in the
>>> # order x,y,z. Those 24 rotationstypes may be used: 'sxyz', 'sxyx', 'sxzy',
>>> # 'sxzx', 'syzx', 'syzy', 'syxz', 'syxy', 'szxy', 'szxz', 'szyx', 'szyz',
>>> # 'rzyx', 'rxyx', 'ryzx', 'rxzx', 'rxzy', 'ryzy', 'rzxy', 'ryxy', 'ryxz',
>>> # 'rzxz', 'rxyz'(default), 'rzyz'.

(continues on next page)
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>>> # The first item represents a static or rotating reference frame respectively.
→˓

>>> # Static reference frame means that also the rotation around the second and
→˓thrid
>>> # angle is performed in reference to the initial rotation. Rotating reference
→˓frame
>>> # means that rotation around the second angle is done in respect to the
→˓reference
>>> # frame that is created by the rotation around the first angle; respectively
>>> # for the third angle.
>>> # Additionally a rotation 'sxyz' is equal to 'rzyx' and so on.
>>> #
>>> # rotating by 90 degrees by x-coordinate
>>> rx.angles = [np.pi/2,0,0] # or
>>> rx.angles = [np.pi/2,0,0,'rxyz']
>>> rx.round()
Rotation([[ 1., 0., -0.],

[-0., 0., -1.],
[ 0., 1., 0.]])

>>> # rotating by 90 degrees around x and subsequently by 90 degrees around y
>>> # with a rotating reference frame
>>> rxy.angles = [np.pi/2,np.pi/2,0,'rxyz']
>>> rxy
Rotation([[ 6.12323400e-17, 0.00000000e+00, 1.00000000e+00],

[ 1.00000000e+00, 6.12323400e-17, -6.12323400e-17],
[-6.12323400e-17, 1.00000000e+00, 3.74939946e-33]])

>>> # multiplying rotations
>>> ry.angles = [0,np.pi/2,0,'rxyz']
>>> ry
Rotation([[ 6.123234e-17, 0.000000e+00, 1.000000e+00],

[-0.000000e+00, 1.000000e+00, 0.000000e+00],
[-1.000000e+00, -0.000000e+00, 6.123234e-17]])

>>> rx * ry
Rotation([[ 6.12323400e-17, 0.00000000e+00, 1.00000000e+00],

[ 1.00000000e+00, 6.12323400e-17, -6.12323400e-17],
[-6.12323400e-17, 1.00000000e+00, 3.74939946e-33]])

>>> # rotating points
>>> from model.geometry.translate import Translation
>>> t = Translation([1,2,0])
>>> # rotating around x
>>> rx * t
Translation(None) = 1.0, 0.0, 2.0
>>> # rotating around x and then y with rotating reference frame
>>> rxy * t
Translation(None) = 0.0, 1.0000000000000002, 2.0
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6.5.3 Scaling

delis.model.geometry.scale.Scaling(input_array=None)
This class describes a scaling in 3D space which is represented by a 3x3 matrix.

With this class scalings in 3D space can be created and operations may be performed. For that purpose the
class inherits from np.ndarray which is a class for storing matrix values and performing operations on them. For
further details on np.ndarray please refer to the numpy/scipy documentation.

Scalings are represented by a 3x3 diagonal scaling matrix.

Usage:

>>> import numpy as np
>>> from model.geometry.scale import Scaling
>>> # creating identity Scaling
>>> s=Scaling()
>>> s
Scaling([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> # creating empty scaling objects for demonstration below
>>> sx=s.copy()
>>> sxy=s.copy()
>>> # creating scaling by defining scaling factors!
>>> # scaling by 2.0 by x-coordinate
>>> sx.factors = (2.0,1.0,1.0)
>>> sx
Scaling([[2., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> # scaling by 2.0 by x-, y-coordinate and z-coordinate
>>> sxyz=s.copy()
>>> sxyz.factors = (2.0,2.0,2.0)
>>> sxyz
Scaling([[2., 0., 0.],

[0., 2., 0.],
[0., 0., 2.]])

>>> # multiplying scalings
>>> sx * sxyz
Scaling([[4., 0., 0.],

[0., 2., 0.],
[0., 0., 2.]])

>>> # scaling points
>>> from model.geometry.translate import Translation
>>> t = Translation([1,2,0])
>>> # scaling in x
>>> sx * t
Translation(None) = 2.0, 2.0, 0.0
>>> # scaling in all directions
>>> sxyz * t
Translation(None) = 2.0, 4.0, 0.0
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6.5.4 Transformation

delis.model.geometry.coordinatesystem.Transformation(input_array=None, tId=None,
description=None)

This class describes a Transformation in 3D space which is represented by a 3x3 matrix.

With this class coordinate transformations in 3D space can be created and operations may be performed. For that
purpose the class inherits from np.ndarray which is a class for storing matrix values and performing operations
on them. For further details on np.ndarray please refer to the numpy/scipy documentation.

Transformations are represented by a 4x4 matrix. A transformation is composed of a rotation matrix r_ii, a
translation t_i, a scaling s_i and a projection p_i the following way:

[[ s_1*r_11, r_21, r_31, t_1],
[ r_12, s_2*r_22, r_32, t_2],
[ r_13, r_23, s_3*r_33, t_3],
[ p_1 , p_2 , p_3 , 1 ]]

Actually Scalings are not actively supported in this class. Thus is it still mathematically possible.

Transformations can be created and used in the following ways:

>>> import numpy as np
>>> from model.geometry.coordinatesystem import Transformation
>>> from model.geometry.translate import Translation
>>> from model.geometry.rotate import Rotation
>>> t = Translation([5,2,0])
>>> # creating identity transformation
>>> tr = Transformation()
>>> tr
Transformation([[1., 0., 0., 0.],

[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])

>>> # setting a translation
>>> tr.translation = t
>>> tr
Transformation([[1., 0., 0., 5.],

[0., 1., 0., 2.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])

>>> ####################### adding a translation
>>> tr.addTranslation(t)
>>> tr
Transformation([[ 1., 0., 0., 10.],

[ 0., 1., 0., 4.],
[ 0., 0., 1., 0.],
[ 0., 0., 0., 1.]])

>>> ####################### setting a rotation
>>> rx = Rotation()
>>> rx.angles = (np.pi/2,0,0)
>>> ry = Rotation()
>>> ry.angles = (0,np.pi/2,0)
>>> tr.rotation = rx
>>> tr.round() + 0 # ".round()" avoids long floats and "+ 0" turns all -0 in 0
Transformation([[ 1., 0., 0., 10.],

[ 0., 0., -1., 4.],
(continues on next page)
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[ 0., 1., 0., 0.],
[ 0., 0., 0., 1.]])

>>> # adding a rotation
>>> tr.addRotation(ry)
>>> tr.round() + 0
Transformation([[ 0., 0., 1., 10.],

[ 1., 0., 0., 4.],
[ 0., 1., 0., 0.],
[ 0., 0., 0., 1.]])

>>> # concatenation of transformations
>>> tr2 = Transformation()
>>> tr2.translation = [0,0,1]
>>> tr3 = tr*tr2
>>> tr3.round() + 0
Transformation([[ 0., 0., 1., 11.],

[ 1., 0., 0., 4.],
[ 0., 1., 0., 0.],
[ 0., 0., 0., 1.]])

>>> # inverting transformation
>>> tr3inv = tr3.getInverse()
>>> tr3inv.round() + 0
Transformation([[ 0., 1., 0., -4.],

[ 0., 0., 1., 0.],
[ 1., 0., 0., -11.],
[ 0., 0., 0., 1.]])

>>> (tr3*tr3inv).round() + 0 # retruns identity matrix
Transformation([[1., 0., 0., 0.],

[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])

>>> ####################### transformation of translations
>>> # MOST IMPORTANT !!!
>>> tr3*t
Translation(None) = 11.0, 9.0, 1.9999999999999998
>>> t1 = tr3inv * (tr3 * t)
>>> t1.round()
Translation(None) = 5.0, 2.0, 0.0

>>> ####################### setting a scaling
>>> sx = Scaling()
>>> sx.factors = (2.0,1.0,1.0)
>>> sxyz = Scaling()
>>> sxyz.factors = (2.0,2.0,2.0)
>>> tr.scaling = sx # also resets the rotation
>>> tr
Transformation([[ 2., 0., 0., 10.],

[ 0., 1., 0., 4.],
[ 0., 0., 1., 0.],
[ 0., 0., 0., 1.]])

>>> # adding a scaling
>>> tr.addScaling(sxyz)
>>> tr
Transformation([[ 4., 0., 0., 10.],

[ 0., 2., 0., 4.],
[ 0., 0., 2., 0.],
[ 0., 0., 0., 1.]])

(continues on next page)

164 Chapter 6. Reference Guide



delis, Release 21.2.6

(continued from previous page)

>>> np.set_printoptions(precision=8)

6.6 Global Varaiables

delis.service.globals.MyGlobals()
This class holds global variables

MyGlobals._getSettings() This method looks in the file ‘/src/settings.py’ - if exits
- for additional settings.

MyGlobals.__init__() text

6.6.1 delis.service.globals.MyGlobals._getSettings

MyGlobals._getSettings()
This method looks in the file ‘/src/settings.py’ - if exits - for additional settings.

6.6.2 delis.service.globals.MyGlobals.__init__

MyGlobals.__init__()
text

6.7 Profiles

delis.model.profile.Profile(**kwargs)
This class handles creation and mechanic properties of profiles

The profiles may be generated by an arbitrary list of points and sheets in cpacs or using standard profiles.

Profile.createStandardGeometry(. . . [,
. . . ])

This method creates a standard geometry within this
profile instance.

6.7.1 delis.model.profile.Profile.createStandardGeometry

Profile.createStandardGeometry(standardProfileName, sheetPropertiesList, transforma-
tion=Transformation([[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0,
0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]))

This method creates a standard geometry within this profile instance.

An image with all available standard types and their non transformed geometry can be seen in the class descrip-
tion.

Parameters

• standardProfileName – Name of the standard profile
[c|t|z|l|hat|bar|box|tube|rod|web]. Also upper case names are allowed.

• sheetPropertiesList – this parameter may be a instance of
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Figure 6.3 : standard profiles
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model.sheetprops.Sheetproperties or a list of those instances. In the first case the
sheetproperties are applied to all sheets created within this function. In the other case the
sheetproperties’ attribute “sheetID” is used to identify the referenced sheet.

• transformation – 2D transformation(xy-axis) for translating, rotating and scaling

6.8 Utilities

delis.service.utilities.saveAircraft(aircraftModel, filename=None, fileDescriptor=None)
Save aircraft object model to a file.

Parameters

• aircraftModel – instance of model.aircraftmodel.AircraftModel containing an arbi-
trary number of wings and fuselages

• filename – relative or absolute path and name of file to save the aircraft to. If None it
defaults to “<aircraftModel.id>.ac” in the program directory.

• fileDescriptor – optional file descriptor where the serialized aircraft model is written
to. Otherwise a file is opened at “filename”

Usage(from within a control script):

utils.saveAircraft(self.aircraftModel,'test1.ac')
self.aircraftModel = utils.loadAircraft('test1.ac')

Note: The global variables(MYGLOBAL) will not be saved!

The pickle strategy is quite simple: All attributes and the class of an instance is saved to a file. If an attribute
is not a trivial one (e.g. int, str), the attributes’ attributes saved as well and so on. Though due to the way of
instanciating classes that inherit from np.ndarray (like Translation), the additional non-method attributes need
to be saved additionally. This is done using the list numpyAttributes in this function. When loading an aircraft
this list must be used to restore all ndarray-based classes’ attributes in the same order as it was saved.

delis.service.utilities.loadAircraft(filename=None, fileDescriptor=None, replaceAC-
Graph=True)

Load an aircraft object model from a file.

Parameters

• filename – relative or absolute path to aircraft file which was created by ser-
vice.utilities.saveAircraft

• fileDescriptor – optional file descriptor where the serialized aircraft model is read
from. Otherwise a file is read from “filename”

• replaceACGraph – replaces the actual aircraft graph if True. Otherwise the nodes and
edges read are appended to the actual graph.

Caution:

• For loading the aircraft model, tixi and tigl should be loaded in advance using the same cpacs-file
when the aircraft model was created. Addtionally the same global variables should be used.

• See saveAircraft for more information
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Figure 6.4 : standard profiles - additionally ‘web’ is supported, which is a bar, rotated by 90 degrees
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delis.service.utilities.copyFiles(src, dst, excludes=None)
This method copies all files from folder src to folder dst.

Parameters

• src – Path to source folder. This path must exist!

• dst – Path to destination folder. This path will be generated, if it is not present.

• excludes – List with filenames and/or folder names that must not be copied.

delis.service.utilities.reduceListWithLastElementPresent(reduceList, spacing)
Reduces the list reduceList by picking each spacing th element.

Example:

>>> from delis.service.utilities import reduceListWithLastElementPresent
>>> a = [1,2,3,4,5,6]
>>> reduceListWithLastElementPresent(a, 2)
[2, 4, 6]
>>> a = [1,2,3,4,5,6,7]
>>> reduceListWithLastElementPresent(a, 2)
[1, 3, 5, 7]

delis.service.utilities.fillSpacedInterval(existingItems, minbound, maxbound, to-
talItemCount, endAndBeginningAreCon-
nected=False)

This method fills an intervaled list with new items that should be spaced with <granularity> number of spaces
which are as equal as possible. The result is a list of length <granularity>, thus the value <maxbound> is not part
of the list (if <endAndBeginningAreConnected> = False). If <existingItems> has at least <granularity> items
an empty tuple with two empty lists are returned.

Parameters

• existingItems – items that already exist and should be kept in place (minbound <=
item < maxbound)

• minbound – minimum bound of the interval

• maxbound – maximum bound of the interval

• totalItemCount – number of items in the resulting list

• endAndBeginningAreConnected – True if the interval is a circle where 360 degrees
and 0 degrees are the same. In this case there is no break at the end of the interval. False if
the interval is something linear and the end and beginning are not the same.

Returns Tuple(list with new intervalItems, list with position of new interval items)

Example:

>>> from delis.service.utilities import fillSpacedInterval
>>> fillSpacedInterval([72,180,324], 0, 360, 6, True)
([17.999999999999936, 125.99999999999999, 251.99999999999997], [0, 2, 4])
>>> # next example
>>> fillSpacedInterval([0], 0, 10, 10, False)
([1.0, 2.0, 3.0000000000000004, 4.0, 5.0, 6.000000000000001, 7.000000000000001, 8.
→˓0, 9.0], [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> # next example
>>> fillSpacedInterval([0,3], 0, 10, 6, False)
([1.5, 4.75, 6.499999999999999, 8.25], [1, 3, 4, 5])
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delis.service.utilities.invertDict(mydict)
This method inverts a dictionary and returns it. To apply the inversion without loss of data the mapping should
be bijective.

delis.service.utilities.getWingKeypointID(componentNumber, idType, ribNumber, spar-
Number)

Calculates the wing-id of an geometric object. Please refer to the numbering scheme in the user manual for
more details.

Parameters idType – type of the keypoint. if idType is a string it is converted to the typenumber
which is stored in MYGLOBAL.numbering

delis.service.utilities.getKeypointID(idType, frameNumber, stringerNumber)
Calculates the fuselage-id of an geometric object. Please refer to the numbering scheme in the user manual for
more details.

Parameters idType – type of the keypoint. if idType is a string it is converted to the typenumber
which is stored in MYGLOBAL.numbering

delis.service.utilities.splitWingKeypointID(keypointID)
Splits an wing-id into it’s constiutents.

Parameters keypointID – int representing the id that should be split.

Returns tuple (componentNumber,idType, ribNumber,sparNumber)

delis.service.utilities.splitKeypointID(keypointID)
Splits an fuselage-id into it’s constiutents. :param keypointID: int representing the id that should be split. :return:
tuple (componentNumber,idType, ribNumber,sparNumber)

delis.service.utilities.availableFlexlmLicenseTokens(licenseServerString, license-
Type)

This method returns the number of available license tokens for a specific flexlm-based licensing system.

Parameters

• licenseServerString – string to the flexlm server including port

• licenseType – type of license. It is the name after “Users of”

6.8.1 printGraphStructureMatplotlib

Please refer to Visualization.

6.9 Links

MyGlobals

MyGlobals
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6.10 Control Modules

lala

6.10.1 Test

lala

6.11 Model

lala

6.11.1 Geometry

Plane.getProjectedPoints(points=None, transformIntoPlaneCoordinates=False)
This method is intended to provide the functionality of orthogonal projection of points and lines onto a plane.

Common equation of plane:

�⃗� = 𝑎𝑝 + 𝜆 · 𝑟𝑣1 + 𝜇 · 𝑟𝑣1
Common equation of linear function:

𝑥𝑔 = 𝑝 + 𝜔 · ⃗𝑟𝑣𝑔

Common equation of projection of the linear function:

𝑥𝑠 = 𝑝𝑠 + 𝜔 · ⃗𝑟𝑣𝑔𝑠

Common equations for supporting functions:

𝑥ℎ1 = 𝑝 + 𝜎 · �⃗�, 𝑤𝑖𝑡ℎ �⃗� 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 �⃗�

𝑥ℎ2 = �⃗� + 𝜂 · �⃗�, 𝑤𝑖𝑡ℎ �⃗� 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 �⃗�
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Plane.getDistanceToPoint(point)
this function is intended to calculate the distance from this plane to the given point p d(P,E)=abs(n*p-d)/abs(n)
with E: n*x = n*a = d

>>> plane = Plane()
>>> plane = plane.generatePlane([0,0,0], planeNormalVector = [0,0,1])
>>> print(plane.getDistanceToPoint([0,0,10]))
10.0
>>> plane = Plane()
>>> plane = plane.generatePlane([0,0,0], planeNormalVector = [1,1,1])
>>> print('{:03.1f}'.format(plane.getDistanceToPoint([1,1,1])**2))
3.0

Parameters point – instance of type Translation(), specifying the point, from which the distance
to the plane shall be calculated

6.11.2 Partitioning

lala

6.11.3 Structure

lala

6.12 Service

lala

6.13 Environment

lala

6.14 HyperSizer

delis.hypersizer.hypersizermodel.HyperSizerBaseFunctions()
This class provide some basic functions for HyperSizer_Interface such as error handling

HyperSizerBaseFunctions.
_evaluateHyperSizerFunction(. . . )

This method is intended for hypersizer functions that
return True or False.

HyperSizerBaseFunctions.
_onError([message])

This method covers the error handling.
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6.14.1 delis.hypersizer.hypersizermodel.HyperSizerBaseFunctions._evaluateHyperSizerFunction

HyperSizerBaseFunctions._evaluateHyperSizerFunction(hyperSizerFunction, *args)
This method is intended for hypersizer functions that return True or False. Each function is supposed to evaluate
to True. An exception is risen if it evaluates to False.

Parameters

• hypersizerFunction – function that is supposed to be called (but without brackets!)

• *args – arguments to this function as usual function argument list

example:

#the function to be called is
hsAssembly.AssemblyMembership('' , groupd_index_list , '')
#then the call should look like this
self._evaluateHyperSizerFunction(hsAssembly.AssemblyMembership, '' , groupd_index_
→˓list , '')

6.14.2 delis.hypersizer.hypersizermodel.HyperSizerBaseFunctions._onError

HyperSizerBaseFunctions._onError(message='Function is supposed to return True but returned
False which indicates an error.')

This method covers the error handling. Furthermore it throws an error message via exception or log.error

Parameters message – error message as string

6.15 References

6.15. References 173



delis, Release 21.2.6

174 Chapter 6. Reference Guide



CHAPTER

SEVEN

BEAM MODELS

7.1 Theoretical Background

This section is intended to provide some theoretical background related to the handling of composites and isotropic
materials. In detail following basic information on stress and strain transformation, stress and strain distributions
through the thickness of composites, deformation and fracture assumptions and the variation of the composite stiffness
matrix while changing the reference plane is given.

In general the transformation of coordinates is a question while utilizing composite materials. Due to the fact that
composite materials possess anisotropic characteristics, in contrast to metals, a coordinate transformation is necessary.

The following figures illustrate the mathematical approach for transforming strains, stresses and mechanical properties,
respectively:

The transformation of stresses, strains and mechanical properties is performed layer-wise. Subsequently, the effective
mechanical properties of the whole composite has to be evaluated. A so called “ABD”-matrix is the result. This matrix
represents the mechanical behavior of the composite exposed to a force or moment. The “A”-matrix stands for the
effective extensional stiffness in case of applied forces. The “D”-matrix represents the effective bending stiffness of
the composite in case of applied moments. For an asymmetric composite stacking the “B”-matrix typifies the coupling
of forces and moment.

The preceding figure reveals that a smart choice of the position of the reference plane can significantly simplify
the complexity of the “ABD”-matrix calculation. The following figure illustrates the impact of the variation of the
reference plane on the results. The depicted “ABD”-matrix calculation leads here to:[︂

[𝐵] [𝐾]
[𝐾] [𝐷]

]︂
.

The strains occurring within the structure and composite, respectively, are related to the ruling internal forces and
moments through the “ABD”-matrix. The resulting system of equations can be written as follows:{︂

{𝑁}
{𝑀}

}︂
=

[︂
[𝐴] [𝐵]
[𝐵] [𝐷]

]︂{︂
{𝜖}
{𝜅}

}︂
.

In order to describe the deformation of beams and shells mathematically the following depicted assumption of
Kirchhoff-Love is made.

Eventually the overall evaluation of strains and stresses can be accomplished by following the scheme illustrated in
the next picture.

Subsequently, with respect to the calculated strains and stresses, respectively, a failure assumption can be evaluated.
The following figures illustrate briefly possible failure criteria for isotropic and orthogonal-anisotropic materials.

All preceding shown illustrations were extracted from the IB 131-84/47 - “Grundlagen der strukturmecahnischen
Berechnung von Bauteilen aus Faserverbundwerkstoffen” written by B. Geier.
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Figure 7.1 : Principal approach for transfomring coordinates and strains.
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Figure 7.2 : Transformation rule in matrix notation.

7.2 Program Architecture

The program BoxBeam was originally written in Fortran77 in 1984. The theoretical background of the implemented
methods and functions are documented and explained within the IB 131-84/47 (“Grundlagen der strukturmecahnischen
Berechnung von Bauteilen aus Faserverbundwerkstoffen” - B. Geier). A brief description of the program itself and its
program flow is given in the document IB 131-88/06 (“Kurzbeschreibung des Progamms BOXBEAM” - B. Geier, U.
Renken).

7.2.1 Original Program

Authors Dr.-Ing. B. Geier, U. Renken

DFVLR Braunschweig

Institut für Strukturmechanik (WB-SM)

Version 1.0 of 03.05.1988

Functionality Evaluation of the cross section parameters and the distribution of internal forces within a cantilever
beam with open and one or a sequence of cell sections, respectively.

The program can handle aerodynamic profiles as description of the outer surface of a cross section. The inner
structure of a cross section is considered as plane. The evaluation of structures made of CFRP is also possible,
but the stacking sequence or rather the composite properties have to be orthogonal-anisotropic according to the
beam axis.

The assumption of Bernoulli that cross sections staying plane under deformation is assumed for the calculations.
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Figure 7.3 : Approach for transfomring stresses.
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Figure 7.4 : Composite coordinate system plus strain and stress distribution through the composite thickness.
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Figure 7.5 : Calculation of effective stiffness with respect to the reference plane.

Figure 7.6 : Inner forces and moments on an infinitesimal part of a shell.
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Figure 7.7 : Shell deformation assumption according to Kirchhoff-Love.
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Figure 7.8 : Overall process for stress or strain calculation.
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Figure 7.9 : Fracture surface for isotropic materials.
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Figure 7.10 : Fracture surface for orthogonal-anisotropic materials according to puck.
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Figure 7.11 : Stress-based fracture surface for orthogonal-anisotropic materials according to HSB (combination of
E.M. Wu and A. Puck).
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Figure 7.12 : Strain-based fracture surface for orthogonal-anisotropic materials according to HSB (combination of
E.M. Wu and A. Puck).

186 Chapter 7. Beam Models



delis, Release 21.2.6

Cross section parameters calculated by BoxBeam are as follows:

• Extensional stiffness

• Mass per unit

• Cantilever beam length

• Coordinates of the center of stiffness

• Coordinates of the center of gravity

• Main axis angle

• Area moments of inertia

• Coordinates of the center of shear

• Mass moments of inertia

The calculated distribution of internal force covers longitudinal forces for the caps plus longitudinal and shear
forces for the walls. Additionally the corresponding extensional strains and shear strains are calculated. For the
case of CFRP structures also a fracture assumption is evaluated by determining standby factors for delamination
and fiber fracture.

For the calculation of the internal forces the stress resultants ( longitudinal force, transverse force, bending
moments and torsional moment) have to be determined for each cross section.

All inputs are accomplished via so called NAMELIST s.

Following a short overview on the principal program sequence is given.

Program Architecture. (00_BoxbeamOriginal)

Process Flow

Program BoxBeam

Failure Criteria

Composite Properties

Inner Shape

Outer Shape

Cross Section Data

readData calculateCrossSection evaluateStandbyFactors Cross Sections Results

BOXBIM SIFKT

Scaling/Transformation FITKUB

Structure Positions

Structure Stiffnesses

Structure Properties

MLL

Input Data

The depicted Folder named “Input Data” stands symbolically for the necessary data (NAMELIST s) which should be
provided by the user of BoxBeam. Subsequently, all necessary data is briefly explained:

Container for control parameters:

/START/

Variables:
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• MAXPRO - Number of profiles provided within the Input Data

• MAXVBD - Number of composites defined within the Input Data

• NURQER - True=Only cross section parameters without stresses

• EXTERN - False=Internal forces specified vie /SPANNU/ instead of file

• KRAEFT - True=Equivalent nodal forces for FE-software

• DRUCK - True=Extended printout into a log-File

• PLOT - True=Graphical plot of the cross sections

Container for the outer shape description:

/PROFILE/

Variables:

• ITYP - Type of wall (1-upper shell,2-lower shell,3-leading edge,4-trailing edge)

• N - Number of profile points

• XX - Profile point x-coordinates

• YK - Profile point y-coordinates

• NAB - Number of segments

• XAB - X-coordinates limiting the segments in chord direction

• TAB - True=Tabular comparison of specified yk and interpolation

• TIEFE - Chord length of the profile

• ENDE - True=No more wall definitions (ITYP) follow

Container for composite description:

/VBIN/

Variables:

• NCB - Number of layers

• ISRVB - Number of the reference layer

• VBZI - Distance of ISRVB from reference plane

• VBPHI - Fiber orientations

• VBH - Layers thickness

• VBA - Extensional and shear stiffness for plane stress

• VBRHO - Layers density

• RLSM - Material strengthes

Containers for cross section description:

/SCHNITT/

Variables:

• SCHNIT - Cross section identifier

• NRPRO - Number of the profile for the cross section

• THETA0 - Predefined twist
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/GURTE/

Variables:

• IGANZ - Number of caps

• BI - Extensional stiffnesses of caps

• YI - Y-coordinates of caps (center of gravity)

• ZI - Z-coordinates of caps (center of gravity)

• MYI - Specific mass of caps

/WAENDE/

Variables:

• IWANZ - Number of walls

• VBND - True=Stiffness is extracted from VBIN-matrix instead of BK and GK

• IVBND - If VBND=True - Number of corresponding composites

• BK - Extensional stiffness (VBND=False)

• GK - Shear stiffness (VBND=False)

• IG1 - Number of cap where the wall starts

• IG2 - Number of cap where the wall ends

• IT - Wall type (1-upper contour,2-lower contour,3-leading edge contour,4-trailing edge contour,5-
plane)

• YK0 - Y-coordinates of starting points

• ZK0 - Z-coordinates of starting points

• YKLK - Y-coordinates of ending points

• ZKLK - Z-coordinates of ending points

• RHOK - Specific mass of the walls (VBND=False)

• E - Distance outer contour to mid plane of the walls (VBND=False)

/ZELLEN/

Variables:

• IZANZ - Number of cells

• IAK - Number of caps belonging to the cells

• IA - Cap numbers belonging to the cells

/SPANNU/

Variables:

• QX - Longitudinal force in x-direction

• QY - Transversal force in x-direction

• QZ - Transversal force in x-direction

• MX - Torsional moment

• MY - Bending moment about y-axis
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• MZ - Bending moment about z-axis

Due to the introduction of the CPACS-Format in relation to the DLR-Project TIVA some major changes on BoxBeam
were realized from 2005 on.

7.2.2 Python Library

In order to enable user to calculate efficiently the properties of profiles the BoxBeam - Kernel is implemented within
the whole aircraft design framework based on python. Detailed information on the generation of an aircraft model
based on python can be found in User Manual. The communication with the BoxBeam - Kernel is realized via an
interface, which is subsequently described in BoxBeam Interface. The following schema illustrates the data flow and
used modules/subroutines for executing a BoxBeam run.

Attention: Following graph is just partially up to date. It is still under construction.

Schema - BoxBeam as python library. (00_BoxbeamKernel)

BoxBeam Interface

Inner Shape

Outer Shape (Airfoil)

compositeHandling

Composite Properties

boxBeamCalculation

calcStatVars

Failure CriteriagetWingCrossSectionParameters

Process Flow

readData calculateCrossSection evaluateStandbyFactors Cross Sections Results

BOXBIM calcStatVarsScaling/Transformation TIGL

Structure Positions

Structure Stiffnesses

Structure Properties

SheetProperties (ABD-Matrix)

CPACS

The compiled version of the BoxBeam - Kernel is named bbeam.pyd. Within the framework it is located within
srccpacs2bb. The import within the framework is as follows: cpacs2bb.bbeam as bbeam.

7.3 BoxBeam Interface

7.3.1 Beam Model

The BoxBeam interface is defined in the following module:

delis.beam.boxbeam.BoxBeam(**kwargs)
This instance generates a beam representation for numerical applications. It can be used to set up beam models
in BoxBeam.
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BoxBeam.generateStiffenerBeamModel(stiffener)This method is intended to create a beam model of the
specified stiffener.

BoxBeam.generateWingBeamModel(wing[,
useRibs])

This method is intended to create a beam model of the
specified wing.

BoxBeam.beamAnalysis([loadCases]) This method is intended to provide an analysis function
for an instance of BoxBeam.

BoxBeam.beamSizing([loadCases, sizingTech-
nique])

This method is intended to provide a sizing function for
an instance of L{BoxBeam}.

BoxBeam.getWingLoads(loadCases[, . . . ]) doc
BoxBeam.writeDisplacements([loadCase,
. . . ])

doc

BoxBeam.writeResults([save, visible, . . . ]) doc
BoxBeam.getDisplacement(loadCase) see method in super class for documentation :param

loadCase: For detailed information, please refer to the
documentation of L{LoadCase}.

BoxBeam.setOutputControl([extendedLogFile,
. . . ])

doc

delis.beam.boxbeam.BoxBeam.generateStiffenerBeamModel

BoxBeam.generateStiffenerBeamModel(stiffener)
This method is intended to create a beam model of the specified stiffener.

Parameters

• stiffener – instance of a profile based class containing sheets (result of reading and
interpreting CPACS profiles)

• numberOfSections – currently not in use parameter, which is intended to control the
number of considered cross section within a BoxBeam run.

Returns A BoxBeam beam model of the specified stiffener (e.g. Stringer, . . . ).

delis.beam.boxbeam.BoxBeam.generateWingBeamModel

BoxBeam.generateWingBeamModel(wing, useRibs=None)
This method is intended to create a beam model of the specified wing.

An image with an example for a BoxBeam beam model can be seen below.

Parameters

• wing – instance of L{wing} containing all structural information (result of reading and
interpreting CPACS wings)

• useRibs – Ribs to use at which beam sections shall be created

Returns A BoxBeam beam model of the specified wing.

..todo:

figure:: ../../bilder/beam/BoxBeam_D150_model.png width: 550pt align: center

BoxBeam beam model of D150 configuration
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delis.beam.boxbeam.BoxBeam.beamAnalysis

BoxBeam.beamAnalysis(loadCases=None)
This method is intended to provide an analysis function for an instance of BoxBeam. It provides the opportunity
to calculate all status variables, e.g. stresses, strains and displacements, for a specified and predefined structure,
respectively.

delis.beam.boxbeam.BoxBeam.beamSizing

BoxBeam.beamSizing(loadCases=None, sizingTechnique='fullyStressedDesign')
This method is intended to provide a sizing function for an instance of L{BoxBeam}. It provides the opportunity
to calculate all status variables, e.g. stresses, strains and displacements, for a specified and predefined structure,
respectively.

Parameters

• loadCases – List of loadcases used for sizing

• sizingTechnique – string variable specifying the sizing technique to be used. Fully
stressed design as well as pseudo fully stressed design (see Masterthesis of Sascha Daehne)
are available options.

delis.beam.boxbeam.BoxBeam.getWingLoads

BoxBeam.getWingLoads(loadCases, globalToLocalRotation=None, componentType=None)
doc

delis.beam.boxbeam.BoxBeam.writeDisplacements

BoxBeam.writeDisplacements(loadCase=None, loadCaseNumber=None, save=True, visible=False)
doc

delis.beam.boxbeam.BoxBeam.writeResults

BoxBeam.writeResults(save=True, visible=False, sizingConducted=True)
doc

delis.beam.boxbeam.BoxBeam.getDisplacement

BoxBeam.getDisplacement(loadCase)
see method in super class for documentation :param loadCase: For detailed information, please refer to the
documentation of L{LoadCase}. :retruns: tuple (xPositions, displacements)
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delis.beam.boxbeam.BoxBeam.setOutputControl

BoxBeam.setOutputControl(extendedLogFile=False, crossSectionOnly=False, nodalForces=False,
boxBeamPath=None)

doc

7.3.2 BoxBeam Profile

delis.model.profile.GenericProfile(**kwargs)
This class represents a generic profile. It may have generic properties but requires an implementation by sub-
classes.

GenericProfile.areaMomentOfInertia([offset])Calculates the 2nd area moment of inertia
GenericProfile.createArbitraryGeometry(. . . )Abstract method that must be implemented in derived

classes.

delis.model.profile.GenericProfile.areaMomentOfInertia

GenericProfile.areaMomentOfInertia(offset=None)
Calculates the 2nd area moment of inertia

delis.model.profile.GenericProfile.createArbitraryGeometry

GenericProfile.createArbitraryGeometry(*args, **kwargs)
Abstract method that must be implemented in derived classes.

delis.model.profile.BoxBeamProfile(**kwargs)
This class is a subclass of L{Profile} and is intended to provide additonal functionalities, not contained in
general profiles.

BoxBeamProfile.capSizing(boxBeamLibrary) This method is intended to provide sizing functionality
for stiffening strutcure, like stringer.

BoxBeamProfile.createArbitraryGeometry(. . . )Abstract method that must be implemented in derived
classes.

BoxBeamProfile.getCrossSectionParameters([. . . ])Within this method all required data for a proper
BoxBeam run is provided.

BoxBeamProfile.calculateEffectiveProperties()Calculates the effective material properties of a profile,
using BoxBeam.

BoxBeamProfile.webSizing() doc
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delis.model.profile.BoxBeamProfile.capSizing

BoxBeamProfile.capSizing(boxBeamLibrary)
This method is intended to provide sizing functionality for stiffening strutcure, like stringer. Within this method
results from a BoxBeam analysis are used in order to determine necessary sheet properties for the stiffening
structure.

delis.model.profile.BoxBeamProfile.createArbitraryGeometry

BoxBeamProfile.createArbitraryGeometry(*args, **kwargs)
Abstract method that must be implemented in derived classes.

delis.model.profile.BoxBeamProfile.getCrossSectionParameters

BoxBeamProfile.getCrossSectionParameters(loads=None, loadCase=None, calcStat-
Vars=True, Strength=True, GlobalStabil-
ity=True)

Within this method all required data for a proper BoxBeam run is provided. Furthermore all corresponding
BoxBeam variables are set. Subsequently, bbeam.boxbim() is called. This subroutine is part of the compiled
BoxBeam library bbeam and manages the calculation of the specified cross section of the wing.

In result a dictionary containing all results is returned as attribute of BoxBeamCrossSection - (crossSectionPa-
rameters). :param loads: todo :param loadCase: todo :param calcStatVars: todo :param Strength: todo :param
GlobalStability: todo

delis.model.profile.BoxBeamProfile.calculateEffectiveProperties

BoxBeamProfile.calculateEffectiveProperties()
Calculates the effective material properties of a profile, using BoxBeam.

delis.model.profile.BoxBeamProfile.webSizing

BoxBeamProfile.webSizing()
doc

194 Chapter 7. Beam Models



CHAPTER

EIGHT

BUCKLING

This chapter deals with Buckling calculations. A buckling interface and buckling implementations are presented.

8.1 Buckling Interface

The buckling interface is defined in the following module.

Here an abstract buckling interface is defined showing the general mandatory features. The following coordinate
system is used.

Figure 8.1 : 3D representation of the coordinate system used.
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Figure 8.2 : Coordinate system that is used for all buckling analysis. The x-direction is usually the stringer direction
and the frames/ribs are arranged in y-direction. If there are no stiffeners modelled, the variable “a” usually refers to
the plate length in x-direction and “b” to the length in y-direction.

In the means of a black box the interface looks like this:

panel -> ************** -> skinBucklingForceFluxX
axialLoadX -> ** ** -> skinBucklingForceFluxY
axialLoadY -> ** Buckling ** -> skinBucklingForceFluxXY
shearLoad -> ** Blackbox ** -> shearDesignCollapseLoad

** ** -> loadShorteningCurve

************** -> etc.

Units

All forceflux based units are in 𝑁
𝑚 ! In general SI-units(mainly m, kg, s) are used. If a buckling interface uses not these

units, it must convert them.

Sign

The loads axialLoadX and axialLoadY have negative values for compressive laods. Hence
the results skinBucklingForceFluxX, skinBucklingForceFluxY, bucklingForceFluxX and
bucklingForceFluxY also have negative values for compressive loads.

delis.buckling.bucklinginterface.AbstractBuckling()
This class represents the buckling interface. It may have generic properties but requires an implementation of
getBucklingResults by subclasses.

AbstractBuckling.getBucklingResults(panel, axialLoadX=0.0, axialLoadY=0.0, shear-
Load=0.0)

returns the buckling results

The Parameters axialLoadX, axialLoadY, shearLoad are used as relationship between the possible load direc-
tions.

Parameters

• panel – instance or subclass of bucklingPanel
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• axialLoadX – load in u-direction (Defaults to 0.). For nonlinear calculations this may be
the maximum load. Negative value for compressive loads!

• axialLoadY – load in v-direction (Defaults to 0.). For nonlinear calculations this may be
the maximum load. Negative value for compressive loads!

• shearLoad – shear load (Defaults to 0.). For nonlinear calculations this may be the max-
imum load.

Returns

dictionary with buckling results. If a entry is not calculated None is inserted. All non shear loads
are negative for compressive loads. This is an example for the returned keys:

{'skinBucklingForceFluxX':None,
'skinBucklingForceFluxY':None,
'skinBucklingForceFluxXY':None,
'bucklingForceFluxX':None,
'bucklingForceFluxY':None,
'bucklingForceFluxXY':None,
'loadShorteningCurve':None,
'deformationField':None,
}

The return variables have the following meaning. For the coordinates, please refer to bucklinginterface
for more information.

Skin Buckling: These results are the force fluxes of only the skin

Variables

• skinBucklingForceFluxX – Force flux of just the skin(no stiffener) in x-direction
when skin buckles

• skinBucklingForceFluxY – Force flux of just the skin(no stiffener) in y-direction
when skin buckles

• skinBucklingForceFluxXY – Shear force flux of just the skin(no stiffener) when skin
buckles

Panel Buckling: Force flux of the first stability issue of the panel

Variables

• bucklingForceFluxX – Force flux of the skin and stiffener in x-direction when skin
buckles

• bucklingForceFluxY – Force flux of the skin and stiffener in y-direction when skin
buckles

• bucklingForceFluxXY – Shear force flux the skin and stiffener when skin buckles

• firstBucklingType – Defnies buckling type. One of: [WebBuckling, WebBucklin-
gAndColumnBuckling, ColumnBuckling, SkinBuckling]

Collaspe: force flux where a panel collapse occurs

Variables

• collapseForceFluxX – Force flux of the skin and stiffener in x-direction of a failure
in postbuckling regime such as crippling and column buckling

• collapseForceFluxY – Force flux of the skin and stiffener in y-direction of a failure
in postbuckling regime such as crippling and column buckling
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• collapseForceFluxXY – Shear force flux the skin and stiffener of a failure in post-
buckling regime such as crippling and column buckling

• loadShorteningCurve – 1d array with shortening information in the interval [0, col-
lapseForceFluxX]

• deformationField – 2d array with out of plane deformation

• collapseType – Defines the type of collapse. One of: [WebBuckling, WebBucklin-
gAndColumnBuckling, ColumnBuckling, PostBucklingCutoff, StringerStrength]

Strength

Strength variables may be defined, but they are unused at the moment.

AbstractBuckling.getBucklingResultsString(resultList)
returns a string with pretty formated results

Parameters resultList – list of results of various buckling calculations. One item of the list is
a dictionary with the the resultname as key and the result value as value. Example:

[{'bucklingForceFluxX' : 211168.923164 ,
'skinBucklingForceFluxX' : 137555.0625
}
{'bucklingForceFluxX' : 211168.923164 ,
'skinBucklingForceFluxX' : 137555.0625
}
]

8.2 Buckling Implementations

8.2.1 Handbook Methods

Implementation of the buckling interface for various buckling handbook methods. The methods are distinguished
between pure axial, pure shear and combined loading. The combined loading methods use an axial and shear method
and combines them based on a interpolation function.

delis.buckling.handbook.CompressionLoadOrthotropJones()
Calculates the buckling load of a simply supported, flat, rectangular, antisymmetric angle-ply plate under uni-
form compression (Robert M. Jones, Mechanics Of Composite Materials (Materials Science & Engineering
Series) p.313).

delis.buckling.handbook.CompressionBendingLoadIsotropHSB()
Calculates the buckling load of a simply supported, flat, rectangular, isotropic plate under compression and
bending (HSB 45111-04).

If self.useBending is False pure compression is assumed

𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
= 1.

If self.useBending is True the relation of compression and bending is given by the parameter axialLoadX as

𝑎𝑥𝑖𝑎𝑙𝐿𝑜𝑎𝑑𝑋 =
𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
‘.

In this case −1 <= 𝑎𝑥𝑖𝑎𝑙𝐿𝑜𝑎𝑑𝑋 <= 1
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delis.buckling.handbook.ShearLoadOrthotropHSB()
Calculates the buckling load of a simply supported, flat, rectangular, orthotropic plate under shear (HSB 45112-
02).

delis.buckling.handbook.CombinedLoadEnvelope(axialLoadXInterface=<delis.buckling.handbook.CompressionLoadOrthotropJones
object>, shearLoadInter-
face=<delis.buckling.handbook.ShearLoadOrthotropHSB
object>)

Calculates the buckling results based on the envelope formula from HSB 45113-01.3.2:

𝑛𝑥𝑦 =

√︂
1 − 𝑛𝑥

𝑛𝑐
· 𝑛𝑠

with 𝑛𝑐 as pure axial load and 𝑛𝑠 as pure shear load. Given is the ratio 𝑟𝑎𝑡𝑖𝑜 = 𝑛𝑥

𝑛𝑥𝑦
as 𝑟𝑎𝑡𝑖𝑜 =

𝑎𝑥𝑖𝑎𝑙𝐿𝑜𝑎𝑑𝑋
𝑠ℎ𝑒𝑎𝑟𝐿𝑜𝑎𝑑 that results in

0 = 𝑛2
𝑥𝑦 +

𝑟𝑎𝑡𝑖𝑜 · 𝑛2
𝑠

𝑛𝑐
𝑛𝑥𝑦 − 𝑛2

𝑠

Example:: from delis.buckling.bucklingpanel import BuckPanel from delis.buckling.handbook im-
port CompressionLoadOrthotropJones,ShearLoadOrthotropHSB,CombinedLoadEnvelope
parameters = BuckPanel.getDefaultParameters() panel = Buck-
Panel.getPanel(**parameters) handbookinterface = CombinedLoadEnve-
lope(CompressionLoadOrthotropJones(),ShearLoadOrthotropHSB()) print handbookinter-
face.getBucklingResults(panel, 1.,0.,1.)

delis.buckling.handbook.CompressionLoadOrthotropWiedemann()
Calculates the critical forceflux of a flat rectangular plate which is simply supported at all sides. It is an exact
formulation, based on the buckling differential equation.

𝑛𝑥 = 𝑘𝑥 · 𝜋
2

𝑏2

√︀
𝐷11 ·𝐷22

The bucklingfactor will be estimated with the bucklingcurves. The bucklingcurve can be calculated with:

𝑘𝑥 =
𝑚2

𝛼2 +
𝛼2

𝑚2
+ 2 · 𝛽

and the following abbreviations

𝛽 =
𝐷12 + 2 ·𝐷33√

𝐷11 ·𝐷22

and

1

𝛼
=

𝑏

𝑎
· 4

√︂
𝐷11

𝐷22

The bucklingcurve is shown in the following picture.

For 1
𝛼 >= 1, the minimum of the bucklingcurves can be used:

𝑘𝑥 = 2 · 𝛽 + 2

And up to 1
𝛼 < 1, m=1 produced the smallest values for the bucklingfactor.

delis.buckling.handbook.ShearLoadOrthotropKassapoglou()
This is an approximation method from Kassapoglou ‘Design and Analysis of Composite Structures’(2010)
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8.2.2 Beos 5.0

Implementation of the buckling interface for BEOS.

delis.buckling.beosinterface.BeosBucklingInterface(**kwargs)
This class includes the BEOS interface.

BEOS uses bicubic hermite polynomials. Thus it can discretize a stringer and frame stiffened panel with quite
few elements. The reference plane is the mid section of the skin. The reinforcements are modeled as beams
where their stiffnesses must be provided within this module. Omega stringers are modeled using 2 beams - one
for each side. This seemed to produce improved results, see [Buck1].

The difference of BEOS 4 and BEOS 5 is the modeling of stringer foot sheets. BEOS 4 sums their stiffness
along with the non-foot sheet part of the stringer as total beam stiffness. BEOS 5 in contrast does not applies
them to the beam stiffness. It models their stiffness onto the skin. As result there is a zone in the skin with the
ABD-matrix of skin+footSheet and another zone for skin only - depending on the geometry of the stringer foot.

Class Variables

• footSheetsAsShell

Switch if BEOS 5(True) or BEOS 4(False) should be used

All other class variables are direct input to Beos. Please refer to Input for BEOS below for more informa-
tion.

Input for getBucklingResults

• panel

• axialLoadX

• axialLoadY
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• shearLoad

• self.P_RTNDS

– integer

– max. number of nodal lines in x- and y-direction

– fixed value in beos5.pyd -> if P_RTNDS is changed, beos5.pyd has to compiled new with a new
builded signature file beos5.pyf

– defined in #prams in BEOS

• self.P_NGIT

– integer

– max. number of mode shapes included in iterations

– fixed value in beos5.pyd -> if P_RTNDS is changed, beos5.pyd has to compiled new with a new
builded signature file beos5.pyf

– defined in #prams in BEOS

Input for BEOS

• filename

– string of max. 8 characters

– name of BEOS output file, which is written in the current directory

• tit

– string of max. 80 characters

– title in the BEOS output file

• rx,ry,rxy

– real

– panel radius

– included in the panel object

• matabd

– real, 18x2 matrix

– only the 18 different components: A11,A12,A22,A13,A23,A33,B11,B12,. . . ,D23,D33

– matabd(:,1) = ABD matrix of the skin

– matabd(:,2) = ABD matrix of the skin + ABD matrix of the stringerfoot

• STEIFX_0

– real, vector of 4 components

– stiffness of the stringer (stiffeners in x-direction)

– STEIFX_0[0] = extensional stiffness

– STEIFX_0[1] = extension-bending coupling stiffness

– STEIFX_0[2] = bending stiffness

– STEIFX_0[3] = twisting stiffness

– the stiffness values have to be specified with respect to the reference surface of the shell
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– notice that the stringerfoots may not considered in STEIFX_0, because they are considered in the
ABD matrix of the skin+foot

• STEIFY_0

– real, vector of 4 components

– stiffness of the frames (stiffeners in y-direction)

– STEIFX_0[0] = extensional stiffness

– STEIFX_0[1] = extension-bending coupling stiffness

– STEIFX_0[2] = bending stiffness

– STEIFX_0[3] = twisting stiffness

– the stiffness values have to be specified with respect to the reference surface of the shell

– here the complete frame is modeled as beam element

• framePitch

– real

– distance between two frames

– if there are no frames on the panel is the length of the panel equal to the framePitch

– included in the panel object

• stringerPitch

– real

– distance between two stringers

– if there are no stringers on the panel is the width of the panel equal to the stringerPitch

– included in the panel object

• stringerType

– integer

– stringerType = 1: T-stringer

– stringerType = 2: omega-stringer

– stringerType = 3: Z-stringer

– stringerType = 4: unstiffened panel

– included in the panel object

• chordWidth

– real

– only used if omega-stringer are used

– the width of the head of the omega-stringer without the sides

– included in the panel object

• sfootWidth

– real

– width of one complete stringerfoot
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– included in the panel object

• alpha

– real

– only used if omega-stringer are used

– the angle of the sides of an omega-stringer

– included in the panel object

• height

– real

– height of the stringer

– if T-stringer are used: height = height of the blade

– included in the panel object

• axialLoadX

– real

– from input of getBucklingResults

• axialLoadY

– real

– from input of getBucklingResults

• shearLoad

– real

– from input of getBucklingResults

• fixedLoadX

– real

– fixedForceCombined = beosmodules.fixedForce.fixedForceCombined(panel, loads)

– fixedLoadX = fixedForceCombined[0]

• fixedLoadY

– real

– fixedLoadY = 0

• fixedLoadXY

– real

– fixedForceCombined = beosmodules.fixedForce.fixedForceCombined(panel, loads)

– fixedLoadX = fixedForceCombined[1]

• alfaX,alfaY

– real

– angle between axes of the global coordinate-system and local coordinate-system of the panel

• itab

– integer
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– itab = 0 -> Matrices set up to solve the problem are not output in the BEOS output file

– itab = 1 -> Matrices set up to solve the problem are output in the BEOS output file

• neigit

– integer

– number of iterated eigenvectors

• neigrq

– integer

– number of eigensolutions required

– neigrq has to be smaller than neigit, because of stability reasons

• mempri

– logical

– true = membran force flows at the computed eigenvalues are output in the BEOS output file

• indplt

– integer

– indplt = 0: no plot output requested

– indplt = 1: formatted output of plot information on external file PROJ//MODES.txt wanted

• ku

– integer, vector of 5 components

– shell type characterization by functional degrees of freedom: ku = [w,u,v,beta,gamma]

– ku = 1,0,0,0,0: Kirchhoff type plate

– ku = 1,2,3,0,0: Kirchhoff-Love type shell

– ku = 1,4,5,0,0: Sandwich or Mindlin type plate

– ku = 1,2,3,4,5: Sandwich or Mindlin type shell

– plane panels with eccentric stiffeners or nonsymmetric stacking of the skin must be treated as
shells

• ISTX

– integer, vector of P_STF=P_RTNDS-2 components

– number of nodal lines in x-direction where are stiffeners located

– general modeled as one beam element at the position of blades

– for Omega-stringer: modeled as two beam elements at the position of the sides

– notice that ISTX has to be compatible to ELMSTF

• ISTY

– integer, vector of P_STF=P_RTNDS-2 components

– number of nodal lines in y-direction where are stiffeners located

– general modeled as one beam element

• ELMSTF
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– integer, vector of P_RTNDS-1 components

– ELMSTF[i-1] = 1 : use matabd(:,1) for the ABD matrix of the element i

– ELMSTF[i-1] = 2 : use matabd(:,2) for the ABD matrix of the element i, this element is skin +
stringerfoot

– notice that ELMSTF has to be compatible to the values of ele-
menteZwFrame,anzElProHalbfoot,anzElZwStr

– for T-stringer is the foot divided in two pieces per anzElProHalbfoot

– for Omega-stringer are anzElZwStr elements between the both feet of the stringer, the feet are
divided in anzElProHalbfoot elements

– the number of elements before the first and after the last stringerfoot is ISTX[0]-1

– the number of elements before the first and after the last frame is ISTY[0]-1

• boundY0,boundYL,boundX0,boundXL

– integer, vector of 7 components

– boundY0 = definition of boundary conditions at the nodal line y=0

– boundYL = definition of boundary conditions at the nodal line y=ly

– boundX0 = definition of boundary conditions at the nodal line x=0

– boundXL = definition of boundary conditions at the nodal line x=lx

– the first entry specifies symmetry or anti-symmetry of the buckling mode about the edge:

* bound**[0] = -1 -> symmetry

* bound**[0] = 1 -> anti-symmetry

* bound**[0] = 0 -> neither symmetry nor anti-symmetry

– any subset of the numbers 1,2,3,4,5,6 may be specified for components bound**[1] to bound**[6] with the meaning:

* 1 : w = 0 along the edge

* 2 : u = 0 along the edge

* 3 : v = 0 along the edge

* 4 : beta = 0 along the edge

* 5 : gamma = 0 along the edge

* 6 : w,x = 0 along edges in y-direction or w,y = 0 along edges in x-direction

* remaining components have to padded with 0

• elementeZwFrame

– integer

– discretization of the framePitch, how many finite elements are used

• anzElProHalbfoot

– integer

– discretization of the stringerfoot, how many finite elements are used

– for T-stringers anzElProHalbfoot = how many finite elements per half of the stringerfoot
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– for Omega-stringers anzElProHalbfoot = how many finite elements per complete stringerfoot

• anzElZwStr

– integer

– discretization of region between stringers

• anzElBelowStr

– integer

– discretization of skin region below O-stringer, how many finite elements are used (between
stringer feet)

– unused for other stringers

Output from BEOS

• elam

– real, vector of (P_NGIT) components

– contains at first the P_NGIT eigenvalues

• membraneforces

– the fortran interface does not utilize 2D arrays in the f2py interface

* thus in the interaface it is flattened to array [P_NGIT * 5]

– the 2D array is

* array [P_NGIT, 5].

– The latter indexes(or pandas columns) are for

* membraneForce X

* membraneForce XY

* membraneForce Y

* stringerForceX

* stringerForceY for each eigenvalue.

– 1D to 2D is [eig*5+forceIndex] –> [eig, forceIndex]

• displacement

– real, vector of (4*P_RTNDS*P_RTNDS)*neigrq components

– contains for all required eigenmodes neigrq the displacement field of w

– the discplacements of all nodes of one eigenmode are saved as one-dimensional vector one behind
the other

Output from getBucklingResults

• returnDict.update

– ‘bucklingForceFluxX’:bucklingLoadAxialX, -> buckling force flow; membrane + stringer

– ‘bucklingForceFluxY’:bucklingLoadAxialY, -> buckling force flow; membrane + stringer

– ‘bucklingForceFluxXY’:bucklingLoadShear, -> buckling force flow; membrane + stringer

– ‘skinBucklingForceFluxX’:compForceX, -> only membrane force flow

– ‘skinBucklingForceFluxY’:compForceY, -> only membrane force flow
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– ‘skinBucklingForceFluxXY’:shearForce, -> only membrane force flow

• displacementW

– no return value, but generated in the interface, at the moment unused

– real, matrix with dimension: neigrq x (number of nodes in x-direction) x (number of nodes in
y-direction)

– contains for all required eigenmodes neigrq the displacement field of w

– notice that independent of the coordinate system the x-direction of the displacement field is ever
defined as the direction with more nodes

Example:

from delis.buckling.bucklingpanel import BuckPanel
from delis.buckling.beosinterface import BeosBucklingInterface
parameters = BuckPanel.getDefaultParameters()
panel = BuckPanel.getPanel(**parameters)
beosInterface = BeosBucklingInterface()
result = beosInterface.getBucklingResults(panel, -1169.34,0.,0.2)
beosInterface.printBucklingResults([result])

References:

• [Buck1]

• [Buck2]

8.2.3 ADO/Abaqus

Implementation of the buckling interface for ADO/Abaqus. It is used to make a comparative calculation of a panel
with Abaqus. This calculation is more detailed as with BEOS, but it also takes much more time.

delis.buckling.ado.AdoBucklingInterface(analysistype='postbuckle', doRemoteCall=False)
Creates Abaqus panel model, executes Abaqus and reads results.

This class includes the ADO-interface. A text-file will be created with all relevant information which are defined
f.e. in bucklingpanel.py. This text-file is given to ADO (Matlab-scripts) who creates input-files for an abaqus
calculation. Subsequently the specified abaqus analyze starts and calculates the desired results.

Units:

• units are converted here if needed from Si-units used in CPACS to: mm, N, MPa, Degree

WorkFlow:

• input.txt is created in temporary directory (runDir)

• call panel mesh generator

– copies following m-files (=ADO-files) in temporary direction (runDir):

istZahl.m
kurz.m
laden.m
speichern.m
testausgabe.m

– creates following files (f.e. 001_panel_omega):
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Figure 8.3 : Figure: ado coordinate system with point- and edge names. The parameters from the buckling interface
are transformed to this coordinate system.

001_panel_omega.txt
001_panel_omega_buckle.inp
001_panel_omega_postbuckle.inp
001_panel_omega_lin.inp

• call Abaqus

– creates the desired analyse-files (f.e. for 001_panel_omega_buckle):

001_panel_omega_buckle.dat (most important file, ASCII-Code, includes
→˓all relevant information)
001_panel_omega_buckle.odb (important file, can be opened with the
→˓abaqus odb-viewer)
001_panel_omega_buckle.msg
001_panel_omega_buckle.par
001_panel_omega_buckle.pes
001_panel_omega_buckle.pmg
001_panel_omega_buckle.prt
001_panel_omega_buckle.sim
001_panel_omega_buckle.sta

• Results

– from . . . buckle.dat:

(n-)eigenvalues for buckling
axial buckling load in x-direction
axial buckling load in y-direction
shear buckling load
coordinates of the panel before and after the deformation

(continues on next page)
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(continued from previous page)

deformation field (plot is possible)

– from . . . lin.dat:

tsai-Wu criterion for every Element
coordinates of the panel before and after the deformation
deformation field (plot is possible)

– from . . . postbuckle.dat:

TODO: postbuckle has to be implemented!!!
coordinates of the panel before and after the deformation
deformation field (plot is possible)

Requirements:

• Set Environmentvariables (preferably in src/settings.py, see src/settings_template.py)

matlabCmd path to Matlab.exe

adomatlabPath path to folder with ADO-files (required m-files, s.a.)

abaqusPath path to folder with Abaqus exe-files

abaqusLicenseServerName name / code of the actual used license

• other requirements:

– installed version of Matlab

– installed version of Abaqus

• tested with abq version 6.11-1

• tested with Matlab R2006b

Limitations:

• Only angles of [0, 45, 90, 135] degrees can be insterted. Otherwise there is no coordinate system found
for this layer

Editing of Output to dat-file:

• in testausgabe.m line 3026 For printing more information into the dat-file it has to be changed here.

Informations for the nodeset p3 (edge applied with concentrated force) can be received like f.e. for lin-
analyze, line 3289:

fprintf(fid,'*Output, history, time interval=0.1\r\n'); % ab hier neu
fprintf(fid,'*node print, nset=p3\r\n'); %
fprintf(fid,'u,\r\n'); %
fprintf(fid,'*node print, nset=p3\r\n'); %
fprintf(fid,'rf,\r\n'); %
fprintf(fid,'*node print, nset=p3\r\n'); %
fprintf(fid,'cf,\r\n'); % bis hier neu

important is ‘*node print, nset=p3’, in the next line the required value (see also Abaqus Analysis User’s
manual Vol. I Kap. 4 - Output; Output identifiers) Special meaning has ‘*Output, history, time inter-
val=0.1’; as default the quite time intervall of one step is 1 second, here this second is split in 0.1 second-
intervalls and after every 0,1s-increment the calculated values are printed out (these values f.e. are used to
create the load shorteing curve, see abaqusmethods.py)

Informations for the whole panel can be printed like f.e. for lin-analyze, line 3331:
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fprintf(fid,'*el print\r\n'); % ab hier neu /
→˓Zeilen vorher: fprintf(fid,'*node output,nset=p3\r\n'); fprintf(fid,'u,
→˓rf,cf\r\n');
fprintf(fid,'tsaiw\r\n'); %
fprintf(fid,'*node print\r\n'); %
fprintf(fid,'u\r\n'); %

important is to know whether the required values are for elements or nodes (see also Abaqus Analysis
User’s manual Vol. I Kap. 4 - Output; Output identifiers). Here the tsai-wu criterion values are for
elements, so there stands ‘*el print’; the deformation u is for nodes, so there stands ‘*node print’.

Example:

from delis.buckling.bucklingpanel import BuckPanel
from delis.buckling.ado import AdoBucklingInterface
parameters = BuckPanel.getDefaultParameters()
panel = BuckPanel.getPanel(**parameters)
adoInterface = AdoBucklingInterface()
result = adoInterface.getBucklingResults(panel, -1169.34,0.,0.2)
adoInterface.printBucklingResults([result])

8.3 References
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CHAPTER

NINE

DAMAGE TOLERANCE

9.1 Overview

This report describes a state of the art Damage Tolerance (DT) method according to the structural analysis manual HSB
[DT1]. Therefore, the behavior of preexisting damage in a load-sustaining structure is evaluated for a specified load
spectrum. All analysis steps to be conducted are and also the implementation into a design loop for the preliminary
aircraft design is pointed out. The described DT procedures consider damage in form of a through-thickness crack.
Thus, the application is limited to metallic structures. In the current version, damage is considered to occur only to
skin sections. The basic variant of the method calculates the DT behavior of isotropic plates. However, according
to the structural analysis manual, stiffening elements are considered by empirical correction factors. Furthermore, all
python functions of the DT analysis module are explained in this report.
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9.2 Introduction

9.2.1 The principle of damage tolerant design

During the service life of an aircraft structure, damage is likely to occur. This occurrence of damage can hardly be
avoided. However, the structural integritiy is vital to an aircraft structure - airworthiness has to be ensured at any time.
This essential need to maintain the airworthiness raises the question, how to cope with flaws in aircraft structures.
Reduntant load paths (Fail Safe design) and a limitation of the service life (Safe Life design) are elementary methods
to mitigate the damage-driven risk. However, these approaches were found to be insufficient to design safe aircraft.
Catastrophic accidents like the series of hull-loss accidents of the first commercial jet airliner, the de Havilland Comet
[DT2] were symbolic for this insufficient safety. From such incidents rose the awareness, that relying on redundant
load paths and limiting the service life does not provide satisfactory safety against catastrophic failure. An increased
level of safety requires considering damage already during the design phase - damage has to be tolerated. This leads
to the DT design philosophy which is the state of the art today, and replaces the older design philosophies “Safe Life”
and “Fail Safe” [DT3].

The basic principle of DT design is the consideration of preexisting damage in the structure. The structure has to tol-
erate a specific damage for a predefined time period. In a load-sustaining structure, this damage is likely to propagate
during the service life. A DT design accounts of such damage growth. The crucial point is to ensure that the dam-
age is discovered, before it becomes critical to the structural integrity. Therefore, inspections have to be scheduled.
Countermeasures have to be taken if necessary. Hence, the structure has to be either replaced or repaired as soon as
the damage has reached a critical size. From these basic requirements, several specifications derive concerning the
design and the maintanance procedures. Damage has to be detectable, and its growth behavior needs to be sufficiently
stable and predictable. Inspections have to be be scheduled depending on the intervals of safe damage growth. The
Federal Aviation Administraion (FAA) defines the rules of action in a document about the “Damage Tolerance and Fa-
tigue Evaluation of Structure”, (AC 25.571) [DT4]. A comparable guideline by the European Aviation Safety Agency
(EASA) is formulated in the “Accepteable Mean of Compliance for Large Aeroplanes” [DT5]. According to these
guidelines, different structural elements demand for different DT analysis. Depending on the structural element, the
redundancy of load paths, and the specified inspections the DT analysis has to be more or less detailed. However, the
basic principle is equivalent:

• Type of the structure: Depending on the importance of the structure in respect to the integrity of the aircraft,
structural elements are differently classified. In consequence, the steps to be conducted in the DT analysis
can differ. Particularly important structures (control surfaces, pressure bulkheads, surround panels of doors or
windows, etc.) are called Principle Structural Elements (PSE). A full DT analysis has to be conducted for all
PSEs.

• Initial damage: For each aircraft structure, a preexisting damage has to be assumed. For metallic structures,
this damage is a through thickness crack. As shown in Figure 9.1 , the initial crack length 𝑎𝑖𝑛𝑖 to be assumed
is either an assumed manufacturing flaw 𝑎0 or the minimal detectable crack length 𝑎𝑑𝑒𝑡. Cracks have to be
detected during the scheduled inspections. Depending on the accessability and the inspection effort, the crack
has to be sufficiently large to be considered detectable. Therefore, a detectable crack length 𝑎𝑑𝑒𝑡 can be derived.
In consequence, we need to assume that cracks up to the length 𝑎𝑑𝑒𝑡 remain undetected in the structure. In a
DT analysis this damage has to be considered as the initial condition after an inspection. In consequence there
are two different scenarios. The first scenario is the analysis of a new strucure where 𝑎𝑖𝑛𝑖 = 𝑎0 is the initial
damage. The second scenario becomes relevant after the first inspection, where the initial crack length changes
to 𝑎𝑖𝑛𝑖 = 𝑎𝑑𝑒𝑡.

• Maximum tolerable damage: The maximum tolerable damage size is the counterpart to the initial damage.
The critical crack length 𝑎𝑐𝑟𝑖𝑡 in Figure 9.2 is the damge size that leads to failure of the structure under the
limit load (LL). This crack length derives from the residual strength of a flawed structure. This residual strength
decreases with increasing crack length.

• Damage growth analysis: The difference 𝑎𝑐𝑟𝑖𝑡 − 𝑎𝑖𝑛𝑖 = ∆𝑎 determines a safe crack growth interval. During
this interval, the damage is already detectable and still not critical for the structural integrity. From this length
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derives a load cycle interval ∆𝑁𝑠𝑎𝑓𝑒, as Figure 9.3 illustrates. This interval can also correspond to a number
of flights. It defines the available time in the safe growth period of the crack, between 𝑎𝑖𝑛𝑖 and 𝑎𝑐𝑟𝑖𝑡. Its
determination is the key result of the crack growth analysis in the DT assessment.

• Analysis for DT critical scenarios: In an aircraft strucuture not all sections are critical in terms of DT. De-
pending on the stress level and the geometry the possibly most DT-critical regions can be identified. This
identification also includes different potential crack positions and orientations. For those identified scenarios,
the actual DT analysis including the crack growth analysis is conducted.

• Derivation of inspection intervals: The final step of a DT assessment is the determination of inspection intevals
∆𝑁𝐼 depending on the period of safe damage growth ∆𝑁𝑠𝑎𝑓𝑒. The scheduled inspections have to ensure the
discovery of the damage before a damage can become critical. A scatter factor is applied to calculate the
inspection interval from the interval of safe damage growth.

Figure 9.1 : Initial crack length

Figure 9.2 : Critical crack length

Figure 9.3 : Schematics of the crack growth over an interval of load cycles.

The DT method as described is a design criterion, besides e.g. strength or buckling. Even though a structure is not
strength-critical, a damage could possibly grow to a critical size, and the residual strength could decrease below limit
load. The DT criterion is a crucial design driver in some structural areas. The overview about the DT critical zones for
fuselages in Figure Figure 9.4 was published by Tavares and Castro in the work about DT of metallic aicraft [DT6].
The overview shows, that in addition to strength and buckling, several structural areas are relevant to DT scenarios.
The crack growth in DT-critical fuselage areas close to the wings is dominated by a spectrum of different loads, caused
by gusts and flight maneuvers. In DT-critical fuselage areas removed from the wings, the crack growth is driven by a
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constant load amplitude caused by the pressurization of the cabin. Both DT cases can be the driving sizing-criterion
toward strength and buckling.

Figure 9.4 : Overview of DT critical zones on an aircraft fuselage according to Tavares and Castro [DT6].

9.2.2 Damage tolerance for preliminary aircraft design

In the process of preliminary aircraft design, a structural sizing is conducted. Panel parameters and thicknesses are
chosen for the structure to fulfill all design criteria with respect to LL. Based on the evaluation of these design criteria,
for example, an increase or a decrase of the skin thickness can be conducted. Therefore, the DT analyis has to be
implemented in the sizing workflow accoring to Figure Figure 9.5 .

Similar to the usual sizing criteria (strength, buckling, etc.), the DT criterion provides a critical load 𝑛𝑐𝑟𝑖𝑡−𝐷𝑇 . This
critical load can be compared to the calculated internal load of the structure (e.g. using FEM). Depending on the
reserve factor that results from the ratio of both values a configuration can be accepted or must perform another sizing
loop.

The preliminary aircraft design involves a large number of such sizing loops. Hence, the preliminary design requires
fast methods in these loops. The challenge of the DT analysis in the sizing process is the implementation of an efficient
method to conduct all required analysis steps. Among these steps, the crack growth analysis is usually the most time-
consuming part. The loading conditions at a crack tip usually change with the damage size. In consequcence, an
iterative solution has to be conducted over the load spectrum. The number of iterations determines the accurracy. A
crucial task in the development of a DT method for preliminary aircraft design is to establish a reasonable compromise
of accuracy and efficiency.
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Figure 9.5 : Implementation of the damage tolerance criterion from an aircraft design perspective
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9.3 Methodology

The DT analysis has to be included as a design criterion in the design process shown in Figure Figure 9.5 . Regarding
the analysis path of the DT criterion, Figure Figure 9.6 illustrates the required analysis steps including their input and
output. The input load sequence, consisting of stress amplitudes 𝜎𝑖, has to be passed to an analysis of the fracture
mechanics in the loaded structure. A fracture-mechanical load sequence, considering the loading at the crack tip, is
the result. This sequence consists either of energy release rates (ERR) 𝐺𝑖 or stress intensity factors 𝐾𝑖. The following
crack growth analysis utilizes this fracture-mechanical load sequence, the aircraft parameters and the material data.
This analysis starts with the initial crack length 𝑎𝑖𝑛𝑖 and calculates the resulting crack length 𝑎𝑒𝑛𝑑 for a given load
spectrum. After this crack growth analysis, the residual strength of the structure is calculated considering the crack
length 𝑎𝑒𝑛𝑑. This residual strength is the value 𝑛𝑐𝑟𝑖𝑡−𝐷𝑇 that can be compared with the internal loads from a static
analysis.

Figure 9.6 : Schematics of the damage tolerance module

9.3.1 Load sequence

The DT analysis utilizes a load sequence representative for the structural operation load. Such an operation load
spectrum of an aircraft results mainly from manoevers, gusts, and ground movements. In contrast to a static strength
analysis, the DT load sequence has to contain information about each load’s frequency of occurrence. Moreover, the
difference to a strength analysis is the requirement to take into account all loads the structure experiences. It is not
sufficient to consider only the maximum loads, as also small load cycles contribute to the crack propagation.

Each individual load in the spectrum is characterized by two parameters: The stress amplitude 𝜎𝑖 and a stress ratio 𝑅𝑖.
An individual load cycle is illustrated in the diagram in Figure Figure 9.7 . The stress ratio is defined by the minimum
and maximum stress of that load cycle 𝑅𝑖 = 𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
. An individual load is included in a spectrum by the frequency of

its occurence. The load spectrum does not contain any information about the shape of the load cycle or about the order
of occurrence within the spectrum.

The individual loads and their occurrences of a structure depend on the mission specification of the aircraft. For
example, the expected flight duration crucially affects the load spectrum. The load spectrum data can be generated
based on a mission analysis and probability distribution for gusts. However, such a procedure results always in an
artificial spectrum, whose validity is limited to the validity of the assumptions. Alternatively, standard load sequences
for specific use cases are available in the literature. Such standard sequences are often based on empirical studies. The
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Figure 9.7 : An individual load cycle and its characteristic values.

use of a standard sequence guarantees a certain level of comparability with other studies about damage growth and
DT.

To create a suitable load spectrum from measured load, a counting algorithm has to be applied. The most famous type
of such an algorithm is the rainflow count [DT7]. It extracts the representative amplitudes and their occurrences from
a load-time history measurement.

delis.damagetolerance.dtanalysis.LoadGenerator()
This class contains methods to generate load spectra for a specified number of flights or number of flight hours.
All load spectra are provided in form of three n-dimensional arrays: 1) load amplitudes 2) stress ratios 3) number
of occurrences. The dimension n defines the amount of different loads in the spectrum. A load spectrum can
either be created from the evaluation of measured loads or from a probability distribution of predefined loads.
In any case, the spectrum does not contain any information about the load sequence of the amplitude or about
the influence associated with it.

LoadGenerator.__init__()
The class requires the following parameters to set up a load sequence:

Parameters

• flights – number of flights to determine the frequency of all loads

• sections – number of analysis sections to divide the load sequence

• cruiseAmplitude – 1g load in cruise flight, required for evaluation of relative load
sequences

• flighthours – duration of one average flight to scale the occurrence of the loads during
the flight

LoadGenerator.customTwistFlightLoadAmplitudesAndRatios()
This function returns a TWIST (Transport Wing Standard) load spectrum [DT8]. The TWIST spectrum is
founded on an empirical count of loads that was conducted on various aircraft. The load was monitored at
the wing root of these aircraft. The original TWIST was derived for 40 000 flights. This spectrum originally
contains ten different flight types that occur with a specific probability during the service life of an aircraft. Thus,
the spectrum also contains loads that occur with low likelihood. However, these unlikely loads are commonly
high, and their presence can be significant to fatigue or crack growth.

In this function, the original TWIST sequence is adapted for the predefined number of flights 𝑛𝑓𝑙𝑖𝑔ℎ𝑡𝑠 and a
specific average flight duration.

Therefore, an average duration of a TWIST flight was assumed as 1.5 hours. This duration is the baseline value
for a scaling of the flight duration.
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The function first creates one representative flight which contains all laods. We assume that this flight reoccurs
𝑛𝑓𝑙𝑖𝑔ℎ𝑡𝑠 times. Thus, the representative flight contains the load amplitudes 𝐴𝑖 of all flight types in the original
TWIST sequence with a frequency of occurrence 𝑛𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚(𝐴𝑖) that is:

𝑛𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚(𝐴𝑖) =
𝑛𝑇𝑊𝐼𝑆𝑇 (𝐴𝑖)𝑛𝑓𝑙𝑖𝑔ℎ𝑡𝑠

40000

The function returns three arrays for the load amplitudes, the stress ratio and the occurrence of the loads respec-
tively. The original spectrum is scaled for a specific number of flights and divided in intervals according to the
specified number of sections.

The output consists of three arrays and the corresponding flight number:

• occurrences: the number cycles on each load level

• loadAmplitudes: the Amplitudes in the load spectrum

• loadRatios: the ratio of maximum to minimum load for each amplitude

• baseflights: the number of flights for the load count

9.3.2 Fracture mechanical load sequence

The load sequence generation, as described in the section above, determines the state of stress in the pristine aircraft
panel. The damage tolerance critrion is driven by the growth rate of a crack in this panel. Thus, the state of stress at a
crack tip is the controlling parameter. Therefore, the load sequence has to be transformed into a fracture-mechanical
sequence that is valid at the crack tip of interest.

delis.damagetolerance.dtanalysis.FractureMechanics()
This class contains all fracture mechanical methods for the damage tolerance analysis. The main purpose is to
calculate the stress intensity factor 𝐾 at a crack tip of a plate of isotropic material.

The theory of a stress concentration factor does not apply to sharp cracks. The analysis of the stress at a crack
edge with a curvature near zero would result in an infinitely high stress at the crack tip. Therefore, the fracture
mechanics uses a different theory to characterize characterizes the stress state near a crack tip. The stress
intensity factor belongs to the means of the theory of linear elastic fracture mechanics.

A crack begins to propagate when the stress intensity factor 𝐾 exceeds a critical value 𝐾𝑐. This critical value is
a material parameter. It can be calculated from the critical energy release rate according to Griffith. The stress
intensity factor depends on the crack opening mode according to figure.

Among these three crack opening modes, the normal mode is the most critical because the respective parameter
𝐾𝐼𝑐 is smaller than the values 𝐾𝐼𝐼𝑐 and 𝐾𝐼𝐼𝐼𝑐.

The stress intensity factor is defined for each crack tip and depends on the state of stress. Equation (9.1) describes
the calculation of the stress intensity factor for an infinitely large plate with a crack of the length 2𝑎 as shown
in Figure 9.9 . The assumption of an infinite plate actually requires (𝑤, ℎ) → ∞. However, Equation (9.1)
plausibly estimates the stress intensity factor if the condition 𝑎 << (𝑤, ℎ) is fulfilled. The value 𝜎𝑛𝑛 is the
normal stress orthogonal to the crack direction.

𝐾𝐼−𝑖𝑛𝑓 = 𝜎𝑛𝑛

√
𝜋𝑎 (9.1)

FractureMechanics.getStressIntensityFactor()
This function calculates the stress intensity factor 𝐾𝐼 from the global stress level 𝜎𝑛𝑛. The calculation founds
on Equation (9.1) for an infinitely large plate. However, this is neither a plausible assumption nor a conservative
approximation of a bay in a real aircraft structure. Consequently, 𝐾𝑖𝑛𝑓 is not suitable for the analysis of the
crack growth analysis. However, the value serves as a baseline. This baseline is modified with correction factors
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Figure 9.8 : Crack opening mode.

Figure 9.9 : Geometry of a panel with a crack of the length 2𝑎
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for different effects affecting the stress intensity factor. These include the empirical correction factors 𝛼𝑖 for the
panel geometry according to the calculation in the following equation:

𝐾 =

𝑁𝛼∏︁
𝑖=1

𝛼𝑖𝜎𝑛𝑛

√
𝜋𝑎

Other correction factors concern the curvature of the panel or the influence of stiffening elements. In the current
version, those factors are not considered, yet.

Parameters

• a – current crack length

• alpha – 1D array of correction factors for crack location and geometry

FractureMechanics.getAlpha()
This function calculates the correction factors 𝛼𝑖 from the corresponding diagrams in the structural analysis
manual HSB.

Parameters

• ac – currect crack length

• w – specimen width in crack direction

• l – specimen length orthogonal to crack

• etow – excentricity of the crack location ratio e/w (currently unused)

The following diagrams are excerpts from the structural analysis manual:

Figure 9.10 : Correction factor for the aspect ratio of the plate.

Some text

220 Chapter 9. Damage Tolerance



delis, Release 21.2.6

Figure 9.11 : Correction factor for the crack position.

Some text

9.3.3 Crack growth calculation

The calculation of the crack growth is the key point of the DT analysis. This calculation is conducted in two steps.
First, a material-specific correlation of the crack growth rate has to be evaluated. This correlation is called a crack
growth law. Second, the crack growth rate as to be integrated mathematically over the entire load spectrum of interest.

Crack growth rate

A crack growth law relates the stress intensity factor (or the energy release rate) at a crack tip to a crack propagation
rate per cycle. This correlation is material-specific and has to be determined experimentally. Two famous correlations
are the Paris law [DT9] and the Forman law [DT10].

CrackGrowth.growthrateParis()
The Paris law is a basic correlation that takes into account the delta of the maximum and the minimum stress
intensity factor (or energy release rate) to calculate a crack growth rate. That means it is not sensitive to the load
ratio (or the mean load). The law requires two material parameters, 𝑐𝑝 and 𝑛𝑝.

𝑑𝑎

𝑑𝑁
= 𝑐𝑝 · ∆𝐺𝑛𝑝

Parameters deltaG – double amplitude of the energy release rate at the crack tip.

CrackGrowth.growthrateForman()
The Forman law is a more advanced correlation to calculate the crack growth rate 𝑑𝑎

𝑑𝑁 . It takes into account the
delta of the maximum and the minimum stress intensity factor ∆𝐾 (or energy release rate) and the stress ratio
𝑅. The Forman law is the standard method according to the HSB. It requires three material parameters, 𝑐𝑓 , 𝑛𝑓 ,
and 𝑘𝑓 . The last value, 𝑘𝑓 , is equivalent to the critical energy release rate 𝐾𝑐. If ∆𝐾 exceeds the value 𝐾𝑐, the
structure fails since the load passed over the residual strength.

𝑑𝑎

𝑑𝑁
=

𝑐𝑝 · ∆𝐾𝑛𝑓

(1 −𝑅) · 𝑘𝑓 − ∆𝐾

Parameters

• deltaK – double amplitude of the stress intensity factor

• R – stress ratio

9.3. Methodology 221



delis, Release 21.2.6

Crack growth integration

The integration of the crack growth rate is the mandatory step to calculate the crack propagation over a load spectrum.
The ideal solution would be the analytical integration of the crack growth law. This is possible for the simple Paris
law, as long as the stress intensity factor remains constant. However, the stress intensity factor usually changes with
the increasing crack length. The implemented method partly relies on empirical relations for the determination of
the geometry-specific stress intensity factor. Such a procedure prevents the analytical integration of the crack growth
law. Consequently, iteartive methods have to be employed to calculate the final crack length. Thus, the integration is
conducted numerically.

All implemented integration methods work according to the same principle. The increment of crack propagation ∆𝑎
is determined for a specified interval ∆𝑁 .

𝑑𝑎

𝑑𝑁
· ∆𝑁 = ∆𝑎

Accordingly, the calculated increment has to be added to the previous crack length for each iteration:

𝑎𝑖+1 = 𝑎𝑖 + ∆𝑎

Depending on the number of increments, this calculation has to be repeated.

Integration in one step

CrackGrowth.integral_crack_growth_onestep()
This function integrates the crack growth for a specified load spectrum. The integration is conducted in one
single step for the entire load spectrum and for all flights. No updating of the crack growth rate is conducted.
First, the growth rates for each cycle in the load spectrum have to be summed up. The result is multiplied by the
number of flights, which leads to a difference in the crack length ∆𝑎𝑡𝑜𝑡𝑎𝑙 over all flights.

𝑁𝑐𝑦𝑐𝑙𝑒𝑠∑︁
𝑐𝑦𝑐𝑙𝑒=1

𝑑𝑎

𝑑𝑁
(𝑐𝑦𝑐𝑙𝑒) ·𝑁𝑓𝑙𝑖𝑔ℎ𝑡𝑠 = ∆𝑎𝑡𝑜𝑡𝑎𝑙

The difference ∆𝑎𝑡𝑜𝑡𝑎𝑙 is simply added to the initial crack length, to achieve the final crack length after 𝑁𝑓𝑙𝑖𝑔ℎ𝑡𝑠

flights with 𝑁𝑐𝑦𝑐𝑙𝑒𝑠 load amplitudes per flight.

𝑎𝑒𝑛𝑑 = 𝑎𝑖𝑛𝑖 + ∆𝑎𝑡𝑜𝑡𝑎𝑙

This calculation is not conservative. In reference to the analytical solution, the onestep integration predicts a
smaller crack length. The error increases for an increasing number of load cycles. However, the integration
minimizes the computation time.

Parameters

• N – number of repeats for the specified load spectrum (representing the number of flights)

• loadlist – maximum amplitudes load spectrum (representing one flight)

• Rlist – stress ration of the load spectrum

• multipliers – additional multipliers to the stress intensity factor

CrackGrowth.crackGrowthFromCount()
This function calculates the Forman crack growth rate for a specified load spectrum.

It is a more general formulation in contrast to the previous integration functions. There is no distinction between
load occurrences per flight and the number of flights. The input is a simple spectrum of loads with a specified
number of occurrences for each load.

The integration is a onestep integration, as the function calculates the crack growth rate only one time. The
function includes an evaluation of the residual strength to detect whether the structure fails.
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Parameters

• loadOccurrences – number of occurrences for each load amplitude

• loadAmplitudes – load amplitudes (stress)

• loadRatios – stress ratios

• abegin – initial crack length

• multipliers – additional multipliers for the stress intensity factor

Cycle-by-cycle integration

CrackGrowth.integral_crack_growth()
This function integrates the crack growth for a specified load spectrum. The integration is conducted separately
for each load cycle. After each cycle, the crack growth rate is updated.

The difference in the crack length ∆𝑎(𝑐𝑦𝑐𝑙𝑒, 𝑓 𝑙𝑖𝑔ℎ𝑡) is calculated for each load cycle in each flight. The
difference results directly from the crack growth equation.

𝑑𝑎

𝑑𝑁
(𝑐𝑦𝑐𝑙𝑒, 𝑓 𝑙𝑖𝑔ℎ𝑡) = ∆𝑎(𝑐𝑦𝑐𝑙𝑒, 𝑓 𝑙𝑖𝑔ℎ𝑡)

The value ∆𝑎(𝑐𝑦𝑐𝑙𝑒, 𝑓 𝑙𝑖𝑔ℎ𝑡) is added to the initial crack length. For each cycle in each flight, the crack growth
equation is evaluated again.

𝑎𝑒𝑛𝑑 = 𝑎𝑖𝑛𝑖 +

𝑁𝑓𝑙𝑖𝑔ℎ𝑡𝑠∑︁
𝑓𝑙𝑖𝑔ℎ𝑡=1

𝑁𝑐𝑦𝑐𝑙𝑒𝑠∑︁
𝑐𝑦𝑐𝑙𝑒=1

∆𝑎(𝑐𝑦𝑐𝑙𝑒, 𝑓 𝑙𝑖𝑔ℎ𝑡)

This is the most realistic calculation, which requires also the highest computation effort.

Parameters

• N – number of repeats for the specified load spectrum (representing the number of flights)

• loadlist – maximum amplitudes load spectrum (representing one flight)

• Rlist – stress ration of the load spectrum

• multipliers – additional multipliers to the stress intensity factor

Flight-by-flight integration

CrackGrowth.integral_crack_growth_flightstep()
This function conducts a flight-wise integration the crack growth for a specified load spectrum. The integration
is conducted in for each flights. After the integration of the specified spectrum, the crack growth rate is updated.
First, the growth rates for each cycle in the load spectrum are summed up, resulting in ∆𝑎(𝑓𝑙𝑖𝑔ℎ𝑡).

𝑁𝑐𝑦𝑐𝑙𝑒𝑠∑︁
𝑐𝑦𝑐𝑙𝑒𝑠=1

𝑑𝑎

𝑑𝑁
(𝑐𝑦𝑐𝑙𝑒𝑠) = ∆𝑎(𝑓𝑙𝑖𝑔ℎ𝑡)

∆𝑎(𝑓𝑙𝑖𝑔ℎ𝑡) is the difference of the crack length for the first flight. This difference can be added to the initial
crack length. After each flight, the value ∆𝑎(𝑓𝑙𝑖𝑔ℎ𝑡) is recalculated. Thus, the value 𝑎𝑒𝑛𝑑 is determined
iteratively.

𝑎𝑒𝑛𝑑 = 𝑎𝑖𝑛𝑖 +

𝑁𝑓𝑙𝑖𝑔ℎ𝑡𝑠∑︁
𝑓𝑙𝑖𝑔ℎ𝑡=1

∆𝑎(𝑓𝑙𝑖𝑔ℎ𝑡)

This calculation is not conservative. In reference to the analytical solution, it predicts a smaller crack length.
The error increases for an increasing number of load cycles per flight. However, the computation time reduces
in comparison to the cycle-wise integration.
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Parameters

• N – number of repeats for the specified load spectrum (representing the number of flights)

• loadlist – maximum amplitudes load spectrum (representing one flight)

• Rlist – stress ration of the load spectrum

• multipliers – additional multipliers to the stress intensity factor

Sectionwise integration procedure

In addition to the flightwise or cyclewise integration, a custom secification of the integration interval is possible. This
possibility is realized in the following functions:

CrackGrowth.integralCrackGrowthFromCount()
This function calculates the Forman crack growth rate for a specified load spectrum. The number of flights is
only representative and not a multiplier to the load spectrum.

The integration is conducted in sections. Each section represents an integration interval. The number of these
intervals can be specified. The procedure is similar to the flight-by-flight integration, however, the intevals can
be chosen with higher flexibility. In this function, it is also possible that an amplitude’s number of occurrences
is smaller than one.

For each integration interval, the calculation of the crack growth rate is repeated. The function includes an
evaluation of the residual strength to detect whether the structure fails. This evaluation is conducted in the
beginning of each integration interval.

Parameters

• nSections – number intervals for the integration

• loadOccurrences – number of occurrences for each load amplitude

• loadAmplitudes – load amplitudes (stress)

• loadRatios – stress ratios

• nflights – representative number of flights (optional)

CrackGrowth.integralCrackGrowthFromCountFromLowToHigh()
This function fulfills a similar purpose like the section integration in ‘integralCrackGrowthFromCount’. The
difference is in the order of the integration within the load spectrum. However, the splitting is conducted in a
different manner. Usually, the order is applied as specified in the amplitudes vector. This functions sorts the
amplitudes from the highest to the lowest or from the lowest to the highest before the integration is conducted.

The integration is conducted separately for each load amplitude. Additionally, the integration of each load
amplitude is split up into the specified number of integration intervals.

Parameters

• nSections – number of integration sections

• loadOccurrences – number of occurrence for each amplitude

• loadAmplitudes – stress amplitudes

• loadRatios – stress ratios

• inverseorder – inverts the order from high to low if set true
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9.3.4 Residual strength

The calculation of the residual strength is a mandatory step for the DT analysis. After the crack growth analysis, the
structure’s remaining capability to sustain load is the crucial value of interest. According to the schematics in Figure
Figure 9.5 , the residual strength defines the critical load of the DT criterion. This critical load is compared to the
internal loads of the aircaft to determine whether the structure is sufficiently damage tolerant.

Residualstrength.__init__()
The prediction of the residual strength of a crack-affected structure is based on fracture mechanical methods.
The calculated state of stress is evaluated for the stress intensity factor 𝐾𝐼 , which is compared with the critical
stress intensity factor 𝐾𝐼𝑐. The structure fails when the calculated value 𝐾𝐼 exceeds the critical value 𝐾𝐼𝑐.

Parameters Kc – critical stress intensity factor (material parameter)

Determination of the critical crack length

Residualstrength.a_crit()
This function determines the critical crack length for a predefined limit load. This calculation is required when
the interval of stable damage propagation shall be determined for a given residual strength value.

Parameters

• sll – limit load stress

• alpha – vector of correction factors for the stress intensity factors

Returns critical crack length, float

Determination of the residual strength

Residualstrength.strength_of_a()
This function calculates the residual strength for a cracked skin element.

Parameters

• a – Current crack length

• alpha – vector of correction factors for the stress intensity factors

Selection of the crack length 𝑎𝑖𝑛𝑖

The initial crack length 𝑎𝑖𝑛𝑖 is crucial to the DT analysis. This variable is usually not explicitely specified. Instead,
𝑎𝑖𝑛𝑖 results from the certification requirements according to the public authorities. The exact value for 𝑎𝑖𝑛𝑖 depends
on several circumstances: the flight interval of interest, the type of the structure, and the applied inspection procedure.
According to the schematics in Figure Figure 9.12 , the implementation of the DT method selects the apporpriate value
for 𝑎𝑖𝑛𝑖. Alternatively, 𝑎𝑖𝑛𝑖 can be specified manually.

After each inspection it is assumed, that a crack of the minimal detectable length is located in the structure. This
assumption results from the DT requirements of the public authorities [DT4]. The following function determines the
corresponding initial crack length for a standard flight interval following an inspection:

DamageToleranceIsotropPlate.visible_crack()
Depending on the specified inspection procedure for the aircraft to be analyzed, the crack length to be considered
as detectable varies. The standard inspection procedure is a general visible inspection (GVI), which is considered
to permit to detect a crack length as small as 3 inches (76.2 mm). If an advanced inspection procedure is applied
- a detailed visual inspection (DET) - the detectable crack length reduces to 1 inch (25.4 mm). These crack
lengths define the initial value 𝑎𝑖𝑛𝑖 for the DT analysis over a standard inspection interval. In addition, the DT
analysis has to be conducted for each flight, to ensure that a crack cannot become critical during a flight (get
home scenario).T he corresponding value 𝑎𝑖𝑛𝑖 for such a scenario derives from the detectable crack length in a
walk around (WA) which is 8 inches (203.2 mm).
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Figure 9.12 : Determination procedure of the initial crack length for the DT analysis.

Parameters inspection – Inspection type

According to the DT requirements by the public authorities, also for new structures, an initial flaw has to be assumed
[DT4]. The following function determines the corresponding inital crack length to be considered for the first flight
interval after manufacturing:

DamageToleranceIsotropPlate.initial_crack()
The structural type determines the initial crack length to be considered in the first flight interval. The initial
crack represents a flaw which can be located in a newly manufactured structure. For primary structural elements
an initial crack length of 0.05 inches has to be assumed. A value of 0.005 inches is taken into account for
structures representing a secondary load path.

Parameters loadpath – ‘primary’|’secondary’

9.3.5 Material parameters

The material parameters for the DT analysis are currently stored in a class of the python module. A manual specifica-
tion of the material parameters is currently not supported.

class delis.damagetolerance.dtanalysis.Material
This class provides the material parameters for the damage growth and the residual strength. It contains data
from the literature, e.g. the structural analysis manual HSB or journal publications.

The residual strength of a cracked structure requires the critical stress intensity factor 𝐾𝑐

The Forman law requires a set of three material parameters 𝑐𝑓 , 𝑛𝑓 , 𝑘𝑓 where 𝑘𝑓 = 𝐾𝑐

The Paris law requires two material parameters.

Material.setFormanParametersByMaterial()
This functions contains a list of material parameters for the forman law. According to the given material name,
the corresponding parameters are selected. The order of the parameters in the output list is [𝑐𝑓 , 𝑛𝑓 , 𝑘𝑓 , Youngs
modulus, Rp02, Rm]. An error is raised if no parameters are available for the specified material.

Parameters materialName – string with the material name (should contain only capital letters
and numbers)

Material.getKcByMaterial()
This function returns the critical stress intensity factor for a material. This value is extracted from the Forman
parameters in the function ‘setFormanParametersByMaterial’.
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Parameters materialName – string with the name of the material

Material.setParisParametersByMaterial()
This function works analogously to the function with Forman material parameters. However, it returns only two
parameters for the Paris law.

Parameters materialName – string with the name of the material
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9.4 Damage tolerance analysis chain

The DT analysis shall be included in a sizing loop of the aircraft design procedure. For that purpose, all required
steps have to be combined in a module. Based on all required input, this module has to calculate the residual strength
resulting from the DT criterion. Two such modules are available for different applications.

9.4.1 Damage tolerance of isotropic plates

The damage tolerance of isotropic plates is a trivial combination of the steps explained in the methodology section.

class delis.damagetolerance.dtanalysis.DamageToleranceIsotropPlate
This class contains the methods for a damage tolerance analysis of an isotropic plate. This DT analysis contains
a crack growth analysis and a residual strength evaluation.

The basic parameters for a damage tolerance analysis depend on the scheduled inspections for an aircraft. These
are, the initial crack length to be assumed in an analysis and the number of flights in one inspection interval.

DT analysis functions

The following function calculates the residual strength after crack growth for a specified set of aircraft parameters:

DamageToleranceIsotropPlate.getResidualStrength()
This function calculates the residual strength for specified load sequence and number of flights. The method
refers to a flat plate. The analysis result contains only the crack growth history as well as the residual strength
after the entire flight interval 𝑛𝑔𝑜𝑎𝑙. The reserve factor can be calculated by the relation of the structural limit
load and the residual strength.

The analysis procedure uses the integration of the function ‘integralcrackGrowthFromCount’, which checks the
residual strength during the analysis. If the structure fails during the specified interval, the number of flights
until failure is provided. A safety factor smaller than one can be calculated from the relation of the flights until
failure and the number of flights 𝑛𝑔𝑜𝑎𝑙.

Parameters

• widthPanel – width of the plate to be analyzed

• lengthPanel – length of the plate to be analyzed

• thickness – thickness of the plate to be analyzed

• stress – stress amplitudes for one flight

• r – stress ratios

• flightoccurrences – occurrences for each stress amplitude

• nsections – sections to split up the integration

• nflights – number of flights (multiplier to the occurrences)

• materialName – specification of the material

The following function calculates the crack growth and the residual strength for a specified set of aircraft parameters:

DamageToleranceIsotropPlate.getCrackgrowth()
The function calculates the crack growth for the specified load sequence and number of flights. If no load
occurrences are specified a TWIST spectrum is created according to the given number of flights and the flight
duration. The reference is the 1g-stress (if available). Alternatively, the first entry in the loadlist ist used.
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The methodology in this function refers to a flat plate. The analysis result contains the crack growth history as
well as the residual strength after the entire flight interval 𝑛𝑔𝑜𝑎𝑙. The reserve factor can be calculated by the
relation of the structural limit load and the residual strength.

During the analysis, the residual strength is checked in this function. The analysis procedure uses the integration
of the function ‘crackGrowthFromCount’, If the structure fails during the specified interval, the number of flights
until failure is provided. A safety factor smaller than one can be calculated from the relation of the flights until
failure and the number of flights 𝑛𝑔𝑜𝑎𝑙.

Parameters

• widthPanel – width dimension of the plate to be analyzed

• lengthPanel – length dimension of the plate to be analyzed

• thickness – plate thickness

• loadlist – list of loads

• ratios – load ratio for each entry in the load list

• flightoccurrences – frequency of occurrence per flight for each entry in the load list

• nflights – number of flights to be analyzed (multiplier to the occurrences)

• nSections – number of integration sections for the crack growth analysis

• materialName – material name for the parameter selection

9.4.2 Damage tolerance of stiffended structures

The DT analysis of stiffened structure is conducted according to the same principle as applied for isotropic plates.
However, several differences in the distinct steps result in a need for a seperate python class.

class delis.damagetolerance.dtanalysis.DamageToleranceStiffenedStructure
This class contains the methods for a damage tolerance analysis of stiffened structure. The basic principle of the
DT analysis is equivalent to that of an isotropic plate.

DamageToleranceStiffenedStructure.__init__()
The Figure 9.13 shows a segment of a stiffened structure. The figure illustrates the parameters which are
relevant to the DT analysis procedure.

Parameters

• ngoal – number of flights to be analyzed

• inspection – specified inspection procedure

• isFirstInterval – interval after inspection or after manufacturing

• aini – specified initial crack length (l in Figure 9.13 )

• materialName – material type of the skin

• stiffenerMaterial – material type of the stiffeners

• crackcase – crack in bay/ under intact stiffener / under broken stiffener

• stiffenerPitch – x-distance of the perpendicular stiffeners (b in Figure 9.13 )

• stiffenerArea – cross-sectional area of the stiffeners (F1 in Figure 9.13 )

• diaFastener – diameter of the fasteners (d in Figure 9.13 )

• distFastener – y-distance of the fasteners to the stiffener (t in Figure 9.13

9.4. Damage tolerance analysis chain 229



delis, Release 21.2.6

Figure 9.13 : A stiffened structure and its DT-relevant parameters according to the HSB
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• stiffenerthickness – thickness of the stiffeners

DamageToleranceStiffenedStructure.getCrackgrowth()
The crack growth analysis requires parameters of load, flights and sections to be specified. The load spectrum is
specified for one flight. The number of flights is a multiplier to the load occurrences. Additionally, the limit load
for the residual strength check can either be specified or the maximum laod from the spectrum is considered as
limit load.

Parameters

• thickness – skin thickness

• loadlist – spectrum of stress amplitudes

• ratios – load ratio for each entry in the load list

• flightoccurrences – frequency of occurrence for each entry in the load list

• nSections – number of integration sections for the crack growth analysis (standard value
is 1000)

• limitLoad – specified limit load for the residual strength check (optional)

Several differences to the analysis of an isotropic plate characterize this function. The basic formula to determine
the stress intensity factor remains 𝐾 = 𝜎

√
𝜋𝑎 However, the change is in the determination of the empirical

factors to modify stress intensity factor according to the geometry. The relevant parameters are not anymore the
dimensions of a plate and the relative placement of the crack. Instead, the geometrical properties of the stiffened
structure define the stress intensity factor. The Figure 9.13 shows these properties. The HSB provides empirical
diagrams to determine the correction factors.

These correction factors depend on the crack case. The stress intensity factor differs for cracks in a bay, under an
intact stiffener, or under a broken stiffener. Thus, a selection of cases has to be performed in the determination
process of the value 𝐾.

Furthermore, the residual strength evaluation is extended. In addition to an examination of the residual strength
in the skin, the stiffeners have to be checked. A breaking stiffener can result in a change of the crack case (from
‘intact stiffener’ to ‘broken stiffener’). In case of a crack in the bay, the crack propagates in both directions.
The exceedance of the stiffener strength results immediately in two broken stiffeners. This type of failure can
be considered as ultimate failure of the structure.
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9.5 Test cases

The implemented DT criterion and its features are verified using several test cases. Therefore, different test cases are
considered. These cases verify the DT methods on different levels:

• The numerical performance

• The fracture-mechanical calculation of the load state

• The calculation of a crack growth rate through the Forman law

• The crack growth rate integration method and its convergence

• The influence of stiffening elements on the crack growth

The respective test cases are of two categories: first, generic tests, using an artificial example for a specific verification
purpose. Second, experimental test cases are extracted from the published literature. The recalculation of the results
of published experiments shall verify the methodology.

9.5.1 Generic crack growth investigation

Before checking the physical plausibility of the method, the numerical efficiency of the crack growth analysis is
investigated on its suitability for preliminary aircraft design. Here, we consider a generic test case to evaluate both the
accuracy and the numerical performance.

test_damagetolerance.test_dtanalysis.test_crackgrowthintegrationstepwidth()
This generic test case serves to investigate the behavior of the crack growth calculation for different integration
methods and intervals. Therefore, we consider a plate of infinite length and width. A unit thickness of 𝑡 = 1 and
a 2024 aluminum alloy are applied. The crack growth analysis begins with an initial crack length of 2𝑎 = 10𝑚𝑚
and is conducted for a total of 𝑛𝑔𝑜𝑎𝑙 = 500 flights. An artificial spectrum of 60 load amplitudes represents each
flight. Thus, there is total of 30000 amplitudes in the entire analysis.

The integration of the crack growth rate is conducted through different methods:

• Cycle-by-cycle: the crack growth rate is updated after each cycle

• Flight-by-flight: the crack growth rate is updated after each flight

• Onestep: the crack growth rate is not updated during the analysis

The cycle-by-cycle integration provides the most accurate result and is considered as a reference. The calculation
of that integration lasted 528𝑚𝑠 and lead to a crack length of 2𝑎𝑒𝑛𝑑 = 14.69𝑚𝑚. The table Table 9.1 shows
the results for the three different integration methods in relation to the cycle-by-cycle integration. The relative
computation time and the relative final crack length are specific for the considered test case.

Table 9.1: Overview of the relative computation time and relative crack
length result for different integration methods.

Integration method Relative duration Relative crack length 𝑎𝑒𝑛𝑑
Cycle-by-cycle 100% 100%
Flight-by-flight 32% 99.9%
Onestep 0.2% 92.0%

Eventually, the integration step can be adapted manually through the specification of the number of integration
intervals. The choice of this number between 1 and 𝑛𝑔𝑜𝑎𝑙 permits to choose a compromise between the efficiency
of the onestep-integration and the accuracy of the cycle-by-cycle integration. As Figure Figure 9.14 shows, the
computational effort increases linearly with the number of integration sections. In each section, an evaluation
of the stress intensity factor and the crack growth law has to be conducted. These steps determine the overall
computational effort. The development of the accuracy is highly non-linear. After a steep increase in the
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beginning, the result approaches the accurate value more and more slowly. Depending on the desired accuracy,
a number of integration sections has to be chosen for each use case.

Figure 9.14 : Development of the computation effort and the final crack length for increasing number of integration
sections.

9.5.2 Flat plate under constant cyclic load

First, a very elementary test is conducted: a flat plate with a central crack orthogonal to the load direction (cf. Figure
Figure 9.9 ) is subjected to cyclic load with constant amplitude. The experimental studies by Kermanidis [DT11]
[DT12] provide test cases which suit the specified needs.

test_damagetolerance.test_dtanalysis.test_damageToleranceKermanidisValidation2001()
In an experimental study from 2001, Kermanidis investigated the crack propagation behavior in aluminum plates
[DT11]. These plates were manufactured from 1.6 mm sheets of 2024 material, which is representative for the
skin of an aircraft structure. The dimensions of the specimens’ free zone are 𝑤 × ℎ = 80 × 160𝑚𝑚2. Tests
were conducted for four different load levels and stress ratios with a maximum of 100000 load cycles. The crack
length, the growth rate, and the stress intensity factor were evaluated during the test and the respective data is
available from the referenced paper.

A recalculation of the experiments still requires material-specific input parameters for the Forman law. The
only given specification of the material is 2024, not mentioning the heat treating. Therefore, the HSB material
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parameters of the 2024-T3 variant were used: 𝑐𝑓 = 2.01 · 10−8, 𝑛𝑓 = 2.7 , 𝑘𝑓 = 2256

The results in Figure Figure 9.15 show a plausible agreement of the experimental data and the recalculation by
the presented method. The relation of the stress intensity factor and the crack growth rate verify the applicability
of the Forman law and the validity of the material parameters.

The experimental measurements and the calculation results are of similar order of magnitude. In addition, the
qualitative variance of the curves matches as well as the course of each individual curve. Only a quantitative
agreement could not be proven. These findings confirm the applicability of the crack growth law for the test
case.

The next step is the validation of the crack length depending on the number of load cycles. A qualitative
agreement can be observed, which suggests the validity of the integration method.

Figure 9.15 : Verification results for the test case Kermanidis 2001 [DT11].

test_damagetolerance.test_dtanalysis.test_damageToleranceKermanidisValidation2011()
The second experimental study by Kermanidis was published in 2011 [DT12]. Again, aluminum sheet from
2024 material were tested under cyclic load with constant amplitude. Even the dimensions of the specimens’
free zone similar to the first test case 𝑤 × ℎ = 80 × 160𝑚𝑚2. However, the sheet thickness is with 3.2 mm
twice as large.

The essential difference in this second experimental test case lies in the availability of data. Several repetition
test were conducted with similar load parameters. This repetition allows the determination of an envelope, which
facilitates classifying the calculated results.

The results in Figure Figure 9.16 show that the calculation results match the experimental measurements. In
addition to a qualitative and a quantitative comparison of the results, the calculation was conducted with different
integration intervals. The computation effort is proportional to the number of integration intervals. Thus, it is
desirable to keep the number as low as possible for efficient application in the preliminary aircraft design. In
the current test case, a convergence was achieved for 1000 integration intervals. Each of these intervals contains
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100 load cycles.

Figure 9.16 : Verification results for the test case Kermanidis 2011 [DT12].

9.5.3 Flat plate under spectrum load

test_damagetolerance.test_dtanalysis.test_damageToleranceValidationCase1Schubbe()
An experimental study of the crack growth in flat plates under spectrum load was published by Schubbe in 2009
[DT13]. The specimen geometry is 𝑤×ℎ = 76.2×203.2𝑚𝑚2 with a thickness of 𝑡 = 9.525𝑚𝑚. The material
is a 7050-T7451 aluminum alloy, for which material data is available in the HSB:

𝑐𝑓 = 4.4 𝑐𝑑𝑜𝑡10−9 𝑛𝑓 = 2.98 𝑘𝑓 = 1740

An initial crack of the length 2𝑎 = 8.89𝑚𝑚 was placed in the center of the specimen. The cited publication
provides information about the load spectrum. It includes the distribution of the maximum stress amplitudes
and the minimum stress amplitudes. However, there is no information about their combination or the stress ratio
R available. From the available information we can understand that R is not constant over the entire spectrum.
Nonetheless, it is not possible to assume the distribution of R. Therefore, the average stress ratio has to be
assumed somewhere between 𝑅 = 0 and 𝑅 = 0.3. In consequence, the DT analysis was conducted with four
values for R in the specified range.

In Figure Figure 9.17 , the comparison of the experimental data and the calculated crack growth confirms that
the order of magnitude matches for both cases. Also the trend of the experimental curve is reproduced by the
calculation.

LoadGenerator.schubbeTestload()
This function contains the load spectrum from the experimental work by Schubbe 2009 [DT13]. In this work,
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Figure 9.17 : Verification results for the test case Schubbe 2009 [DT13].
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the crack growth behavior in aluminum plates was investigated. The publication provides the distribution of the
maximum and the minimum stresses as Figure 9.18 shows. However, the information about their combination is
missing. Thus, the stress ratio is undetermined and has to be specified by the user. If no stress ratio is specified,
a value of 𝑅 = 0.1 is used to create the spectrum. The standard spectrum consisting of 43 000 cycles which
represent 1000 flight hours. The spectrum can be adapted according to the specified number of flight hours. If
no flight hours are specified, the number of cycles can be provided as an input value.

Parameters

• cycles – number of load cycles to be created

• hours – representative flight hours for the spectrum to be created. A specification of this
parameter overrides the cycles parameter.

Figure 9.18 : Load spectrum specified by Schubbe 2009 [DT13] through the distribution of the maximum and the
minimum stress amplitudes.

9.5.4 Stiffened structure

The crack growth in a stiffened structure is calculated through the module ‘DamageToleranceStiffenedStructure’. Its
functionality is validated separately, as it significantly differs from the module for flat plates.

test_damagetolerance.test_dtanalysis.test_HSB63611()
The test case is an exemplary calculation according to the structural analysis manual HSB [DT1] on page 21
in section 63611-01. In the referenced example, the crack growth is analyzed for different configurations of a
stiffened structure as illustrated in Figure Figure 9.19 . The structure is assumed with infinite length and width
and a thickness of 𝑡 = 1𝑚𝑚. In the standard configuration (A), the aluminum stiffeners have a cross section
of 60𝑚𝑚2 and their pitch is 140𝑚𝑚. An initial crack with a half length 𝑎 = 50𝑚𝑚 is assumed in the center
between two stiffeners. Moreover, configurations with different properties are analyzed. One variation (C) uses
titanium stiffeners, another configuration (D) is analyzed with a doubled stiffener pitch of 280𝑚𝑚. In addition,
an unstiffened skin is analyzed.
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Figure 9.19 : Geometry of the stiffened example structure (HSB 63611 [DT1]).

Constant amplitude loading with a maximum stress 𝜎𝑚𝑎𝑥 = 100𝑀𝑃𝑎 and a load ratio 𝑅 = 0 is applied. The
HSB provides the following material parameters the Forman crack growth law:

𝑐𝑓 = 1.4510−9𝑛𝑓 = 3.25𝐾𝑓 = 3430

The HSB includes reference results for all configurations including the unstiffened skin. In the result diagram in
Figure Figure 9.20 , these references are compared with the analysis results of the implemented DT method for
stiffened structures. Remarkably, we observe that nearly all four crack configurations begin with similar crack
growth. The configurations A and C show a significant slow down of the crack growth speed around 70𝑚𝑚
half crack length. At this point, the crack tip reaches the stiffeners. The slow-down is more significant for the
titanium stiffeners, because these sustain a larger fraction of the load. In case of the doubled stiffener pitch, the
crack growth curve equals that of an unstiffened skin for a larger number of cycles. As expected, the slow-down
effect occurs only at a half crack length of 140𝑚𝑚. In general, all predicted curves have a similar order of
magnitude as the reference.

The predicted qualitative behavior of the crack growth is similar to that of the HSB curves. However, ob-
vious quantitative differences exist. The discrepancy between the original diagram and the results using the
implemented analysis method result from several simplifications. The implemented version only considers the
stiffness ratio as a parameter to calculate the reduction factor 𝐶𝑣 . A complete analysis would require to consider
additional parameters. It is likely that their consideration would improve the results to match the HSB reference.

• rivet factor 𝛽

• stiffness factor 𝛾

• relative rivet distance

• relative distance of stiffeners orthogonal to the crack

• relative width of the stiffeners
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Figure 9.20 : Example as a verification test for the crack growth in a stiffened structure (HSB 63611 [DT1]).
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9.6 Current limitations

The current basic version of the DT analysis routine has several limitations concerning the geometry, the material and
the structure type.

Material limitations result from the availability of parameters for the crack growth analysis. The current list of material
data is taken from the structural analysis manual HSB. In the section 63205-01 four tables for steel, aluminum alloys,
titanium alloys, and nickel alloys are included. Other data is available in publications.

Furthermore, all implemented methods assume a symmetric crack growth. The actual analysis always refers to a half
crack growing similarly in both directions. To consider unsymmetrical structures, an additional analysis procedure is
necessary. Such a procedure can use the same methods, however, it requires an additional distinction of cases.

In the particular case of the crack growth in stiffened structures, not all relevant structural parameters are part of the
current implementation. For additional parameters, further empirical curves are available in the HSB. The implemen-
tation of these curves might become necessary for a better accuracy or for a sensitivity to the missing parameters.

The iterative crack growth calculation can be seen as a restriction from the numerical point of view. There is no
analytical approach integrating the crack growth when using all parameters of the forman law. This calculation can
possibly be too slow for a sizing loop in preliminary aircraft design. Due to the emprical sub-steps of the crack
growth calculation, an analytical method without iteration is unlikely to be found. Hence, further improvement of the
numerical performance could be required such as:

• Numerical effectivity of the code

• Usage of surrogate models

• Parallelization of the analysis for each structural component in aircraft design
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CHAPTER

TEN

DAMAGE TOLERANCE OF COMPOSITES

10.1 Overview

The introduction of new technologies or design approaches for aircraft structures requires reasonable caution. Vital
safety demands have to be fulfilled to ensure the airworthiness. For that purpose, conservatism replaces the absence
of long-term experience with the novelty. The introduction of composite materials for load-carrying structures is a
corresponding example for such a novelty – a potentially disruptive technology of increasing importance for aerospace
engineering [DT14]. Nonetheless, the damage-tolerant design of composite aircraft is strictly conservative up to now.
However, any composite structure has to “equal or exceed” the safety standards of a conventional metal structure
[DT15]. This requirement demands for advancements in the DT analysis and the involved damage detection methods.

Damage in composites appears not in the form of a through-thickness crack but in various damage modes which can
be summarized by the categories fiber cracking, inter-fiber cracking and delamination. The damage can be either a
preexisting manufacturing defect or the result of a damaging event - like an impact - during the structural service life.

Depending on the considered use case, different damage modes dominate the laminate failure. Loading in transverse
direction initiates matrix cracking, loading in fiber direction will lead to fiber fracture.
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10.2 Damage Tolerance Assessment

10.2.1 Permittable design philosophies

The definition of DT by Nettles, “the ability of a material to function after a permanent change has taken place” [DT16],
implies the need of the structure to be designed to withstand damage. This need is part of the certification requirements
by the Federal Aviation Administration (FAA) and the European Aviation Safety Agency (EASA). These institutions
defined the Dt guidelines in the advisory circular AC 25.571-1D [DT4] and the accepted means of compliance AMC
25.571 [DT5], respectively. However, metallic structures and composites structures are treated differently, also from
the certification point of view.

For composites, the FAA defines the DT requirements in the advisory circular AC20-107B [DT17] and the EASA
in the acceptable means of compliance AMC-20 which is listed as Annex II to the Decision 2010/003/R [DT18].
These guidelines demand that a sufficient residual strength has to be guaranteed during and after the cyclic operation
load. Also, it defines the certifiable behavior of the damage during the operational period. There are three design
philosophies to cope with flaws in a laminate:

• no-growth

• arrested growth

• slow growth

In comparison with metallic structures, the damage growth behavior in composite laminates does not fulfill some cru-
cial premises for a damage-tolerant design permitting damage growth. Damage growth has to occur in an observable,
stable, slow and predictable manner. Attempts to fulfill these needs for composites were conducted when the damage-
tolerant design came up [DT19]. However, also at that time such practice was already questioned, for example by
Baker et al. [DT20]. They point out many difficulties “including the multiplicity of failure modes” and “the numer-
ous types of potentially significant defects”. Their admitted fear, that the DT methods’ “ultimate success is far from
assured”, has proven true with regard to today’s state of the art, the no-growth method.

According to the recent literature, a strict no-growth approach appears to be the only viable method. Only the pro-
hibition of any further damage propagation under the operative load over the structural lifetime appears to meet the
allowances by the public authorities [DT21]. In practical application this leads to maximum allowable strain limits,
which may never be exceeded [DT22]. The actual DT assessment reduces to the determination of the residual strength.
Depending on the damage size, the load-sustaining capability of the structure has to be ensured for a different load
level, as shown in Figure 10.1 .

Any damage whose detection during an inspection cannot be assured has to be endured for the entire service life.
The relevant damage size is the maximum barely visible impact damage (BVID), the damage category Cat.1. The
influence of an increased damage size, a visible impact damage (VID), has to be considered for the respective time
interval. For this time interval is determined by the damage detectability during an inspection. After detection, the
structure be repaired. A VID (Cat.2) has to be detected within a general visual inspection (GVI) or a large VID (Cat.3)
even during a walk around by the pilot [DT23]. Thus, the damage will not remain in the structure for a longer interval
of flights. The structure with the maximum expectable VID has to sustain the limit load. The growth of the VID is
also prohibited, and the DT realized through a no-growth approach. Nonetheless, the detectability of VID changes
the design-relevant interval. Instead of the entire structural life, the respective inspection interval defines the relevant
number of load cycles [DT24].

An expectable damage that is large enough to reduce the residual strength below limit load (Cat.4) has to be tolerated
with so called “get home loads”. This scenario refers to large damage that possibly occurs during a flight. The AC
20-107B defines for this case, the safe continuation of the flight with the reduced loads followed by the immediate
detection and repair after the flight.

Any damage larger than that maximum tolerable threshold is classified as anomolous damage (Cat.5) which has to be
avoided through the textit{damage resistance} [DT16] of the laminate. This damage resistance is achieved through the
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analysis of the damage threats to the structure. In case such anomolous damage occurs through an extremely unlikely
event, the immediate repair is mandatory.

Figure 10.1 : Overview of the design-relevant damage categories, the respective load levels and the design principles
according to design guidelines for composite aircraft
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10.2.2 Damage Tolerance Methods

Delamination

Fiber kinking

10.3 Impact Analysis

10.3.1 Relevance of impact analysis for DT

10.3.2 Analytical impact modelling

Indentation stiffness

Method by Wagih etc.

Improved determination

bending-stiffness based integral method

10.3.3 Damage Threshold Loads

10.3.4 Stiffness degradation

Degradation method by Olsson and Wagih

10.3.5 Impact Scaling

The basic information to conduct a damage tolerance analysis on a composite structure fundamentally differs from
that of an metallic structure
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10.3.6 Laminate calculations

Classical laminate theory

Lamination Parameter

class delis.damagetolerance.dtanalysis_composite.LaminationParameter
This class contains functions to calculate the lamination parameters and to transform lamination parameters to
other description forms.

LaminationParameter.__init__()

Parameters matname – The material name is required to specify which parameter set from the
database shall be used.

LaminationParameter.calculationFromCLTparameters()
This function shall calculate the lamination parameters based on the CLT stiffness matrix.

Parameters

• aCLT – A matrix of the CLT stiffness matrix (membrane stiffness)

• bCLT – B matrix of the CLT stiffness matrix (coupling stiffness)

• dCLT – D matrix of the CLT stiffness matrix (plate stiffness)

LaminationParameter.calculateUparameters()
Calculation of the material invariants U from the ply stiffness.

𝑈1 = [3𝑄11 + 3𝑄22 + 2𝑄12 + 3𝑄66] /8

𝑈2 = [𝑄11 −𝑄12] /2

𝑈3 = [𝑄11 + 𝑄22 − 2𝑄12 − 4𝑄66] /8

𝑈4 = [𝑄11 + 𝑄22 + 6𝑄12 − 4𝑄66] /8

𝑈5 = [𝑄11 + 𝑄22 + 4𝑄12 − 4𝑄66] /8

Where the stiffness 𝑄 calculates from the material properties of the ply as follows:

𝑄11 =
𝐸11

1 − 𝜈12𝜈21

𝑄22 =
𝐸22

1 − 𝜈12𝜈21

𝑄12 = 𝜈21𝑄22

𝑄66 = 𝐺21

Parameters q – Stiffness matrix of an individual ply.

LaminationParameter.calculateABDfromV()
This function calculates the ABD matrix based on the lamination parameters. The calculation requires addition-
ally the material invariants. The relation of these two parameter sets is for example provided by Bloomfield et
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al. [DT25]. ⎛⎜⎜⎜⎜⎜⎜⎝
𝐴11

𝐴22

𝐴12

𝐴66

𝐴16

𝐴26

⎞⎟⎟⎟⎟⎟⎟⎠
=⎛⎜⎜⎜⎜⎜⎜⎝

1 𝑣𝐴1 𝑣𝐴2 0 0
1 −𝑣𝐴1 𝑣𝐴2 0 0
0 0
0 0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
𝑈1

𝑈2

𝑈3

𝑈4

𝑈5

⎞⎟⎟⎟⎟⎠
Input parameters:

Parameters

• v – lamination parameters

• t – laminate thickness

LaminationParameter.assemble_laminationV()

Parameters

• layup –

• thickness –

Effective laminate properties

delis.damagetolerance.clt_lamipy.effectiveLaminateStiffness()
This function calculates effective orthotropic stiffness properties from a ABD laminate stiffness matrix. These
properties consist the Young’s modulus in two directions 𝐸𝑥, 𝐸𝑦 , an in-plane shear modulus 𝐺12, and the
Poisson’s ratios 𝑣12 and 𝑛𝑢21.

The calculation is based on the methods described by Nettles [DT26]. Effective properties can be obtained from
the stress-strain ratio calculated through the ABD matrix for application of a single load component 𝑁𝑥.

𝐸𝑥 =
𝜎𝑥

𝜀𝑥
=

𝑁𝑥

𝑡𝑙𝑎𝑚

𝜀𝑥

The underlying equation is: ⎛⎜⎜⎜⎜⎜⎜⎝
NX

0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
A B

B D

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
𝜀𝑥
𝜀𝑦
𝜀𝑥𝑦
𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

⎞⎟⎟⎟⎟⎟⎟⎠
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This equation can be solved through Cramer’s rule [DT27] [DT28] which leads to the ratio of the ABD matrix’
determinant and the determinant of the ABD matrix with the row and column of the modulus of interest removed.
(Hence, for the determination of 𝐸𝑥 the first column and the first row have to be removed in the denominator.)

𝐸𝑥 =
1

𝑡𝑙𝑎𝑚

𝑑𝑒𝑡

(︂
A B
B D

)︂

𝑑𝑒𝑡

⎛⎜⎜⎜⎜⎝
𝐴22 𝐴26 𝐵12 𝐵22 𝐵26

𝐴26 𝐴66 𝐵16 𝐵26 𝐵66

𝐵12 𝐵16 𝐷11 𝐷12 𝐷16

𝐵22 𝐵26 𝐷12 𝐷22 𝐷16

𝐵26 𝐵66 𝐷16 𝐷26 𝐷66

⎞⎟⎟⎟⎟⎠
In similar manner, the other stiffness component can be determined

Parameters

• ABD – laminate stiffness matrix calculated through the classical laminate theory

• t – laminate thickness

Laminate tools

delis.damagetolerance.clt_lamipy.interface_counter()
Counts the number of ply interfaces with adjacent plies of different orientation.

Parameters layup – layup to be analyzed

delis.damagetolerance.clt_lamipy.laminate_mixer()
This recursive function creates all permutations of a given laminate, through varying the order of the individual
plies. The ply share of each orientation and the total number of plies remain constant for all permutations.

Parameters

• headlayup – original layup

• tail – partly mixed layup currently processed (required only for the recursion calls of the
function)

• list_mixed – list of mixed laminates

• goal – number of permutations to be created
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CHAPTER

ELEVEN

SURROGATE MODELS

1. to provide analytical methods/ system functions

2. parameter variation for those functions

3. to implement a surrogate model or use a model that currently exists

4. to do a system analysis based on the model

5. what about sensitivities?

6. to do an error analysis - metric for correctness of interpolation - test surrogate with many inputs - maybe it starts
oscillating as with polynomial regression

In optimization progress, where many evaluations are required, computer models often are not suitable, because of
high computing time for one single run, e.g. a buckling analysis for one set of parameters based on Finite Element
Methods (FEM) takes a few hours to run. So for optimization, there is a need to build a cheaper model, called a meta-
or surrogate-model. Such surrogate models are presented and compared in this chapter.

First of all, a strategy for optimization using a surrogate-model is as follows:

• select a set of sampling points of input factors and apply the expensive computer model to this set. Get the
associated output values (called observations).

• build a surrogate-model based on the observations, e.g. by using interpolation methods like Kriging.

• Find the optimum of the system using the surrogate-model, e.g. by using an optimization software.

• validate the optimum by running some control runs, using the expensive method. Possibly add new sample
points and associated observations near by the computed optimum and build a new surrogate-model.

So generally, the questions are:

1. how we have to select sampling points such that we can build a good approximation model on the computer
model (Design of Experiments) and

2. which method we should choose for approximate the system (Output analysis).

We will try to answer this questions during this chapter.
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11.1 Design of Experiments

This Chapter deals with the first question: How we should choose the set of sampling input parameters, such that the
subsequent approximation of the system has a good accuracy.

11.1.1 What is an experiment?

K. Kalnins described experiments in [1] as the follow:

“An experiment is a series of tests on a system in order to study the relationship of two or more design variables.”

When we construct and carry out an experiment, we have the following goals:

• to find out which input variables have the biggest influence on the output variables.

• to find out where to set the influential input variables, so that the output variables are near the desired values

• to find out where to set the influential input variables, so that there is no big variability in the output.

There are two types of experiments. The “classical” experiments are those, which are also called physical experi-
ments. Those experiments have the disadvantage that they have a statistical error because of statistical variance. The
second type of experiment are the computer experiments. These experiments guarantee 100% of constancy of the
results, without a statistical error, but note that computer experiments do have a numerical noise due to calculation or
discretisation errors. Because of the advantages of computer experiments, this chapter will only give an overview of
computer experiments used in current research.

In current research, designs are constructed such that they fill the design space. Some of those space-filling designs
are presented here:

Pseudo-Monte-Carlo Sampling, Latin Hypercube Sampling and Adaptive Sampling

11.1.2 Pseudo-Monte-Carlo

Pseudo-Monte-Carlo sampling selects a random value, that lies in the design space. It is easy to compute. The only
difficulty is the selection of a reliable algorithm which generates a random value. A big disadvantage of Pseudo-
Monte- Carlo is, that a set of sampling points often leaves large regions of the design space unexplored. Stratified
Monte-Carlo is a modified version of Monte-Carlo, which is better in terms of sampling more regular. The design
space is divided into subspaces of equal probability, that means for design variables which have an evenly distributed
probability, the subspaces are of the same size. Now a random value is selected within each subspace. An advantage of
this sampling method is, that the user can choose the number of intervals for each variable, but a drawback to Stratified
Monte-Carlo sampling is that the ideal number of subspaces is 2𝑛 and for a large number 𝑛 of design variables, it is
impossible to evaluate 2𝑛 sample points. There are some variants of Monte-Carlo Sampling, which have different
space-filling criteria, such as Quasi-Monte-Carlo Sampling. Quasi-Monte-Carlo places the sample points such that the
points are as close as possible to a uniform sampling.

11.1.3 Latin Hypercube

A more popular method for sampling is Latin Hypercube Sampling (LHS). Just as in Stratified Monte-Carlo, the
design space is divided into subspaces of the same probability. For 𝑝 sample points, the range of every design variable
is divided into 𝑝 intervals. So for 𝑛 design variables, you get 𝑝𝑛 subspaces of equal probability. Now a subspace for a
new sample point is chosen: An interval for a variable can only be chosen, if and only if there is no other sample point
in it. In respect to the intervals of design variables, which have been chosen before, this leads to a better distributed
sampling. Then a sample point is placed randomly in every chosen subspace. The image illustrates how a sample
point is chosen:
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In this example, we would like to choose four sample points, and there are two design variables. The range of the
variables is divided into four intervals, so we get 42 = 16 subspaces. For the first sample point, every subspace
is possible, in a) we chose one subspace and randomly place a sample point (blue star) in it. Now, the red marked
subspaces can not be chosen for the next sample points, because there is already a sample point in the intervals of the
design variables. So we can only select nine subspaces for the next sample point. In b) a new sample point is placed
and for the next sample point there are only four subspaces left. After placing the third sample point (c)), there is no
more choice for subspaces and we put the last sample point in the last possible subspace (d)).

A disadvantage of LHS is, that there are different possibilities for choosing a subspace. Not every possible Latin
Hypercube sample is good distributed. The sample points in the example above could be placed e.g. on the diagonal.
In this case, the set of sampling points do not represent the design space very good. To reach a better efficiency a few
space-filling criteria for Latin Hypercube methods were developed. These criteria optimize the space filling of Latin
Hypercube sampling, e.g. by maximizing the distance between two sample points. For further informations please
refer [1].

As noted above, it is often necessary to add new sample points to an existing set, after output analysis. This seems to
be easy for random sampling like Monte-Carlo, but destroys the structure of Latin Hypercube sampling.
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11.2 Output Analysis

Now, our task is to build a model for those sample points and their experimental values. Therefore we need to find a
function which fits well to our points. There are different approaches to build a function on the data. Here, we will
focus on radial basis functions:

11.2.1 Radial Basis Functions (RBFs)

The RBF-method is an interpolation method, which is based on a simple principle. Let 𝑥1, ..., 𝑥𝑁 ∈ R𝑑 be a set of
design parameters and 𝑓1, ..., 𝑓𝑛 ∈ R the corresponding experimental values. A radial basis function 𝑠 : R𝑑 → R is
defined by

𝑠(𝑥) =

𝑁∑︁
𝑖=1

𝜆𝑖 * 𝜑(‖𝑥− 𝑥𝑖‖2),

where 𝜆𝑖 ∈ R and 𝜑 basis function, which depends only from the distance of 𝑥 to the centre 𝑥𝑖. The interpolation
condition 𝑠(𝑥𝑗) = 𝑓𝑗 ,∀𝑗 = 1, ..., 𝑁 must be satisfied by an interpolating radial basis function, so the following system
of equations results:

⎛⎜⎜⎜⎝
𝜑(‖𝑥1 − 𝑥1‖) 𝜑(‖𝑥1 − 𝑥2‖) · · · 𝜑(‖𝑥1 − 𝑥𝑁‖)
𝜑(‖𝑥2 − 𝑥1‖) 𝜑(‖𝑥2 − 𝑥2‖) · · · 𝜑(‖𝑥2 − 𝑥𝑁‖)

...
...

...
𝜑(‖𝑥𝑁 − 𝑥1‖) 𝜑(‖𝑥𝑁 − 𝑥2‖) · · · 𝜑(‖𝑥𝑁 − 𝑥𝑁‖)

⎞⎟⎟⎟⎠
⏟  ⏞  

Φ

·

⎛⎜⎜⎜⎝
𝜆1

𝜆2

...
𝜆𝑁

⎞⎟⎟⎟⎠
⏟  ⏞  

𝜆

=

⎛⎜⎜⎜⎝
𝑓1
𝑓2
...
𝑓𝑁

⎞⎟⎟⎟⎠
⏟  ⏞  

𝑓

,

where Φ is a symmetric 𝑁×𝑁 matrix. This system of equations can be solved uniquely, if Φ is invertible. For solving
the system use for example LU-decomposition or Lanzcos algorithm.

Any type of radial basis function can be used for basis function 𝜑. In the table you see the most desired ones:

Radial basis function 𝜑(𝑟) parameter
gaussian 𝑒−(𝑐𝑟)2 𝑐 > 0

multiquadratics
√
𝑟2 + 𝑐2 𝑐 > 0

inverse multiquadratics 1√
𝑟2+𝑐2

𝑐 > 0

inverse quadratics 1
𝑟2+𝑐2 𝑐 > 0

polyharmonic splines 𝑟2𝑘−1 𝑘 ∈ N
polyharmonic splines 𝑟2𝑘 · log(𝑟) 𝑘 ∈ N

11.2.2 Other approaches

There are a few other approaches for model building, based on interpolation or regression. In our task to implement a
surrogate model, we used radial basis function to interpolate sample points. Here are some other approaches:

252 Chapter 11. Surrogate Models



delis, Release 21.2.6

Multivariate Adaptive Regression Splines (MARS)

MARS is a regression method, which is good for modeling functions with discontinuities. This method uses hinge
functions (or also products of hinge functions) as basis functions. And the model is built on the weighted basis
functions. The algorithm detects discontinuities automatically and maximizes in each step the reduction of the sum-
of-squares residual error. Note that MARS is a regression method, that means the built model does not have to contain
the sample points, the model is built on.

Kriging

Kriging is a interpolation method, so the model contains every sample point, it is built on. It is a least square estimation
and like RBF-method, you have to solve a linear equation system. But kriging uses stochastical data of the sample
points, it is built on, so information of the sample points were considered.

Also interesting

Also interesting points are

• Artificical neural networks

• mixture of experts

11.3 The Surrogate Model

The surrogate model, which can be found in this assignment, is based on a Latin Hypercube Sampling and a RBF
interpolation and can be used to interpolate for example beos computing for any number of input parameters.

Because of the time-consuming beos calculation it has been tested with the Ackley-Function. The following picture
shows a surface plot of a surrogate model, built on 200 sample points:
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and for comparison, a plot of a surrogate model, built on 1000 sample points:
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On the first plot, you can see, that the model function has an other minimum near (0,0), while the second model has
just one minimum. You can see, that the Ackley-function can be very good approximated by our surrogate model. We
tested 5 1000-sample-points-models with 1000 points and compared the Ackley-value with the surrogate-value. The
results are listed in the table:

number of points with
rel. error below 1%

max.
abs.
error

max.
rel.
error

number of points with rel.
error larger than 10%

mean
abs.
error

standard deviation
of abs. erros

991 0,19 0,08 0 0,004 0,01
901 9,12 1,25 15 0,07 0,44
989 0,30 0,64 3 0,004 0,02
991 0,20 0,36 1 0,006 0,02
992 0,39 1,04 1 0,003 0,015

The second tested model makes clear how important it is to test the model. The maximum absolute error is very large
in comparison to the other four models and only 90% of the tested points have a relative error smaller than 1%, while
for the other four models this ratio is 99%.
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11.3.1 Surrogate using framepitch

For 100 sample points a surrogate model is built to analyze the relationship of the frame pitch of a panel and the
buckling load. The error of this model is very small. There were 100 points tested and compared with the associated
beos result, with the result that there is a maximum relative error of the order of 10−5. The following plot shows the
surrogate model and the sample points:

Varying the framepitch in the interval (0.1,2.0) the following result may be obtained. The sudden fall in the buckling
load at a framepitch of around 1.0 is suprising as well as its increase at higher framepitches of 1.0. Expected was a
asymptotic behavior at higher framepitches as the “Girlandenkurve” in the HSB states it. Possible causes for the latter
observation are global buckling and heavily distorted elements in Beos.
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11.3.2 Surrogate using framepitch and thickness

A surrogate model was also built to analyse the relationship of both frame pitch and skin thickness and the buckling
load. Therefore 1000 sample points were used. A surface plot of the model is showed below:

One can see, that there are many “folds” in the surface. These folds are typical for oversampling, so we build a model
on 700 points. In the next plot, one can see a surrogate model based on 700 sample points:
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The folds are bigger than before, so the problem is not, that the system is oversampled. Maybe the problem is the use
of RBFs as interpolation method. In the next section, we will give an outlook of what can be done next, to achieve
better results.

11.4 Outlook

So, what’s next? Because of the fail of our surrogate model in the last case, the next tasks could be the following:

• try to use other interpolation/ regression methods

• compute a program, which detects oversampling

• use a larger design space, so that the error of points at the edge of the desired space becomes smaller

• variate surrogate parameters in association of the number of used sample points (e.g. for RBFs: variate the
“width” of the hat-functions)
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CHAPTER

TWELVE

VALIDATION VERIFICATION TESTING

This chapter contains all sorts of validation, verification and testing documentation of all tools, models and algorithms.

12.1 Profile Calculations

Documentation on profile properties calculation. This section is dedicated to provide some validation data for the
evaluation of various profiles. For different example profiles the cross section parameters are evaluated and tested on
validity.

12.1.1 Material Definition

Following the material used for this validity check is described.

Table 12.1: CFK Basis Material
Property Value
𝐸11[ 𝑁

𝑚2 ] 150 · 109

𝐸22[ 𝑁
𝑚2 ] 85 · 108

𝐺12[ 𝑁
𝑚2 ] 42 · 108

𝑛12[1] 0.35
𝑡[𝑚] 0.00025

The stiffness matrix specified in CPACS is as follows:

𝐾 =

⎡⎢⎢⎢⎢⎢⎢⎣
1.5327 · 1011 4.6768 · 109 4.6768 · 109 0.0 0.0 0.0
4.6768 · 109 9.8293 · 109 3.5330 · 109 0.0 0.0 0.0
4.6768 · 109 3.5330 · 109 9.8293 · 109 0.0 0.0 0.0

0.0 0.0 0.0 3.1481 · 109 0.0 0.0
0.0 0.0 0.0 0.0 4.2000 · 109 0.0
0.0 0.0 0.0 0.0 0.0 4.2000 · 109

⎤⎥⎥⎥⎥⎥⎥⎦ in [
𝑁

𝑚2
].

Furthermore there was a simplified stacking sequence defined for valid for all evaluated profiles. The stacking sequence
is composed as follows:

Table 12.2: Stacking Sequence for Profiles
Stacking Resulting Thickness [𝑚]
[+45,−45, 0, 90]𝑠 0.002
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The corresponding ABD-matrix equals to:

𝐴 =

⎡⎣125403857.0 40195680.0 0.0
40195680.0 125403857.0 0.0

0.0 0.0 42604088.0 0.0

⎤⎦ ,

𝐵 =

⎡⎣0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

⎤⎦ ,

𝐷 =

⎡⎣38.0 22.0 7.0
22.0 29.0 7.0
7.0 7.0 23.0

⎤⎦ .

The inversion of the ABD-matrix leads to:

𝐴−1 =

⎡⎣ 8.88731 · 10−09 −2.84865 · 10−09 0.0
−2.84865 · 10−09 8.88731 · 10−09 0.0

0.0 0.0 2.34719 · 10−08

⎤⎦ ,

𝐵−1 =

⎡⎣0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

⎤⎦ ,

𝐷−1 =

⎡⎣ 0.047222434 −0.03492015 −0.003744174
−0.03492015 0.063039658 −0.008558111
−0.003744174 −0.008558111 0.047222434

⎤⎦ .

12.1.2 Theoretical Background

In principal the properties of arbitrary shaped profiles can be calculated by dividing them into simple rectangular parts.
The area of each part can easily be calculated. The area moment of inertia can be calculated by using the following
equation:

𝐼𝑥𝑥 =
𝑤𝑖𝑑𝑡ℎ𝑖 · ℎ𝑖𝑔ℎ𝑡3𝑖

12⏟  ⏞  
Moment of Inertia of the Area

+𝐴𝑟𝑒𝑎𝑖 · 𝑑2𝑖⏟  ⏞  
Steiner portion

,with i = the i-th rectangular part

and d = Distance of area center of gravity and profile center of gravity.

(12.1)

Note: For all following illustrated profiles the datum is specified by the horizontal x-Axis and the vertical
y-Axis

In order to calculate the profile center of gravity the respective part Young’s moduli have to be taken into account.
Exemplary the calculation for the y-coordinate is given:

𝑦 =

∑︀
(𝐸𝐴𝑦)𝑖∑︀
(𝐸𝐴)𝑖

,with i = 1 ... n-rectangular parts. (12.2)

Note: For composite structures the neutral axis is shifted depending on the stiffness distribution within the profile.
The for calculating the location of the neutral axis the different stiffnesses have to be weighted.

The torsional moment of inertia of open profiles can be calculated as follows:

𝐼𝑡 =
1

3

∑︁
𝑙𝑖 · 𝛿3𝑖 ,with 𝛿𝑖 = thickness and 𝑙𝑖 = length of i-th rectangular part. (12.3)
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12.1.3 Results

The following examples are based on the profile definition of structural profiles within CPACS 2.0.

Note: In the following some abriviations are used:

• SC - Stiffness Center

• EQ - Equivalent

I-Profile

The following figure illustrates a simple I-Profile.

In order to determine the cross section parameters of the depicted profile simple analytical equations are used. The
following table lists the results from equations (12.1), (12.2) and (12.3).

Table 12.3: Profile cross section parameters
Sheet 𝐴𝑟𝑒𝑎 [𝑚2] 𝐼𝑥𝑥 [10−09𝑚4] 𝐼𝑡 [10−11𝑚4] 𝐸𝐴 [𝑁 ] 𝐸𝐼𝑥𝑥 [𝑁𝑚2] 𝐺𝐼𝑡 [𝑁𝑚2]
P1_S1 0.00005 7.8292 6.6667 2812998.54 440.47 2.1176
P1_S2 0.00005 7.8292 6.6667 2812998.54 440.47 2.1176
P1_S3 0.0001 36.4583 13.3333 5625997.08 2051.14 4.2353

The center of stiffness equals to:

𝑥𝑠𝑐 = 0.0 𝑚4, 𝑦𝑠𝑐 = 0.0125 𝑚4.
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According to the individual sheet-based results (which are to be summed up) the equivalent stiffnesses equal to:

𝐸𝐴𝑒𝑞 = 11251994.16 𝑁,𝐸𝐼𝑒𝑞 = 2932.08 𝑁𝑚2, 𝐺𝐼𝑒𝑞 = 8.47 𝑁𝑚2.

T-Profile

The following figure illustrates a simple T-Profile.

In order to determine the cross section parameters of the depicted profile simple analytical equations are used. The
following table lists the results from equations (12.1), (12.2) and (12.3).

Table 12.4: Profile cross section parameters
Sheet 𝐴𝑟𝑒𝑎 [𝑚2] 𝐼𝑥𝑥 [10−09𝑚4] 𝐼𝑡 [10−11𝑚4] 𝐸𝐴 [𝑁 ] 𝐸𝐼𝑥𝑥 [𝑁𝑚2] 𝐺𝐼𝑡 [𝑁𝑚2]
P1_S1 0.00005 31.2667 6.6667 2812998.54 1759.06 2.1176
P1_S2 0.00005 31.2667 6.6667 2812998.54 1759.06 2.1176
P1_S3 0.0001 20.8333 13.3333 5625997.08 1172.08 4.2353
P1_S4 0.00005 31.2667 6.6667 2812998.54 1759.06 2.1176
P1_S5 0.00005 31.2667 6.6667 2812998.54 1759.06 2.1176

The center of stiffness equals to:

𝑥𝑠𝑐 = 0.0 𝑚4, 𝑦𝑠𝑐 = 0.025 𝑚4.

According to the individual sheet-based results (which are to be summed up) the equivalent stiffnesses equal to:

𝐸𝐴𝑒𝑞 = 16877991.12 𝑁,𝐸𝐼𝑒𝑞 = 8208.33 𝑁𝑚2, 𝐺𝐼𝑒𝑞 = 12.71 𝑁𝑚2.
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C-Profile

The following figure illustrates a simple C-Profile.

In order to determine the cross section parameters of the depicted profile simple analytical equations are used. The
following table lists the results from equations (12.1), (12.2) and (12.3).

Table 12.5: Profile cross section parameters
Sheet 𝐴𝑟𝑒𝑎 [𝑚2] 𝐼𝑥𝑥 [10−09𝑚4] 𝐼𝑡 [10−11𝑚4] 𝐸𝐴 [𝑁 ] 𝐸𝐼𝑥𝑥 [𝑁𝑚2] 𝐺𝐼𝑡 [𝑁𝑚2]
P1_S1 0.00005 31.2667 6.6667 2812998.54 1759.06 2.1176
P1_S2 0.0001 20.8333 13.3333 5625997.08 1172.08 4.2353
P1_S3 0.00005 31.2667 6.6667 2812998.54 1759.06 2.1176

The center of stiffness equals to:

𝑥𝑠𝑐 = 0.00625 𝑚4, 𝑦𝑠𝑐 = 0.025 𝑚4.

According to the individual sheet-based results (which are to be summed up) the equivalent stiffnesses equal to:

𝐸𝐴𝑒𝑞 = 11251994.16 𝑁,𝐸𝐼𝑒𝑞 = 4690.21 𝑁𝑚2, 𝐺𝐼𝑒𝑞 = 8.47 𝑁𝑚2.
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Z-Profile

The following figure illustrates a simple Z-Profile.

In order to determine the cross section parameters of the depicted profile simple analytical equations are used. The
following table lists the results from equations (12.1), (12.2) and (12.3).

Table 12.6: Profile cross section parameters
Sheet 𝐴𝑟𝑒𝑎 [𝑚2] 𝐼𝑥𝑥 [10−09𝑚4] 𝐼𝑡 [10−11𝑚4] 𝐸𝐴 [𝑁 ] 𝐸𝐼𝑥𝑥 [𝑁𝑚2] 𝐺𝐼𝑡 [𝑁𝑚2]
P1_S1 0.00005 31.2667 6.6667 2812998.54 1759.06 2.1176
P1_S2 0.0001 20.8333 13.3333 5625997.08 1172.08 4.2353
P1_S3 0.00005 31.2667 6.6667 2812998.54 1759.06 2.1176

The center of stiffness equals to:

𝑥𝑠𝑐 = 0.0 𝑚4, 𝑦𝑠𝑐 = 0.025 𝑚4.

According to the individual sheet-based results (which are to be summed up) the equivalent stiffnesses equal to:

𝐸𝐴𝑒𝑞 = 11251994.16 𝑁,𝐸𝐼𝑒𝑞 = 4690.21 𝑁𝑚2, 𝐺𝐼𝑒𝑞 = 8.47 𝑁𝑚2.
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J-Profile

The following figure illustrates a simple J-Profile.

In order to determine the cross section parameters of the depicted profile simple analytical equations are used. The
following table lists the results from equations (12.1), (12.2) and (12.3).

Table 12.7: Profile cross section parameters
Sheet 𝐴𝑟𝑒𝑎 [𝑚2] 𝐼𝑥𝑥 [10−09𝑚4] 𝐼𝑡 [10−11𝑚4] 𝐸𝐴 [𝑁 ] 𝐸𝐼𝑥𝑥 [𝑁𝑚2] 𝐺𝐼𝑡 [𝑁𝑚2]
P1_S1 0.00005 20.0167 6.6667 2812998.54 1126.14 2.1176
P1_S2 0.00005 20.0167 6.6667 2812998.54 1126.14 2.1176
P1_S3 0.0001 23.3333 13.3333 5625997.08 1312.73 4.2353
P1_S4 0.00005 45.0167 6.6667 2812998.54 2532.64 2.1176

The center of stiffness equals to:

𝑥𝑠𝑐 = −0.0025 𝑚4, 𝑦𝑠𝑐 = 0.02 𝑚4.

According to the individual sheet-based results (which are to be summed up) the equivalent stiffnesses equal to:

𝐸𝐴𝑒𝑞 = 14064992.69 𝑁,𝐸𝐼𝑒𝑞 = 6097.64 𝑁𝑚2, 𝐺𝐼𝑒𝑞 = 10.59 𝑁𝑚2.
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12.1.4 Comparison of Results

This section is dedicated to the comparison of cross section parameters and equivalent properties, respectively, calcu-
lated with BoxBeam (See Beam Models) the analytical results presented above.

Table 12.8: Comparison profile cross section parameters - Analytical and
BoxBeam

Analytical BoxBeam
Profile 𝐸𝐴𝑒𝑞 [𝑁 ] 𝐸𝐼𝑒𝑞 [𝑁𝑚2] 𝐺𝐼𝑒𝑞 [𝑁𝑚2] 𝐸𝐴𝑒𝑞 [𝑁 ] 𝐸𝐼𝑒𝑞 [𝑁𝑚2] 𝐺𝐼𝑒𝑞 [𝑁𝑚2]
I 11251994.16 2932.08 8.47 11251994.10 2930.21 0.00
T 16877991.12 8208.33 12.71 16877991.20 8204.58 0.00
C 11251994.16 4690.21 8.47 11251994.10 4688.33 0.00
Z 11251994.16 4690.21 8.47 11251994.10 4688.33 0.00
J 14064992.69 6097.64 10.59 14064992.70 6094.83 0.00

The following table list the error generated by using BoxBeam for calculating the equivalent properties. The error is
calculated as follows:

𝑒𝑟𝑟𝑜𝑟 =
𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 −𝐵𝑜𝑥𝐵𝑒𝑎𝑚

𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙
· 100 [%]

Table 12.9: Error profile cross section parameters - Analytical and
BoxBeam

Error
𝐸𝐴𝑒𝑞 [𝑁 ] 𝐸𝐼𝑒𝑞 [𝑁𝑚2] 𝐺𝐼𝑒𝑞 [𝑁𝑚2]
4.89 · 10−07 0.064 100.0
1.93 · 10−07 0.046 100.0
4.89 · 10−07 0.04 100.0
4.89 · 10−07 0.04 100.0
−4.42 · 10−07 0.046 100.0

12.2 BoxBeam

Documentation on calculations conducted with BoxBeam. This section is dedicated to provide some validation data
for the evaluation of beam like structures. For different example wings the cross section parameters are evaluated and
tested on validity. Additionally, the beam deflection is determined and compared to analytical solutions.

12.2.1 Material Definition

Following the material used for this validity check is described.

Table 12.10: Isotropic Basis Material (Aluminum 2024)
Property Value
𝐸11[ 𝑁

𝑚2 ] 7.38 · 108

𝐸22[ 𝑁
𝑚2 ] 7.38 · 108

𝐺12[ 𝑁
𝑚2 ] 2.77 · 108

𝑛12[1] 0.33
𝑡[𝑚] 0.001
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The stiffness matrix specified in CPACS is as follows:

𝐾 =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0929 · 1011 5.3832 · 1010 5.3832 · 1010 0.0 0.0 0.0
5.3832 · 1010 1.0929 · 1011 5.3832 · 1010 0.0 0.0 0.0
5.3832 · 1010 5.3832 · 1010 1.0929 · 1011 0.0 0.0 0.0

0.0 0.0 0.0 2.7729 · 1010 0.0 0.0
0.0 0.0 0.0 0.0 2.7729 · 1010 0.0
0.0 0.0 0.0 0.0 0.0 2.7729 · 1010

⎤⎥⎥⎥⎥⎥⎥⎦ in [
𝑁

𝑚2
].

The corresponding ABD-matrix equals to:

𝐴 =

⎡⎣8.27744 · 1010 2.73164 · 1010 0.0
2.73164 · 1010 8.27744 · 1010 0.0

0.0 0.0 2.77290 · 1010 0.0

⎤⎦ in [
𝑁

𝑚
],

𝐵 =

⎡⎣0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

⎤⎦ in [𝑁 ],

𝐷 =

⎡⎣6.89787 · 109 2.27637 · 109 0.0
2.27637 · 109 6.89787 · 109 0.0

0.0 0.0 2.31075 · 109

⎤⎦ in [𝑁 ·𝑚].

The inversion of the ABD-matrix leads to:

𝐴−1 =

⎡⎣ 1.356 · 10−11 −4.474 · 10−12 0.0
−4.474 · 10−12 1.356 · 10−11 0.0

0.0 0.0 3.606 · 10−11

⎤⎦ ,

𝐵−1 =

⎡⎣0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

⎤⎦ ,

𝐷−1 =

⎡⎣ 1.627 · 10−10 −5.369 · 10−11 0.0
−5.369 · 10−11 1.627 · 10−10 0.0

0.0 0.0 4.328 · 10−10

⎤⎦ .

12.2.2 Theoretical Background

For a detailed explanation how to evaluate the cross sectional properties of arbitrary shaped profiles please refer to
Theoretical Background.

In contrast to the formula for open profiles, closed profiles can be calculated as follows:

𝐼𝑡 =
4 ·𝐴2

𝑚∑︀ 𝑙𝑖
𝑡𝑖

,with 𝐴𝑚 = the area enclosed by the profile, 𝑡𝑖 = thickness and 𝑙𝑖 = length of i-th rectangular part.

(12.4)
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12.2.3 Comparison of Cross Section Porperties and Results

Firstly, for the sake of simplicity, just a rectangular shaped box wing is assumed to check the BoxBeam calculations
for correctness. For the purpose of comparing the results analytically as well as numerically, also an ANSYS beam
model composed of equivalent cross sections is generated.

The following figure illustrates the investigated cross section.

Figure 12.1 : Boxwing cross section

All relevant geometric related data can be found in the figure above. Three different methods are used to evaluate the
cross section properties. Subsequently, a table lists the results:

Table 12.11: Pure geometric cross section parameters for different meth-
ods

Method 𝐴𝑟𝑒𝑎[𝑚2] 𝐼𝑥𝑥[10−07𝑚4] 𝐸𝑟𝑟𝑜𝑟[%] 𝐼𝑦𝑦[10−07𝑚4] 𝐸𝑟𝑟𝑜𝑟[%] 𝐼𝑡[10−07𝑚4] 𝐸𝑟𝑟𝑜𝑟[%]
BoxBeam 0.0003 4.16670 −0.01 1.45830 −0.03 1.28210 61.54
Ansys 0.0003 4.17000 −0.06 1.46000 0.09 4.29000 28.70
Analyti-
cal

0.0003 4.16725 0.00 1.45875 0.00 3.33333 0.00

The respective resulting stiffnesses, when taking into account also the material moduli, are given in the next table:
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Table 12.12: Cross section stiffnesses for different methods
Method 𝐸𝐴[107𝑁 ] 𝐸𝐼𝑥𝑥[105𝑁𝑚2] 𝐸𝑟𝑟𝑜𝑟[%] 𝐸𝐼𝑦𝑦[105𝑁𝑚2] 𝐸𝑟𝑟𝑜𝑟[%] 𝐺𝐼𝑡[103𝑁𝑚2] 𝐸𝑟𝑟𝑜𝑟[%]
BoxBeam 2.21279195 3.07330 −0.01 1.07570 −0.03 9.2430 0.00
Analyti-
cal

2.21279195 3.07375 0.00 1.07597 0.00 9.2430 0.00

The ANSYS FE model used for validation purposes is depicted in the next figure.

Figure 12.2 : Boxwing model

This simple validation example is defined by the following parameters:

• 5 cross sections forming a beam of 1.6 m in length (corresponding cross section properties are listed in the tables
above),

• all cross sections are equally shaped,

• the resulting beam has a straight rectangular shape,

• all DoFs are inhibited at z = 0 m,

• various beam tip loads are evaluated.

Subsequently, detailed information and results are presented resulting from the beam analysis with ANSYS and
BoxBeam. The whole beam is composed of five beam cross sections and four beam segments. The corresponding
section numbers can be also be found in this figure.
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Figure 12.3 : Boxwing numbering of sections within global beam model
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Following detailed stress information for each load case are illustrated. For some load cases the stress information is
evaluated at each cross section. The respective section number equals to the number depicted in preceding figure.

Note: The stress results are given in the local cross section coordinate system. In this context the beam axis in length
direction equals to the x-axis. As also shown in the schematic of the rectangular cross section below, the y-axis and
the z-axis defining the cross section coordinate system.

Figure 12.4 : Boxwing numbering of nodes within the beam cross section mesh

Furthermore, the section nodes, where stress data is evaluated is shown (highlighted red) in the figure.

Load case: Tension

A tensile load of 5000 N is applied at the beam tip. Of course this results in a constant stress distribution within the
beam. The FE beam model as well as the BoxBeam model show equivalent stress results in each cross section. The
final stress within the cross sections equals to 0.16667 · 108𝑁𝑚−2. The deformation comparison for the tensile load
case of ANSYS and BoxBeam shows high accordance.
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Table 12.13: Deformation in z-direction for tensile load
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐴𝑁𝑆𝑌 𝑆 𝐵𝑜𝑥𝐵𝑒𝑎𝑚 𝐸𝑟𝑟𝑜𝑟 [%]

𝑥𝑑𝑒𝑓 [10−3𝑚] 𝑥𝑑𝑒𝑓 [10−3𝑚]
0.0 0.0000 0.0000 0.000
0.4 0.0940 0.0938 −0.213
0.8 0.1808 0.1808 0.000
1.2 0.2712 0.2712 0.000
1.6 0.3615 0.3615 0.000

Load case: Compression

A compressive load of 5000 N is applied at the beam tip. Again the result isn’t surprising. The beam is exposed to
a constant stress distribution. The final stress within the cross sections equals to the tensile load case, but the sign
changes from plus to minus: −0.16667 · 108𝑁𝑚−2. The deformation comparison for the compressive load case of
ANSYS and BoxBeam also shows high accordance.

Table 12.14: Deformation in z-direction for compressive load
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐴𝑁𝑆𝑌 𝑆 𝐵𝑜𝑥𝐵𝑒𝑎𝑚 𝐸𝑟𝑟𝑜𝑟 [%]

𝑥𝑑𝑒𝑓 [10−3𝑚] 𝑥𝑑𝑒𝑓 [10−3𝑚]
0.0 0.0000 0.0000 0.000
0.4 −0.0904 −0.0904 0.000
0.8 −0.1808 −0.1808 0.000
1.2 −0.2712 −0.2712 0.000
1.6 −0.3615 −0.3615 0.000

Load case: Bending around y-Axis of BoxBeam

For a bending load of -500 Nm around the BoxBeam y-axis almost equal results regarding the stress distribution are
calculated.
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Table 12.15: Stress results for all sections
𝑆𝐸𝐶 𝐴𝑁𝑆𝑌 𝑆 𝐵𝑜𝑥𝐵𝑒𝑎𝑚 𝐸𝑟𝑟𝑜𝑟 [%]
𝑁𝑂𝐷𝐸 𝜎𝑥𝑥 [108𝑁𝑚−2] 𝜎𝑥𝑥 [108𝑁𝑚−2]
5 0.60592 / /
6 0.60592 / /
3 0.59992 0.60000 0.013
1 0.59992 0.60000 0.013
12 0.59392 / /
13 0.59392 / /
18 −0.60592 / /
2 −0.59992 −0.60000 0.013
23 −0.59392 / /
27 −0.60592 / /
4 −0.59992 −0.60000 0.013
32 −0.59392 / /

Table 12.16: Deformation in z-direction for bending around y-Axis of
BoxBeam

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐴𝑁𝑆𝑌 𝑆 𝐵𝑜𝑥𝐵𝑒𝑎𝑚 𝐸𝑟𝑟𝑜𝑟 [%]
𝑧𝑑𝑒𝑓 [10−1𝑚] 𝑧𝑑𝑒𝑓 [10−1𝑚] 𝐸𝑟𝑟𝑜𝑟 [%]

0.0 0.0000 0.0000 0.000
0.4 0.0130 0.0130 0.000
0.8 0.0521 0.0521 0.000
1.2 0.1171 0.1171 0.000
1.6 0.2082 0.2082 0.000

Load case: Bending around z-Axis of BoxBeam

A bending load of -500 Nm around the BoxBeam z-axis leads also to almost the same results as calculated by ANSYS.
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Table 12.17: Stress results for all sections
𝑆𝐸𝐶 𝐴𝑁𝑆𝑌 𝑆 𝐵𝑜𝑥𝐵𝑒𝑎𝑚 𝐸𝑟𝑟𝑜𝑟 [%]
𝑁𝑂𝐷𝐸 𝜎𝑥𝑥 [108𝑁𝑚−2] 𝜎𝑥𝑥 [108𝑁𝑚−2]
5 0.87404 / /
6 −0.87404 / /
3 −0.85690 −0.85714 0.028
1 0.85690 0.85714 0.028
12 −0.83976 / /
13 0.83976 / /
18 0.87404 / /
2 0.85690 0.85714 0.028
23 0.83976 / /
27 −0.87404 / /
4 −0.85690 −0.85714 0.028
32 −0.83976 / /

Table 12.18: Deformation in y-direction for bending around z-Axis of
BoxBeam

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐴𝑁𝑆𝑌 𝑆 𝐵𝑜𝑥𝐵𝑒𝑎𝑚 𝐸𝑟𝑟𝑜𝑟 [%]
𝑧𝑑𝑒𝑓 [10−1𝑚] 𝑧𝑑𝑒𝑓 [10−1𝑚] 𝐸𝑟𝑟𝑜𝑟 [%]

0.0 0.0000 0.0000 0.000
0.4 −0.0372 −0.0372 0.000
0.8 −0.1487 −0.1487 0.000
1.2 −0.3346 −0.3347 0.030
1.6 −0.5948 −0.5950 0.034

Load case: Constant line load

For this load case a load of 500 N is applied in z direction on every cross section. The resulting ANSYS model is
illustrated in the next figure.

Following, the stresses calculated by ANSYS and BoxBeam are listed.
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Figure 12.5 : Boxwing model with line load

Table 12.19: Stress results for section 6
𝑆𝐸𝐶 𝐴𝑁𝑆𝑌 𝑆 𝐵𝑜𝑥𝐵𝑒𝑎𝑚 𝐸𝑟𝑟𝑜𝑟 [%]
𝑁𝑂𝐷𝐸 𝜎𝑥𝑥 [108𝑁𝑚−2] 𝜎𝑥𝑥 [108𝑁𝑚−2]
3 0.23997 0.24000 0.013
1 0.23997 0.24000 0.013
2 −0.23997 −0.24000 0.013
4 −0.23997 −0.24000 0.013

Table 12.20: Stress results for section 7
𝑆𝐸𝐶 𝐴𝑁𝑆𝑌 𝑆 𝐵𝑜𝑥𝐵𝑒𝑎𝑚 𝐸𝑟𝑟𝑜𝑟 [%]
𝑁𝑂𝐷𝐸 𝜎𝑥𝑥 [108𝑁𝑚−2] 𝜎𝑥𝑥 [108𝑁𝑚−2]
3 0.71990 0.72000 0.014
1 0.71990 0.72000 0.014
2 −0.71990 −0.72000 0.014
4 −0.71990 −0.72000 0.014
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Table 12.21: Stress results for section 8
𝑆𝐸𝐶 𝐴𝑁𝑆𝑌 𝑆 𝐵𝑜𝑥𝐵𝑒𝑎𝑚 𝐸𝑟𝑟𝑜𝑟 [%]
𝑁𝑂𝐷𝐸 𝜎𝑥𝑥 [108𝑁𝑚−2] 𝜎𝑥𝑥 [108𝑁𝑚−2]
3 0.14398 0.14400 0.014
1 0.14398 0.14400 0.014
2 −0.14398 −0.14400 0.014
4 −0.14398 −0.14400 0.014

Table 12.22: Stress results for section 9
𝑆𝐸𝐶 𝐴𝑁𝑆𝑌 𝑆 𝐵𝑜𝑥𝐵𝑒𝑎𝑚 𝐸𝑟𝑟𝑜𝑟 [%]
𝑁𝑂𝐷𝐸 𝜎𝑥𝑥 [108𝑁𝑚−2] 𝜎𝑥𝑥 [108𝑁𝑚−2]
3 0.23997 0.24000 0.013
1 0.23997 0.24000 0.013
2 −0.23997 −0.24000 0.013
4 −0.23997 −0.24000 0.013

12.2.4 Generic Example: Boxwing

All results presented whithin the preceding sections are related to a quiet simple rectangular shaped beam whithout any
stiffening components. The comparison of BoxBeam and FEM (ANSYS) showed good accordance of results. Now
the complexity of the structure is widened by including also discrete steffining structure. For the sake of simplicity
the same rectangular shaped beam is used for the investigation. The follwing figures illustrate the basic shape used for
establishing the BoxBeam model.

The geometric parameters used to establish the beam model are listed below as well as depicted in the following
figures:
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Figure 12.6 : View on XY-plane of rectengular Boxwing

Figure 12.7 : View on XZ-plane of rectengular Boxwing
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Table 12.23: Beam cross section geometric parameters
Property Value [𝑚]
Cross section
ℎ𝑒𝑖𝑔ℎ𝑡(ℎ) 0.1
𝑤𝑖𝑑𝑡ℎ(𝑏) 0.05
𝑠𝑡𝑟𝑖𝑛𝑔𝑒𝑟𝑝𝑖𝑡𝑐ℎ(𝑝) 0.0125
Stringer
𝑃1 − (𝑥, 𝑦) (0.005, 0.000)
𝑃2 − (𝑥, 𝑦) (0.000, 0.000)
𝑃3 − (𝑥, 𝑦) (0.000, 0.005)
𝑃4 − (𝑥, 𝑦) (−0.0025, 0.007)
𝑃5 − (𝑥, 𝑦) (−0.005, 0.005)

Figure 12.8 : Boxwing model cross section main geometric parameters
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Figure 12.9 : Boxwing stringer cross section main geometric parameters

Following the material used is described:

Table 12.24: Isotropic Basis Material (Aluminum 2024)
Property Value
𝐸11[ 𝑁

𝑚2 ] 7.38 · 108

𝐸22[ 𝑁
𝑚2 ] 7.38 · 108

𝐺12[ 𝑁
𝑚2 ] 2.77 · 108

𝑛12[1] 0.33
𝑡[𝑚] 0.001
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12.3 Buckling

Documentation of buckling analysis and tool integrations.

12.3.1 Buckling Comparison with Panel from Duv12

Abaqus Panel Creation

The matlab panel model generator is extended to support different sorts of boundary conditions in respect to the
loading.

Influence of 2 step approach in *buckle

Duvigneau [VVT1] applies 2 steps with different boundary conditions as seen in the next table.

1. With the first set of boundary conditions the load is applied

2. In the second step the eigenvalues are calculated in respect to the next set of BCs.
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axial
load

shear load axial
load

shear load combined

edge/point first
step

second
step

first step second step one
step

one step one step

bp1 ur3 u2,ur3 u1,ur2,ur3 u2,ur3 ur3 ur3 ur3
bp2 u1,ur2 u1,u2,ur2 u1,ur1,ur2,ur3 u1,ur2,ur3 u1,u2,ur2 u1,u2(p3),ur2 u1,u2(p3)ur2
bp3 ur3 u2,ur3 u1,ur2,ur3 ur2,ur3 ur3 ur3 ur3
bp4 u1,u3,ur2 u1,u2,u3,ur2 u1,u2,u3,ur1,ur2,ur3u1,u2,u3,ur2,ur3 u1,u2,ur2 u1,u2,u3,ur2 u1,u2,u3,ur2
p3 u2 u1,u2,ur2 u1,ur2 u1,ur2

Here the two step approach is compared to a one step approach. The eigenvalues of a axial and shear loaded panel
(panel O11 page 45 in Diplom Duvigneau(IB131-2012/71); see custominput.getDefaultPanel rev.1437) are calculated
and compared.

axial load shear load
MODE NO two steps one step one step,combined BC two steps one step
1 -264.31 FB -264.29 FB -255.08 163.61 FB 162.92 FB
2 -265.3 -265.3 -255.31 163.61 166.15
3 -266.29 -266.29 -256.56
4 -267.06 -267.06 -256.74
5 -268.53 -268.53 -259.37
6 -269.84 -269.84 -259.46
7 -270.56 -270.56 -259.94
8 -271.95 -271.95 -259.98
9 -286.68 -286.54 -264.59
10 -287.93 -287.13 -265.77
11 -288.18 -287.8 -267.96
12 -288.79 -288.03 -268.57
13 -288.94 -288.37 -269.20 FB
14 -289.4 -288.92 -270.24
15 -290.29 -289.29 -271.51
16 -290.48 -290.29 -271.93
17 -291.01 -290.84 -272.27
18 -291.36 -291.42 -272.67
19 -291.57 -291.44 -273.64
20 -291.92 -291.72 -274.68

Table: Showing the eigenvalues of the different calculation approaches (axial/shear, two step/one step). The “FB”
indicates the eigenvalue where the skin between the stiffeners is buckling.

Due to the one step approach in axial loading the eigenvalue is smaller which is caused by less boundary conditions
making the panel softer. If one looks at the eigenvalue where a real first buckling mode appears the difference in the
eigenvalues is about 2%. So maybe a algorithm should be created looking for the first inner skin buckling eigenmode.
The shear results are closer to each other. There is no need for a calculation with the combined boundary conditions
since they are equal to the shear BCs. The comparison of the shear loads showed very good conformity between the
one step and two step approach.

Usually the BCs for axial, combined and shear load are different. When doing an optimization or metamodel cre-
ation the response should be steady when changing form pure axial load to mostly axial load and little shear load,
respectively from shear to shear+little axial load. The above results show that combined BCs can be applied in each
case.

check allie, allsd(stabilization damping) in odb, xydata, history output allsd/allie
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result, user specified

Comparison BEOS - Abaqus(Eigenvalue, nonlinear)

Here the Beos results are compared to Abaqus eigenvalue and nonlinear buckling calculations. The used panel is the
same as above. So the axial and shear loads for Abaqus eigenvalue results are already present.

axial shear combined nx=1;nxy=1
BEOS 211168 141080 axial 117138 shear 94597
Abaqus Eigenvalue 269200 161400 axial 128040 shear 128040
Abaqus nonlinear 277276

Total buckling loads in 𝑁
𝑚

Figure 12.10 : Abaqus eigenform axial load, one step,combined BC, eigenvalue 13

12.3.2 Beos Verification with Femmas Reports

In the Femmas reports [VVT2] and [VVT3] , beos was used and verified with abaqus models. Also the input matrices
for the skin stiffness of beos 5 and stringer stiffness is documented for the T-stiffener (IB_131-2008_14 chapter
6.2).

Errors in Beos 5.0

Sadly, there were several mayor errors in Beos which were corrected in svn revisions #8523, #8525, #8526. These led
to too optimistic buckling loads. Thus only the beos4 results in [VVT3] table 3-1, column l1 could be used.
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Figure 12.11 : BEOS eigenform axial load
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Errors in the report

During the investigation, errors in the report [VVT2] chapter 6.2 were identified. Also the actual beosinterface handles
things differently:

• The skin has an odd layup. The full layup is [45,0,-45,90,0,0,0,0,0,90,-45,0,45]

• The stringer blade layup misses some layers. The full layup is: [45,0,0,90,0,0,-45,0,0,45,0,0,-45,0,-
45,0,0,45,0,0,-45,0,0,90,0,0,45]

• The stringer foot layup misses a 0° layer. The full layup is: [-45,0,45,0,-45,0,90,0,45]

• The height was calculated as: height=height-footThickness/2=0.03-0.0005625

• In order to obtain the correct eigenvalue, the variable load-x must be 100 N/mm = 100000 N/m

Verification

With the adaptions above, the given cases can be calculated and verified. The verification is done on these levels:

• The abd matix of the skin and skin+foot is verified in the test case test.test_buckling.
test_beosinterface.test_BeosBucklingInterfaceAxialFemmasInputMatAbd.

• The stiffeners are verified in test.test_buckling.test_beosinterface.
test_BeosBucklingInterfaceAxialFemmasInputStiffener.

• The buckling results given in IB_131-2008_15 table 3.1 column l1 are used. Only the
skin thickness of the 1.625mm and 3mm skin matches the given layup. So the 1.625mm
and 3mm skin is used in the test test.test_buckling.test_beosinterface.
test_BeosBucklingInterfaceAxialFemmasBucklingVerification. Additionally the
boundary conditionas are adjusted to those given in IB_131-2008_14 and a conversion for units and from
force to running load is performed. The results for the first case differ by 0.5%, which is quite good. This
also correlates with the eigenvalue calculated actually and the one given in IB_131-2008_14 chapter 6.2.
Even a full conversion to the unit system used in the report did not improve the results. Possible causes may be
very different frame stiffnesses in both model. Though the frame stiffness is not given in the report. Also the
discretization changes slightly.

12.3.3 Buckling Validation with DLR T1 Panel

Panel Description

See Maaximus D6.8.1 and Diss reference panel.

Results of First Buckling

Results using 5 stringers in the model.

compression shear
Beos 4 -81003 38978
Beos 5 -89147 55306
Abaqus Linear -107040 50783
Abaqus NonLinear
Test result T1 -100000 30000
Test result T2 25000
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Figure 12.12 : BEOS 4 eigenform, design BCs

Figure 12.13 : BEOS 5 eigenform, design BCs

Figure 12.14 : Abaqus linear eigenform, design BCs
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Figure 12.15 : BEOS 4 eigenform, design BCs

Figure 12.16 : BEOS 5 eigenform, design BCs
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Figure 12.17 : Abaqus linear eigenform, design BCs

12.4 Verification of sizing tools

In this section, several sizing tools will be compared applying a common use-case. These tools and settings are used:

• SBot

• Hypersizer

• Nastran Sol200 - Fully Stressed Design

• Nastran Sol200 - Optimizer

12.4.1 Use Case Description

Geometry and Elements

The use-case is a cylinder with 20 linear shell elements in x-direction and 40 Elements in tangential direction. Each
element defines a region of equal properties, that results in 20 · 40 parameters. All other dimensions can be found in
the following image.
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Figure 12.18 : Geometry definition of sizing use-case

Material Properties

The material is aluminium 2024 with the following properties:

Youngs Modulus 72400000000
[︀

𝑁
𝑚2

]︀
Shear Modulus 27600000000

[︀
𝑁
𝑚2

]︀
Tensile Strength 200000000

[︀
𝑁
𝑚2

]︀
Failure Criterion Von Mieses

Initial Skin Thickness 0.002m

Sizing Properties

The structure is loaded by single loadcase comprising of two moment 𝑀𝑥 = 2𝑒6𝑁𝑚 and 𝑀𝑦 = 2𝑒6𝑁𝑚. The only
allowable used strength based on the Von Mieses stress criterion. The applied safety factor is 1.0, minimum skin
thickness is 0.001m and maximum skin thickness is 0.1m. The sizing convergence limit is chosen very low so that it
should not stop the convergence to early. As maximum about 100 iterations is used. For Fully Stressed Design (FSD)

the damping parameter is 𝑑 = 0.9 which is used in the calculation of new thicknesses 𝑡𝑛 = 𝑡𝑛−1 +
(︁

𝜎𝑒𝑞𝑣

𝜎𝑎𝑙𝑙𝑜𝑤

)︁𝑑
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Results

The following sizing results will be compared or plotted:

• Deflection in z-direction at the node-path x=1,y=0 before sizing

• Deflection in z-direction at the node-path x=1,y=0 after sizing

• Resulting thickness of the 11the element-ring (1-based counting)

• Plot of the stresses in x-direction - before sizing

• Plot of the stresses in x-direction - after sizing

• Plot of the thicknesses

12.4.2 Result Summary

Deformation [m] before sizing

NODE X Y Z SBot UZ Nastran UZ
1 0.0 0.0 1.0 0.0 0
2 0.25 0.0 1.0 -0.0025245 -0.00196817
3 0.5 0.0 1.0 -0.0013743 -0.001885046
4 0.75 0.0 1.0 -0.0033336 -0.00269516
5 1.0 0.0 1.0 -0.0032784 -0.003620008
6 1.25 0.0 1.0 -0.0054311 -0.004862644
7 1.5 0.0 1.0 -0.0062086 -0.006370979
8 1.75 0.0 1.0 -0.0086742 -0.008158097
9 2.0 0.0 1.0 -0.010211 -0.0102208
10 2.25 0.0 1.0 -0.013045 -0.01255985
11 2.5 0.0 1.0 -0.015295 -0.01517506
12 2.75 0.0 1.0 -0.018535 -0.01806648
13 3.0 0.0 1.0 -0.021467 -0.02123408
14 3.25 0.0 1.0 -0.025139 -0.024678
15 3.5 0.0 1.0 -0.028732 -0.02839757
16 3.75 0.0 1.0 -0.032856 -0.03239574
17 4.0 0.0 1.0 -0.037088 -0.03666011
18 4.25 0.0 1.0 -0.041704 -0.04124091
19 4.5 0.0 1.0 -0.046448 -0.04593983
20 4.75 0.0 1.0 -0.05201 -0.05152499
21 5.0 0.0 1.0 -0.055599 -0.05506652

Thicknesses [m] at 11th element ring

Elem Nr Initial SBot Nastran FSD Nastran MSCADS Nastran IPOPT
1 0.002 0.004925 0.004991 0.005022 0.00503
2 0.002 0.00465 0.004758 0.004773 0.004767
3 0.002 0.00425 0.004348 0.004344 0.004335
4 0.002 0.0038 0.003884 0.003869 0.003869
5 0.002 0.0034 0.003464 0.003453 0.003457
6 0.002 0.0031 0.003125 0.003123 0.003123
7 0.002 0.00285 0.002871 0.002874 0.002869

continues on next page
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Table 12.25 – continued from previous page
Elem Nr Initial SBot Nastran FSD Nastran MSCADS Nastran IPOPT
8 0.002 0.002675 0.002692 0.002684 0.00269
9 0.002 0.002575 0.002579 0.00258 0.002577
10 0.002 0.002525 0.002524 0.002521 0.002523
11 0.002 0.002525 0.002524 0.002522 0.002523
12 0.002 0.002575 0.002579 0.002576 0.002577
13 0.002 0.002675 0.002692 0.002692 0.00269
14 0.002 0.00285 0.002871 0.00287 0.002869
15 0.002 0.0031 0.003125 0.003127 0.003123
16 0.002 0.0034 0.003464 0.003456 0.003457
17 0.002 0.0038 0.003884 0.003867 0.003869
18 0.002 0.00425 0.004348 0.004336 0.004334
19 0.002 0.00465 0.004758 0.004763 0.004768
20 0.002 0.004925 0.004991 0.00503 0.005028
21 0.002 0.004975 0.004965 0.00501 0.005
22 0.002 0.0047 0.004692 0.004685 0.004697
23 0.002 0.004325 0.004268 0.004259 0.004253
24 0.002 0.00385 0.003813 0.003799 0.0038
25 0.002 0.00345 0.003412 0.003411 0.003406
26 0.002 0.003125 0.003092 0.003087 0.003089
27 0.002 0.002875 0.002851 0.002847 0.00285
28 0.002 0.0027 0.002682 0.002682 0.00268
29 0.002 0.002575 0.002574 0.00257 0.002573
30 0.002 0.002525 0.002522 0.002518 0.002521
31 0.002 0.002525 0.002522 0.002524 0.002521
32 0.002 0.002575 0.002574 0.002569 0.002573
33 0.002 0.0027 0.002682 0.002682 0.00268
34 0.002 0.002875 0.002851 0.002846 0.00285
35 0.002 0.003125 0.003092 0.003093 0.003089
36 0.002 0.00345 0.003412 0.003405 0.003405
37 0.002 0.00385 0.003813 0.003802 0.003801
38 0.002 0.004325 0.004268 0.004256 0.004252
39 0.002 0.0047 0.004692 0.004703 0.004698
40 0.002 0.004975 0.004965 0.005006 0.004999

Deformation [m] of converged sizing iterations
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Figure 12.19 : Exemplary thickness distribution at element ring 11 [m]
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NODE X Y Z SBot UZ Nastran FSD UZ Nastran MSCADS UZ Nastran IPOPT UZ
1 0.0 0.0 1.0 0.0 0 0 0
2 0.25 0.0 1.0 -

0.0018313
-0.001359 -0.001381 -0.001375

3 0.5 0.0 1.0 -
0.0012105

-0.001705 -0.001745 -0.001743

4 0.75 0.0 1.0 -
0.0028214

-0.002467 -0.002553 -0.002525

5 1.0 0.0 1.0 -
0.0029198

-0.003241 -0.003341 -0.003313

6 1.25 0.0 1.0 -
0.0042649

-0.004125 -0.00423 -0.004206

7 1.5 0.0 1.0 -
0.0048876

-0.005091 -0.005193 -0.005177

8 1.75 0.0 1.0 -
0.0061483

-0.006141 -0.006236 -0.006228

9 2.0 0.0 1.0 -
0.0071254

-0.007272 -0.007355 -0.00736

10 2.25 0.0 1.0 -0.008434 -0.008483 -0.008562 -0.00857
11 2.5 0.0 1.0 -

0.0096932
-0.009774 -0.009845 -0.009859

12 2.75 0.0 1.0 -0.011117 -0.011142 -0.011216 -0.011225
13 3.0 0.0 1.0 -0.012623 -0.012591 -0.012669 -0.012672
14 3.25 0.0 1.0 -0.01416 -0.014119 -0.014201 -0.014197
15 3.5 0.0 1.0 -0.015908 -0.015731 -0.015802 -0.015805
16 3.75 0.0 1.0 -0.017562 -0.017425 -0.017498 -0.017492
17 4.0 0.0 1.0 -0.019582 -0.01921 -0.019273 -0.019268
18 4.25 0.0 1.0 -0.021346 -0.021091 -0.021154 -0.021134
19 4.5 0.0 1.0 -0.023584 -0.023016 -0.023105 -0.02304
20 4.75 0.0 1.0 -0.025725 -0.025308 -0.025319 -0.025307
21 5.0 0.0 1.0 -0.027227 -0.026633 -0.026597 -0.026607

12.4.3 Result SBot

It can be seen that the stress in x-direction before sizing are caused by pure bending and the shear stresses are caused
by pure torsion. Though after the first iteration the thickness changes according to stresses of the previous fem solution
but the new resulting stress in x-direction is caused by a superposition of both loads. Thus the stress in x-direction
change into a diagonal-like shape which adapts the von Mieses stress and thus the resulting thickness of this sizing
problem.

12.4.4 Result Nastran SOL200 FSD

12.4.5 Result Nastran SOL200 MSCADS

12.4.6 Result Nastran SOL200 IOPT

12.5 SBOT

Documentation of SBOT changes.

294 Chapter 12. Validation Verification Testing



delis, Release 21.2.6

Figure 12.20 : SBot initial deformation in z-direction [𝑚]

Figure 12.21 : SBot initial stress in x-direction
[︀

𝑁
𝑚2

]︀
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Figure 12.22 : SBot deformation after first iteration in z-direction [𝑚]

Figure 12.23 : SBot stress after first iteration in x-direction
[︀

𝑁
𝑚2

]︀
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Figure 12.24 : SBot stress in x-direction after sizing
[︀

𝑁
𝑚2

]︀

Figure 12.25 : SBot shear stress after sizing
[︀

𝑁
𝑚2

]︀
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Figure 12.26 : SBot thickness distribution after sizing [𝑚]

12.5.1 SBOT Memory Usage

SBot’s memory usage may vary strongly. Here a study was done to identify the key parameter for SBot’s memory
needs. The size of the initial database is used as reference value since all permanently saved Arrays are kept in this
database and influencing its size.

number Of Loadcases
2 65

number of elements 6853 139 MB 740 MB
22315 648 MB 9100MB

Other factors:

• The number of optimization regions plays a subordinate role. In reference to the calculation with 22315 elements
and 2 loadcases it used 643 MB instead of 648 MB.

• Also the ID-range of the geometry, nodes and elements used, might be a curical factor to the memory usage as
well. Though this was not studied here.
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Figure 12.27 : Nastran initial deformation in z-direction [𝑚]
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Figure 12.28 : Nastran initial stress in x-direction
[︀

𝑁
𝑚2

]︀
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Figure 12.29 : Nastran FSD stress in x-direction after sizing
[︀

𝑁
𝑚2

]︀
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Figure 12.30 : Nastran FSD thickness distribution after sizing [𝑚]
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Figure 12.31 : Nastran MSCADS stress in x-direction after sizing
[︀

𝑁
𝑚2

]︀
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Figure 12.32 : Nastran MSCADS thickness distribution after sizing [𝑚]
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Figure 12.33 : Nastran IOPT stress in x-direction after sizing
[︀

𝑁
𝑚2

]︀
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Figure 12.34 : Nastran IOPT thickness distribution after sizing [𝑚]
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12.5.2 Damping of Combined Buckling Value

The combined buckling reserve factor is calculated by 𝑅𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑅2
𝑥 + 𝑅2

𝑥𝑦 (HSB 45113-01.3.2). Thus this
reserve factor is much more sensitive than other buckling and also strength reserve factors. Here this reserve factor is
tested to be damped using this formula 𝑅𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =

√︁
𝑅2

𝑥 + 𝑅2
𝑥𝑦 . Also these damping factors in SBOT are tested

(CONV_PWR in S_BOT01_inp.mac): 0.25, 0.33, 0.5.

First it is tested with a full scale fuselage model with a wingbox because this is known to not converge with sbot in the
original way. Here are the convergence plots of all alternatives:

Figure 12.35 : Convergence of old SBOT version showing clear convergence problems

Those calculations indicate again heavy problems with the infinite stiff wingbox indicated by the heavy increase in
thickness near the wingbox region.

Next these calculations are performed with a model having no wingbox. The results contain no high thicknesses due
to bad boundary conditions but the skin_diff convergence criterion was not met either. As can be seen on the following
plots, the differences are constant starting around iteration 7.

An bugfix in modeling and writing S_BOT_VAR_PARAMAM.mac resulted in much better convergence. in iteration
9(in the plot) the convergence values were zero, which can not be displayed in a log-plot.
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Figure 12.36 : Convergence of new SBOT version with CONV_PWR=0.25

Figure 12.37 : Convergence of new SBOT version with CONV_PWR=0.33
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Figure 12.38 : Convergence of new SBOT version with CONV_PWR=0.5

12.5.3 Convergence Criteria

In SBOT the convergence is monitored using three values: - Relative volume change of the wingbox/fuselage - Relative
volume change of the overall structure - Relative thickness change of the element with the highest change

Since the latter one is much more sensitive which also can be seen in the plots above in Damping of Combined Buckling
Value, the convergence is adjusted in the following way. The first convergence values are checked in reference to the
usual convergence threshold in S_BOT01_inp.mac named CONV_LIMIT which is actually (May 2013) set to 0.0005.
The thickness difference is much more sensitive since it is the difference of the most changing element. Thus it’s
threshold will be CONV_LIMIT * 100. This decision is based on one wing and one fuselage calculation that can be
seen in the following image

12.5.4 Static Solutions During SBot Initialization Phase

When performing a static solution between the definition of shell properties (sectypes) in the fem input file and the
creation of the arrays in S_BOT02_3_1_ini_elem.mac, the thickness of a not defined second layer is 1 instead of
0. This is probably(!) due to a bug in ansys and leads to the calculation of thicknesses in these layers although they are
not defined. In the tecplot output on can observe a thickness in the stringer layer in all elements - not just wing upper
and lower shell. Additionally the mass output is incorrect calculated in file S_BOT13_3_mass_fuselage.mac.
Here is an example where the effect can be observed:

finish
/clear
/prep7

shpp,off !element definition

(continues on next page)
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Figure 12.39 : Thickness of a resulting SBOT run
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Figure 12.40 : Convergence of old SBOT version showing clear convergence problems as with wingbox

Figure 12.41 : Convergence of new SBOT version with CONV_PWR=0.25
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Figure 12.42 : Convergence of new SBOT version with CONV_PWR=0.33

Figure 12.43 : Convergence of new SBOT version with CONV_PWR=0.5
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Figure 12.44 : Convergence of new SBOT version with CONV_PWR=0.33 and updated model input

Figure 12.45 : Convergence of wing and fuselage calculations.
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(continued from previous page)

et,101,shell181
keyopt,101,1,0
keyopt,101,3,2
keyopt,101,8,2
keyopt,101,9,0
mshkey,0

mp,ex, 1, 73759731562.9 !material definition
mp,ey, 1, 73759731562.9
mp,ez, 1, 73759731562.9
mp,prxy, 1, 0.330010666863
mp,pryz, 1, 0.330010666863
mp,prxz, 1, 0.330010666863
mp,gxy, 1, 27729000000.0
mp,gyz, 1, 27729000000.0
mp,gxz, 1, 27729000000.0
mp,dens, 1, 2800.0

k,,0,0,0 !create geometry
k,,1,0,0
k,,1,1,0
k,,0,1,0
l,1,2
l,2,3
l,3,4
l,4,1
al,1,2,3,4

sectype,1,shell,,1 ! define section
secdata , 0.003 , 1 , 0.0 , 3 , 1
amesh,1

ksel,s,,,1
nslk
d,all,all !clamp model
acel,1000,1000,1000 !add loads
alls

foo_secnum=1

*get,foo,shel,foo_secnum,layd,1,thic
! following command is for second layer - happy case

*get,bar,shel,foo_secnum,layd,2,thic

/solu
antype, static
solve

*get,foo,shel,foo_secnum,layd,1,thic
! following command is for second layer - failure case

*get,bar,shel,foo_secnum,layd,2,thic
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THIRTEEN

INSTALLATION

13.1 For Users

13.1.1 Requirements

These are the general requirements. In DLR, the requirements are available as bundle (see Installation).

• Python >=3.5 and several Python Packages

• gmsh 2.14.0 Meshing

License: GNU General Public License (GPL) (version 2 or later)

https://gmsh.info/

• flexlm (optional) Check available licenses

• Ansys

• Nastran

• Abaqus

13.1.2 Installation

1. Get DELiS from

https://fa-jenkins2:8080/job/DELiS_Nightly/

or

https://gitlab.dlr.de/fa_sw/delis.git

2. Install Miniconda3

3. Install python packages

1. Open <path_to_delis>/doc/source_complete/installation/
conda_environment_py36.yml and adapt path prefix (at the end of yml file) to the desired
installation path. (But do not include the changes in git!)

2. In the miniconda folder, goto Scripts. Update conda, and install the packages in a new conda environ-
ment named py36:

activate
conda update conda
conda env create -f <path_to_delis>/doc/source_complete/installation/conda_
→˓environment_py36.yml
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4. Install fa_pyutils from

https://fa-jenkins2:8080/job/fa_pyutils/

or

https://gitlab.dlr.de/fa_sw/fa_pyutils.git

and install it

>>> python setup.py install

5. Install DELiS to your python installation

>>> python setup.py install

6. Install the remaining requirements manually

7. Test the DELiS installation in a python shell

>>> import delis

13.2 For Developers

To setup DELiS for developers, perform all steps of Installation except step 4 and 5. These tools should be cloned and
included in your favorite IDE (e.g. Eclipse):

git clone https://gitlab.dlr.de/fa_sw/fa_pyutils.git <fa_pyutils_path>
git clone https://gitlab.dlr.de/fa_sw/delis.git <delis_path>

13.2.1 Additional Programs for Developers

• Eclipse and Eclipse packages:

– Pydev: The python plugin for eclipse

– Subversive (if SVN projects are used)

– Mylyn (included in Eclipse IDE for Java EE Developers)

– Mylyn Task Connector: Mantis

– Mylyn Jenkins Bridge

– XML, XSL Editors and tools (included in Eclipse IDE for Java Developers)

– REsT Editor

– TeXLipse

– Color IDE Pack (includes: Eclipse Color Theme; Jeeeyul’s Themes)

• MinGW

• Graphviz Image graph generation engine

• RCE

• LaTex

– MikTex: Package “ucs” for formulas in html
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13.3 Python Packages

• numpy

License: BSD license

• scipy

License: BSD license

• networkx

License: BSD license

• matplotlib

License: matplotlib license

• pyparsing

MIT License

• sphinx

>V1.0.7 (due to latex issues with tabulary)

License: BSD

• xlrd

License: BSD-style

• xlwt

License: BSD-style

• docutils

License: public domain, some exceptions under BSD and PSF license

• openopt

(openopt, FuncDesigner, DerApproximator)

License: New BSD license

• pyqt4

License: GNU GPL and Qt commercial license

• f2py

License: Numpy License

• pywin32

License: GPL_v2

• pyinstaller only used to create executable

v1.5.1_nightly

License: Open source (MIT)

• pip

License: Open source (MIT)
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• virtualenv

License: Open source (MIT)

• pytest

License: Open source (MIT)

• pytest-cov

License: Open source (MIT)

• coverage

License: free software distributed under the GNU Public License

• pylint

License: GPL_v1

• ecdsa only used for ssh access to cluster

License: Open source (MIT)

• pycrypto only used for ssh access to cluster

License: public domain - see copyright notice of pycrypto

• paramiko only used for ssh access to cluster

License: LGPL

• spur used as ssh interface building on paramiko

License: Open source (BSD)

• h5py only used for ADAPT framework in order to write and read hdf5 files (binary, comparable to xml)

License: h5py license

• IPython used for auto completion in the pydev console

License: Open source (BSD)

• pandas package for numeric data handling

License: Open source (BSD)

• TIXI CPACS access

License: Open source (Apache License 2.0)

• TIGL CPACS geometry

License: Open source (Apache License 2.0)

13.4 Eclipse

13.4.1 Setup Eclipse

Open Eclipse by executing eclipse.bat. When eclipse starts for the first time go to Workbench first. Gen-
erally, you can change the workspace by clicking File->Switch Workspace. Then the PyDev-Perspective
should be opened by Window -> Open Perspective -> Other -> PyDev. Now the PyDev Package
Explorer appears on the left hand side where added projects appear when performing Inserting Pydev Projects as
described below.
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Otherwise the installation documentation for eclipse can be found on the internet.

Generally eclipse plugins can be installed when clicking on Help -> Install New Software. In the Box
Work with: you should check All Avalable Sites. For some plugins you need to add sites. The needed
links can be found on the internet. In addition plugins may can also be installed using the eclipse marketplace at Help
-> Eclipse Marketplace.

13.4.2 Setup Python Interpreter

To set up a python interpreter in eclipse one can click on Window -> Preferences -> PyDev ->
Interpreter - Python. Add Default as name and specify the location of the python interpreter such as
C:\\Python34\\python.exe.

13.4.3 Inserting Pydev Projects

There are several ways of including existing pydev projects:

• Import pydev project from GIT (use this for DELiS)

• Import pydev project from SVN (use this for DELiS)

• Import existing(on local hard disk) pydev project

Import Pydev Project In Eclipse From GIT

• Go to File --> Import --> Git --> Projects from Git.

• In the next window use Clone URI

• Get the values for the field URI from GitLab. In GitLab go to the main view (Project Overview). Go to Clone
--> Clone with HTTPS and copy the link. When you paste the URI in eclipse, the fields Host and
Repository path are filled automatically.

• Enter your Username and Password and store the credentials.

• Use the master branch on the next wizard page.

• Next, enter the local location of the project

• On the next page use Import existing Eclipse projects for DELiS.
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• Click next on the following pages and it will create a local clone of DELiS.

Import Pydev Project In Eclipse From SVN

In eclipse click on File -> Import -> SVN -> Project form SVN. Check Create a new
repository location if the following image shows up.

Use https://svn.dlr.de/PARAMAM/branch/Fuselage/trunk as URL and your system account as au-
thentication as shown on the next image.
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On the Advanced Tab deselect Enable Structure Detection and press Next. Click Finish in the fol-
lowing window. On the opening window that can be seen on the next image click Next.
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As Location choose an existing folder somewhere in D:\\<your username>\\ and click Finish.

Import Existing Pydev Project

After checking out the SVN repository you can import it as eclipse project. Now click on

File -> Import -> General -> Existing Projects into Workspace -> Next

In the following context menu enter the path of your working copy and one project shows up in the Projects list and
just click “finish”.

13.4.4 Pytest Setup for Eclipse

Open eclipse, go to Window => Preferences. Under PyDev, click PyUnit. Now change the test runner
to Py.Test runner. And under Parameters for test runner remove the existing line and write the
following parameters, -v -s
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13.5 Graphviz

To create graph images with dot, graphviz needs to be installed. Dot graphs are used for some images within this
documentation. To build the documentation properly it must be downloaded from the graphviz page and installed.

13.6 Cluster Deployment

reference to chaslavs deployment howto

13.6.1 Folder permissions

done just once:

chmod go-r $HOME

chmod u+w $HOME/toolbox/* (u-user)

done for each deployment:

chmod -R a+rX-w $HOME/toolbox/* (a-all)

13.6.2 Important sertlib commands

sertlib list

13.6.3 Bashrc or cshrc

export PATH=/home_case/as/ilic_ca/usr/local/sertlib-0.2/bin:$PATH

export SERTLIB_PATH=$HOME/toolbox-stage

13.7 RCE

RCE is used to provide a framework where several design tools can be interconnected on a distributed network to
create a complete design loop. RCE can serve as a client and as a server. First install the newest RCE version, which
is provided at the RCE teamsite: <www.rcenvironment.de/>

Please refer to the RCE manual provided in the installation for further information how to setup your client and server.

13.7.1 Setup at FA/STM

To aviod having many RCE installations, profile directories and workspaces at various locations, it will be standardized
here. All RCEs, the RCE-configuration and tool integration is put in a substructure of D:\DELiS_tools\RCE on
the machine fa-termsrv2.

RCE Installation There should be only one RCE installation for a mayor RCE release(RCE_7.x,
RCE_8.x, etc.) in this directory

RCE Profle
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There is a folder D:\DELiS_tools\RCE\Profiles where all RCE-profiles are located.
In the RCE-Profile directory, the configuration of the specific RCE-instance is located as well
as the tool-integration(e.g. DELiS as tool provided in RCE). The profile is specific to a certain
project and eventually to a specific task. Thus each profile folder contains the project name
and the task of the rce-instance(e.g. RCE7_freacs_toolserver). To start RCE with
this profile, one can use --profile <profileDir> on the command line. The windows
service script for RCE(see below) has the variable RCE_PROFILE_NAME for this purpose.

RCE workspace The workspace shall always be put in the profile directory since it is also dependent on
the RCE instance.

RCE as service When using RCE as a windows service, the variables RCE_SERVICE_ID and
PR_DISPLAYNAME should be the same as the name of the profile directory.

13.7.2 Start RCE as Windows Service

Please follow the Section in the RCE manual to setup RCE as windows service.

Attention: Use automatic (delayed start) as starttype.

Here, the mentioned configuration files in /extras/windows_service are posted.

install_as_service.bat:

:: System dependent variable: Please adapt!
:: Absolute path to RCE installation folder
SET RCE_ROOT_PATH=D:\DELiS_tools\RCE\RCE_6.x

:: Name of the local user account the RCE service should run as.
SET RCE_SERVICE_USER=f_testpa

:: System undependent variables: Change if you like.
:: Name of the RCE profile the service should use.
SET RCE_PROFILE_NAME=D:\DELiS_tools\RCE\Profiles\RCE6_freacs

:: ID of your service
SET RCE_SERVICE_ID=RCE6_freacs

:: Display name
SET PR_DISPLAYNAME=RCE6_freacs

:: Service description
SET PR_DESCRIPTION=RCE - Remote Component Environment running in headless mode as
→˓service.

:: System undependent variables: Leave them unmodified!
:: Absolute path to the prunsrv.exe
SET SRVEXE=%RCE_ROOT_PATH%/extras/windows_service/prunsrv.exe
:: Name of executable
SET EXE=rce.exe
:: Parameters
SET PARAM1=--headless
SET PARAM2=-noSplash
SET PARAM3=-p
SET PARAM4=%RCE_PROFILE_NAME%
SET SD_PARAM1=--headless
SET SD_PARAM2=--shutdown

(continues on next page)
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(continued from previous page)

SET PR_LOGPATH=%DIR%
SET PR_LOGPREFIX=%RCE_SERVICE_ID%
SET PR_LOGLEVEL=Info

IF DEFINED RCE_SERVICE_USER (
SET PR_SERVICEUSER=.\%RCE_SERVICE_USER%

)

%SRVEXE% //IS//%RCE_SERVICE_ID% --Install=%SRVEXE% --Startup=auto --StartMode=exe --
→˓StartImage=%RCE_ROOT_PATH%/%EXE% --StartPath=%RCE_ROOT_PATH% --StartParams=%PARAM1%;
→˓%PARAM2%;%PARAM3%;%PARAM4% --StopMode=exe --StopImage=%RCE_ROOT_PATH%/%EXE% --
→˓StopPath=%RCE_ROOT_PATH% --StopParams=%SD_PARAM1%;%SD_PARAM2%;%PARAM3%;%PARAM4%

uninstall_service.bat:

:: System dependent variable: Please adapt!
:: Absolute path to RCE installation folder
SET RCE_ROOT_PATH=D:\DELiS_tools\RCE\RCE_server_FrEACs_6.x

:: ID of your service
:: Must be equal to RCE_SERVICE_ID set in install_as_service.bat!
SET RCE_SERVICE_ID=RCE6_freacs

:: System undependent variables: Leave them unmodified!
:: Absolute path to the prunsrv.exe
SET SRVEXE=%RCE_ROOT_PATH%/extras/windows_service/prunsrv.exe

%SRVEXE% //DS//%RCE_SERVICE_ID%

Now you can start/stop RCE as service going to the windwos service management (German: Dienste) looking for
an entry with the name you set in RCE_SERVICE_ID. Also use the authentication with your user account in order to
start RCE with user privileges if required.

13.7.3 RCE ssh setup

Please refer to delisWFtester for a documentation on the ssh setup. The RCE documentation features the best covered
documentation about it.

13.8 Build the documentation

In the main project folder call python setup.py cmd where cmd is one of the following

• single documentation variant

– doc_all_html

– doc_all_latex

– doc_user_html

– doc_user_latex

– doc_dt_html

– doc_dt_latex
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• documentation combinations

– doc_html

– doc_latex

– doc_all

– doc_user

– doc_dt

– doc

– doc_test

The documentation is created in the /build folder
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14.3 Documentation Issues

• The folder doc/_static/sphinxext contains additional extensions that add some special behavior to the documen-
tation engine.

14.4 TODOs
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createArbitraryGeometry()delis.model.profile.GenericProfile

method, 193
createDAMPointsCpacs()delis.model.commoncomponent.AircraftComponent

method, 151
createStandardGeometry()delis.model.profile.Profile

method, 165
customTwistFlightLoadAmplitudesAndRatios()delis.damagetolerance.dtanalysis.LoadGenerator

method, 217

DamageToleranceIsotropPlateclass in
delis.damagetolerance.dtanalysis, 228

DamageToleranceStiffenedStructureclass in
delis.damagetolerance.dtanalysis, 229

delis.buckling.ado
module, 207

delis.buckling.beosinterface
module, 200

delis.buckling.bucklinginterface
module, 195

delis.buckling.handbook
module, 198

delis.control
module, 98

delis.main
module, 98

delis.model
module, 98

delis.model.geometry
module, 99

delis.model.loads

module, 23
delis.model.partitioning

module, 99
delis.model.partitioning.componentsegment

module, 114
delis.model.profile

module, 193
delis.model.structure

module, 99
delis.service

module, 99
delis.service.utilities

module, 99

effectiveLaminateStiffness()in module
delis.damagetolerance.clt_lamipy, 246

etadelis.model.partitioning.positioning.WingPosition at-
tribute, 111

fillSpacedInterval()in module delis.service.utilities, 169
FractureMechanics()in module

delis.damagetolerance.dtanalysis, 218
FuselagePosition()in module

delis.model.partitioning.fuselageposition,
53

FuselageSettings()in module delis.model.fuselage, 13

generateImaginaryRibs()delis.model.partitioning.componentsegment.ComponentSegment
method, 108

generateImaginarySpars()delis.model.partitioning.componentsegment.ComponentSegment
method, 107

generateRibs()delis.service.aircraftgenerator.AircraftGenerator
method, 69

generateStiffenerBeamModel()delis.beam.boxbeam.BoxBeam
method, 191

generateWingBeamModel()delis.beam.boxbeam.BoxBeam
method, 191

GenericLoadCase()in module delis.model.loads, 149
GenericProfile()in module delis.model.profile, 193
getAircraft()delis.service.aircraftgenerator.AircraftGenerator

method, 63
getAircraftMass()delis.service.structuremassfactory.StructureMassFactory

method, 155
getAlpha()delis.damagetolerance.dtanalysis.FractureMechanics

method, 220
getBorderingWingPositionsByEta()delis.model.partitioning.positioning.WingPositions

method, 111
getBucklingResults()delis.buckling.bucklinginterface.AbstractBuckling

method, 196
getBucklingResultsString()delis.buckling.bucklinginterface.AbstractBuckling

method, 198
getCrackgrowth()delis.damagetolerance.dtanalysis.DamageToleranceIsotropPlate

method, 228
getCrackgrowth()delis.damagetolerance.dtanalysis.DamageToleranceStiffenedStructure

method, 231
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getCrossSectionParameters()delis.model.profile.BoxBeamProfile
method, 194

getDisplacement()delis.beam.boxbeam.BoxBeam
method, 192

getDistanceToPoint()delis.model.geometry.plane.Plane
method, 172

getEtaXsiAtLineSparIntersection()delis.model.partitioning.componentsegment.ComponentSegment
method, 109

getFuselage()delis.service.aircraftgenerator.AircraftGenerator
method, 71

getFuselageMass()delis.service.structuremassfactory.StructureMassFactory
method, 156

getKcByMaterial()delis.damagetolerance.dtanalysis.Material
method, 226

getKeypointID()in module delis.service.utilities, 170
getProjectedPoints()delis.model.geometry.plane.Plane

method, 171
getReflectedWing()delis.model.wing.Wing method, 42
getResidualStrength()delis.damagetolerance.dtanalysis.DamageToleranceIsotropPlate

method, 228
getStressIntensityFactor()delis.damagetolerance.dtanalysis.FractureMechanics

method, 218
getStructureElementMass()delis.service.structuremassfactory.StructureMassFactory

method, 156
getWingKeypointID()in module delis.service.utilities,

170
getWingLoads()delis.beam.boxbeam.BoxBeam method,

192
getWingOrComponentSegmentMass()delis.service.structuremassfactory.StructureMassFactory

method, 156
getWingPositionsByBorderingWingPositions()delis.model.partitioning.positioning.WingPositions

method, 111
getWingPositionsByType()delis.model.partitioning.positioning.WingPositions

method, 111
GroupGenerator()in module

delis.hypersizer.groupgenerator, 141
growthrateForman()delis.damagetolerance.dtanalysis.CrackGrowth

method, 221
growthrateParis()delis.damagetolerance.dtanalysis.CrackGrowth

method, 221

HyperSizerBaseFunctions()in module
delis.hypersizer.hypersizermodel, 172

HyperSizerGroup()in module
delis.hypersizer.hypersizermodel, 139

HyperSizerInterface()in module
delis.hypersizer.hypersizerinterface, 137

initFigure()delis.service.structuremassfactory.StructureMassVizualizer
method, 158

initial_crack()delis.damagetolerance.dtanalysis.DamageToleranceIsotropPlate
method, 226

integral_crack_growth()delis.damagetolerance.dtanalysis.CrackGrowth
method, 223

integral_crack_growth_flightstep()delis.damagetolerance.dtanalysis.CrackGrowth
method, 223

integral_crack_growth_onestep()delis.damagetolerance.dtanalysis.CrackGrowth
method, 222

integralCrackGrowthFromCount()delis.damagetolerance.dtanalysis.CrackGrowth
method, 224

integralCrackGrowthFromCountFromLowToHigh()delis.damagetolerance.dtanalysis.CrackGrowth
method, 224

interface_counter()in module
delis.damagetolerance.clt_lamipy, 247

invertDict()in module delis.service.utilities, 169

laminate_mixer()in module
delis.damagetolerance.clt_lamipy, 247

LaminationParameterclass in
delis.damagetolerance.dtanalysis_composite,
245

LibTIGL()in module delis.service.tivalibs, 128
Load()in module delis.model.loads, 150
loadAircraft()in module delis.service.utilities, 167
LoadGenerator()in module

delis.damagetolerance.dtanalysis, 217

Mass()in module delis.model.structure.mass, 152
Masses()in module delis.model.structure.mass, 153
Materialclass in delis.damagetolerance.dtanalysis, 226
module

delis.buckling.ado, 207
delis.buckling.beosinterface, 200
delis.buckling.bucklinginterface, 195
delis.buckling.handbook, 198
delis.control, 98
delis.main, 98
delis.model, 98
delis.model.geometry, 99
delis.model.loads, 23
delis.model.partitioning, 99
delis.model.partitioning.componentsegment, 114
delis.model.profile, 193
delis.model.structure, 99
delis.service, 99
delis.service.utilities, 99

MyGlobals()in module delis.service.globals, 165

NodalLoadsLoadCase()in module delis.model.loads, 149

onRibsdelis.model.partitioning.positioning.WingPosition
attribute, 111

onSparsdelis.model.partitioning.positioning.WingPosition
attribute, 111

plotMasses()delis.service.structuremassfactory.StructureMassVizualizer
method, 158

positiondelis.model.partitioning.positioning.WingPosition
attribute, 111
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printGraphStructureMatplotlib()in module
delis.service.delisobjectsplotter.mainobjectsplotter,
122

Profile()in module delis.model.profile, 165
ProfileSizingSettings()in module

delis.model.sizingsettings, 16

reduceListWithLastElementPresent()in module
delis.service.utilities, 169

Rotation()in module delis.model.geometry.rotate, 160

saveAircraft()in module delis.service.utilities, 167
Scaling()in module delis.model.geometry.scale, 162
schubbeTestload()delis.damagetolerance.dtanalysis.LoadGenerator

method, 235
Segment()in module delis.model.partitioning.segment,

115
setColor()delis.service.structuremassfactory.StructureMassVizualizer

method, 158
setFormanParametersByMaterial()delis.damagetolerance.dtanalysis.Material

method, 226
setOutputControl()delis.beam.boxbeam.BoxBeam

method, 193
setParisParametersByMaterial()delis.damagetolerance.dtanalysis.Material

method, 227
setSegments()delis.model.partitioning.componentsegment.ComponentSegment

method, 102
ShearLoadOrthotropHSB()in module

delis.buckling.handbook, 198
ShearLoadOrthotropKassapoglou()in module

delis.buckling.handbook, 199
SheetSizingSettings()in module

delis.model.sizingsettings, 16
splitKeypointID()in module delis.service.utilities, 170
splitWingKeypointID()in module delis.service.utilities,

170
strength_of_a()delis.damagetolerance.dtanalysis.Residualstrength

method, 225
StructureMassFactory()in module

delis.service.structuremassfactory, 154
StructureMassTableGenerator()in module

delis.service.structuremassfactory, 158
StructureMassVizualizer()in module

delis.service.structuremassfactory, 156

test_crackgrowthintegrationstepwidth()in module
test_damagetolerance.test_dtanalysis, 232

test_damageToleranceKermanidisValidation2001()in
module test_damagetolerance.test_dtanalysis,
233

test_damageToleranceKermanidisValidation2011()in
module test_damagetolerance.test_dtanalysis,
234

test_damageToleranceValidationCase1Schubbe()in mod-
ule test_damagetolerance.test_dtanalysis, 235

test_HSB63611()in module
test_damagetolerance.test_dtanalysis, 237

Transformation()in module
delis.model.geometry.coordinatesystem,
163

Translation()in module delis.model.geometry.translate,
159

visible_crack()delis.damagetolerance.dtanalysis.DamageToleranceIsotropPlate
method, 225

webSizing()delis.model.profile.BoxBeamProfile method,
194

wingPositionsdelis.model.partitioning.componentsegment.ComponentSegment
attribute, 110

WingSettings()in module delis.model.wing, 12
writeDisplacements()delis.beam.boxbeam.BoxBeam

method, 192
writeResults()delis.beam.boxbeam.BoxBeam method,

192

xsidelis.model.partitioning.positioning.WingPosition at-
tribute, 111
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