3 µm water vapor self- and foreign-continuum: New method for determination and new insights into the self-continuum

M. Birk, G. Wagner, J. Loos, K.P. Shine
Determination of H2O continua in the past

Method
- Transmittance spectra from FTS, absorption coefficients from CRDS
- Calculation of H2O local lines using mostly HITRAN parameters
- Only use troughs, subtract local line contributions

Disadvantages (especially for FC)
- Large gaps
- Low resolution
- Errors due to inadequacy of line parameter database
New method for H2O continuum determination

Method
• Usage of same spectra for line parameter and continuum determination
• Continuum extracted from fitted baseline from microwindow-based multispectrum fit

Advantage
• Continuum information not constrained to troughs – only few gaps
• Local line errors small
• Sufficient spectral resolution – determined by microwindow width, baseline = polynomial, degree ≤ 2
• Advantage is largest for in-band FC

Prototyping
• Water measurements between 1800 and 4000 cm$^{-1}$ with high quality line parameters already determined [Loos2017;Loos2017a]
Since 1990 high resolution spectroscopy for spectroscopic databases of atmospheric constituents
Commercial Bruker IFS125 HR FT spectrometer 10-40000 cm⁻¹
Multireflection cell

- 14-165 m absorption path, accuracy 0.1%
- 190-350 K temperature range
- Mirrors actively thermalized
- 0.1 K temperature homogeneity
- Attached to Bruker IFS 125 HR
- Transfer optics in sample chamber
- Mirror coating selected for minimum reflection loss
Other infrastructure: Gas handling

- Precision pressure transducers: mks Baratron 0.05% accuracy
- Temperature sensors: Lakeshore Pt100, 0.1 K accuracy
- 800 l stainless steel gas mixing chamber, stirrer
- Flow and pressure controllers
Multispectrum fitting software
Multispectrum fit of pure H2O spectra
Multispectrum fit of air-broadened H2O spectra
Measurements used for continuum determination

- SC \propto p_{H_2O}^2 \cdot l = IC_s
- FC \propto p_{H_2O} \cdot p_{air} \cdot l = IC_f

<table>
<thead>
<tr>
<th>#</th>
<th>p_{H_2O}/mbar</th>
<th>p_{tot}/mbar</th>
<th>l/m</th>
<th>IC_s</th>
<th>IC_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.9626</td>
<td>4.9626</td>
<td>14.50</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20.0</td>
<td>20.0</td>
<td>14.50</td>
<td>5800</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.9651</td>
<td>4.9651</td>
<td>72.08</td>
<td>1773</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20.0</td>
<td>20.0</td>
<td>72.08</td>
<td>28800</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.9655</td>
<td>4.9655</td>
<td>177.3</td>
<td>4354</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20.0</td>
<td>20.0</td>
<td>176.7</td>
<td>70680</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6.0</td>
<td>300</td>
<td>72.08</td>
<td>2592</td>
<td>129600</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>1000</td>
<td>72.08</td>
<td>288</td>
<td>144000</td>
</tr>
<tr>
<td>9</td>
<td>7.5</td>
<td>1000</td>
<td>72.08</td>
<td>4050</td>
<td>540000</td>
</tr>
<tr>
<td>10</td>
<td>6.0</td>
<td>100</td>
<td>168.21</td>
<td>6048</td>
<td>100800</td>
</tr>
<tr>
<td>11</td>
<td>6.0</td>
<td>300</td>
<td>168.21</td>
<td>6048</td>
<td>302400</td>
</tr>
<tr>
<td>12</td>
<td>4.8</td>
<td>800</td>
<td>168.21</td>
<td>3870</td>
<td>645000</td>
</tr>
</tbody>
</table>
Transmittance contributions of pure H2O spectra
green: observed, red: pure line spectrum, black: baseline
Transmittance contributions of air-broadened H2O spectra
green: observed, red: pure line spectrum, black: baseline
Self-Continuum multispectrum fit to baselines
black: observed, red: calc, green: OMCx10
Foreign-Continuum multispectrum fit to baselines
black: observed, red: calc, blue: SC contribution, yellow: FC contribution, green: OMCx10
Validation of SC with air-broadened measurements

![Graph showing SC from air-broadened spectra, SC from self-broadened spectra, and 10 x uncertainty.](image)
Comparison of SC with CAVIAR
lower traces: continua, upper traces: uncertainties/differences x 4, zero blue line. Black: present work, green: CAVIAR, red: CAVIAR – present work
Comparison of FC with CAVIAR and MT_CKD3.2

![Graph comparing FC, CAVIAR, and MT_CKD3.2 models across different wavenumbers.](image-url)

- **FC - Lorentz wings > 100 cm\(^{-1}\)**
- **FC + base term + wing corr.**
- **MT_CKD3.2**

C\(_f\)/\(cm^2\text{molec}^{-1}\text{atm}^{-1}\)

Wavenumber/cm\(^{-1}\)
Shape of self-continuum

- H2O-dimer dissociating into monomer
- Spectrum in between bound dimer and monomer
- Ab initio can calculate spectra but high energy level density close to dissociation limit

- Simpler approach: Bound dimer + quasibound dimer
- Quasibound dimer has shape of monomer band but large broadening due to short lifetime (FWHM=14-40 cm⁻¹, Ptashnik, 2011).
- New concept for estimating bound dimer spectrum: Generic band shapes of parallel and perpendicular rovibrational bands
Shape of bound dimer bands

- Strongest vibrational fundamentals in 3 µm region from ab initio/experiments:
 - symmetric OH stretch of the donor H₂O: \(\nu_3 \)
 - antisymmetric OH stretch of the donor H₂O: \(\nu_1 \)
 - antisymmetric OH stretch of the acceptor H₂O: \(\nu_9 \)
- Ground state rotational constants: \(A \approx 7 \text{ cm}^{-1} \), \(B \approx C \approx 0.2 \text{ cm}^{-1} \)
Shape of bound dimer bands

- Ptashnik: All bands have Lorentzian shape with 60 cm\(^{-1}\) FWHM
- New approach: Generic band shapes of parallel and perpendicular bands of symmetric top
- \(\nu_3, \nu_1\): dipole moment changes parallel and perpendicular to A-axis, \(\nu_9\): perp.
- Effects smearing band structure: diff. rot. const. in ground and excited vib. states, centrifugal distortion, hot bands (ca. 85% of total intensity), asymmetry splitting, torsional tunneling splitting, lifetime broadening, Cave: floppy molecule
- FWHM parallel band rovibrational lines: 5 cm\(^{-1}\), perpendicular band 10 cm\(^{-1}\)
Fit of SC continuum

<table>
<thead>
<tr>
<th>#</th>
<th>K_{Db}/atm$^{-1}$</th>
<th>K_{Dq}/atm$^{-1}$</th>
<th>K_{eq}/atm$^{-1}$</th>
<th>$f_{S_{v3}}$</th>
<th>$f_{S_{v1}}$</th>
<th>$f_{S_{v9}}$</th>
<th>$f_{para_{v3}}$</th>
<th>$f_{para_{v1}}$</th>
<th>$\nu_{0,v3}$/cm$^{-1}$</th>
<th>$\nu_{0,v1}$/cm$^{-1}$</th>
<th>$\nu_{0,v9}$/cm$^{-1}$</th>
<th>FWHM qD/cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>fit</td>
<td>0.025</td>
<td>0.042</td>
<td>0.067</td>
<td>0.48</td>
<td>0.27</td>
<td>0.25</td>
<td>0.54</td>
<td>0.6</td>
<td>3610</td>
<td>3724</td>
<td>3749</td>
<td>20</td>
</tr>
<tr>
<td>lit</td>
<td>0.052</td>
<td>0.55(8)</td>
<td>0.28(6)</td>
<td>0.18(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3597</td>
<td>3730</td>
<td>3749</td>
<td></td>
</tr>
</tbody>
</table>

Wavenumber/cm$^{-1}$

- exp
- calc
- bound
- quasi-bound

$CS/(cm^2\text{molec}^{-1}\text{atm}^{-1})$

K_{Db}, K_{Dq}, K_{eq}, $f_{S_{v3}}$, $f_{S_{v1}}$, $f_{S_{v9}}$, $f_{para_{v3}}$, $f_{para_{v1}}$, $\nu_{0,v3}$, $\nu_{0,v1}$, $\nu_{0,v9}$, FWHM qD

lit values: 0.052, 0.55(8), 0.28(6), 0.18(3)

fit values: 0.025, 0.042, 0.067, 0.48, 0.27, 0.25, 0.54, 0.6, 3610, 3724, 3749, 20
Conclusion

• New method for H2O in-band continuum determination prototyped, using same spectra for line parameters and continuum
• Example: FC and SC in 3 µm region
• Continua show better spectral coverage and resolution, and smoothness
• SC in good agreement with CAVIAR work
• FC in agreement with CAVIAR work, showing P-, Q-, and R-branch
• SC was fitted applying bound and quasibound dimer contributions
• Rovibrational bands of bound dimer were simulated by generic parallel and perpendicular symmetric top bands
• Two double peaks in SC can be modelled with parallel rovibrational bands
• Dimer band positions and strengths are in reasonable agreement with theoretical work