Exascale-ready adaptive mesh refinement and applications in Earth system modelling

ECMWF - 19th workshop on HPC in meteorology, September 2021

Johannes Holke German Aerospace Center – Softwaretechnology | High-performance Computing

Knowledge for Tomorrow

Why AMR

Increase resolution = increase simulation accuracy

Common approach: Nested grids

- Increases resolution in large area of interest
- Can still use structured meshes (= implicit data and better performance)
- unflexible

Dynamic AMR

- Dynamic AMR:
 - Refine or coarse each element individually
 - Change over time
 - Reduce number of elements by orders of magnitude
 - Enable fine scale simulations that are not possible with uniform/nested grids

Challenges of AMR

- Storage of mesh elements
- Load-balancing
- Ghosts
- Etc.

Unstructured meshes: memory usage, do not scale well, no implicit structure

AMR data structure: Trees and SFCs

AMR data structure: Trees and SFCs

From tree to forest

Science 329 (5995), p. 1033-1038

Images by Carsten Burstedde

From Quad to all

t8code ("tetcode") – AMR library

Application developer should not be concerned with mesh management

Parallel mesh and data management library

C/C++ with MPI

The AMR simulation cycle

Application can freely speficy how to

- Adapt the mesh
- Interpolate the data
- Solve the equation

Performance Juqueen

Performance milestone: >1 Trillion elements on JUWELS

#processes	#Elements	#Elements/process	Ghost	Partition
98,304	1,099,511,627,776 ≞̃ 1.1e12	11,184,811	1.43s	0.33s

Two applications in ESM

LIEZ

"Explore potential of dynamic AMR in ESM"

- 1. Reduce I/O file size of MESSy
- 2. Full AMR Advection/Diffusion solver

www.exaesm.de

Karlsruher Institut für Technol

MESSy – lossy data compression

Technische Universität München

messy-interface.org The highly structured Modular Earth Submodel System (MESSy) developed by the consortium of arth Submo IGU 🚺 JÜLICH Deutsches Zentrum für Luft- und Raumfahrt Freie Universität THE CYPRUS INSTITUTE DLR JOHANNES GUTENBERG UNIVERSITÄT MAIN Forschungszentrun German Aerospace Center Karlsruher Institut für MAX-PLANCK-INSTITUT FÜR CHEMIE IGCE **Ť**∪Delft ∕∕ King Abdullah University UNI institut für geowissenschaften of Science and Institute of Globa FREIBURG Universität Hamburg Technology Climate and Ecology AARHUS UNIVERSIT DER FORSCHUNG | DER LEHRE | DER BILDUNG Roshydromet & RAS LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN nlr LMU and supported by

Deutsches Klimarechenzentrum (DKRZ), Hamburg, Germany

MPG Rechenzentrum (RZG), Garching, Germany

Leibniz Rechenzentrum (LRZ), Garching, Germany

odu

MESSy – lossy data compression

Simulation Hundreds of chemical species result in very large output files

MESSy – lossy data compression

Prototype/proof of concept

First results

RC1-base-07¹ ECHAM, 128 x 64 x 90

Lossy data compression for atmospheric chemistry using adaptive mesh coarsening Master's Thesis by Luca Spataro at TU Munich

¹Earth system chemistry integrated modelling (ESCIMO) with the modular earth submodel system (MESSy) version 2.51, Jöckel et. al., 2016

Results

The first results are promising. Currently Coarsening over all z-levels simultaneously:

Much better compression rates expected when handling z-levels independently:

T8DG Advection/Diffusion

- Motivating example: Volcanic ash distribution
- High-order discontinuous Galerkin
- Matrix free
- Geometry support
- Implicit
- Multigrid

The Local Discontinuous Galerkin Method for the Advection-Diffusion Equation on adaptive meshes Master's Thesis by Lukas Dreyer at Uni Bonn

Scaling on JUWELS

The Local Discontinuous Galerkin Method for the Advection-Diffusion Equation on adaptive meshes Master's Thesis by Lukas Dreyer at Uni Bonn

Adaptive vs. non-adaptive

	Runtime	Error	#DOFs
Uniform 3D	7057s	1.3e-3	16.777.216
Adaptive 3D	561s	1.5e-3	~1.920.000

12.6x speedup 8.7x less DOFs

> The Local Discontinuous Galerkin Method for the Advection-Diffusion Equation on adaptive meshes Master's Thesis by Lukas Dreyer at Uni Bonn

Conclusion/Outlook

- AMR can significantly reduce computing time and memory/disk usage
- AMR is efficient and scales (for all element shapes)
- You should not do AMR yourself
- Stronger Coupling MESSy + t8code plannend
- Ongoing Coupling to MPTRAC from JSC
- Suitable adaptation criteria in ESM?

Thank you

Special thanks to

Luca Spataro, Lukas Dreyer, Niklas Böing, David Knapp Patrick Jöckel, Kerstin Hartung Lars Hoffmann, Olaf Stein Carsten Burstedde Gregor Gassner Michael Bader

