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Abstract—Agent-based travel demand models can be used to
estimate the impact of possible transportation planning measures
and to forecast future development of human mobility. Related
transport models and associated simulation results are described
often in detail, but explanations of the creation of the required
baseline scenario including the necessary data preparation are
rarely available and often not shown. Therefore, this paper
gives general data requirements for creating a needed virtual
representation of a study area. Furthermore, it shows a real
example based on the preparation of the region covering the
Test Bed Lower Saxony in Germany. Special focus is laid on
population, location, and accessibility data within the area. The
presented approach can also be used to prepare a different study
area. Therefore, possible data sources and recommendations for
preparing the data are given.
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I. INTRODUCTION

How, when, where, and why do people move from one
location to another? Agent-based travel demand models can
give answers to those questions. These models are important
tools in transportation planning. They are used to estimate
the impact of possible measures, such as the installation of
a new public transportation infrastructure. Furthermore, they
can provide important insights on various possible future de-
velopments in travel demand, like due to an aging population,
the use of innovative vehicles, changing fuel prices or new
mobility trends.

For simulating the travel demand with agent-based models
a baseline scenario is required. It represents the current state
and is used as reference. Therefore, a virtual representation
of the related study area is an essential input for these
models. Recently, recommendations for input data regarding
spatial structure and transport offer have been provided [1].
The spatially related structural data often include information
about the population and the locations where activities can
be performed, whereas accessibility measures and transport
network for different modes describe the transport offer. In
addition, these models require usually information about travel
behavior. Such required detailed information is often not
available. Instead, it has to be created from a variety of data
sources. In particular, these data are very heterogeneous in
terms of format, spatial resolution, and time frame. Such
challenges of agent-based models are discussed in [2].

The purpose of this paper is to highlight general data re-
quirements, possible data sources, and appropriate approaches
for creating a virtual representation of a study area. It also
gives a real example based on the preparation of the region
covering the Test Bed Lower Saxony in Germany. Special
focus is laid on population, location, and accessibility data
within the area.

The paper is organized as follows: Section II gives informa-
tion on related work and contains an overview about essential
input data. The data preparation of the selected study area is
outlined in Section III. The results of the virtual representation
are presented in Section IV. Finally, Section V includes the
conclusions and gives an outlook on future work.

II. RELATED WORK AND ESSENTIAL INPUT DATA

Travel demand models are often based on the common
four-step model [3], which consists of trip generation, trip
distribution, mode choice, and traffic assignment. The trip
generation includes the estimation of how many trips are gen-
erated within a zone whereas the trip distribution covers their
destinations. Afterwards, a suitable transport mode is chosen.
The exact routes to be selected are determined in the last step.
In the case of agent-based models, this traditional approach
has been strongly expanded [4]. There is usually no isolated
consideration of a single step, but also interactions within and
between these steps. Rather than modeling aggregate Origin-
Destination (OD) matrices for each zone, these models rely
on a non-aggregated approach, where activities are the starting
point for representing daily mobility [5].

Detailed descriptions of agent-based models and associated
simulation results can be found often, but descriptions about
creating the underlying baseline scenario and the data prepa-
ration are rarely available. Such models require a variety of
different input data for each step. Current research shows that
the level of detail of the required input data may differ [6]
[7] [8]. This can depend on both the transport model used
or the specific research question. In the following, essentially
required input data, possible data sources, and further related
work for each discussed approach to generate the specific data
are given in the subsections below.



A. Spatial reference units

A subdivision of the study area into smaller units is neces-
sary to reflect spatial differences in travel demand. In travel
demand modeling these spatial units are called Traffic Analysis
Zones (TAZ). Usually they are homogeneous, for example,
containing the same number of households but they can also
correspond to administrative boundaries. The spatial reference
units are needed within the model, but they are also used for
the analysis and visualization of the simulation results [9].

B. Spatial structure data

For each TAZ, non-aggregated population data are required.
Each person of a synthetic population is described by a
set of socio-demographic information. In addition, informa-
tion about available mobility options is required. Household
information comprises for example the number of persons,
the total household income, and the number of cars that
belong to the household. Within the simulation, each tour
usually starts and ends at the home location of the person.
Therefore, a spatial reference of the address for each household
is required. Based on the address, each household can also be
assigned to the corresponding TAZ. Such detailed population
data are usually not available, but have to be generated on
the basis of empirical data and by suitable mathematical
methods. The consolidation of all information often remains
difficult, as various and heterogeneous data sources have to
be used. Therefore, a variety of different approaches have
been established for creating a synthetic population. Most of
these approaches are sample-based [10]. In order to correspond
to both a desired household and person distribution, several
methods can be used, for example household weight updating
[11], hierarchical fitting [12], or Bayesian networks [13]. Due
to limited data availability, alternative approaches that do not
require a sample have been developed as well [14]. The
synthetic population has a direct impact on the resulting traffic
volume, but also on the simulated travel behavior.

Apart from the synthetic population, possible locations
where activities can take place at are needed. Location choice
depends not only on individuals, but also on location specific
characteristics. Frequently used attributes in location and des-
tination choice include type of activity, spatial distribution,
accessibility, maximum capacity, as well as destination attrac-
tiveness. The main activity types used in agent-based travel
demand models are often related to work, education, shopping,
and leisure, but further types, such as personal business or
accompanying, may be also regarded depending on the model
[15] [16]. Information about activity locations usually has to
be collected from a variety of sources (e.g., public authorities,
surveys, commercial data). Since this process can be time-
consuming and expensive, open data is another option, espe-
cially OpenStreetMap (OSM). Its suitability and accuracy as
a data source for travel demand modeling has been subject of
study, with different results depending on the region or activity
type, with a possible improvement in data quality over the
years [17]. Another possibility is to generate activity locations

randomly using complementary data, such as land use [18]
or commuter flows [16]. Information about the numbers of
workers, students, etc. is used by travel demand models as a
capacity constraint to avoid exceeding the location’s capacity
and is only provided by some data sources. If not available,
it can be generated synthetically, for example using building
area and number of floors. Another attribute used by some
models for destination choice is attractiveness, for example
based on store size [18] or using data from a location-based
social network [19].

C. Transport offer data
In an agent-based demand model, each person from the

synthetic population acts as an agent. An agent has its own
daily plan of activities which need to be simulated. These
plans are commonly represented as tours. A tour starts and
respectively ends at home and contains a set of trips which
connect subsequent activities. Trips are entities that represent
the movement between two locations, including the time they
should start at, as well as the required time to accomplish
them. In order to complete a trip, an agent has to make several
choices, such as which location to head to and which mode
to use. Since the duration of a trip is known in advance,
the choice for a potential destination is, among other things,
dependent on mode specific travel times that are structured in
OD matrices. To reduce the dimension of these matrices, travel
time data between every location is aggregated on TAZ level.
There are several possibilities to generate disaggregated travel
time data. In the context of motorized individual transport, one
can use a graph-based routing algorithm like Dijkstra [20] or
A* [21] or acquire raw data from external sources with further
processing. In the context of public transport, time table-based
data like the General Transit Feed Specification (GTFS) could
be used. These accessibility measures play an important role
in computing both, destination and mode choice.

D. Travel behavior data
Information about travel behavior within a study area is

required in several steps of the modeling process. Such data
can be usually obtained from travel or time-use surveys.
Mobility options for the synthetic population can be estimated
by related logit models. However, the fundamentals of these
microscopic travel demand models are based on activities of
each individual. Besides the type of activity, the reported
diaries typically include both the start time and the duration of
the activity, but also the activity sequence. During a simulation
run, the prepared standardized diaries from the survey are used
to determine for each person in the synthetic population what
activities they undertake, when, and for how long. This also
reflects the number of trips to be generated. An appropriate
decision model is needed for the choice of the transport
mode. For this purpose, a multinomial logit model could be
created, for example, based on travel time, trip purpose, and
distance obtained from the survey. In addition, the distribution
of observed distances per mode, modeshare or trip purpose can
be used to calibrate and validate the simulation results.



III. PREPARING THE REGION TEST BED LOWER SAXONY

In this section, the study area will be outlined. First, an
overview of the data sources is given. Then, the spatial rep-
resentation of the area. Afterwards, the generation of the syn-
thetic population, followed by the locations including their ca-
pacities. Finally, the preparation of accessibility measures for
different modes of transport are described. The presented study
area will be used within the agent-based travel demand model
TAPAS [22] [23]. The software was recently made available
as open source and can be found at: https://github.com/DLR-
VF/TAPAS.

A. Overview of data sources

For preparing the study area, various data sets from freely
accessible data portals, administrative authorities but also a
commercial data provider have been used. The data sources
on which the study area are based are listed in Table I and
described in more detail in the following subsections B to E.

B. Study Area

With the Test Bed Lower Saxony [24], a research infrastruc-
ture for automated and connected vehicles is currently being
created. The test field includes sections of various highways,
but also parts of federal and country roads. Furthermore, it also
integrates the roads of the Application Platform for Intelligent
Mobility (AIM) [25], which is in operation within the city
center of Brunswick. In total, the test field will cover more
than 280 road kilometers after completion. This road network
is located in the federal state of Lower Saxony within the
districts of Gifhorn, Helmstedt, Hildesheim, Peine, Hanover
region, and Wolfenbüttel, as well as the district-free cities
of Brunswick, Salzgitter, and Wolfsburg. Population data for
forecast periods are often available at the district level rather
than at the municipality level. For this reason, these 6 districts
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Connect Fahrplanauskunft GmbH (Connect) x

Federal Agency for Cartography and
Geodesy (BKG)

x x

Federal and State Statistical Offices x

Kraftfahrt-Bundesamt (KBA) x

Mobility in Germany (MiD2017) x

Nexiga x x x

OpenStreetMap (OSM) x x

Statistics Office of Lower Saxony (LSN) x

Figure 1. Spatial coverage of the study area including the road network of
the Test Bed Lower Saxony and the division into traffic zones. The

geographic location within Germany is highlighted in the overview image.

and the 3 independent cities represent the study area which is
used in this paper. As mentioned in Section II, it is necessary to
subdivide the area into traffic zones. Unfortunately, no small-
scale uniform subdivision covering this area was available
for free. Therefore, a suitable division by neighborhoods
containing approximately 500 households was obtained from
Nexiga [26]. As a result, the area is divided into 2807 zones.
The region is mainly characterized as urban. Fig. 1 shows the
spatial coverage of the study area including the road network
of the Test Bed Lower Saxony and the division into traffic
zones. The geographical position within Germany is given in
the overview image, highlighted in dark gray.

C. Synthetic population

The required detailed population data are not available in
Germany, or if they are, they are not available without charge.
Usually, population data for the base year are only available in
aggregated form at municipal level. But, this spatial resolution
is much too low. For example, a city like Berlin with 3.7
million inhabitants would be a municipality. In order to take
spatial differences within the study area into account, the data
must, on the one hand, be on a higher spatial resolution
and be available in a non-aggregated form. The synthetic
population was created using SYNTHESIZER [27]. This in-
house application is often used within projects to generate the
required non-aggregated population data for TAPAS. Beside
the spatial subdivision into traffic zones, aggregated socio-
demographic data as marginal totals, and a non-aggregated
data set for duplicating the respective households and persons
are needed as input. Therefore, aggregated population data
on TAZ level from Nexiga were used. This data set includes
the number of persons subdivided into various age groups,
gender, and labor force. The latter are further subdivided into
employed and unemployed persons. In addition, household
size and income, as well as number of private cars are



included. A person within a synthetic population for TAPAS
is mainly described by age, gender, and a status classification
like children under 6 years, pupil, trainee, student, both full
time and part time employed, unemployed or retired. To
get the total number of children under 6 years of age, the
corresponding age groups were added. Number of pupils and
students in formal education schools, type of employment
(part-time or full-time), and number of pensioners come from
the LSN [28]. Data on students in higher education were
used from the municipal education database [29]. In addition,
the scientific use file of the Microcensus [30] was used as
non-aggregated sample. Both data sets are taken from the
Federal and State Statistical Offices. Since the aggregated data
were partly available on different spatial scales, they were
proportionally allocated to the corresponding traffic zone in
advance. In the SYNTHESIZER application, the respective
distributions at household and person level are generated for
each TAZ. To ensure that both distributions are included in the
target population, a new household weight is generated and
used when copying the entries from the sample. The result is
a non-aggregated base population.

Section II mentions that an address is needed for each
household. So far, only a spatial reference to the associated
TAZ is given. Instead of distributing the corresponding house-
holds evenly among the associated addresses within a TAZ,
the distribution was done by using a weight for each address.
This weight is composed of land use, building height, and
building area. Depending on the land use in which an address
is located, a corresponding factor was assigned to this address,
with addresses in residential areas having a higher value. The
weight of an address (A) is calculated by the product of
the land use factor (LU), the building height (BH), and the
building area (BA) as shown in (1).

WeightA = LUA ∗BHA ∗BAA (1)

Finally, the weighted number of inhabitants was added to each
address. It is composed by the product of inhabitants living in
a TAZ and the weight of the address (A) divided by the sum
of all related address weights located in this TAZ, see (2).

InhabitantsA =
InhabitantsTAZ ∗WeightA∑

A′∈TAZ WeightA′
(2)

Addresses, a digital landscape model, and a three-dimensional
building data set with the LoD1 level of detail from the BKG
[31] were used to distribute the inhabitants on buildings.

In addition to socio-demographic data, information on
available mobility options for each person or, respectively,
household are important for the upcoming simulation. The
availability of various mobility options was reported in the
nationwide household travel behavior survey MiD2017 [32].
Based on the survey data, logit models could be estimated for
owning a driver license, a public transport ticket, as well as
the ownership and number of cars in the household, and their
subdivision into three different size classes. No significant
model could be estimated for bicycle ownership. Instead, the
respective proportion by gender and age group were used for

this purpose. The total number of private cars for each traffic
zone from Nexiga was used as the vehicle fleet. Whereas data
from the KBA [33] was used for the distribution of the vehicle
fleet in regard to the corresponding engine types and their size
classes.

D. Locations for activities

Activity locations from different sources were gathered
and their format was harmonized for its use in TAPAS.
Activity locations in TAPAS can serve different activities and
need exact coordinates, activity type, and total capacity as
attributes for destination choice. An example for a location
serving multiple activities is a school, which can serve for
educational and working purposes. All data sets contained
spatial information, even if the coordinate reference system
may vary. On the contrary, type of activity and capacity were
not always available and even if they were, they had to be
converted and manually classified.

TAPAS has its own classification of activities with three
levels. The first level is based on the main activities work,
education, shopping, leisure, and personal matters. Within each
category there is a more detailed subdivision with one or two
subcategories. This is to address different kinds of locations,
especially in matters of size and special use. An example with
three levels would be education-school-primary school.

From Nexiga came most of work and shopping locations
and to a lesser extent locations of other categories. From the
BKG forest-related data from the Digital Landscape Model
(DLM) and Points of Interest (POI), such as universities,
schools, hospitals or embassies, were used. Lastly, different
leisure locations, including parks, allotments, playgrounds
or places of worship were extracted from OSM. Most of
the TAPAS activity categories were mapped onto economic
activity codes, which are available for most of the companies
in the Nexiga data set. These codes correspond to the German
Classification of Economic Activities, which is based on
the Statistical Classification of Economic Activities in the
European Community. Categories without a link to economic
activity codes had to be classified by string-matching or
manually, which was the case for the BKG and OSM data,
as well as for part of the Nexiga data.

In order to calculate capacities for activity locations, a
system based on relating location area to the number of
potential users/customers and workers was used and adapted
to our needs. These factors can be obtained by planing
engineering offices like [34] or from the Trip Generation
Handbook [35]. Our system consists of an employee factor as
well as a user factor for each activity category. Both factors
are interconnected, allowing to determine the number of users
per employee and vice versa. We also included a default
value (used in case of unavailable capacities), extracted from
available data or determined after some visual analysis. Those
factors were used to calculate missing capacities for all Nexiga
locations as well as for schools and hospitals from BKG, since
the number of employees for the former and the number of



pupils and beds for the latter were available. For example, for
the Nexiga locations the number of users/customers was cal-
culated using the number of employees and the corresponding
user factor. From the forest-data the area was used to subtract
a possible number of visitors, whereas default values were
assign to all OSM locations.

E. Accessibility measures

Since an agent inside a TAPAS simulation has a predefined
time frame for a trip, the location choice model is, among
other things, based on travel time matrices. Over the course of
a simulated day, these matrices have to change because travel
time is dependent on factors like current situation on roads
and the roads’ capacities in the context of individual transport
or time table changes when it comes to public transportation
systems. As stated in Section II, several techniques exist to
compute these for each available mode. Average travel times
and travel distances between each TAZ for every mode have
been computed using the UrMoAC [36], which is a Dijkstra-
based, in-house, and open-source application. Based on the
fact that computing all routes between every location in the
study area will require a lot of computation time, five location
representatives for every TAZ have been chosen at random in
advance for all modes. In the context of public transportation,
these computations have been done for multiple time frames
over three days (Tuesday, Wednesday, and Thursday) in an
average week with no special events. Time frames from 7am
to 10am and 5pm to 7pm cover the morning and evening rush
hour travel times. 10am to 5pm and 7pm to 11pm represent
average utilisation. The last time frame from 11pm to 7am
contains average travel times for night traffic. A common
problem with this approach refers to untrustworthy travel times
for trips that start and end in the same zone. The matrix
diagonal for the whole area is computed separately, calculating
every distance between every location inside the same TAZ
and using the median as average travel time [37].

IV. RESULTS

The study area was prepared for the base year 2017 and
the forecast year 2030. The following results refer to the base
year.

The synthetic population for this area contains a total of
2.4 million persons grouped into 1.3 million households. Fig.
2 presents the spatial distribution of the population density.
The district cities appear quite prominently here. On average,
1.9 people live in each household. The population distribution
according to age and gender is shown in Fig. 3. About
51% of all people are female and the remaining are male.
Approximately 16% of the inhabitants are younger than 18
years, 62% are of working age and 22% are older than 65
years. 88% people of age 18 or older have a driver license. In
addition, about 84% of all people have a bicycle and 23% have
a ticket for public transport. 21% of all households do not have
a car, whereas 79% own at least one car. All added mobility
options correspond almost exactly to the values reported in

Figure 2. Spatial distribution of the population density.

the MiD2017. Only the value for the public transport ticket
is 2% higher than in the survey. This is due to the fact that
when adding the public transport ticket, both school as well as
semester tickets for students were assumed in the entire study
area. The overall level of motorization is about 537 vehicles
per 1,000 inhabitants. Fig. 4 shows the spatial distribution
of the motorization level. It can be noticed that the level of
motorization is lower in the cities of the district. However,
if the number of vehicle per km² is taken into account, the
vehicle density in the cities is higher than in the surrounding
communities.

The preparation of the activity locations resulted in a total
of around 220,000 locations, taking into account that some of
them correspond to the same location but have different types.
For example, a hospital belongs to the categories work, but also

Figure 3. Distribution of individuals by age and gender.



Figure 4. Spatial distribution of the motorization level.

to personal matters - health - hospital, and personal matters
- family - visit. Approximately half of the locations corre-
spond to workplaces, 4,000 to education, 13,000 to shopping,
and 33,000 to personal matters. More than 20% are leisure
locations, but this number is misleading, because forests are
divided into small areas, of which the centroid represents a
location. Furthermore, as with the spatial distribution of the
population, most workplaces are concentrated in the main
cities, shown in Fig. 5.

Fig. 6 shows the temporal accessibility from the center of
Brunswick to all other traffic analysis zones inside the area
using a car. One can see that an agent can reach farther regions
that are located along highways in a certain amount of time.
The main transport network is included in Fig. 1.

Figure 5. Spatial distribution of workplaces as well as number of employees
represented by the symbol size.

Figure 6. Travel times by car from Brunswick to all traffic analysis zones in
the study area.

V. CONCLUSION AND FUTURE WORK

Agent-based travel demand models are important tools to
estimate the impact of possible transportation planning mea-
sures and to forecast future development of human mobility. A
virtual representation of the related study area is an essential
input for these models. This paper gives a real example based
on the preparation of the region covering the Test Bed Lower
Saxony in Germany for the year 2017. The presented approach
can be used to prepare a different study area. Therefore, several
recommendations, possible data sources, and approaches to
generate the needed data are given. The method for generating
the synthetic population could also be used within a different
research domain. For this purpose, data on mobility options
could be replaced by relevant other information or additional
ones could be added.

It should be noted that the quality of the input data has a
strong influence on the quality of the simulation results. There-
fore, special attention should be paid to the correctness of the
data and, if necessary, plausibility checks should be carried
out. This ensures that realistic findings and useful conclusions
can be derived from the simulation results. Furthermore, data
preparation and maintenance can be very time-consuming and
expensive, depending on the level of detail and the availability
of data for the study area.

Upcoming work will focus on the simulation of different
scenarios in the field of autonomous driving. For this purpose,
the study area presented in this paper will be used in the travel
demand model TAPAS.
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